4a3f1f2b9b91c75e5c08e6c3a5f1b38187227b52
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
33
34 #if 0
35 #undef wrmsrl
36 #define wrmsrl(msr, val) \
37 do { \
38 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
39 (unsigned long)(val)); \
40 native_write_msr((msr), (u32)((u64)(val)), \
41 (u32)((u64)(val) >> 32)); \
42 } while (0)
43 #endif
44
45 /*
46 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
47 */
48 static unsigned long
49 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
50 {
51 unsigned long offset, addr = (unsigned long)from;
52 int type = in_nmi() ? KM_NMI : KM_IRQ0;
53 unsigned long size, len = 0;
54 struct page *page;
55 void *map;
56 int ret;
57
58 do {
59 ret = __get_user_pages_fast(addr, 1, 0, &page);
60 if (!ret)
61 break;
62
63 offset = addr & (PAGE_SIZE - 1);
64 size = min(PAGE_SIZE - offset, n - len);
65
66 map = kmap_atomic(page, type);
67 memcpy(to, map+offset, size);
68 kunmap_atomic(map, type);
69 put_page(page);
70
71 len += size;
72 to += size;
73 addr += size;
74
75 } while (len < n);
76
77 return len;
78 }
79
80 struct event_constraint {
81 union {
82 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
83 u64 idxmsk64;
84 };
85 u64 code;
86 u64 cmask;
87 int weight;
88 };
89
90 struct amd_nb {
91 int nb_id; /* NorthBridge id */
92 int refcnt; /* reference count */
93 struct perf_event *owners[X86_PMC_IDX_MAX];
94 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
95 };
96
97 #define MAX_LBR_ENTRIES 16
98
99 struct cpu_hw_events {
100 /*
101 * Generic x86 PMC bits
102 */
103 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
104 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
105 int enabled;
106
107 int n_events;
108 int n_added;
109 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
110 u64 tags[X86_PMC_IDX_MAX];
111 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
112
113 /*
114 * Intel DebugStore bits
115 */
116 struct debug_store *ds;
117 u64 pebs_enabled;
118
119 /*
120 * Intel LBR bits
121 */
122 int lbr_users;
123 void *lbr_context;
124 struct perf_branch_stack lbr_stack;
125 struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
126
127 /*
128 * AMD specific bits
129 */
130 struct amd_nb *amd_nb;
131 };
132
133 #define __EVENT_CONSTRAINT(c, n, m, w) {\
134 { .idxmsk64 = (n) }, \
135 .code = (c), \
136 .cmask = (m), \
137 .weight = (w), \
138 }
139
140 #define EVENT_CONSTRAINT(c, n, m) \
141 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
142
143 /*
144 * Constraint on the Event code.
145 */
146 #define INTEL_EVENT_CONSTRAINT(c, n) \
147 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
148
149 /*
150 * Constraint on the Event code + UMask + fixed-mask
151 *
152 * filter mask to validate fixed counter events.
153 * the following filters disqualify for fixed counters:
154 * - inv
155 * - edge
156 * - cnt-mask
157 * The other filters are supported by fixed counters.
158 * The any-thread option is supported starting with v3.
159 */
160 #define FIXED_EVENT_CONSTRAINT(c, n) \
161 EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
162
163 /*
164 * Constraint on the Event code + UMask
165 */
166 #define PEBS_EVENT_CONSTRAINT(c, n) \
167 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
168
169 #define EVENT_CONSTRAINT_END \
170 EVENT_CONSTRAINT(0, 0, 0)
171
172 #define for_each_event_constraint(e, c) \
173 for ((e) = (c); (e)->weight; (e)++)
174
175 union perf_capabilities {
176 struct {
177 u64 lbr_format : 6;
178 u64 pebs_trap : 1;
179 u64 pebs_arch_reg : 1;
180 u64 pebs_format : 4;
181 u64 smm_freeze : 1;
182 };
183 u64 capabilities;
184 };
185
186 /*
187 * struct x86_pmu - generic x86 pmu
188 */
189 struct x86_pmu {
190 /*
191 * Generic x86 PMC bits
192 */
193 const char *name;
194 int version;
195 int (*handle_irq)(struct pt_regs *);
196 void (*disable_all)(void);
197 void (*enable_all)(int added);
198 void (*enable)(struct perf_event *);
199 void (*disable)(struct perf_event *);
200 int (*hw_config)(struct perf_event *event);
201 int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
202 unsigned eventsel;
203 unsigned perfctr;
204 u64 (*event_map)(int);
205 int max_events;
206 int num_counters;
207 int num_counters_fixed;
208 int cntval_bits;
209 u64 cntval_mask;
210 int apic;
211 u64 max_period;
212 struct event_constraint *
213 (*get_event_constraints)(struct cpu_hw_events *cpuc,
214 struct perf_event *event);
215
216 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
217 struct perf_event *event);
218 struct event_constraint *event_constraints;
219 void (*quirks)(void);
220
221 int (*cpu_prepare)(int cpu);
222 void (*cpu_starting)(int cpu);
223 void (*cpu_dying)(int cpu);
224 void (*cpu_dead)(int cpu);
225
226 /*
227 * Intel Arch Perfmon v2+
228 */
229 u64 intel_ctrl;
230 union perf_capabilities intel_cap;
231
232 /*
233 * Intel DebugStore bits
234 */
235 int bts, pebs;
236 int pebs_record_size;
237 void (*drain_pebs)(struct pt_regs *regs);
238 struct event_constraint *pebs_constraints;
239
240 /*
241 * Intel LBR
242 */
243 unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
244 int lbr_nr; /* hardware stack size */
245 };
246
247 static struct x86_pmu x86_pmu __read_mostly;
248
249 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
250 .enabled = 1,
251 };
252
253 static int x86_perf_event_set_period(struct perf_event *event);
254
255 /*
256 * Generalized hw caching related hw_event table, filled
257 * in on a per model basis. A value of 0 means
258 * 'not supported', -1 means 'hw_event makes no sense on
259 * this CPU', any other value means the raw hw_event
260 * ID.
261 */
262
263 #define C(x) PERF_COUNT_HW_CACHE_##x
264
265 static u64 __read_mostly hw_cache_event_ids
266 [PERF_COUNT_HW_CACHE_MAX]
267 [PERF_COUNT_HW_CACHE_OP_MAX]
268 [PERF_COUNT_HW_CACHE_RESULT_MAX];
269
270 /*
271 * Propagate event elapsed time into the generic event.
272 * Can only be executed on the CPU where the event is active.
273 * Returns the delta events processed.
274 */
275 static u64
276 x86_perf_event_update(struct perf_event *event)
277 {
278 struct hw_perf_event *hwc = &event->hw;
279 int shift = 64 - x86_pmu.cntval_bits;
280 u64 prev_raw_count, new_raw_count;
281 int idx = hwc->idx;
282 s64 delta;
283
284 if (idx == X86_PMC_IDX_FIXED_BTS)
285 return 0;
286
287 /*
288 * Careful: an NMI might modify the previous event value.
289 *
290 * Our tactic to handle this is to first atomically read and
291 * exchange a new raw count - then add that new-prev delta
292 * count to the generic event atomically:
293 */
294 again:
295 prev_raw_count = atomic64_read(&hwc->prev_count);
296 rdmsrl(hwc->event_base + idx, new_raw_count);
297
298 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
299 new_raw_count) != prev_raw_count)
300 goto again;
301
302 /*
303 * Now we have the new raw value and have updated the prev
304 * timestamp already. We can now calculate the elapsed delta
305 * (event-)time and add that to the generic event.
306 *
307 * Careful, not all hw sign-extends above the physical width
308 * of the count.
309 */
310 delta = (new_raw_count << shift) - (prev_raw_count << shift);
311 delta >>= shift;
312
313 atomic64_add(delta, &event->count);
314 atomic64_sub(delta, &hwc->period_left);
315
316 return new_raw_count;
317 }
318
319 static atomic_t active_events;
320 static DEFINE_MUTEX(pmc_reserve_mutex);
321
322 #ifdef CONFIG_X86_LOCAL_APIC
323
324 static bool reserve_pmc_hardware(void)
325 {
326 int i;
327
328 if (nmi_watchdog == NMI_LOCAL_APIC)
329 disable_lapic_nmi_watchdog();
330
331 for (i = 0; i < x86_pmu.num_counters; i++) {
332 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
333 goto perfctr_fail;
334 }
335
336 for (i = 0; i < x86_pmu.num_counters; i++) {
337 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
338 goto eventsel_fail;
339 }
340
341 return true;
342
343 eventsel_fail:
344 for (i--; i >= 0; i--)
345 release_evntsel_nmi(x86_pmu.eventsel + i);
346
347 i = x86_pmu.num_counters;
348
349 perfctr_fail:
350 for (i--; i >= 0; i--)
351 release_perfctr_nmi(x86_pmu.perfctr + i);
352
353 if (nmi_watchdog == NMI_LOCAL_APIC)
354 enable_lapic_nmi_watchdog();
355
356 return false;
357 }
358
359 static void release_pmc_hardware(void)
360 {
361 int i;
362
363 for (i = 0; i < x86_pmu.num_counters; i++) {
364 release_perfctr_nmi(x86_pmu.perfctr + i);
365 release_evntsel_nmi(x86_pmu.eventsel + i);
366 }
367
368 if (nmi_watchdog == NMI_LOCAL_APIC)
369 enable_lapic_nmi_watchdog();
370 }
371
372 #else
373
374 static bool reserve_pmc_hardware(void) { return true; }
375 static void release_pmc_hardware(void) {}
376
377 #endif
378
379 static int reserve_ds_buffers(void);
380 static void release_ds_buffers(void);
381
382 static void hw_perf_event_destroy(struct perf_event *event)
383 {
384 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
385 release_pmc_hardware();
386 release_ds_buffers();
387 mutex_unlock(&pmc_reserve_mutex);
388 }
389 }
390
391 static inline int x86_pmu_initialized(void)
392 {
393 return x86_pmu.handle_irq != NULL;
394 }
395
396 static inline int
397 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
398 {
399 unsigned int cache_type, cache_op, cache_result;
400 u64 config, val;
401
402 config = attr->config;
403
404 cache_type = (config >> 0) & 0xff;
405 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
406 return -EINVAL;
407
408 cache_op = (config >> 8) & 0xff;
409 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
410 return -EINVAL;
411
412 cache_result = (config >> 16) & 0xff;
413 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
414 return -EINVAL;
415
416 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
417
418 if (val == 0)
419 return -ENOENT;
420
421 if (val == -1)
422 return -EINVAL;
423
424 hwc->config |= val;
425
426 return 0;
427 }
428
429 static int x86_setup_perfctr(struct perf_event *event)
430 {
431 struct perf_event_attr *attr = &event->attr;
432 struct hw_perf_event *hwc = &event->hw;
433 u64 config;
434
435 if (!hwc->sample_period) {
436 hwc->sample_period = x86_pmu.max_period;
437 hwc->last_period = hwc->sample_period;
438 atomic64_set(&hwc->period_left, hwc->sample_period);
439 } else {
440 /*
441 * If we have a PMU initialized but no APIC
442 * interrupts, we cannot sample hardware
443 * events (user-space has to fall back and
444 * sample via a hrtimer based software event):
445 */
446 if (!x86_pmu.apic)
447 return -EOPNOTSUPP;
448 }
449
450 if (attr->type == PERF_TYPE_RAW)
451 return 0;
452
453 if (attr->type == PERF_TYPE_HW_CACHE)
454 return set_ext_hw_attr(hwc, attr);
455
456 if (attr->config >= x86_pmu.max_events)
457 return -EINVAL;
458
459 /*
460 * The generic map:
461 */
462 config = x86_pmu.event_map(attr->config);
463
464 if (config == 0)
465 return -ENOENT;
466
467 if (config == -1LL)
468 return -EINVAL;
469
470 /*
471 * Branch tracing:
472 */
473 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
474 (hwc->sample_period == 1)) {
475 /* BTS is not supported by this architecture. */
476 if (!x86_pmu.bts)
477 return -EOPNOTSUPP;
478
479 /* BTS is currently only allowed for user-mode. */
480 if (!attr->exclude_kernel)
481 return -EOPNOTSUPP;
482 }
483
484 hwc->config |= config;
485
486 return 0;
487 }
488
489 static int x86_pmu_hw_config(struct perf_event *event)
490 {
491 /*
492 * Generate PMC IRQs:
493 * (keep 'enabled' bit clear for now)
494 */
495 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
496
497 /*
498 * Count user and OS events unless requested not to
499 */
500 if (!event->attr.exclude_user)
501 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
502 if (!event->attr.exclude_kernel)
503 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
504
505 if (event->attr.type == PERF_TYPE_RAW)
506 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
507
508 return x86_setup_perfctr(event);
509 }
510
511 /*
512 * Setup the hardware configuration for a given attr_type
513 */
514 static int __hw_perf_event_init(struct perf_event *event)
515 {
516 int err;
517
518 if (!x86_pmu_initialized())
519 return -ENODEV;
520
521 err = 0;
522 if (!atomic_inc_not_zero(&active_events)) {
523 mutex_lock(&pmc_reserve_mutex);
524 if (atomic_read(&active_events) == 0) {
525 if (!reserve_pmc_hardware())
526 err = -EBUSY;
527 else {
528 err = reserve_ds_buffers();
529 if (err)
530 release_pmc_hardware();
531 }
532 }
533 if (!err)
534 atomic_inc(&active_events);
535 mutex_unlock(&pmc_reserve_mutex);
536 }
537 if (err)
538 return err;
539
540 event->destroy = hw_perf_event_destroy;
541
542 event->hw.idx = -1;
543 event->hw.last_cpu = -1;
544 event->hw.last_tag = ~0ULL;
545
546 return x86_pmu.hw_config(event);
547 }
548
549 static void x86_pmu_disable_all(void)
550 {
551 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
552 int idx;
553
554 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
555 u64 val;
556
557 if (!test_bit(idx, cpuc->active_mask))
558 continue;
559 rdmsrl(x86_pmu.eventsel + idx, val);
560 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
561 continue;
562 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
563 wrmsrl(x86_pmu.eventsel + idx, val);
564 }
565 }
566
567 void hw_perf_disable(void)
568 {
569 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
570
571 if (!x86_pmu_initialized())
572 return;
573
574 if (!cpuc->enabled)
575 return;
576
577 cpuc->n_added = 0;
578 cpuc->enabled = 0;
579 barrier();
580
581 x86_pmu.disable_all();
582 }
583
584 static void x86_pmu_enable_all(int added)
585 {
586 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
587 int idx;
588
589 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
590 struct perf_event *event = cpuc->events[idx];
591 u64 val;
592
593 if (!test_bit(idx, cpuc->active_mask))
594 continue;
595
596 val = event->hw.config;
597 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
598 wrmsrl(x86_pmu.eventsel + idx, val);
599 }
600 }
601
602 static const struct pmu pmu;
603
604 static inline int is_x86_event(struct perf_event *event)
605 {
606 return event->pmu == &pmu;
607 }
608
609 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
610 {
611 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
612 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
613 int i, j, w, wmax, num = 0;
614 struct hw_perf_event *hwc;
615
616 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
617
618 for (i = 0; i < n; i++) {
619 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
620 constraints[i] = c;
621 }
622
623 /*
624 * fastpath, try to reuse previous register
625 */
626 for (i = 0; i < n; i++) {
627 hwc = &cpuc->event_list[i]->hw;
628 c = constraints[i];
629
630 /* never assigned */
631 if (hwc->idx == -1)
632 break;
633
634 /* constraint still honored */
635 if (!test_bit(hwc->idx, c->idxmsk))
636 break;
637
638 /* not already used */
639 if (test_bit(hwc->idx, used_mask))
640 break;
641
642 __set_bit(hwc->idx, used_mask);
643 if (assign)
644 assign[i] = hwc->idx;
645 }
646 if (i == n)
647 goto done;
648
649 /*
650 * begin slow path
651 */
652
653 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
654
655 /*
656 * weight = number of possible counters
657 *
658 * 1 = most constrained, only works on one counter
659 * wmax = least constrained, works on any counter
660 *
661 * assign events to counters starting with most
662 * constrained events.
663 */
664 wmax = x86_pmu.num_counters;
665
666 /*
667 * when fixed event counters are present,
668 * wmax is incremented by 1 to account
669 * for one more choice
670 */
671 if (x86_pmu.num_counters_fixed)
672 wmax++;
673
674 for (w = 1, num = n; num && w <= wmax; w++) {
675 /* for each event */
676 for (i = 0; num && i < n; i++) {
677 c = constraints[i];
678 hwc = &cpuc->event_list[i]->hw;
679
680 if (c->weight != w)
681 continue;
682
683 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
684 if (!test_bit(j, used_mask))
685 break;
686 }
687
688 if (j == X86_PMC_IDX_MAX)
689 break;
690
691 __set_bit(j, used_mask);
692
693 if (assign)
694 assign[i] = j;
695 num--;
696 }
697 }
698 done:
699 /*
700 * scheduling failed or is just a simulation,
701 * free resources if necessary
702 */
703 if (!assign || num) {
704 for (i = 0; i < n; i++) {
705 if (x86_pmu.put_event_constraints)
706 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
707 }
708 }
709 return num ? -ENOSPC : 0;
710 }
711
712 /*
713 * dogrp: true if must collect siblings events (group)
714 * returns total number of events and error code
715 */
716 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
717 {
718 struct perf_event *event;
719 int n, max_count;
720
721 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
722
723 /* current number of events already accepted */
724 n = cpuc->n_events;
725
726 if (is_x86_event(leader)) {
727 if (n >= max_count)
728 return -ENOSPC;
729 cpuc->event_list[n] = leader;
730 n++;
731 }
732 if (!dogrp)
733 return n;
734
735 list_for_each_entry(event, &leader->sibling_list, group_entry) {
736 if (!is_x86_event(event) ||
737 event->state <= PERF_EVENT_STATE_OFF)
738 continue;
739
740 if (n >= max_count)
741 return -ENOSPC;
742
743 cpuc->event_list[n] = event;
744 n++;
745 }
746 return n;
747 }
748
749 static inline void x86_assign_hw_event(struct perf_event *event,
750 struct cpu_hw_events *cpuc, int i)
751 {
752 struct hw_perf_event *hwc = &event->hw;
753
754 hwc->idx = cpuc->assign[i];
755 hwc->last_cpu = smp_processor_id();
756 hwc->last_tag = ++cpuc->tags[i];
757
758 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
759 hwc->config_base = 0;
760 hwc->event_base = 0;
761 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
762 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
763 /*
764 * We set it so that event_base + idx in wrmsr/rdmsr maps to
765 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
766 */
767 hwc->event_base =
768 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
769 } else {
770 hwc->config_base = x86_pmu.eventsel;
771 hwc->event_base = x86_pmu.perfctr;
772 }
773 }
774
775 static inline int match_prev_assignment(struct hw_perf_event *hwc,
776 struct cpu_hw_events *cpuc,
777 int i)
778 {
779 return hwc->idx == cpuc->assign[i] &&
780 hwc->last_cpu == smp_processor_id() &&
781 hwc->last_tag == cpuc->tags[i];
782 }
783
784 static int x86_pmu_start(struct perf_event *event);
785 static void x86_pmu_stop(struct perf_event *event);
786
787 void hw_perf_enable(void)
788 {
789 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
790 struct perf_event *event;
791 struct hw_perf_event *hwc;
792 int i, added = cpuc->n_added;
793
794 if (!x86_pmu_initialized())
795 return;
796
797 if (cpuc->enabled)
798 return;
799
800 if (cpuc->n_added) {
801 int n_running = cpuc->n_events - cpuc->n_added;
802 /*
803 * apply assignment obtained either from
804 * hw_perf_group_sched_in() or x86_pmu_enable()
805 *
806 * step1: save events moving to new counters
807 * step2: reprogram moved events into new counters
808 */
809 for (i = 0; i < n_running; i++) {
810 event = cpuc->event_list[i];
811 hwc = &event->hw;
812
813 /*
814 * we can avoid reprogramming counter if:
815 * - assigned same counter as last time
816 * - running on same CPU as last time
817 * - no other event has used the counter since
818 */
819 if (hwc->idx == -1 ||
820 match_prev_assignment(hwc, cpuc, i))
821 continue;
822
823 x86_pmu_stop(event);
824 }
825
826 for (i = 0; i < cpuc->n_events; i++) {
827 event = cpuc->event_list[i];
828 hwc = &event->hw;
829
830 if (!match_prev_assignment(hwc, cpuc, i))
831 x86_assign_hw_event(event, cpuc, i);
832 else if (i < n_running)
833 continue;
834
835 x86_pmu_start(event);
836 }
837 cpuc->n_added = 0;
838 perf_events_lapic_init();
839 }
840
841 cpuc->enabled = 1;
842 barrier();
843
844 x86_pmu.enable_all(added);
845 }
846
847 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
848 u64 enable_mask)
849 {
850 wrmsrl(hwc->config_base + hwc->idx, hwc->config | enable_mask);
851 }
852
853 static inline void x86_pmu_disable_event(struct perf_event *event)
854 {
855 struct hw_perf_event *hwc = &event->hw;
856
857 wrmsrl(hwc->config_base + hwc->idx, hwc->config);
858 }
859
860 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
861
862 /*
863 * Set the next IRQ period, based on the hwc->period_left value.
864 * To be called with the event disabled in hw:
865 */
866 static int
867 x86_perf_event_set_period(struct perf_event *event)
868 {
869 struct hw_perf_event *hwc = &event->hw;
870 s64 left = atomic64_read(&hwc->period_left);
871 s64 period = hwc->sample_period;
872 int ret = 0, idx = hwc->idx;
873
874 if (idx == X86_PMC_IDX_FIXED_BTS)
875 return 0;
876
877 /*
878 * If we are way outside a reasonable range then just skip forward:
879 */
880 if (unlikely(left <= -period)) {
881 left = period;
882 atomic64_set(&hwc->period_left, left);
883 hwc->last_period = period;
884 ret = 1;
885 }
886
887 if (unlikely(left <= 0)) {
888 left += period;
889 atomic64_set(&hwc->period_left, left);
890 hwc->last_period = period;
891 ret = 1;
892 }
893 /*
894 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
895 */
896 if (unlikely(left < 2))
897 left = 2;
898
899 if (left > x86_pmu.max_period)
900 left = x86_pmu.max_period;
901
902 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
903
904 /*
905 * The hw event starts counting from this event offset,
906 * mark it to be able to extra future deltas:
907 */
908 atomic64_set(&hwc->prev_count, (u64)-left);
909
910 wrmsrl(hwc->event_base + idx,
911 (u64)(-left) & x86_pmu.cntval_mask);
912
913 perf_event_update_userpage(event);
914
915 return ret;
916 }
917
918 static void x86_pmu_enable_event(struct perf_event *event)
919 {
920 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
921 if (cpuc->enabled)
922 __x86_pmu_enable_event(&event->hw,
923 ARCH_PERFMON_EVENTSEL_ENABLE);
924 }
925
926 /*
927 * activate a single event
928 *
929 * The event is added to the group of enabled events
930 * but only if it can be scehduled with existing events.
931 *
932 * Called with PMU disabled. If successful and return value 1,
933 * then guaranteed to call perf_enable() and hw_perf_enable()
934 */
935 static int x86_pmu_enable(struct perf_event *event)
936 {
937 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
938 struct hw_perf_event *hwc;
939 int assign[X86_PMC_IDX_MAX];
940 int n, n0, ret;
941
942 hwc = &event->hw;
943
944 n0 = cpuc->n_events;
945 n = collect_events(cpuc, event, false);
946 if (n < 0)
947 return n;
948
949 ret = x86_pmu.schedule_events(cpuc, n, assign);
950 if (ret)
951 return ret;
952 /*
953 * copy new assignment, now we know it is possible
954 * will be used by hw_perf_enable()
955 */
956 memcpy(cpuc->assign, assign, n*sizeof(int));
957
958 cpuc->n_events = n;
959 cpuc->n_added += n - n0;
960
961 return 0;
962 }
963
964 static int x86_pmu_start(struct perf_event *event)
965 {
966 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
967 int idx = event->hw.idx;
968
969 if (idx == -1)
970 return -EAGAIN;
971
972 x86_perf_event_set_period(event);
973 cpuc->events[idx] = event;
974 __set_bit(idx, cpuc->active_mask);
975 x86_pmu.enable(event);
976 perf_event_update_userpage(event);
977
978 return 0;
979 }
980
981 static void x86_pmu_unthrottle(struct perf_event *event)
982 {
983 int ret = x86_pmu_start(event);
984 WARN_ON_ONCE(ret);
985 }
986
987 void perf_event_print_debug(void)
988 {
989 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
990 u64 pebs;
991 struct cpu_hw_events *cpuc;
992 unsigned long flags;
993 int cpu, idx;
994
995 if (!x86_pmu.num_counters)
996 return;
997
998 local_irq_save(flags);
999
1000 cpu = smp_processor_id();
1001 cpuc = &per_cpu(cpu_hw_events, cpu);
1002
1003 if (x86_pmu.version >= 2) {
1004 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1005 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1006 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1007 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1008 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1009
1010 pr_info("\n");
1011 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1012 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1013 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1014 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1015 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1016 }
1017 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1018
1019 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1020 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1021 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1022
1023 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1024
1025 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1026 cpu, idx, pmc_ctrl);
1027 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1028 cpu, idx, pmc_count);
1029 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1030 cpu, idx, prev_left);
1031 }
1032 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1033 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1034
1035 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1036 cpu, idx, pmc_count);
1037 }
1038 local_irq_restore(flags);
1039 }
1040
1041 static void x86_pmu_stop(struct perf_event *event)
1042 {
1043 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1044 struct hw_perf_event *hwc = &event->hw;
1045 int idx = hwc->idx;
1046
1047 if (!__test_and_clear_bit(idx, cpuc->active_mask))
1048 return;
1049
1050 x86_pmu.disable(event);
1051
1052 /*
1053 * Drain the remaining delta count out of a event
1054 * that we are disabling:
1055 */
1056 x86_perf_event_update(event);
1057
1058 cpuc->events[idx] = NULL;
1059 }
1060
1061 static void x86_pmu_disable(struct perf_event *event)
1062 {
1063 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1064 int i;
1065
1066 x86_pmu_stop(event);
1067
1068 for (i = 0; i < cpuc->n_events; i++) {
1069 if (event == cpuc->event_list[i]) {
1070
1071 if (x86_pmu.put_event_constraints)
1072 x86_pmu.put_event_constraints(cpuc, event);
1073
1074 while (++i < cpuc->n_events)
1075 cpuc->event_list[i-1] = cpuc->event_list[i];
1076
1077 --cpuc->n_events;
1078 break;
1079 }
1080 }
1081 perf_event_update_userpage(event);
1082 }
1083
1084 static int x86_pmu_handle_irq(struct pt_regs *regs)
1085 {
1086 struct perf_sample_data data;
1087 struct cpu_hw_events *cpuc;
1088 struct perf_event *event;
1089 struct hw_perf_event *hwc;
1090 int idx, handled = 0;
1091 u64 val;
1092
1093 perf_sample_data_init(&data, 0);
1094
1095 cpuc = &__get_cpu_var(cpu_hw_events);
1096
1097 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1098 if (!test_bit(idx, cpuc->active_mask))
1099 continue;
1100
1101 event = cpuc->events[idx];
1102 hwc = &event->hw;
1103
1104 val = x86_perf_event_update(event);
1105 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1106 continue;
1107
1108 /*
1109 * event overflow
1110 */
1111 handled = 1;
1112 data.period = event->hw.last_period;
1113
1114 if (!x86_perf_event_set_period(event))
1115 continue;
1116
1117 if (perf_event_overflow(event, 1, &data, regs))
1118 x86_pmu_stop(event);
1119 }
1120
1121 if (handled)
1122 inc_irq_stat(apic_perf_irqs);
1123
1124 return handled;
1125 }
1126
1127 void smp_perf_pending_interrupt(struct pt_regs *regs)
1128 {
1129 irq_enter();
1130 ack_APIC_irq();
1131 inc_irq_stat(apic_pending_irqs);
1132 perf_event_do_pending();
1133 irq_exit();
1134 }
1135
1136 void set_perf_event_pending(void)
1137 {
1138 #ifdef CONFIG_X86_LOCAL_APIC
1139 if (!x86_pmu.apic || !x86_pmu_initialized())
1140 return;
1141
1142 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1143 #endif
1144 }
1145
1146 void perf_events_lapic_init(void)
1147 {
1148 if (!x86_pmu.apic || !x86_pmu_initialized())
1149 return;
1150
1151 /*
1152 * Always use NMI for PMU
1153 */
1154 apic_write(APIC_LVTPC, APIC_DM_NMI);
1155 }
1156
1157 static int __kprobes
1158 perf_event_nmi_handler(struct notifier_block *self,
1159 unsigned long cmd, void *__args)
1160 {
1161 struct die_args *args = __args;
1162 struct pt_regs *regs;
1163
1164 if (!atomic_read(&active_events))
1165 return NOTIFY_DONE;
1166
1167 switch (cmd) {
1168 case DIE_NMI:
1169 case DIE_NMI_IPI:
1170 break;
1171
1172 default:
1173 return NOTIFY_DONE;
1174 }
1175
1176 regs = args->regs;
1177
1178 apic_write(APIC_LVTPC, APIC_DM_NMI);
1179 /*
1180 * Can't rely on the handled return value to say it was our NMI, two
1181 * events could trigger 'simultaneously' raising two back-to-back NMIs.
1182 *
1183 * If the first NMI handles both, the latter will be empty and daze
1184 * the CPU.
1185 */
1186 x86_pmu.handle_irq(regs);
1187
1188 return NOTIFY_STOP;
1189 }
1190
1191 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1192 .notifier_call = perf_event_nmi_handler,
1193 .next = NULL,
1194 .priority = 1
1195 };
1196
1197 static struct event_constraint unconstrained;
1198 static struct event_constraint emptyconstraint;
1199
1200 static struct event_constraint *
1201 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1202 {
1203 struct event_constraint *c;
1204
1205 if (x86_pmu.event_constraints) {
1206 for_each_event_constraint(c, x86_pmu.event_constraints) {
1207 if ((event->hw.config & c->cmask) == c->code)
1208 return c;
1209 }
1210 }
1211
1212 return &unconstrained;
1213 }
1214
1215 static int x86_event_sched_in(struct perf_event *event,
1216 struct perf_cpu_context *cpuctx)
1217 {
1218 int ret = 0;
1219
1220 event->state = PERF_EVENT_STATE_ACTIVE;
1221 event->oncpu = smp_processor_id();
1222 event->tstamp_running += event->ctx->time - event->tstamp_stopped;
1223
1224 if (!is_x86_event(event))
1225 ret = event->pmu->enable(event);
1226
1227 if (!ret && !is_software_event(event))
1228 cpuctx->active_oncpu++;
1229
1230 if (!ret && event->attr.exclusive)
1231 cpuctx->exclusive = 1;
1232
1233 return ret;
1234 }
1235
1236 static void x86_event_sched_out(struct perf_event *event,
1237 struct perf_cpu_context *cpuctx)
1238 {
1239 event->state = PERF_EVENT_STATE_INACTIVE;
1240 event->oncpu = -1;
1241
1242 if (!is_x86_event(event))
1243 event->pmu->disable(event);
1244
1245 event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
1246
1247 if (!is_software_event(event))
1248 cpuctx->active_oncpu--;
1249
1250 if (event->attr.exclusive || !cpuctx->active_oncpu)
1251 cpuctx->exclusive = 0;
1252 }
1253
1254 /*
1255 * Called to enable a whole group of events.
1256 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
1257 * Assumes the caller has disabled interrupts and has
1258 * frozen the PMU with hw_perf_save_disable.
1259 *
1260 * called with PMU disabled. If successful and return value 1,
1261 * then guaranteed to call perf_enable() and hw_perf_enable()
1262 */
1263 int hw_perf_group_sched_in(struct perf_event *leader,
1264 struct perf_cpu_context *cpuctx,
1265 struct perf_event_context *ctx)
1266 {
1267 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1268 struct perf_event *sub;
1269 int assign[X86_PMC_IDX_MAX];
1270 int n0, n1, ret;
1271
1272 if (!x86_pmu_initialized())
1273 return 0;
1274
1275 /* n0 = total number of events */
1276 n0 = collect_events(cpuc, leader, true);
1277 if (n0 < 0)
1278 return n0;
1279
1280 ret = x86_pmu.schedule_events(cpuc, n0, assign);
1281 if (ret)
1282 return ret;
1283
1284 ret = x86_event_sched_in(leader, cpuctx);
1285 if (ret)
1286 return ret;
1287
1288 n1 = 1;
1289 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1290 if (sub->state > PERF_EVENT_STATE_OFF) {
1291 ret = x86_event_sched_in(sub, cpuctx);
1292 if (ret)
1293 goto undo;
1294 ++n1;
1295 }
1296 }
1297 /*
1298 * copy new assignment, now we know it is possible
1299 * will be used by hw_perf_enable()
1300 */
1301 memcpy(cpuc->assign, assign, n0*sizeof(int));
1302
1303 cpuc->n_events = n0;
1304 cpuc->n_added += n1;
1305 ctx->nr_active += n1;
1306
1307 /*
1308 * 1 means successful and events are active
1309 * This is not quite true because we defer
1310 * actual activation until hw_perf_enable() but
1311 * this way we* ensure caller won't try to enable
1312 * individual events
1313 */
1314 return 1;
1315 undo:
1316 x86_event_sched_out(leader, cpuctx);
1317 n0 = 1;
1318 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1319 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
1320 x86_event_sched_out(sub, cpuctx);
1321 if (++n0 == n1)
1322 break;
1323 }
1324 }
1325 return ret;
1326 }
1327
1328 #include "perf_event_amd.c"
1329 #include "perf_event_p6.c"
1330 #include "perf_event_p4.c"
1331 #include "perf_event_intel_lbr.c"
1332 #include "perf_event_intel_ds.c"
1333 #include "perf_event_intel.c"
1334
1335 static int __cpuinit
1336 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1337 {
1338 unsigned int cpu = (long)hcpu;
1339 int ret = NOTIFY_OK;
1340
1341 switch (action & ~CPU_TASKS_FROZEN) {
1342 case CPU_UP_PREPARE:
1343 if (x86_pmu.cpu_prepare)
1344 ret = x86_pmu.cpu_prepare(cpu);
1345 break;
1346
1347 case CPU_STARTING:
1348 if (x86_pmu.cpu_starting)
1349 x86_pmu.cpu_starting(cpu);
1350 break;
1351
1352 case CPU_DYING:
1353 if (x86_pmu.cpu_dying)
1354 x86_pmu.cpu_dying(cpu);
1355 break;
1356
1357 case CPU_UP_CANCELED:
1358 case CPU_DEAD:
1359 if (x86_pmu.cpu_dead)
1360 x86_pmu.cpu_dead(cpu);
1361 break;
1362
1363 default:
1364 break;
1365 }
1366
1367 return ret;
1368 }
1369
1370 static void __init pmu_check_apic(void)
1371 {
1372 if (cpu_has_apic)
1373 return;
1374
1375 x86_pmu.apic = 0;
1376 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1377 pr_info("no hardware sampling interrupt available.\n");
1378 }
1379
1380 void __init init_hw_perf_events(void)
1381 {
1382 struct event_constraint *c;
1383 int err;
1384
1385 pr_info("Performance Events: ");
1386
1387 switch (boot_cpu_data.x86_vendor) {
1388 case X86_VENDOR_INTEL:
1389 err = intel_pmu_init();
1390 break;
1391 case X86_VENDOR_AMD:
1392 err = amd_pmu_init();
1393 break;
1394 default:
1395 return;
1396 }
1397 if (err != 0) {
1398 pr_cont("no PMU driver, software events only.\n");
1399 return;
1400 }
1401
1402 pmu_check_apic();
1403
1404 pr_cont("%s PMU driver.\n", x86_pmu.name);
1405
1406 if (x86_pmu.quirks)
1407 x86_pmu.quirks();
1408
1409 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1410 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1411 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1412 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1413 }
1414 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1415 perf_max_events = x86_pmu.num_counters;
1416
1417 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1418 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1419 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1420 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1421 }
1422
1423 x86_pmu.intel_ctrl |=
1424 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1425
1426 perf_events_lapic_init();
1427 register_die_notifier(&perf_event_nmi_notifier);
1428
1429 unconstrained = (struct event_constraint)
1430 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1431 0, x86_pmu.num_counters);
1432
1433 if (x86_pmu.event_constraints) {
1434 for_each_event_constraint(c, x86_pmu.event_constraints) {
1435 if (c->cmask != X86_RAW_EVENT_MASK)
1436 continue;
1437
1438 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1439 c->weight += x86_pmu.num_counters;
1440 }
1441 }
1442
1443 pr_info("... version: %d\n", x86_pmu.version);
1444 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1445 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1446 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1447 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1448 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1449 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1450
1451 perf_cpu_notifier(x86_pmu_notifier);
1452 }
1453
1454 static inline void x86_pmu_read(struct perf_event *event)
1455 {
1456 x86_perf_event_update(event);
1457 }
1458
1459 static const struct pmu pmu = {
1460 .enable = x86_pmu_enable,
1461 .disable = x86_pmu_disable,
1462 .start = x86_pmu_start,
1463 .stop = x86_pmu_stop,
1464 .read = x86_pmu_read,
1465 .unthrottle = x86_pmu_unthrottle,
1466 };
1467
1468 /*
1469 * validate that we can schedule this event
1470 */
1471 static int validate_event(struct perf_event *event)
1472 {
1473 struct cpu_hw_events *fake_cpuc;
1474 struct event_constraint *c;
1475 int ret = 0;
1476
1477 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1478 if (!fake_cpuc)
1479 return -ENOMEM;
1480
1481 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1482
1483 if (!c || !c->weight)
1484 ret = -ENOSPC;
1485
1486 if (x86_pmu.put_event_constraints)
1487 x86_pmu.put_event_constraints(fake_cpuc, event);
1488
1489 kfree(fake_cpuc);
1490
1491 return ret;
1492 }
1493
1494 /*
1495 * validate a single event group
1496 *
1497 * validation include:
1498 * - check events are compatible which each other
1499 * - events do not compete for the same counter
1500 * - number of events <= number of counters
1501 *
1502 * validation ensures the group can be loaded onto the
1503 * PMU if it was the only group available.
1504 */
1505 static int validate_group(struct perf_event *event)
1506 {
1507 struct perf_event *leader = event->group_leader;
1508 struct cpu_hw_events *fake_cpuc;
1509 int ret, n;
1510
1511 ret = -ENOMEM;
1512 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1513 if (!fake_cpuc)
1514 goto out;
1515
1516 /*
1517 * the event is not yet connected with its
1518 * siblings therefore we must first collect
1519 * existing siblings, then add the new event
1520 * before we can simulate the scheduling
1521 */
1522 ret = -ENOSPC;
1523 n = collect_events(fake_cpuc, leader, true);
1524 if (n < 0)
1525 goto out_free;
1526
1527 fake_cpuc->n_events = n;
1528 n = collect_events(fake_cpuc, event, false);
1529 if (n < 0)
1530 goto out_free;
1531
1532 fake_cpuc->n_events = n;
1533
1534 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1535
1536 out_free:
1537 kfree(fake_cpuc);
1538 out:
1539 return ret;
1540 }
1541
1542 const struct pmu *hw_perf_event_init(struct perf_event *event)
1543 {
1544 const struct pmu *tmp;
1545 int err;
1546
1547 err = __hw_perf_event_init(event);
1548 if (!err) {
1549 /*
1550 * we temporarily connect event to its pmu
1551 * such that validate_group() can classify
1552 * it as an x86 event using is_x86_event()
1553 */
1554 tmp = event->pmu;
1555 event->pmu = &pmu;
1556
1557 if (event->group_leader != event)
1558 err = validate_group(event);
1559 else
1560 err = validate_event(event);
1561
1562 event->pmu = tmp;
1563 }
1564 if (err) {
1565 if (event->destroy)
1566 event->destroy(event);
1567 return ERR_PTR(err);
1568 }
1569
1570 return &pmu;
1571 }
1572
1573 /*
1574 * callchain support
1575 */
1576
1577 static inline
1578 void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1579 {
1580 if (entry->nr < PERF_MAX_STACK_DEPTH)
1581 entry->ip[entry->nr++] = ip;
1582 }
1583
1584 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
1585 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
1586
1587
1588 static void
1589 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1590 {
1591 /* Ignore warnings */
1592 }
1593
1594 static void backtrace_warning(void *data, char *msg)
1595 {
1596 /* Ignore warnings */
1597 }
1598
1599 static int backtrace_stack(void *data, char *name)
1600 {
1601 return 0;
1602 }
1603
1604 static void backtrace_address(void *data, unsigned long addr, int reliable)
1605 {
1606 struct perf_callchain_entry *entry = data;
1607
1608 callchain_store(entry, addr);
1609 }
1610
1611 static const struct stacktrace_ops backtrace_ops = {
1612 .warning = backtrace_warning,
1613 .warning_symbol = backtrace_warning_symbol,
1614 .stack = backtrace_stack,
1615 .address = backtrace_address,
1616 .walk_stack = print_context_stack_bp,
1617 };
1618
1619 #include "../dumpstack.h"
1620
1621 static void
1622 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1623 {
1624 callchain_store(entry, PERF_CONTEXT_KERNEL);
1625 callchain_store(entry, regs->ip);
1626
1627 dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
1628 }
1629
1630 #ifdef CONFIG_COMPAT
1631 static inline int
1632 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1633 {
1634 /* 32-bit process in 64-bit kernel. */
1635 struct stack_frame_ia32 frame;
1636 const void __user *fp;
1637
1638 if (!test_thread_flag(TIF_IA32))
1639 return 0;
1640
1641 fp = compat_ptr(regs->bp);
1642 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1643 unsigned long bytes;
1644 frame.next_frame = 0;
1645 frame.return_address = 0;
1646
1647 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1648 if (bytes != sizeof(frame))
1649 break;
1650
1651 if (fp < compat_ptr(regs->sp))
1652 break;
1653
1654 callchain_store(entry, frame.return_address);
1655 fp = compat_ptr(frame.next_frame);
1656 }
1657 return 1;
1658 }
1659 #else
1660 static inline int
1661 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1662 {
1663 return 0;
1664 }
1665 #endif
1666
1667 static void
1668 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1669 {
1670 struct stack_frame frame;
1671 const void __user *fp;
1672
1673 if (!user_mode(regs))
1674 regs = task_pt_regs(current);
1675
1676 fp = (void __user *)regs->bp;
1677
1678 callchain_store(entry, PERF_CONTEXT_USER);
1679 callchain_store(entry, regs->ip);
1680
1681 if (perf_callchain_user32(regs, entry))
1682 return;
1683
1684 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1685 unsigned long bytes;
1686 frame.next_frame = NULL;
1687 frame.return_address = 0;
1688
1689 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1690 if (bytes != sizeof(frame))
1691 break;
1692
1693 if ((unsigned long)fp < regs->sp)
1694 break;
1695
1696 callchain_store(entry, frame.return_address);
1697 fp = frame.next_frame;
1698 }
1699 }
1700
1701 static void
1702 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1703 {
1704 int is_user;
1705
1706 if (!regs)
1707 return;
1708
1709 is_user = user_mode(regs);
1710
1711 if (is_user && current->state != TASK_RUNNING)
1712 return;
1713
1714 if (!is_user)
1715 perf_callchain_kernel(regs, entry);
1716
1717 if (current->mm)
1718 perf_callchain_user(regs, entry);
1719 }
1720
1721 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1722 {
1723 struct perf_callchain_entry *entry;
1724
1725 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1726 /* TODO: We don't support guest os callchain now */
1727 return NULL;
1728 }
1729
1730 if (in_nmi())
1731 entry = &__get_cpu_var(pmc_nmi_entry);
1732 else
1733 entry = &__get_cpu_var(pmc_irq_entry);
1734
1735 entry->nr = 0;
1736
1737 perf_do_callchain(regs, entry);
1738
1739 return entry;
1740 }
1741
1742 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
1743 {
1744 regs->ip = ip;
1745 /*
1746 * perf_arch_fetch_caller_regs adds another call, we need to increment
1747 * the skip level
1748 */
1749 regs->bp = rewind_frame_pointer(skip + 1);
1750 regs->cs = __KERNEL_CS;
1751 local_save_flags(regs->flags);
1752 }
1753
1754 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1755 {
1756 unsigned long ip;
1757
1758 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1759 ip = perf_guest_cbs->get_guest_ip();
1760 else
1761 ip = instruction_pointer(regs);
1762
1763 return ip;
1764 }
1765
1766 unsigned long perf_misc_flags(struct pt_regs *regs)
1767 {
1768 int misc = 0;
1769
1770 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1771 if (perf_guest_cbs->is_user_mode())
1772 misc |= PERF_RECORD_MISC_GUEST_USER;
1773 else
1774 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1775 } else {
1776 if (user_mode(regs))
1777 misc |= PERF_RECORD_MISC_USER;
1778 else
1779 misc |= PERF_RECORD_MISC_KERNEL;
1780 }
1781
1782 if (regs->flags & PERF_EFLAGS_EXACT)
1783 misc |= PERF_RECORD_MISC_EXACT;
1784
1785 return misc;
1786 }
This page took 0.066099 seconds and 4 git commands to generate.