x86/mce: Rework cmci_rediscover() to play well with CPU hotplug
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/timer.h>
35 #include <asm/desc.h>
36 #include <asm/ldt.h>
37
38 #include "perf_event.h"
39
40 struct x86_pmu x86_pmu __read_mostly;
41
42 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
43 .enabled = 1,
44 };
45
46 u64 __read_mostly hw_cache_event_ids
47 [PERF_COUNT_HW_CACHE_MAX]
48 [PERF_COUNT_HW_CACHE_OP_MAX]
49 [PERF_COUNT_HW_CACHE_RESULT_MAX];
50 u64 __read_mostly hw_cache_extra_regs
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
54
55 /*
56 * Propagate event elapsed time into the generic event.
57 * Can only be executed on the CPU where the event is active.
58 * Returns the delta events processed.
59 */
60 u64 x86_perf_event_update(struct perf_event *event)
61 {
62 struct hw_perf_event *hwc = &event->hw;
63 int shift = 64 - x86_pmu.cntval_bits;
64 u64 prev_raw_count, new_raw_count;
65 int idx = hwc->idx;
66 s64 delta;
67
68 if (idx == INTEL_PMC_IDX_FIXED_BTS)
69 return 0;
70
71 /*
72 * Careful: an NMI might modify the previous event value.
73 *
74 * Our tactic to handle this is to first atomically read and
75 * exchange a new raw count - then add that new-prev delta
76 * count to the generic event atomically:
77 */
78 again:
79 prev_raw_count = local64_read(&hwc->prev_count);
80 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
81
82 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
83 new_raw_count) != prev_raw_count)
84 goto again;
85
86 /*
87 * Now we have the new raw value and have updated the prev
88 * timestamp already. We can now calculate the elapsed delta
89 * (event-)time and add that to the generic event.
90 *
91 * Careful, not all hw sign-extends above the physical width
92 * of the count.
93 */
94 delta = (new_raw_count << shift) - (prev_raw_count << shift);
95 delta >>= shift;
96
97 local64_add(delta, &event->count);
98 local64_sub(delta, &hwc->period_left);
99
100 return new_raw_count;
101 }
102
103 /*
104 * Find and validate any extra registers to set up.
105 */
106 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
107 {
108 struct hw_perf_event_extra *reg;
109 struct extra_reg *er;
110
111 reg = &event->hw.extra_reg;
112
113 if (!x86_pmu.extra_regs)
114 return 0;
115
116 for (er = x86_pmu.extra_regs; er->msr; er++) {
117 if (er->event != (config & er->config_mask))
118 continue;
119 if (event->attr.config1 & ~er->valid_mask)
120 return -EINVAL;
121
122 reg->idx = er->idx;
123 reg->config = event->attr.config1;
124 reg->reg = er->msr;
125 break;
126 }
127 return 0;
128 }
129
130 static atomic_t active_events;
131 static DEFINE_MUTEX(pmc_reserve_mutex);
132
133 #ifdef CONFIG_X86_LOCAL_APIC
134
135 static bool reserve_pmc_hardware(void)
136 {
137 int i;
138
139 for (i = 0; i < x86_pmu.num_counters; i++) {
140 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
141 goto perfctr_fail;
142 }
143
144 for (i = 0; i < x86_pmu.num_counters; i++) {
145 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
146 goto eventsel_fail;
147 }
148
149 return true;
150
151 eventsel_fail:
152 for (i--; i >= 0; i--)
153 release_evntsel_nmi(x86_pmu_config_addr(i));
154
155 i = x86_pmu.num_counters;
156
157 perfctr_fail:
158 for (i--; i >= 0; i--)
159 release_perfctr_nmi(x86_pmu_event_addr(i));
160
161 return false;
162 }
163
164 static void release_pmc_hardware(void)
165 {
166 int i;
167
168 for (i = 0; i < x86_pmu.num_counters; i++) {
169 release_perfctr_nmi(x86_pmu_event_addr(i));
170 release_evntsel_nmi(x86_pmu_config_addr(i));
171 }
172 }
173
174 #else
175
176 static bool reserve_pmc_hardware(void) { return true; }
177 static void release_pmc_hardware(void) {}
178
179 #endif
180
181 static bool check_hw_exists(void)
182 {
183 u64 val, val_new = ~0;
184 int i, reg, ret = 0;
185
186 /*
187 * Check to see if the BIOS enabled any of the counters, if so
188 * complain and bail.
189 */
190 for (i = 0; i < x86_pmu.num_counters; i++) {
191 reg = x86_pmu_config_addr(i);
192 ret = rdmsrl_safe(reg, &val);
193 if (ret)
194 goto msr_fail;
195 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
196 goto bios_fail;
197 }
198
199 if (x86_pmu.num_counters_fixed) {
200 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
201 ret = rdmsrl_safe(reg, &val);
202 if (ret)
203 goto msr_fail;
204 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
205 if (val & (0x03 << i*4))
206 goto bios_fail;
207 }
208 }
209
210 /*
211 * Read the current value, change it and read it back to see if it
212 * matches, this is needed to detect certain hardware emulators
213 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
214 */
215 reg = x86_pmu_event_addr(0);
216 if (rdmsrl_safe(reg, &val))
217 goto msr_fail;
218 val ^= 0xffffUL;
219 ret = wrmsrl_safe(reg, val);
220 ret |= rdmsrl_safe(reg, &val_new);
221 if (ret || val != val_new)
222 goto msr_fail;
223
224 return true;
225
226 bios_fail:
227 /*
228 * We still allow the PMU driver to operate:
229 */
230 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
231 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
232
233 return true;
234
235 msr_fail:
236 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
237 printk(KERN_ERR "Failed to access perfctr msr (MSR %x is %Lx)\n", reg, val_new);
238
239 return false;
240 }
241
242 static void hw_perf_event_destroy(struct perf_event *event)
243 {
244 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
245 release_pmc_hardware();
246 release_ds_buffers();
247 mutex_unlock(&pmc_reserve_mutex);
248 }
249 }
250
251 static inline int x86_pmu_initialized(void)
252 {
253 return x86_pmu.handle_irq != NULL;
254 }
255
256 static inline int
257 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
258 {
259 struct perf_event_attr *attr = &event->attr;
260 unsigned int cache_type, cache_op, cache_result;
261 u64 config, val;
262
263 config = attr->config;
264
265 cache_type = (config >> 0) & 0xff;
266 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
267 return -EINVAL;
268
269 cache_op = (config >> 8) & 0xff;
270 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
271 return -EINVAL;
272
273 cache_result = (config >> 16) & 0xff;
274 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
275 return -EINVAL;
276
277 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
278
279 if (val == 0)
280 return -ENOENT;
281
282 if (val == -1)
283 return -EINVAL;
284
285 hwc->config |= val;
286 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
287 return x86_pmu_extra_regs(val, event);
288 }
289
290 int x86_setup_perfctr(struct perf_event *event)
291 {
292 struct perf_event_attr *attr = &event->attr;
293 struct hw_perf_event *hwc = &event->hw;
294 u64 config;
295
296 if (!is_sampling_event(event)) {
297 hwc->sample_period = x86_pmu.max_period;
298 hwc->last_period = hwc->sample_period;
299 local64_set(&hwc->period_left, hwc->sample_period);
300 } else {
301 /*
302 * If we have a PMU initialized but no APIC
303 * interrupts, we cannot sample hardware
304 * events (user-space has to fall back and
305 * sample via a hrtimer based software event):
306 */
307 if (!x86_pmu.apic)
308 return -EOPNOTSUPP;
309 }
310
311 if (attr->type == PERF_TYPE_RAW)
312 return x86_pmu_extra_regs(event->attr.config, event);
313
314 if (attr->type == PERF_TYPE_HW_CACHE)
315 return set_ext_hw_attr(hwc, event);
316
317 if (attr->config >= x86_pmu.max_events)
318 return -EINVAL;
319
320 /*
321 * The generic map:
322 */
323 config = x86_pmu.event_map(attr->config);
324
325 if (config == 0)
326 return -ENOENT;
327
328 if (config == -1LL)
329 return -EINVAL;
330
331 /*
332 * Branch tracing:
333 */
334 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
335 !attr->freq && hwc->sample_period == 1) {
336 /* BTS is not supported by this architecture. */
337 if (!x86_pmu.bts_active)
338 return -EOPNOTSUPP;
339
340 /* BTS is currently only allowed for user-mode. */
341 if (!attr->exclude_kernel)
342 return -EOPNOTSUPP;
343 }
344
345 hwc->config |= config;
346
347 return 0;
348 }
349
350 /*
351 * check that branch_sample_type is compatible with
352 * settings needed for precise_ip > 1 which implies
353 * using the LBR to capture ALL taken branches at the
354 * priv levels of the measurement
355 */
356 static inline int precise_br_compat(struct perf_event *event)
357 {
358 u64 m = event->attr.branch_sample_type;
359 u64 b = 0;
360
361 /* must capture all branches */
362 if (!(m & PERF_SAMPLE_BRANCH_ANY))
363 return 0;
364
365 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
366
367 if (!event->attr.exclude_user)
368 b |= PERF_SAMPLE_BRANCH_USER;
369
370 if (!event->attr.exclude_kernel)
371 b |= PERF_SAMPLE_BRANCH_KERNEL;
372
373 /*
374 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
375 */
376
377 return m == b;
378 }
379
380 int x86_pmu_hw_config(struct perf_event *event)
381 {
382 if (event->attr.precise_ip) {
383 int precise = 0;
384
385 /* Support for constant skid */
386 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
387 precise++;
388
389 /* Support for IP fixup */
390 if (x86_pmu.lbr_nr)
391 precise++;
392 }
393
394 if (event->attr.precise_ip > precise)
395 return -EOPNOTSUPP;
396 /*
397 * check that PEBS LBR correction does not conflict with
398 * whatever the user is asking with attr->branch_sample_type
399 */
400 if (event->attr.precise_ip > 1) {
401 u64 *br_type = &event->attr.branch_sample_type;
402
403 if (has_branch_stack(event)) {
404 if (!precise_br_compat(event))
405 return -EOPNOTSUPP;
406
407 /* branch_sample_type is compatible */
408
409 } else {
410 /*
411 * user did not specify branch_sample_type
412 *
413 * For PEBS fixups, we capture all
414 * the branches at the priv level of the
415 * event.
416 */
417 *br_type = PERF_SAMPLE_BRANCH_ANY;
418
419 if (!event->attr.exclude_user)
420 *br_type |= PERF_SAMPLE_BRANCH_USER;
421
422 if (!event->attr.exclude_kernel)
423 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
424 }
425 }
426 }
427
428 /*
429 * Generate PMC IRQs:
430 * (keep 'enabled' bit clear for now)
431 */
432 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
433
434 /*
435 * Count user and OS events unless requested not to
436 */
437 if (!event->attr.exclude_user)
438 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
439 if (!event->attr.exclude_kernel)
440 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
441
442 if (event->attr.type == PERF_TYPE_RAW)
443 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
444
445 return x86_setup_perfctr(event);
446 }
447
448 /*
449 * Setup the hardware configuration for a given attr_type
450 */
451 static int __x86_pmu_event_init(struct perf_event *event)
452 {
453 int err;
454
455 if (!x86_pmu_initialized())
456 return -ENODEV;
457
458 err = 0;
459 if (!atomic_inc_not_zero(&active_events)) {
460 mutex_lock(&pmc_reserve_mutex);
461 if (atomic_read(&active_events) == 0) {
462 if (!reserve_pmc_hardware())
463 err = -EBUSY;
464 else
465 reserve_ds_buffers();
466 }
467 if (!err)
468 atomic_inc(&active_events);
469 mutex_unlock(&pmc_reserve_mutex);
470 }
471 if (err)
472 return err;
473
474 event->destroy = hw_perf_event_destroy;
475
476 event->hw.idx = -1;
477 event->hw.last_cpu = -1;
478 event->hw.last_tag = ~0ULL;
479
480 /* mark unused */
481 event->hw.extra_reg.idx = EXTRA_REG_NONE;
482 event->hw.branch_reg.idx = EXTRA_REG_NONE;
483
484 return x86_pmu.hw_config(event);
485 }
486
487 void x86_pmu_disable_all(void)
488 {
489 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
490 int idx;
491
492 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
493 u64 val;
494
495 if (!test_bit(idx, cpuc->active_mask))
496 continue;
497 rdmsrl(x86_pmu_config_addr(idx), val);
498 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
499 continue;
500 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
501 wrmsrl(x86_pmu_config_addr(idx), val);
502 }
503 }
504
505 static void x86_pmu_disable(struct pmu *pmu)
506 {
507 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
508
509 if (!x86_pmu_initialized())
510 return;
511
512 if (!cpuc->enabled)
513 return;
514
515 cpuc->n_added = 0;
516 cpuc->enabled = 0;
517 barrier();
518
519 x86_pmu.disable_all();
520 }
521
522 void x86_pmu_enable_all(int added)
523 {
524 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
525 int idx;
526
527 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
528 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
529
530 if (!test_bit(idx, cpuc->active_mask))
531 continue;
532
533 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
534 }
535 }
536
537 static struct pmu pmu;
538
539 static inline int is_x86_event(struct perf_event *event)
540 {
541 return event->pmu == &pmu;
542 }
543
544 /*
545 * Event scheduler state:
546 *
547 * Assign events iterating over all events and counters, beginning
548 * with events with least weights first. Keep the current iterator
549 * state in struct sched_state.
550 */
551 struct sched_state {
552 int weight;
553 int event; /* event index */
554 int counter; /* counter index */
555 int unassigned; /* number of events to be assigned left */
556 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
557 };
558
559 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
560 #define SCHED_STATES_MAX 2
561
562 struct perf_sched {
563 int max_weight;
564 int max_events;
565 struct event_constraint **constraints;
566 struct sched_state state;
567 int saved_states;
568 struct sched_state saved[SCHED_STATES_MAX];
569 };
570
571 /*
572 * Initialize interator that runs through all events and counters.
573 */
574 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **c,
575 int num, int wmin, int wmax)
576 {
577 int idx;
578
579 memset(sched, 0, sizeof(*sched));
580 sched->max_events = num;
581 sched->max_weight = wmax;
582 sched->constraints = c;
583
584 for (idx = 0; idx < num; idx++) {
585 if (c[idx]->weight == wmin)
586 break;
587 }
588
589 sched->state.event = idx; /* start with min weight */
590 sched->state.weight = wmin;
591 sched->state.unassigned = num;
592 }
593
594 static void perf_sched_save_state(struct perf_sched *sched)
595 {
596 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
597 return;
598
599 sched->saved[sched->saved_states] = sched->state;
600 sched->saved_states++;
601 }
602
603 static bool perf_sched_restore_state(struct perf_sched *sched)
604 {
605 if (!sched->saved_states)
606 return false;
607
608 sched->saved_states--;
609 sched->state = sched->saved[sched->saved_states];
610
611 /* continue with next counter: */
612 clear_bit(sched->state.counter++, sched->state.used);
613
614 return true;
615 }
616
617 /*
618 * Select a counter for the current event to schedule. Return true on
619 * success.
620 */
621 static bool __perf_sched_find_counter(struct perf_sched *sched)
622 {
623 struct event_constraint *c;
624 int idx;
625
626 if (!sched->state.unassigned)
627 return false;
628
629 if (sched->state.event >= sched->max_events)
630 return false;
631
632 c = sched->constraints[sched->state.event];
633
634 /* Prefer fixed purpose counters */
635 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
636 idx = INTEL_PMC_IDX_FIXED;
637 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
638 if (!__test_and_set_bit(idx, sched->state.used))
639 goto done;
640 }
641 }
642 /* Grab the first unused counter starting with idx */
643 idx = sched->state.counter;
644 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
645 if (!__test_and_set_bit(idx, sched->state.used))
646 goto done;
647 }
648
649 return false;
650
651 done:
652 sched->state.counter = idx;
653
654 if (c->overlap)
655 perf_sched_save_state(sched);
656
657 return true;
658 }
659
660 static bool perf_sched_find_counter(struct perf_sched *sched)
661 {
662 while (!__perf_sched_find_counter(sched)) {
663 if (!perf_sched_restore_state(sched))
664 return false;
665 }
666
667 return true;
668 }
669
670 /*
671 * Go through all unassigned events and find the next one to schedule.
672 * Take events with the least weight first. Return true on success.
673 */
674 static bool perf_sched_next_event(struct perf_sched *sched)
675 {
676 struct event_constraint *c;
677
678 if (!sched->state.unassigned || !--sched->state.unassigned)
679 return false;
680
681 do {
682 /* next event */
683 sched->state.event++;
684 if (sched->state.event >= sched->max_events) {
685 /* next weight */
686 sched->state.event = 0;
687 sched->state.weight++;
688 if (sched->state.weight > sched->max_weight)
689 return false;
690 }
691 c = sched->constraints[sched->state.event];
692 } while (c->weight != sched->state.weight);
693
694 sched->state.counter = 0; /* start with first counter */
695
696 return true;
697 }
698
699 /*
700 * Assign a counter for each event.
701 */
702 int perf_assign_events(struct event_constraint **constraints, int n,
703 int wmin, int wmax, int *assign)
704 {
705 struct perf_sched sched;
706
707 perf_sched_init(&sched, constraints, n, wmin, wmax);
708
709 do {
710 if (!perf_sched_find_counter(&sched))
711 break; /* failed */
712 if (assign)
713 assign[sched.state.event] = sched.state.counter;
714 } while (perf_sched_next_event(&sched));
715
716 return sched.state.unassigned;
717 }
718
719 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
720 {
721 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
722 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
723 int i, wmin, wmax, num = 0;
724 struct hw_perf_event *hwc;
725
726 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
727
728 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
729 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
730 constraints[i] = c;
731 wmin = min(wmin, c->weight);
732 wmax = max(wmax, c->weight);
733 }
734
735 /*
736 * fastpath, try to reuse previous register
737 */
738 for (i = 0; i < n; i++) {
739 hwc = &cpuc->event_list[i]->hw;
740 c = constraints[i];
741
742 /* never assigned */
743 if (hwc->idx == -1)
744 break;
745
746 /* constraint still honored */
747 if (!test_bit(hwc->idx, c->idxmsk))
748 break;
749
750 /* not already used */
751 if (test_bit(hwc->idx, used_mask))
752 break;
753
754 __set_bit(hwc->idx, used_mask);
755 if (assign)
756 assign[i] = hwc->idx;
757 }
758
759 /* slow path */
760 if (i != n)
761 num = perf_assign_events(constraints, n, wmin, wmax, assign);
762
763 /*
764 * scheduling failed or is just a simulation,
765 * free resources if necessary
766 */
767 if (!assign || num) {
768 for (i = 0; i < n; i++) {
769 if (x86_pmu.put_event_constraints)
770 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
771 }
772 }
773 return num ? -EINVAL : 0;
774 }
775
776 /*
777 * dogrp: true if must collect siblings events (group)
778 * returns total number of events and error code
779 */
780 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
781 {
782 struct perf_event *event;
783 int n, max_count;
784
785 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
786
787 /* current number of events already accepted */
788 n = cpuc->n_events;
789
790 if (is_x86_event(leader)) {
791 if (n >= max_count)
792 return -EINVAL;
793 cpuc->event_list[n] = leader;
794 n++;
795 }
796 if (!dogrp)
797 return n;
798
799 list_for_each_entry(event, &leader->sibling_list, group_entry) {
800 if (!is_x86_event(event) ||
801 event->state <= PERF_EVENT_STATE_OFF)
802 continue;
803
804 if (n >= max_count)
805 return -EINVAL;
806
807 cpuc->event_list[n] = event;
808 n++;
809 }
810 return n;
811 }
812
813 static inline void x86_assign_hw_event(struct perf_event *event,
814 struct cpu_hw_events *cpuc, int i)
815 {
816 struct hw_perf_event *hwc = &event->hw;
817
818 hwc->idx = cpuc->assign[i];
819 hwc->last_cpu = smp_processor_id();
820 hwc->last_tag = ++cpuc->tags[i];
821
822 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
823 hwc->config_base = 0;
824 hwc->event_base = 0;
825 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
826 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
827 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
828 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
829 } else {
830 hwc->config_base = x86_pmu_config_addr(hwc->idx);
831 hwc->event_base = x86_pmu_event_addr(hwc->idx);
832 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
833 }
834 }
835
836 static inline int match_prev_assignment(struct hw_perf_event *hwc,
837 struct cpu_hw_events *cpuc,
838 int i)
839 {
840 return hwc->idx == cpuc->assign[i] &&
841 hwc->last_cpu == smp_processor_id() &&
842 hwc->last_tag == cpuc->tags[i];
843 }
844
845 static void x86_pmu_start(struct perf_event *event, int flags);
846
847 static void x86_pmu_enable(struct pmu *pmu)
848 {
849 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
850 struct perf_event *event;
851 struct hw_perf_event *hwc;
852 int i, added = cpuc->n_added;
853
854 if (!x86_pmu_initialized())
855 return;
856
857 if (cpuc->enabled)
858 return;
859
860 if (cpuc->n_added) {
861 int n_running = cpuc->n_events - cpuc->n_added;
862 /*
863 * apply assignment obtained either from
864 * hw_perf_group_sched_in() or x86_pmu_enable()
865 *
866 * step1: save events moving to new counters
867 * step2: reprogram moved events into new counters
868 */
869 for (i = 0; i < n_running; i++) {
870 event = cpuc->event_list[i];
871 hwc = &event->hw;
872
873 /*
874 * we can avoid reprogramming counter if:
875 * - assigned same counter as last time
876 * - running on same CPU as last time
877 * - no other event has used the counter since
878 */
879 if (hwc->idx == -1 ||
880 match_prev_assignment(hwc, cpuc, i))
881 continue;
882
883 /*
884 * Ensure we don't accidentally enable a stopped
885 * counter simply because we rescheduled.
886 */
887 if (hwc->state & PERF_HES_STOPPED)
888 hwc->state |= PERF_HES_ARCH;
889
890 x86_pmu_stop(event, PERF_EF_UPDATE);
891 }
892
893 for (i = 0; i < cpuc->n_events; i++) {
894 event = cpuc->event_list[i];
895 hwc = &event->hw;
896
897 if (!match_prev_assignment(hwc, cpuc, i))
898 x86_assign_hw_event(event, cpuc, i);
899 else if (i < n_running)
900 continue;
901
902 if (hwc->state & PERF_HES_ARCH)
903 continue;
904
905 x86_pmu_start(event, PERF_EF_RELOAD);
906 }
907 cpuc->n_added = 0;
908 perf_events_lapic_init();
909 }
910
911 cpuc->enabled = 1;
912 barrier();
913
914 x86_pmu.enable_all(added);
915 }
916
917 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
918
919 /*
920 * Set the next IRQ period, based on the hwc->period_left value.
921 * To be called with the event disabled in hw:
922 */
923 int x86_perf_event_set_period(struct perf_event *event)
924 {
925 struct hw_perf_event *hwc = &event->hw;
926 s64 left = local64_read(&hwc->period_left);
927 s64 period = hwc->sample_period;
928 int ret = 0, idx = hwc->idx;
929
930 if (idx == INTEL_PMC_IDX_FIXED_BTS)
931 return 0;
932
933 /*
934 * If we are way outside a reasonable range then just skip forward:
935 */
936 if (unlikely(left <= -period)) {
937 left = period;
938 local64_set(&hwc->period_left, left);
939 hwc->last_period = period;
940 ret = 1;
941 }
942
943 if (unlikely(left <= 0)) {
944 left += period;
945 local64_set(&hwc->period_left, left);
946 hwc->last_period = period;
947 ret = 1;
948 }
949 /*
950 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
951 */
952 if (unlikely(left < 2))
953 left = 2;
954
955 if (left > x86_pmu.max_period)
956 left = x86_pmu.max_period;
957
958 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
959
960 /*
961 * The hw event starts counting from this event offset,
962 * mark it to be able to extra future deltas:
963 */
964 local64_set(&hwc->prev_count, (u64)-left);
965
966 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
967
968 /*
969 * Due to erratum on certan cpu we need
970 * a second write to be sure the register
971 * is updated properly
972 */
973 if (x86_pmu.perfctr_second_write) {
974 wrmsrl(hwc->event_base,
975 (u64)(-left) & x86_pmu.cntval_mask);
976 }
977
978 perf_event_update_userpage(event);
979
980 return ret;
981 }
982
983 void x86_pmu_enable_event(struct perf_event *event)
984 {
985 if (__this_cpu_read(cpu_hw_events.enabled))
986 __x86_pmu_enable_event(&event->hw,
987 ARCH_PERFMON_EVENTSEL_ENABLE);
988 }
989
990 /*
991 * Add a single event to the PMU.
992 *
993 * The event is added to the group of enabled events
994 * but only if it can be scehduled with existing events.
995 */
996 static int x86_pmu_add(struct perf_event *event, int flags)
997 {
998 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
999 struct hw_perf_event *hwc;
1000 int assign[X86_PMC_IDX_MAX];
1001 int n, n0, ret;
1002
1003 hwc = &event->hw;
1004
1005 perf_pmu_disable(event->pmu);
1006 n0 = cpuc->n_events;
1007 ret = n = collect_events(cpuc, event, false);
1008 if (ret < 0)
1009 goto out;
1010
1011 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1012 if (!(flags & PERF_EF_START))
1013 hwc->state |= PERF_HES_ARCH;
1014
1015 /*
1016 * If group events scheduling transaction was started,
1017 * skip the schedulability test here, it will be performed
1018 * at commit time (->commit_txn) as a whole
1019 */
1020 if (cpuc->group_flag & PERF_EVENT_TXN)
1021 goto done_collect;
1022
1023 ret = x86_pmu.schedule_events(cpuc, n, assign);
1024 if (ret)
1025 goto out;
1026 /*
1027 * copy new assignment, now we know it is possible
1028 * will be used by hw_perf_enable()
1029 */
1030 memcpy(cpuc->assign, assign, n*sizeof(int));
1031
1032 done_collect:
1033 cpuc->n_events = n;
1034 cpuc->n_added += n - n0;
1035 cpuc->n_txn += n - n0;
1036
1037 ret = 0;
1038 out:
1039 perf_pmu_enable(event->pmu);
1040 return ret;
1041 }
1042
1043 static void x86_pmu_start(struct perf_event *event, int flags)
1044 {
1045 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1046 int idx = event->hw.idx;
1047
1048 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1049 return;
1050
1051 if (WARN_ON_ONCE(idx == -1))
1052 return;
1053
1054 if (flags & PERF_EF_RELOAD) {
1055 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1056 x86_perf_event_set_period(event);
1057 }
1058
1059 event->hw.state = 0;
1060
1061 cpuc->events[idx] = event;
1062 __set_bit(idx, cpuc->active_mask);
1063 __set_bit(idx, cpuc->running);
1064 x86_pmu.enable(event);
1065 perf_event_update_userpage(event);
1066 }
1067
1068 void perf_event_print_debug(void)
1069 {
1070 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1071 u64 pebs;
1072 struct cpu_hw_events *cpuc;
1073 unsigned long flags;
1074 int cpu, idx;
1075
1076 if (!x86_pmu.num_counters)
1077 return;
1078
1079 local_irq_save(flags);
1080
1081 cpu = smp_processor_id();
1082 cpuc = &per_cpu(cpu_hw_events, cpu);
1083
1084 if (x86_pmu.version >= 2) {
1085 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1086 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1087 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1088 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1089 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1090
1091 pr_info("\n");
1092 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1093 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1094 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1095 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1096 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1097 }
1098 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1099
1100 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1101 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1102 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1103
1104 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1105
1106 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1107 cpu, idx, pmc_ctrl);
1108 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1109 cpu, idx, pmc_count);
1110 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1111 cpu, idx, prev_left);
1112 }
1113 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1114 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1115
1116 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1117 cpu, idx, pmc_count);
1118 }
1119 local_irq_restore(flags);
1120 }
1121
1122 void x86_pmu_stop(struct perf_event *event, int flags)
1123 {
1124 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1125 struct hw_perf_event *hwc = &event->hw;
1126
1127 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1128 x86_pmu.disable(event);
1129 cpuc->events[hwc->idx] = NULL;
1130 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1131 hwc->state |= PERF_HES_STOPPED;
1132 }
1133
1134 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1135 /*
1136 * Drain the remaining delta count out of a event
1137 * that we are disabling:
1138 */
1139 x86_perf_event_update(event);
1140 hwc->state |= PERF_HES_UPTODATE;
1141 }
1142 }
1143
1144 static void x86_pmu_del(struct perf_event *event, int flags)
1145 {
1146 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1147 int i;
1148
1149 /*
1150 * If we're called during a txn, we don't need to do anything.
1151 * The events never got scheduled and ->cancel_txn will truncate
1152 * the event_list.
1153 */
1154 if (cpuc->group_flag & PERF_EVENT_TXN)
1155 return;
1156
1157 x86_pmu_stop(event, PERF_EF_UPDATE);
1158
1159 for (i = 0; i < cpuc->n_events; i++) {
1160 if (event == cpuc->event_list[i]) {
1161
1162 if (x86_pmu.put_event_constraints)
1163 x86_pmu.put_event_constraints(cpuc, event);
1164
1165 while (++i < cpuc->n_events)
1166 cpuc->event_list[i-1] = cpuc->event_list[i];
1167
1168 --cpuc->n_events;
1169 break;
1170 }
1171 }
1172 perf_event_update_userpage(event);
1173 }
1174
1175 int x86_pmu_handle_irq(struct pt_regs *regs)
1176 {
1177 struct perf_sample_data data;
1178 struct cpu_hw_events *cpuc;
1179 struct perf_event *event;
1180 int idx, handled = 0;
1181 u64 val;
1182
1183 cpuc = &__get_cpu_var(cpu_hw_events);
1184
1185 /*
1186 * Some chipsets need to unmask the LVTPC in a particular spot
1187 * inside the nmi handler. As a result, the unmasking was pushed
1188 * into all the nmi handlers.
1189 *
1190 * This generic handler doesn't seem to have any issues where the
1191 * unmasking occurs so it was left at the top.
1192 */
1193 apic_write(APIC_LVTPC, APIC_DM_NMI);
1194
1195 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1196 if (!test_bit(idx, cpuc->active_mask)) {
1197 /*
1198 * Though we deactivated the counter some cpus
1199 * might still deliver spurious interrupts still
1200 * in flight. Catch them:
1201 */
1202 if (__test_and_clear_bit(idx, cpuc->running))
1203 handled++;
1204 continue;
1205 }
1206
1207 event = cpuc->events[idx];
1208
1209 val = x86_perf_event_update(event);
1210 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1211 continue;
1212
1213 /*
1214 * event overflow
1215 */
1216 handled++;
1217 perf_sample_data_init(&data, 0, event->hw.last_period);
1218
1219 if (!x86_perf_event_set_period(event))
1220 continue;
1221
1222 if (perf_event_overflow(event, &data, regs))
1223 x86_pmu_stop(event, 0);
1224 }
1225
1226 if (handled)
1227 inc_irq_stat(apic_perf_irqs);
1228
1229 return handled;
1230 }
1231
1232 void perf_events_lapic_init(void)
1233 {
1234 if (!x86_pmu.apic || !x86_pmu_initialized())
1235 return;
1236
1237 /*
1238 * Always use NMI for PMU
1239 */
1240 apic_write(APIC_LVTPC, APIC_DM_NMI);
1241 }
1242
1243 static int __kprobes
1244 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1245 {
1246 if (!atomic_read(&active_events))
1247 return NMI_DONE;
1248
1249 return x86_pmu.handle_irq(regs);
1250 }
1251
1252 struct event_constraint emptyconstraint;
1253 struct event_constraint unconstrained;
1254
1255 static int __cpuinit
1256 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1257 {
1258 unsigned int cpu = (long)hcpu;
1259 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1260 int ret = NOTIFY_OK;
1261
1262 switch (action & ~CPU_TASKS_FROZEN) {
1263 case CPU_UP_PREPARE:
1264 cpuc->kfree_on_online = NULL;
1265 if (x86_pmu.cpu_prepare)
1266 ret = x86_pmu.cpu_prepare(cpu);
1267 break;
1268
1269 case CPU_STARTING:
1270 if (x86_pmu.attr_rdpmc)
1271 set_in_cr4(X86_CR4_PCE);
1272 if (x86_pmu.cpu_starting)
1273 x86_pmu.cpu_starting(cpu);
1274 break;
1275
1276 case CPU_ONLINE:
1277 kfree(cpuc->kfree_on_online);
1278 break;
1279
1280 case CPU_DYING:
1281 if (x86_pmu.cpu_dying)
1282 x86_pmu.cpu_dying(cpu);
1283 break;
1284
1285 case CPU_UP_CANCELED:
1286 case CPU_DEAD:
1287 if (x86_pmu.cpu_dead)
1288 x86_pmu.cpu_dead(cpu);
1289 break;
1290
1291 default:
1292 break;
1293 }
1294
1295 return ret;
1296 }
1297
1298 static void __init pmu_check_apic(void)
1299 {
1300 if (cpu_has_apic)
1301 return;
1302
1303 x86_pmu.apic = 0;
1304 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1305 pr_info("no hardware sampling interrupt available.\n");
1306 }
1307
1308 static struct attribute_group x86_pmu_format_group = {
1309 .name = "format",
1310 .attrs = NULL,
1311 };
1312
1313 /*
1314 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1315 * out of events_attr attributes.
1316 */
1317 static void __init filter_events(struct attribute **attrs)
1318 {
1319 int i, j;
1320
1321 for (i = 0; attrs[i]; i++) {
1322 if (x86_pmu.event_map(i))
1323 continue;
1324
1325 for (j = i; attrs[j]; j++)
1326 attrs[j] = attrs[j + 1];
1327
1328 /* Check the shifted attr. */
1329 i--;
1330 }
1331 }
1332
1333 static ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1334 char *page)
1335 {
1336 struct perf_pmu_events_attr *pmu_attr = \
1337 container_of(attr, struct perf_pmu_events_attr, attr);
1338
1339 u64 config = x86_pmu.event_map(pmu_attr->id);
1340 return x86_pmu.events_sysfs_show(page, config);
1341 }
1342
1343 #define EVENT_VAR(_id) event_attr_##_id
1344 #define EVENT_PTR(_id) &event_attr_##_id.attr.attr
1345
1346 #define EVENT_ATTR(_name, _id) \
1347 PMU_EVENT_ATTR(_name, EVENT_VAR(_id), PERF_COUNT_HW_##_id, \
1348 events_sysfs_show)
1349
1350 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1351 EVENT_ATTR(instructions, INSTRUCTIONS );
1352 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1353 EVENT_ATTR(cache-misses, CACHE_MISSES );
1354 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1355 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1356 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1357 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1358 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1359 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1360
1361 static struct attribute *empty_attrs;
1362
1363 static struct attribute *events_attr[] = {
1364 EVENT_PTR(CPU_CYCLES),
1365 EVENT_PTR(INSTRUCTIONS),
1366 EVENT_PTR(CACHE_REFERENCES),
1367 EVENT_PTR(CACHE_MISSES),
1368 EVENT_PTR(BRANCH_INSTRUCTIONS),
1369 EVENT_PTR(BRANCH_MISSES),
1370 EVENT_PTR(BUS_CYCLES),
1371 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1372 EVENT_PTR(STALLED_CYCLES_BACKEND),
1373 EVENT_PTR(REF_CPU_CYCLES),
1374 NULL,
1375 };
1376
1377 static struct attribute_group x86_pmu_events_group = {
1378 .name = "events",
1379 .attrs = events_attr,
1380 };
1381
1382 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1383 {
1384 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1385 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1386 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1387 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1388 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1389 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1390 ssize_t ret;
1391
1392 /*
1393 * We have whole page size to spend and just little data
1394 * to write, so we can safely use sprintf.
1395 */
1396 ret = sprintf(page, "event=0x%02llx", event);
1397
1398 if (umask)
1399 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1400
1401 if (edge)
1402 ret += sprintf(page + ret, ",edge");
1403
1404 if (pc)
1405 ret += sprintf(page + ret, ",pc");
1406
1407 if (any)
1408 ret += sprintf(page + ret, ",any");
1409
1410 if (inv)
1411 ret += sprintf(page + ret, ",inv");
1412
1413 if (cmask)
1414 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1415
1416 ret += sprintf(page + ret, "\n");
1417
1418 return ret;
1419 }
1420
1421 static int __init init_hw_perf_events(void)
1422 {
1423 struct x86_pmu_quirk *quirk;
1424 int err;
1425
1426 pr_info("Performance Events: ");
1427
1428 switch (boot_cpu_data.x86_vendor) {
1429 case X86_VENDOR_INTEL:
1430 err = intel_pmu_init();
1431 break;
1432 case X86_VENDOR_AMD:
1433 err = amd_pmu_init();
1434 break;
1435 default:
1436 return 0;
1437 }
1438 if (err != 0) {
1439 pr_cont("no PMU driver, software events only.\n");
1440 return 0;
1441 }
1442
1443 pmu_check_apic();
1444
1445 /* sanity check that the hardware exists or is emulated */
1446 if (!check_hw_exists())
1447 return 0;
1448
1449 pr_cont("%s PMU driver.\n", x86_pmu.name);
1450
1451 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1452 quirk->func();
1453
1454 if (!x86_pmu.intel_ctrl)
1455 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1456
1457 perf_events_lapic_init();
1458 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1459
1460 unconstrained = (struct event_constraint)
1461 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1462 0, x86_pmu.num_counters, 0);
1463
1464 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1465 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1466
1467 if (!x86_pmu.events_sysfs_show)
1468 x86_pmu_events_group.attrs = &empty_attrs;
1469 else
1470 filter_events(x86_pmu_events_group.attrs);
1471
1472 pr_info("... version: %d\n", x86_pmu.version);
1473 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1474 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1475 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1476 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1477 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1478 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1479
1480 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1481 perf_cpu_notifier(x86_pmu_notifier);
1482
1483 return 0;
1484 }
1485 early_initcall(init_hw_perf_events);
1486
1487 static inline void x86_pmu_read(struct perf_event *event)
1488 {
1489 x86_perf_event_update(event);
1490 }
1491
1492 /*
1493 * Start group events scheduling transaction
1494 * Set the flag to make pmu::enable() not perform the
1495 * schedulability test, it will be performed at commit time
1496 */
1497 static void x86_pmu_start_txn(struct pmu *pmu)
1498 {
1499 perf_pmu_disable(pmu);
1500 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1501 __this_cpu_write(cpu_hw_events.n_txn, 0);
1502 }
1503
1504 /*
1505 * Stop group events scheduling transaction
1506 * Clear the flag and pmu::enable() will perform the
1507 * schedulability test.
1508 */
1509 static void x86_pmu_cancel_txn(struct pmu *pmu)
1510 {
1511 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1512 /*
1513 * Truncate the collected events.
1514 */
1515 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1516 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1517 perf_pmu_enable(pmu);
1518 }
1519
1520 /*
1521 * Commit group events scheduling transaction
1522 * Perform the group schedulability test as a whole
1523 * Return 0 if success
1524 */
1525 static int x86_pmu_commit_txn(struct pmu *pmu)
1526 {
1527 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1528 int assign[X86_PMC_IDX_MAX];
1529 int n, ret;
1530
1531 n = cpuc->n_events;
1532
1533 if (!x86_pmu_initialized())
1534 return -EAGAIN;
1535
1536 ret = x86_pmu.schedule_events(cpuc, n, assign);
1537 if (ret)
1538 return ret;
1539
1540 /*
1541 * copy new assignment, now we know it is possible
1542 * will be used by hw_perf_enable()
1543 */
1544 memcpy(cpuc->assign, assign, n*sizeof(int));
1545
1546 cpuc->group_flag &= ~PERF_EVENT_TXN;
1547 perf_pmu_enable(pmu);
1548 return 0;
1549 }
1550 /*
1551 * a fake_cpuc is used to validate event groups. Due to
1552 * the extra reg logic, we need to also allocate a fake
1553 * per_core and per_cpu structure. Otherwise, group events
1554 * using extra reg may conflict without the kernel being
1555 * able to catch this when the last event gets added to
1556 * the group.
1557 */
1558 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1559 {
1560 kfree(cpuc->shared_regs);
1561 kfree(cpuc);
1562 }
1563
1564 static struct cpu_hw_events *allocate_fake_cpuc(void)
1565 {
1566 struct cpu_hw_events *cpuc;
1567 int cpu = raw_smp_processor_id();
1568
1569 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1570 if (!cpuc)
1571 return ERR_PTR(-ENOMEM);
1572
1573 /* only needed, if we have extra_regs */
1574 if (x86_pmu.extra_regs) {
1575 cpuc->shared_regs = allocate_shared_regs(cpu);
1576 if (!cpuc->shared_regs)
1577 goto error;
1578 }
1579 cpuc->is_fake = 1;
1580 return cpuc;
1581 error:
1582 free_fake_cpuc(cpuc);
1583 return ERR_PTR(-ENOMEM);
1584 }
1585
1586 /*
1587 * validate that we can schedule this event
1588 */
1589 static int validate_event(struct perf_event *event)
1590 {
1591 struct cpu_hw_events *fake_cpuc;
1592 struct event_constraint *c;
1593 int ret = 0;
1594
1595 fake_cpuc = allocate_fake_cpuc();
1596 if (IS_ERR(fake_cpuc))
1597 return PTR_ERR(fake_cpuc);
1598
1599 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1600
1601 if (!c || !c->weight)
1602 ret = -EINVAL;
1603
1604 if (x86_pmu.put_event_constraints)
1605 x86_pmu.put_event_constraints(fake_cpuc, event);
1606
1607 free_fake_cpuc(fake_cpuc);
1608
1609 return ret;
1610 }
1611
1612 /*
1613 * validate a single event group
1614 *
1615 * validation include:
1616 * - check events are compatible which each other
1617 * - events do not compete for the same counter
1618 * - number of events <= number of counters
1619 *
1620 * validation ensures the group can be loaded onto the
1621 * PMU if it was the only group available.
1622 */
1623 static int validate_group(struct perf_event *event)
1624 {
1625 struct perf_event *leader = event->group_leader;
1626 struct cpu_hw_events *fake_cpuc;
1627 int ret = -EINVAL, n;
1628
1629 fake_cpuc = allocate_fake_cpuc();
1630 if (IS_ERR(fake_cpuc))
1631 return PTR_ERR(fake_cpuc);
1632 /*
1633 * the event is not yet connected with its
1634 * siblings therefore we must first collect
1635 * existing siblings, then add the new event
1636 * before we can simulate the scheduling
1637 */
1638 n = collect_events(fake_cpuc, leader, true);
1639 if (n < 0)
1640 goto out;
1641
1642 fake_cpuc->n_events = n;
1643 n = collect_events(fake_cpuc, event, false);
1644 if (n < 0)
1645 goto out;
1646
1647 fake_cpuc->n_events = n;
1648
1649 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1650
1651 out:
1652 free_fake_cpuc(fake_cpuc);
1653 return ret;
1654 }
1655
1656 static int x86_pmu_event_init(struct perf_event *event)
1657 {
1658 struct pmu *tmp;
1659 int err;
1660
1661 switch (event->attr.type) {
1662 case PERF_TYPE_RAW:
1663 case PERF_TYPE_HARDWARE:
1664 case PERF_TYPE_HW_CACHE:
1665 break;
1666
1667 default:
1668 return -ENOENT;
1669 }
1670
1671 err = __x86_pmu_event_init(event);
1672 if (!err) {
1673 /*
1674 * we temporarily connect event to its pmu
1675 * such that validate_group() can classify
1676 * it as an x86 event using is_x86_event()
1677 */
1678 tmp = event->pmu;
1679 event->pmu = &pmu;
1680
1681 if (event->group_leader != event)
1682 err = validate_group(event);
1683 else
1684 err = validate_event(event);
1685
1686 event->pmu = tmp;
1687 }
1688 if (err) {
1689 if (event->destroy)
1690 event->destroy(event);
1691 }
1692
1693 return err;
1694 }
1695
1696 static int x86_pmu_event_idx(struct perf_event *event)
1697 {
1698 int idx = event->hw.idx;
1699
1700 if (!x86_pmu.attr_rdpmc)
1701 return 0;
1702
1703 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1704 idx -= INTEL_PMC_IDX_FIXED;
1705 idx |= 1 << 30;
1706 }
1707
1708 return idx + 1;
1709 }
1710
1711 static ssize_t get_attr_rdpmc(struct device *cdev,
1712 struct device_attribute *attr,
1713 char *buf)
1714 {
1715 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1716 }
1717
1718 static void change_rdpmc(void *info)
1719 {
1720 bool enable = !!(unsigned long)info;
1721
1722 if (enable)
1723 set_in_cr4(X86_CR4_PCE);
1724 else
1725 clear_in_cr4(X86_CR4_PCE);
1726 }
1727
1728 static ssize_t set_attr_rdpmc(struct device *cdev,
1729 struct device_attribute *attr,
1730 const char *buf, size_t count)
1731 {
1732 unsigned long val;
1733 ssize_t ret;
1734
1735 ret = kstrtoul(buf, 0, &val);
1736 if (ret)
1737 return ret;
1738
1739 if (!!val != !!x86_pmu.attr_rdpmc) {
1740 x86_pmu.attr_rdpmc = !!val;
1741 smp_call_function(change_rdpmc, (void *)val, 1);
1742 }
1743
1744 return count;
1745 }
1746
1747 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1748
1749 static struct attribute *x86_pmu_attrs[] = {
1750 &dev_attr_rdpmc.attr,
1751 NULL,
1752 };
1753
1754 static struct attribute_group x86_pmu_attr_group = {
1755 .attrs = x86_pmu_attrs,
1756 };
1757
1758 static const struct attribute_group *x86_pmu_attr_groups[] = {
1759 &x86_pmu_attr_group,
1760 &x86_pmu_format_group,
1761 &x86_pmu_events_group,
1762 NULL,
1763 };
1764
1765 static void x86_pmu_flush_branch_stack(void)
1766 {
1767 if (x86_pmu.flush_branch_stack)
1768 x86_pmu.flush_branch_stack();
1769 }
1770
1771 void perf_check_microcode(void)
1772 {
1773 if (x86_pmu.check_microcode)
1774 x86_pmu.check_microcode();
1775 }
1776 EXPORT_SYMBOL_GPL(perf_check_microcode);
1777
1778 static struct pmu pmu = {
1779 .pmu_enable = x86_pmu_enable,
1780 .pmu_disable = x86_pmu_disable,
1781
1782 .attr_groups = x86_pmu_attr_groups,
1783
1784 .event_init = x86_pmu_event_init,
1785
1786 .add = x86_pmu_add,
1787 .del = x86_pmu_del,
1788 .start = x86_pmu_start,
1789 .stop = x86_pmu_stop,
1790 .read = x86_pmu_read,
1791
1792 .start_txn = x86_pmu_start_txn,
1793 .cancel_txn = x86_pmu_cancel_txn,
1794 .commit_txn = x86_pmu_commit_txn,
1795
1796 .event_idx = x86_pmu_event_idx,
1797 .flush_branch_stack = x86_pmu_flush_branch_stack,
1798 };
1799
1800 void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
1801 {
1802 userpg->cap_usr_time = 0;
1803 userpg->cap_usr_rdpmc = x86_pmu.attr_rdpmc;
1804 userpg->pmc_width = x86_pmu.cntval_bits;
1805
1806 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1807 return;
1808
1809 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
1810 return;
1811
1812 userpg->cap_usr_time = 1;
1813 userpg->time_mult = this_cpu_read(cyc2ns);
1814 userpg->time_shift = CYC2NS_SCALE_FACTOR;
1815 userpg->time_offset = this_cpu_read(cyc2ns_offset) - now;
1816 }
1817
1818 /*
1819 * callchain support
1820 */
1821
1822 static int backtrace_stack(void *data, char *name)
1823 {
1824 return 0;
1825 }
1826
1827 static void backtrace_address(void *data, unsigned long addr, int reliable)
1828 {
1829 struct perf_callchain_entry *entry = data;
1830
1831 perf_callchain_store(entry, addr);
1832 }
1833
1834 static const struct stacktrace_ops backtrace_ops = {
1835 .stack = backtrace_stack,
1836 .address = backtrace_address,
1837 .walk_stack = print_context_stack_bp,
1838 };
1839
1840 void
1841 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1842 {
1843 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1844 /* TODO: We don't support guest os callchain now */
1845 return;
1846 }
1847
1848 perf_callchain_store(entry, regs->ip);
1849
1850 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1851 }
1852
1853 static inline int
1854 valid_user_frame(const void __user *fp, unsigned long size)
1855 {
1856 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1857 }
1858
1859 static unsigned long get_segment_base(unsigned int segment)
1860 {
1861 struct desc_struct *desc;
1862 int idx = segment >> 3;
1863
1864 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1865 if (idx > LDT_ENTRIES)
1866 return 0;
1867
1868 if (idx > current->active_mm->context.size)
1869 return 0;
1870
1871 desc = current->active_mm->context.ldt;
1872 } else {
1873 if (idx > GDT_ENTRIES)
1874 return 0;
1875
1876 desc = __this_cpu_ptr(&gdt_page.gdt[0]);
1877 }
1878
1879 return get_desc_base(desc + idx);
1880 }
1881
1882 #ifdef CONFIG_COMPAT
1883
1884 #include <asm/compat.h>
1885
1886 static inline int
1887 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1888 {
1889 /* 32-bit process in 64-bit kernel. */
1890 unsigned long ss_base, cs_base;
1891 struct stack_frame_ia32 frame;
1892 const void __user *fp;
1893
1894 if (!test_thread_flag(TIF_IA32))
1895 return 0;
1896
1897 cs_base = get_segment_base(regs->cs);
1898 ss_base = get_segment_base(regs->ss);
1899
1900 fp = compat_ptr(ss_base + regs->bp);
1901 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1902 unsigned long bytes;
1903 frame.next_frame = 0;
1904 frame.return_address = 0;
1905
1906 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1907 if (bytes != sizeof(frame))
1908 break;
1909
1910 if (!valid_user_frame(fp, sizeof(frame)))
1911 break;
1912
1913 perf_callchain_store(entry, cs_base + frame.return_address);
1914 fp = compat_ptr(ss_base + frame.next_frame);
1915 }
1916 return 1;
1917 }
1918 #else
1919 static inline int
1920 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1921 {
1922 return 0;
1923 }
1924 #endif
1925
1926 void
1927 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1928 {
1929 struct stack_frame frame;
1930 const void __user *fp;
1931
1932 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1933 /* TODO: We don't support guest os callchain now */
1934 return;
1935 }
1936
1937 /*
1938 * We don't know what to do with VM86 stacks.. ignore them for now.
1939 */
1940 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
1941 return;
1942
1943 fp = (void __user *)regs->bp;
1944
1945 perf_callchain_store(entry, regs->ip);
1946
1947 if (!current->mm)
1948 return;
1949
1950 if (perf_callchain_user32(regs, entry))
1951 return;
1952
1953 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1954 unsigned long bytes;
1955 frame.next_frame = NULL;
1956 frame.return_address = 0;
1957
1958 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1959 if (bytes != sizeof(frame))
1960 break;
1961
1962 if (!valid_user_frame(fp, sizeof(frame)))
1963 break;
1964
1965 perf_callchain_store(entry, frame.return_address);
1966 fp = frame.next_frame;
1967 }
1968 }
1969
1970 /*
1971 * Deal with code segment offsets for the various execution modes:
1972 *
1973 * VM86 - the good olde 16 bit days, where the linear address is
1974 * 20 bits and we use regs->ip + 0x10 * regs->cs.
1975 *
1976 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
1977 * to figure out what the 32bit base address is.
1978 *
1979 * X32 - has TIF_X32 set, but is running in x86_64
1980 *
1981 * X86_64 - CS,DS,SS,ES are all zero based.
1982 */
1983 static unsigned long code_segment_base(struct pt_regs *regs)
1984 {
1985 /*
1986 * If we are in VM86 mode, add the segment offset to convert to a
1987 * linear address.
1988 */
1989 if (regs->flags & X86_VM_MASK)
1990 return 0x10 * regs->cs;
1991
1992 /*
1993 * For IA32 we look at the GDT/LDT segment base to convert the
1994 * effective IP to a linear address.
1995 */
1996 #ifdef CONFIG_X86_32
1997 if (user_mode(regs) && regs->cs != __USER_CS)
1998 return get_segment_base(regs->cs);
1999 #else
2000 if (test_thread_flag(TIF_IA32)) {
2001 if (user_mode(regs) && regs->cs != __USER32_CS)
2002 return get_segment_base(regs->cs);
2003 }
2004 #endif
2005 return 0;
2006 }
2007
2008 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2009 {
2010 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2011 return perf_guest_cbs->get_guest_ip();
2012
2013 return regs->ip + code_segment_base(regs);
2014 }
2015
2016 unsigned long perf_misc_flags(struct pt_regs *regs)
2017 {
2018 int misc = 0;
2019
2020 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2021 if (perf_guest_cbs->is_user_mode())
2022 misc |= PERF_RECORD_MISC_GUEST_USER;
2023 else
2024 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2025 } else {
2026 if (user_mode(regs))
2027 misc |= PERF_RECORD_MISC_USER;
2028 else
2029 misc |= PERF_RECORD_MISC_KERNEL;
2030 }
2031
2032 if (regs->flags & PERF_EFLAGS_EXACT)
2033 misc |= PERF_RECORD_MISC_EXACT_IP;
2034
2035 return misc;
2036 }
2037
2038 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2039 {
2040 cap->version = x86_pmu.version;
2041 cap->num_counters_gp = x86_pmu.num_counters;
2042 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2043 cap->bit_width_gp = x86_pmu.cntval_bits;
2044 cap->bit_width_fixed = x86_pmu.cntval_bits;
2045 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2046 cap->events_mask_len = x86_pmu.events_mask_len;
2047 }
2048 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
This page took 0.072436 seconds and 5 git commands to generate.