x86, mtrr: Avoid MTRR reprogramming on BP during boot on UP platforms
[deliverable/linux.git] / arch / x86 / kernel / cpu / mtrr / main.c
1 /* Generic MTRR (Memory Type Range Register) driver.
2
3 Copyright (C) 1997-2000 Richard Gooch
4 Copyright (c) 2002 Patrick Mochel
5
6 This library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
10
11 This library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with this library; if not, write to the Free
18 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
20 Richard Gooch may be reached by email at rgooch@atnf.csiro.au
21 The postal address is:
22 Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
23
24 Source: "Pentium Pro Family Developer's Manual, Volume 3:
25 Operating System Writer's Guide" (Intel document number 242692),
26 section 11.11.7
27
28 This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
29 on 6-7 March 2002.
30 Source: Intel Architecture Software Developers Manual, Volume 3:
31 System Programming Guide; Section 9.11. (1997 edition - PPro).
32 */
33
34 #define DEBUG
35
36 #include <linux/types.h> /* FIXME: kvm_para.h needs this */
37
38 #include <linux/stop_machine.h>
39 #include <linux/kvm_para.h>
40 #include <linux/uaccess.h>
41 #include <linux/module.h>
42 #include <linux/mutex.h>
43 #include <linux/init.h>
44 #include <linux/sort.h>
45 #include <linux/cpu.h>
46 #include <linux/pci.h>
47 #include <linux/smp.h>
48
49 #include <asm/processor.h>
50 #include <asm/e820.h>
51 #include <asm/mtrr.h>
52 #include <asm/msr.h>
53
54 #include "mtrr.h"
55
56 u32 num_var_ranges;
57
58 unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES];
59 static DEFINE_MUTEX(mtrr_mutex);
60
61 u64 size_or_mask, size_and_mask;
62 static bool mtrr_aps_delayed_init;
63
64 static const struct mtrr_ops *mtrr_ops[X86_VENDOR_NUM];
65
66 const struct mtrr_ops *mtrr_if;
67
68 static void set_mtrr(unsigned int reg, unsigned long base,
69 unsigned long size, mtrr_type type);
70
71 void set_mtrr_ops(const struct mtrr_ops *ops)
72 {
73 if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
74 mtrr_ops[ops->vendor] = ops;
75 }
76
77 /* Returns non-zero if we have the write-combining memory type */
78 static int have_wrcomb(void)
79 {
80 struct pci_dev *dev;
81 u8 rev;
82
83 dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
84 if (dev != NULL) {
85 /*
86 * ServerWorks LE chipsets < rev 6 have problems with
87 * write-combining. Don't allow it and leave room for other
88 * chipsets to be tagged
89 */
90 if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
91 dev->device == PCI_DEVICE_ID_SERVERWORKS_LE) {
92 pci_read_config_byte(dev, PCI_CLASS_REVISION, &rev);
93 if (rev <= 5) {
94 pr_info("mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
95 pci_dev_put(dev);
96 return 0;
97 }
98 }
99 /*
100 * Intel 450NX errata # 23. Non ascending cacheline evictions to
101 * write combining memory may resulting in data corruption
102 */
103 if (dev->vendor == PCI_VENDOR_ID_INTEL &&
104 dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
105 pr_info("mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
106 pci_dev_put(dev);
107 return 0;
108 }
109 pci_dev_put(dev);
110 }
111 return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0;
112 }
113
114 /* This function returns the number of variable MTRRs */
115 static void __init set_num_var_ranges(void)
116 {
117 unsigned long config = 0, dummy;
118
119 if (use_intel())
120 rdmsr(MSR_MTRRcap, config, dummy);
121 else if (is_cpu(AMD))
122 config = 2;
123 else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
124 config = 8;
125
126 num_var_ranges = config & 0xff;
127 }
128
129 static void __init init_table(void)
130 {
131 int i, max;
132
133 max = num_var_ranges;
134 for (i = 0; i < max; i++)
135 mtrr_usage_table[i] = 1;
136 }
137
138 struct set_mtrr_data {
139 atomic_t count;
140 atomic_t gate;
141 unsigned long smp_base;
142 unsigned long smp_size;
143 unsigned int smp_reg;
144 mtrr_type smp_type;
145 };
146
147 static DEFINE_PER_CPU(struct cpu_stop_work, mtrr_work);
148
149 /**
150 * mtrr_work_handler - Synchronisation handler. Executed by "other" CPUs.
151 * @info: pointer to mtrr configuration data
152 *
153 * Returns nothing.
154 */
155 static int mtrr_work_handler(void *info)
156 {
157 #ifdef CONFIG_SMP
158 struct set_mtrr_data *data = info;
159 unsigned long flags;
160
161 atomic_dec(&data->count);
162 while (!atomic_read(&data->gate))
163 cpu_relax();
164
165 local_irq_save(flags);
166
167 atomic_dec(&data->count);
168 while (atomic_read(&data->gate))
169 cpu_relax();
170
171 /* The master has cleared me to execute */
172 if (data->smp_reg != ~0U) {
173 mtrr_if->set(data->smp_reg, data->smp_base,
174 data->smp_size, data->smp_type);
175 } else if (mtrr_aps_delayed_init) {
176 /*
177 * Initialize the MTRRs inaddition to the synchronisation.
178 */
179 mtrr_if->set_all();
180 }
181
182 atomic_dec(&data->count);
183 while (!atomic_read(&data->gate))
184 cpu_relax();
185
186 atomic_dec(&data->count);
187 local_irq_restore(flags);
188 #endif
189 return 0;
190 }
191
192 static inline int types_compatible(mtrr_type type1, mtrr_type type2)
193 {
194 return type1 == MTRR_TYPE_UNCACHABLE ||
195 type2 == MTRR_TYPE_UNCACHABLE ||
196 (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
197 (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
198 }
199
200 /**
201 * set_mtrr - update mtrrs on all processors
202 * @reg: mtrr in question
203 * @base: mtrr base
204 * @size: mtrr size
205 * @type: mtrr type
206 *
207 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
208 *
209 * 1. Queue work to do the following on all processors:
210 * 2. Disable Interrupts
211 * 3. Wait for all procs to do so
212 * 4. Enter no-fill cache mode
213 * 5. Flush caches
214 * 6. Clear PGE bit
215 * 7. Flush all TLBs
216 * 8. Disable all range registers
217 * 9. Update the MTRRs
218 * 10. Enable all range registers
219 * 11. Flush all TLBs and caches again
220 * 12. Enter normal cache mode and reenable caching
221 * 13. Set PGE
222 * 14. Wait for buddies to catch up
223 * 15. Enable interrupts.
224 *
225 * What does that mean for us? Well, first we set data.count to the number
226 * of CPUs. As each CPU announces that it started the rendezvous handler by
227 * decrementing the count, We reset data.count and set the data.gate flag
228 * allowing all the cpu's to proceed with the work. As each cpu disables
229 * interrupts, it'll decrement data.count once. We wait until it hits 0 and
230 * proceed. We clear the data.gate flag and reset data.count. Meanwhile, they
231 * are waiting for that flag to be cleared. Once it's cleared, each
232 * CPU goes through the transition of updating MTRRs.
233 * The CPU vendors may each do it differently,
234 * so we call mtrr_if->set() callback and let them take care of it.
235 * When they're done, they again decrement data->count and wait for data.gate
236 * to be set.
237 * When we finish, we wait for data.count to hit 0 and toggle the data.gate flag
238 * Everyone then enables interrupts and we all continue on.
239 *
240 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
241 * becomes nops.
242 */
243 static void
244 set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type)
245 {
246 struct set_mtrr_data data;
247 unsigned long flags;
248 int cpu;
249
250 preempt_disable();
251
252 data.smp_reg = reg;
253 data.smp_base = base;
254 data.smp_size = size;
255 data.smp_type = type;
256 atomic_set(&data.count, num_booting_cpus() - 1);
257
258 /* Make sure data.count is visible before unleashing other CPUs */
259 smp_wmb();
260 atomic_set(&data.gate, 0);
261
262 /* Start the ball rolling on other CPUs */
263 for_each_online_cpu(cpu) {
264 struct cpu_stop_work *work = &per_cpu(mtrr_work, cpu);
265
266 if (cpu == smp_processor_id())
267 continue;
268
269 stop_one_cpu_nowait(cpu, mtrr_work_handler, &data, work);
270 }
271
272
273 while (atomic_read(&data.count))
274 cpu_relax();
275
276 /* Ok, reset count and toggle gate */
277 atomic_set(&data.count, num_booting_cpus() - 1);
278 smp_wmb();
279 atomic_set(&data.gate, 1);
280
281 local_irq_save(flags);
282
283 while (atomic_read(&data.count))
284 cpu_relax();
285
286 /* Ok, reset count and toggle gate */
287 atomic_set(&data.count, num_booting_cpus() - 1);
288 smp_wmb();
289 atomic_set(&data.gate, 0);
290
291 /* Do our MTRR business */
292
293 /*
294 * HACK!
295 * We use this same function to initialize the mtrrs on boot.
296 * The state of the boot cpu's mtrrs has been saved, and we want
297 * to replicate across all the APs.
298 * If we're doing that @reg is set to something special...
299 */
300 if (reg != ~0U)
301 mtrr_if->set(reg, base, size, type);
302 else if (!mtrr_aps_delayed_init)
303 mtrr_if->set_all();
304
305 /* Wait for the others */
306 while (atomic_read(&data.count))
307 cpu_relax();
308
309 atomic_set(&data.count, num_booting_cpus() - 1);
310 smp_wmb();
311 atomic_set(&data.gate, 1);
312
313 /*
314 * Wait here for everyone to have seen the gate change
315 * So we're the last ones to touch 'data'
316 */
317 while (atomic_read(&data.count))
318 cpu_relax();
319
320 local_irq_restore(flags);
321 preempt_enable();
322 }
323
324 /**
325 * mtrr_add_page - Add a memory type region
326 * @base: Physical base address of region in pages (in units of 4 kB!)
327 * @size: Physical size of region in pages (4 kB)
328 * @type: Type of MTRR desired
329 * @increment: If this is true do usage counting on the region
330 *
331 * Memory type region registers control the caching on newer Intel and
332 * non Intel processors. This function allows drivers to request an
333 * MTRR is added. The details and hardware specifics of each processor's
334 * implementation are hidden from the caller, but nevertheless the
335 * caller should expect to need to provide a power of two size on an
336 * equivalent power of two boundary.
337 *
338 * If the region cannot be added either because all regions are in use
339 * or the CPU cannot support it a negative value is returned. On success
340 * the register number for this entry is returned, but should be treated
341 * as a cookie only.
342 *
343 * On a multiprocessor machine the changes are made to all processors.
344 * This is required on x86 by the Intel processors.
345 *
346 * The available types are
347 *
348 * %MTRR_TYPE_UNCACHABLE - No caching
349 *
350 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
351 *
352 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
353 *
354 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
355 *
356 * BUGS: Needs a quiet flag for the cases where drivers do not mind
357 * failures and do not wish system log messages to be sent.
358 */
359 int mtrr_add_page(unsigned long base, unsigned long size,
360 unsigned int type, bool increment)
361 {
362 unsigned long lbase, lsize;
363 int i, replace, error;
364 mtrr_type ltype;
365
366 if (!mtrr_if)
367 return -ENXIO;
368
369 error = mtrr_if->validate_add_page(base, size, type);
370 if (error)
371 return error;
372
373 if (type >= MTRR_NUM_TYPES) {
374 pr_warning("mtrr: type: %u invalid\n", type);
375 return -EINVAL;
376 }
377
378 /* If the type is WC, check that this processor supports it */
379 if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
380 pr_warning("mtrr: your processor doesn't support write-combining\n");
381 return -ENOSYS;
382 }
383
384 if (!size) {
385 pr_warning("mtrr: zero sized request\n");
386 return -EINVAL;
387 }
388
389 if (base & size_or_mask || size & size_or_mask) {
390 pr_warning("mtrr: base or size exceeds the MTRR width\n");
391 return -EINVAL;
392 }
393
394 error = -EINVAL;
395 replace = -1;
396
397 /* No CPU hotplug when we change MTRR entries */
398 get_online_cpus();
399
400 /* Search for existing MTRR */
401 mutex_lock(&mtrr_mutex);
402 for (i = 0; i < num_var_ranges; ++i) {
403 mtrr_if->get(i, &lbase, &lsize, &ltype);
404 if (!lsize || base > lbase + lsize - 1 ||
405 base + size - 1 < lbase)
406 continue;
407 /*
408 * At this point we know there is some kind of
409 * overlap/enclosure
410 */
411 if (base < lbase || base + size - 1 > lbase + lsize - 1) {
412 if (base <= lbase &&
413 base + size - 1 >= lbase + lsize - 1) {
414 /* New region encloses an existing region */
415 if (type == ltype) {
416 replace = replace == -1 ? i : -2;
417 continue;
418 } else if (types_compatible(type, ltype))
419 continue;
420 }
421 pr_warning("mtrr: 0x%lx000,0x%lx000 overlaps existing"
422 " 0x%lx000,0x%lx000\n", base, size, lbase,
423 lsize);
424 goto out;
425 }
426 /* New region is enclosed by an existing region */
427 if (ltype != type) {
428 if (types_compatible(type, ltype))
429 continue;
430 pr_warning("mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
431 base, size, mtrr_attrib_to_str(ltype),
432 mtrr_attrib_to_str(type));
433 goto out;
434 }
435 if (increment)
436 ++mtrr_usage_table[i];
437 error = i;
438 goto out;
439 }
440 /* Search for an empty MTRR */
441 i = mtrr_if->get_free_region(base, size, replace);
442 if (i >= 0) {
443 set_mtrr(i, base, size, type);
444 if (likely(replace < 0)) {
445 mtrr_usage_table[i] = 1;
446 } else {
447 mtrr_usage_table[i] = mtrr_usage_table[replace];
448 if (increment)
449 mtrr_usage_table[i]++;
450 if (unlikely(replace != i)) {
451 set_mtrr(replace, 0, 0, 0);
452 mtrr_usage_table[replace] = 0;
453 }
454 }
455 } else {
456 pr_info("mtrr: no more MTRRs available\n");
457 }
458 error = i;
459 out:
460 mutex_unlock(&mtrr_mutex);
461 put_online_cpus();
462 return error;
463 }
464
465 static int mtrr_check(unsigned long base, unsigned long size)
466 {
467 if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
468 pr_warning("mtrr: size and base must be multiples of 4 kiB\n");
469 pr_debug("mtrr: size: 0x%lx base: 0x%lx\n", size, base);
470 dump_stack();
471 return -1;
472 }
473 return 0;
474 }
475
476 /**
477 * mtrr_add - Add a memory type region
478 * @base: Physical base address of region
479 * @size: Physical size of region
480 * @type: Type of MTRR desired
481 * @increment: If this is true do usage counting on the region
482 *
483 * Memory type region registers control the caching on newer Intel and
484 * non Intel processors. This function allows drivers to request an
485 * MTRR is added. The details and hardware specifics of each processor's
486 * implementation are hidden from the caller, but nevertheless the
487 * caller should expect to need to provide a power of two size on an
488 * equivalent power of two boundary.
489 *
490 * If the region cannot be added either because all regions are in use
491 * or the CPU cannot support it a negative value is returned. On success
492 * the register number for this entry is returned, but should be treated
493 * as a cookie only.
494 *
495 * On a multiprocessor machine the changes are made to all processors.
496 * This is required on x86 by the Intel processors.
497 *
498 * The available types are
499 *
500 * %MTRR_TYPE_UNCACHABLE - No caching
501 *
502 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
503 *
504 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
505 *
506 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
507 *
508 * BUGS: Needs a quiet flag for the cases where drivers do not mind
509 * failures and do not wish system log messages to be sent.
510 */
511 int mtrr_add(unsigned long base, unsigned long size, unsigned int type,
512 bool increment)
513 {
514 if (mtrr_check(base, size))
515 return -EINVAL;
516 return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
517 increment);
518 }
519 EXPORT_SYMBOL(mtrr_add);
520
521 /**
522 * mtrr_del_page - delete a memory type region
523 * @reg: Register returned by mtrr_add
524 * @base: Physical base address
525 * @size: Size of region
526 *
527 * If register is supplied then base and size are ignored. This is
528 * how drivers should call it.
529 *
530 * Releases an MTRR region. If the usage count drops to zero the
531 * register is freed and the region returns to default state.
532 * On success the register is returned, on failure a negative error
533 * code.
534 */
535 int mtrr_del_page(int reg, unsigned long base, unsigned long size)
536 {
537 int i, max;
538 mtrr_type ltype;
539 unsigned long lbase, lsize;
540 int error = -EINVAL;
541
542 if (!mtrr_if)
543 return -ENXIO;
544
545 max = num_var_ranges;
546 /* No CPU hotplug when we change MTRR entries */
547 get_online_cpus();
548 mutex_lock(&mtrr_mutex);
549 if (reg < 0) {
550 /* Search for existing MTRR */
551 for (i = 0; i < max; ++i) {
552 mtrr_if->get(i, &lbase, &lsize, &ltype);
553 if (lbase == base && lsize == size) {
554 reg = i;
555 break;
556 }
557 }
558 if (reg < 0) {
559 pr_debug("mtrr: no MTRR for %lx000,%lx000 found\n",
560 base, size);
561 goto out;
562 }
563 }
564 if (reg >= max) {
565 pr_warning("mtrr: register: %d too big\n", reg);
566 goto out;
567 }
568 mtrr_if->get(reg, &lbase, &lsize, &ltype);
569 if (lsize < 1) {
570 pr_warning("mtrr: MTRR %d not used\n", reg);
571 goto out;
572 }
573 if (mtrr_usage_table[reg] < 1) {
574 pr_warning("mtrr: reg: %d has count=0\n", reg);
575 goto out;
576 }
577 if (--mtrr_usage_table[reg] < 1)
578 set_mtrr(reg, 0, 0, 0);
579 error = reg;
580 out:
581 mutex_unlock(&mtrr_mutex);
582 put_online_cpus();
583 return error;
584 }
585
586 /**
587 * mtrr_del - delete a memory type region
588 * @reg: Register returned by mtrr_add
589 * @base: Physical base address
590 * @size: Size of region
591 *
592 * If register is supplied then base and size are ignored. This is
593 * how drivers should call it.
594 *
595 * Releases an MTRR region. If the usage count drops to zero the
596 * register is freed and the region returns to default state.
597 * On success the register is returned, on failure a negative error
598 * code.
599 */
600 int mtrr_del(int reg, unsigned long base, unsigned long size)
601 {
602 if (mtrr_check(base, size))
603 return -EINVAL;
604 return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
605 }
606 EXPORT_SYMBOL(mtrr_del);
607
608 /*
609 * HACK ALERT!
610 * These should be called implicitly, but we can't yet until all the initcall
611 * stuff is done...
612 */
613 static void __init init_ifs(void)
614 {
615 #ifndef CONFIG_X86_64
616 amd_init_mtrr();
617 cyrix_init_mtrr();
618 centaur_init_mtrr();
619 #endif
620 }
621
622 /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
623 * MTRR driver doesn't require this
624 */
625 struct mtrr_value {
626 mtrr_type ltype;
627 unsigned long lbase;
628 unsigned long lsize;
629 };
630
631 static struct mtrr_value mtrr_value[MTRR_MAX_VAR_RANGES];
632
633 static int mtrr_save(struct sys_device *sysdev, pm_message_t state)
634 {
635 int i;
636
637 for (i = 0; i < num_var_ranges; i++) {
638 mtrr_if->get(i, &mtrr_value[i].lbase,
639 &mtrr_value[i].lsize,
640 &mtrr_value[i].ltype);
641 }
642 return 0;
643 }
644
645 static int mtrr_restore(struct sys_device *sysdev)
646 {
647 int i;
648
649 for (i = 0; i < num_var_ranges; i++) {
650 if (mtrr_value[i].lsize) {
651 set_mtrr(i, mtrr_value[i].lbase,
652 mtrr_value[i].lsize,
653 mtrr_value[i].ltype);
654 }
655 }
656 return 0;
657 }
658
659
660
661 static struct sysdev_driver mtrr_sysdev_driver = {
662 .suspend = mtrr_save,
663 .resume = mtrr_restore,
664 };
665
666 int __initdata changed_by_mtrr_cleanup;
667
668 /**
669 * mtrr_bp_init - initialize mtrrs on the boot CPU
670 *
671 * This needs to be called early; before any of the other CPUs are
672 * initialized (i.e. before smp_init()).
673 *
674 */
675 void __init mtrr_bp_init(void)
676 {
677 u32 phys_addr;
678
679 init_ifs();
680
681 phys_addr = 32;
682
683 if (cpu_has_mtrr) {
684 mtrr_if = &generic_mtrr_ops;
685 size_or_mask = 0xff000000; /* 36 bits */
686 size_and_mask = 0x00f00000;
687 phys_addr = 36;
688
689 /*
690 * This is an AMD specific MSR, but we assume(hope?) that
691 * Intel will implement it to when they extend the address
692 * bus of the Xeon.
693 */
694 if (cpuid_eax(0x80000000) >= 0x80000008) {
695 phys_addr = cpuid_eax(0x80000008) & 0xff;
696 /* CPUID workaround for Intel 0F33/0F34 CPU */
697 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
698 boot_cpu_data.x86 == 0xF &&
699 boot_cpu_data.x86_model == 0x3 &&
700 (boot_cpu_data.x86_mask == 0x3 ||
701 boot_cpu_data.x86_mask == 0x4))
702 phys_addr = 36;
703
704 size_or_mask = ~((1ULL << (phys_addr - PAGE_SHIFT)) - 1);
705 size_and_mask = ~size_or_mask & 0xfffff00000ULL;
706 } else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
707 boot_cpu_data.x86 == 6) {
708 /*
709 * VIA C* family have Intel style MTRRs,
710 * but don't support PAE
711 */
712 size_or_mask = 0xfff00000; /* 32 bits */
713 size_and_mask = 0;
714 phys_addr = 32;
715 }
716 } else {
717 switch (boot_cpu_data.x86_vendor) {
718 case X86_VENDOR_AMD:
719 if (cpu_has_k6_mtrr) {
720 /* Pre-Athlon (K6) AMD CPU MTRRs */
721 mtrr_if = mtrr_ops[X86_VENDOR_AMD];
722 size_or_mask = 0xfff00000; /* 32 bits */
723 size_and_mask = 0;
724 }
725 break;
726 case X86_VENDOR_CENTAUR:
727 if (cpu_has_centaur_mcr) {
728 mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
729 size_or_mask = 0xfff00000; /* 32 bits */
730 size_and_mask = 0;
731 }
732 break;
733 case X86_VENDOR_CYRIX:
734 if (cpu_has_cyrix_arr) {
735 mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
736 size_or_mask = 0xfff00000; /* 32 bits */
737 size_and_mask = 0;
738 }
739 break;
740 default:
741 break;
742 }
743 }
744
745 if (mtrr_if) {
746 set_num_var_ranges();
747 init_table();
748 if (use_intel()) {
749 get_mtrr_state();
750
751 if (mtrr_cleanup(phys_addr)) {
752 changed_by_mtrr_cleanup = 1;
753 mtrr_if->set_all();
754 }
755 }
756 }
757 }
758
759 void mtrr_ap_init(void)
760 {
761 if (!use_intel() || mtrr_aps_delayed_init)
762 return;
763 /*
764 * Ideally we should hold mtrr_mutex here to avoid mtrr entries
765 * changed, but this routine will be called in cpu boot time,
766 * holding the lock breaks it.
767 *
768 * This routine is called in two cases:
769 *
770 * 1. very earily time of software resume, when there absolutely
771 * isn't mtrr entry changes;
772 *
773 * 2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug
774 * lock to prevent mtrr entry changes
775 */
776 set_mtrr(~0U, 0, 0, 0);
777 }
778
779 /**
780 * Save current fixed-range MTRR state of the BSP
781 */
782 void mtrr_save_state(void)
783 {
784 smp_call_function_single(0, mtrr_save_fixed_ranges, NULL, 1);
785 }
786
787 void set_mtrr_aps_delayed_init(void)
788 {
789 if (!use_intel())
790 return;
791
792 mtrr_aps_delayed_init = true;
793 }
794
795 /*
796 * Delayed MTRR initialization for all AP's
797 */
798 void mtrr_aps_init(void)
799 {
800 if (!use_intel())
801 return;
802
803 /*
804 * Check if someone has requested the delay of AP MTRR initialization,
805 * by doing set_mtrr_aps_delayed_init(), prior to this point. If not,
806 * then we are done.
807 */
808 if (!mtrr_aps_delayed_init)
809 return;
810
811 set_mtrr(~0U, 0, 0, 0);
812 mtrr_aps_delayed_init = false;
813 }
814
815 void mtrr_bp_restore(void)
816 {
817 if (!use_intel())
818 return;
819
820 mtrr_if->set_all();
821 }
822
823 static int __init mtrr_init_finialize(void)
824 {
825 if (!mtrr_if)
826 return 0;
827
828 if (use_intel()) {
829 if (!changed_by_mtrr_cleanup)
830 mtrr_state_warn();
831 return 0;
832 }
833
834 /*
835 * The CPU has no MTRR and seems to not support SMP. They have
836 * specific drivers, we use a tricky method to support
837 * suspend/resume for them.
838 *
839 * TBD: is there any system with such CPU which supports
840 * suspend/resume? If no, we should remove the code.
841 */
842 sysdev_driver_register(&cpu_sysdev_class, &mtrr_sysdev_driver);
843
844 return 0;
845 }
846 subsys_initcall(mtrr_init_finialize);
This page took 0.048072 seconds and 5 git commands to generate.