ARM: Merge for-2637/s3c24xx/h1940
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
33
34 #if 0
35 #undef wrmsrl
36 #define wrmsrl(msr, val) \
37 do { \
38 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
39 (unsigned long)(val)); \
40 native_write_msr((msr), (u32)((u64)(val)), \
41 (u32)((u64)(val) >> 32)); \
42 } while (0)
43 #endif
44
45 /*
46 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
47 */
48 static unsigned long
49 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
50 {
51 unsigned long offset, addr = (unsigned long)from;
52 int type = in_nmi() ? KM_NMI : KM_IRQ0;
53 unsigned long size, len = 0;
54 struct page *page;
55 void *map;
56 int ret;
57
58 do {
59 ret = __get_user_pages_fast(addr, 1, 0, &page);
60 if (!ret)
61 break;
62
63 offset = addr & (PAGE_SIZE - 1);
64 size = min(PAGE_SIZE - offset, n - len);
65
66 map = kmap_atomic(page, type);
67 memcpy(to, map+offset, size);
68 kunmap_atomic(map, type);
69 put_page(page);
70
71 len += size;
72 to += size;
73 addr += size;
74
75 } while (len < n);
76
77 return len;
78 }
79
80 struct event_constraint {
81 union {
82 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
83 u64 idxmsk64;
84 };
85 u64 code;
86 u64 cmask;
87 int weight;
88 };
89
90 struct amd_nb {
91 int nb_id; /* NorthBridge id */
92 int refcnt; /* reference count */
93 struct perf_event *owners[X86_PMC_IDX_MAX];
94 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
95 };
96
97 #define MAX_LBR_ENTRIES 16
98
99 struct cpu_hw_events {
100 /*
101 * Generic x86 PMC bits
102 */
103 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
104 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
105 unsigned long running[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
106 int enabled;
107
108 int n_events;
109 int n_added;
110 int n_txn;
111 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
112 u64 tags[X86_PMC_IDX_MAX];
113 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
114
115 unsigned int group_flag;
116
117 /*
118 * Intel DebugStore bits
119 */
120 struct debug_store *ds;
121 u64 pebs_enabled;
122
123 /*
124 * Intel LBR bits
125 */
126 int lbr_users;
127 void *lbr_context;
128 struct perf_branch_stack lbr_stack;
129 struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
130
131 /*
132 * AMD specific bits
133 */
134 struct amd_nb *amd_nb;
135 };
136
137 #define __EVENT_CONSTRAINT(c, n, m, w) {\
138 { .idxmsk64 = (n) }, \
139 .code = (c), \
140 .cmask = (m), \
141 .weight = (w), \
142 }
143
144 #define EVENT_CONSTRAINT(c, n, m) \
145 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
146
147 /*
148 * Constraint on the Event code.
149 */
150 #define INTEL_EVENT_CONSTRAINT(c, n) \
151 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
152
153 /*
154 * Constraint on the Event code + UMask + fixed-mask
155 *
156 * filter mask to validate fixed counter events.
157 * the following filters disqualify for fixed counters:
158 * - inv
159 * - edge
160 * - cnt-mask
161 * The other filters are supported by fixed counters.
162 * The any-thread option is supported starting with v3.
163 */
164 #define FIXED_EVENT_CONSTRAINT(c, n) \
165 EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
166
167 /*
168 * Constraint on the Event code + UMask
169 */
170 #define PEBS_EVENT_CONSTRAINT(c, n) \
171 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
172
173 #define EVENT_CONSTRAINT_END \
174 EVENT_CONSTRAINT(0, 0, 0)
175
176 #define for_each_event_constraint(e, c) \
177 for ((e) = (c); (e)->weight; (e)++)
178
179 union perf_capabilities {
180 struct {
181 u64 lbr_format : 6;
182 u64 pebs_trap : 1;
183 u64 pebs_arch_reg : 1;
184 u64 pebs_format : 4;
185 u64 smm_freeze : 1;
186 };
187 u64 capabilities;
188 };
189
190 /*
191 * struct x86_pmu - generic x86 pmu
192 */
193 struct x86_pmu {
194 /*
195 * Generic x86 PMC bits
196 */
197 const char *name;
198 int version;
199 int (*handle_irq)(struct pt_regs *);
200 void (*disable_all)(void);
201 void (*enable_all)(int added);
202 void (*enable)(struct perf_event *);
203 void (*disable)(struct perf_event *);
204 int (*hw_config)(struct perf_event *event);
205 int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
206 unsigned eventsel;
207 unsigned perfctr;
208 u64 (*event_map)(int);
209 int max_events;
210 int num_counters;
211 int num_counters_fixed;
212 int cntval_bits;
213 u64 cntval_mask;
214 int apic;
215 u64 max_period;
216 struct event_constraint *
217 (*get_event_constraints)(struct cpu_hw_events *cpuc,
218 struct perf_event *event);
219
220 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
221 struct perf_event *event);
222 struct event_constraint *event_constraints;
223 void (*quirks)(void);
224 int perfctr_second_write;
225
226 int (*cpu_prepare)(int cpu);
227 void (*cpu_starting)(int cpu);
228 void (*cpu_dying)(int cpu);
229 void (*cpu_dead)(int cpu);
230
231 /*
232 * Intel Arch Perfmon v2+
233 */
234 u64 intel_ctrl;
235 union perf_capabilities intel_cap;
236
237 /*
238 * Intel DebugStore bits
239 */
240 int bts, pebs;
241 int pebs_record_size;
242 void (*drain_pebs)(struct pt_regs *regs);
243 struct event_constraint *pebs_constraints;
244
245 /*
246 * Intel LBR
247 */
248 unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
249 int lbr_nr; /* hardware stack size */
250 };
251
252 static struct x86_pmu x86_pmu __read_mostly;
253
254 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
255 .enabled = 1,
256 };
257
258 static int x86_perf_event_set_period(struct perf_event *event);
259
260 /*
261 * Generalized hw caching related hw_event table, filled
262 * in on a per model basis. A value of 0 means
263 * 'not supported', -1 means 'hw_event makes no sense on
264 * this CPU', any other value means the raw hw_event
265 * ID.
266 */
267
268 #define C(x) PERF_COUNT_HW_CACHE_##x
269
270 static u64 __read_mostly hw_cache_event_ids
271 [PERF_COUNT_HW_CACHE_MAX]
272 [PERF_COUNT_HW_CACHE_OP_MAX]
273 [PERF_COUNT_HW_CACHE_RESULT_MAX];
274
275 /*
276 * Propagate event elapsed time into the generic event.
277 * Can only be executed on the CPU where the event is active.
278 * Returns the delta events processed.
279 */
280 static u64
281 x86_perf_event_update(struct perf_event *event)
282 {
283 struct hw_perf_event *hwc = &event->hw;
284 int shift = 64 - x86_pmu.cntval_bits;
285 u64 prev_raw_count, new_raw_count;
286 int idx = hwc->idx;
287 s64 delta;
288
289 if (idx == X86_PMC_IDX_FIXED_BTS)
290 return 0;
291
292 /*
293 * Careful: an NMI might modify the previous event value.
294 *
295 * Our tactic to handle this is to first atomically read and
296 * exchange a new raw count - then add that new-prev delta
297 * count to the generic event atomically:
298 */
299 again:
300 prev_raw_count = local64_read(&hwc->prev_count);
301 rdmsrl(hwc->event_base + idx, new_raw_count);
302
303 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
304 new_raw_count) != prev_raw_count)
305 goto again;
306
307 /*
308 * Now we have the new raw value and have updated the prev
309 * timestamp already. We can now calculate the elapsed delta
310 * (event-)time and add that to the generic event.
311 *
312 * Careful, not all hw sign-extends above the physical width
313 * of the count.
314 */
315 delta = (new_raw_count << shift) - (prev_raw_count << shift);
316 delta >>= shift;
317
318 local64_add(delta, &event->count);
319 local64_sub(delta, &hwc->period_left);
320
321 return new_raw_count;
322 }
323
324 static atomic_t active_events;
325 static DEFINE_MUTEX(pmc_reserve_mutex);
326
327 #ifdef CONFIG_X86_LOCAL_APIC
328
329 static bool reserve_pmc_hardware(void)
330 {
331 int i;
332
333 if (nmi_watchdog == NMI_LOCAL_APIC)
334 disable_lapic_nmi_watchdog();
335
336 for (i = 0; i < x86_pmu.num_counters; i++) {
337 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
338 goto perfctr_fail;
339 }
340
341 for (i = 0; i < x86_pmu.num_counters; i++) {
342 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
343 goto eventsel_fail;
344 }
345
346 return true;
347
348 eventsel_fail:
349 for (i--; i >= 0; i--)
350 release_evntsel_nmi(x86_pmu.eventsel + i);
351
352 i = x86_pmu.num_counters;
353
354 perfctr_fail:
355 for (i--; i >= 0; i--)
356 release_perfctr_nmi(x86_pmu.perfctr + i);
357
358 if (nmi_watchdog == NMI_LOCAL_APIC)
359 enable_lapic_nmi_watchdog();
360
361 return false;
362 }
363
364 static void release_pmc_hardware(void)
365 {
366 int i;
367
368 for (i = 0; i < x86_pmu.num_counters; i++) {
369 release_perfctr_nmi(x86_pmu.perfctr + i);
370 release_evntsel_nmi(x86_pmu.eventsel + i);
371 }
372
373 if (nmi_watchdog == NMI_LOCAL_APIC)
374 enable_lapic_nmi_watchdog();
375 }
376
377 #else
378
379 static bool reserve_pmc_hardware(void) { return true; }
380 static void release_pmc_hardware(void) {}
381
382 #endif
383
384 static int reserve_ds_buffers(void);
385 static void release_ds_buffers(void);
386
387 static void hw_perf_event_destroy(struct perf_event *event)
388 {
389 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
390 release_pmc_hardware();
391 release_ds_buffers();
392 mutex_unlock(&pmc_reserve_mutex);
393 }
394 }
395
396 static inline int x86_pmu_initialized(void)
397 {
398 return x86_pmu.handle_irq != NULL;
399 }
400
401 static inline int
402 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
403 {
404 unsigned int cache_type, cache_op, cache_result;
405 u64 config, val;
406
407 config = attr->config;
408
409 cache_type = (config >> 0) & 0xff;
410 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
411 return -EINVAL;
412
413 cache_op = (config >> 8) & 0xff;
414 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
415 return -EINVAL;
416
417 cache_result = (config >> 16) & 0xff;
418 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
419 return -EINVAL;
420
421 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
422
423 if (val == 0)
424 return -ENOENT;
425
426 if (val == -1)
427 return -EINVAL;
428
429 hwc->config |= val;
430
431 return 0;
432 }
433
434 static int x86_setup_perfctr(struct perf_event *event)
435 {
436 struct perf_event_attr *attr = &event->attr;
437 struct hw_perf_event *hwc = &event->hw;
438 u64 config;
439
440 if (!hwc->sample_period) {
441 hwc->sample_period = x86_pmu.max_period;
442 hwc->last_period = hwc->sample_period;
443 local64_set(&hwc->period_left, hwc->sample_period);
444 } else {
445 /*
446 * If we have a PMU initialized but no APIC
447 * interrupts, we cannot sample hardware
448 * events (user-space has to fall back and
449 * sample via a hrtimer based software event):
450 */
451 if (!x86_pmu.apic)
452 return -EOPNOTSUPP;
453 }
454
455 if (attr->type == PERF_TYPE_RAW)
456 return 0;
457
458 if (attr->type == PERF_TYPE_HW_CACHE)
459 return set_ext_hw_attr(hwc, attr);
460
461 if (attr->config >= x86_pmu.max_events)
462 return -EINVAL;
463
464 /*
465 * The generic map:
466 */
467 config = x86_pmu.event_map(attr->config);
468
469 if (config == 0)
470 return -ENOENT;
471
472 if (config == -1LL)
473 return -EINVAL;
474
475 /*
476 * Branch tracing:
477 */
478 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
479 (hwc->sample_period == 1)) {
480 /* BTS is not supported by this architecture. */
481 if (!x86_pmu.bts)
482 return -EOPNOTSUPP;
483
484 /* BTS is currently only allowed for user-mode. */
485 if (!attr->exclude_kernel)
486 return -EOPNOTSUPP;
487 }
488
489 hwc->config |= config;
490
491 return 0;
492 }
493
494 static int x86_pmu_hw_config(struct perf_event *event)
495 {
496 if (event->attr.precise_ip) {
497 int precise = 0;
498
499 /* Support for constant skid */
500 if (x86_pmu.pebs)
501 precise++;
502
503 /* Support for IP fixup */
504 if (x86_pmu.lbr_nr)
505 precise++;
506
507 if (event->attr.precise_ip > precise)
508 return -EOPNOTSUPP;
509 }
510
511 /*
512 * Generate PMC IRQs:
513 * (keep 'enabled' bit clear for now)
514 */
515 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
516
517 /*
518 * Count user and OS events unless requested not to
519 */
520 if (!event->attr.exclude_user)
521 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
522 if (!event->attr.exclude_kernel)
523 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
524
525 if (event->attr.type == PERF_TYPE_RAW)
526 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
527
528 return x86_setup_perfctr(event);
529 }
530
531 /*
532 * Setup the hardware configuration for a given attr_type
533 */
534 static int __x86_pmu_event_init(struct perf_event *event)
535 {
536 int err;
537
538 if (!x86_pmu_initialized())
539 return -ENODEV;
540
541 err = 0;
542 if (!atomic_inc_not_zero(&active_events)) {
543 mutex_lock(&pmc_reserve_mutex);
544 if (atomic_read(&active_events) == 0) {
545 if (!reserve_pmc_hardware())
546 err = -EBUSY;
547 else {
548 err = reserve_ds_buffers();
549 if (err)
550 release_pmc_hardware();
551 }
552 }
553 if (!err)
554 atomic_inc(&active_events);
555 mutex_unlock(&pmc_reserve_mutex);
556 }
557 if (err)
558 return err;
559
560 event->destroy = hw_perf_event_destroy;
561
562 event->hw.idx = -1;
563 event->hw.last_cpu = -1;
564 event->hw.last_tag = ~0ULL;
565
566 return x86_pmu.hw_config(event);
567 }
568
569 static void x86_pmu_disable_all(void)
570 {
571 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
572 int idx;
573
574 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
575 u64 val;
576
577 if (!test_bit(idx, cpuc->active_mask))
578 continue;
579 rdmsrl(x86_pmu.eventsel + idx, val);
580 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
581 continue;
582 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
583 wrmsrl(x86_pmu.eventsel + idx, val);
584 }
585 }
586
587 static void x86_pmu_disable(struct pmu *pmu)
588 {
589 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
590
591 if (!x86_pmu_initialized())
592 return;
593
594 if (!cpuc->enabled)
595 return;
596
597 cpuc->n_added = 0;
598 cpuc->enabled = 0;
599 barrier();
600
601 x86_pmu.disable_all();
602 }
603
604 static void x86_pmu_enable_all(int added)
605 {
606 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
607 int idx;
608
609 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
610 struct perf_event *event = cpuc->events[idx];
611 u64 val;
612
613 if (!test_bit(idx, cpuc->active_mask))
614 continue;
615
616 val = event->hw.config;
617 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
618 wrmsrl(x86_pmu.eventsel + idx, val);
619 }
620 }
621
622 static struct pmu pmu;
623
624 static inline int is_x86_event(struct perf_event *event)
625 {
626 return event->pmu == &pmu;
627 }
628
629 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
630 {
631 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
632 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
633 int i, j, w, wmax, num = 0;
634 struct hw_perf_event *hwc;
635
636 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
637
638 for (i = 0; i < n; i++) {
639 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
640 constraints[i] = c;
641 }
642
643 /*
644 * fastpath, try to reuse previous register
645 */
646 for (i = 0; i < n; i++) {
647 hwc = &cpuc->event_list[i]->hw;
648 c = constraints[i];
649
650 /* never assigned */
651 if (hwc->idx == -1)
652 break;
653
654 /* constraint still honored */
655 if (!test_bit(hwc->idx, c->idxmsk))
656 break;
657
658 /* not already used */
659 if (test_bit(hwc->idx, used_mask))
660 break;
661
662 __set_bit(hwc->idx, used_mask);
663 if (assign)
664 assign[i] = hwc->idx;
665 }
666 if (i == n)
667 goto done;
668
669 /*
670 * begin slow path
671 */
672
673 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
674
675 /*
676 * weight = number of possible counters
677 *
678 * 1 = most constrained, only works on one counter
679 * wmax = least constrained, works on any counter
680 *
681 * assign events to counters starting with most
682 * constrained events.
683 */
684 wmax = x86_pmu.num_counters;
685
686 /*
687 * when fixed event counters are present,
688 * wmax is incremented by 1 to account
689 * for one more choice
690 */
691 if (x86_pmu.num_counters_fixed)
692 wmax++;
693
694 for (w = 1, num = n; num && w <= wmax; w++) {
695 /* for each event */
696 for (i = 0; num && i < n; i++) {
697 c = constraints[i];
698 hwc = &cpuc->event_list[i]->hw;
699
700 if (c->weight != w)
701 continue;
702
703 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
704 if (!test_bit(j, used_mask))
705 break;
706 }
707
708 if (j == X86_PMC_IDX_MAX)
709 break;
710
711 __set_bit(j, used_mask);
712
713 if (assign)
714 assign[i] = j;
715 num--;
716 }
717 }
718 done:
719 /*
720 * scheduling failed or is just a simulation,
721 * free resources if necessary
722 */
723 if (!assign || num) {
724 for (i = 0; i < n; i++) {
725 if (x86_pmu.put_event_constraints)
726 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
727 }
728 }
729 return num ? -ENOSPC : 0;
730 }
731
732 /*
733 * dogrp: true if must collect siblings events (group)
734 * returns total number of events and error code
735 */
736 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
737 {
738 struct perf_event *event;
739 int n, max_count;
740
741 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
742
743 /* current number of events already accepted */
744 n = cpuc->n_events;
745
746 if (is_x86_event(leader)) {
747 if (n >= max_count)
748 return -ENOSPC;
749 cpuc->event_list[n] = leader;
750 n++;
751 }
752 if (!dogrp)
753 return n;
754
755 list_for_each_entry(event, &leader->sibling_list, group_entry) {
756 if (!is_x86_event(event) ||
757 event->state <= PERF_EVENT_STATE_OFF)
758 continue;
759
760 if (n >= max_count)
761 return -ENOSPC;
762
763 cpuc->event_list[n] = event;
764 n++;
765 }
766 return n;
767 }
768
769 static inline void x86_assign_hw_event(struct perf_event *event,
770 struct cpu_hw_events *cpuc, int i)
771 {
772 struct hw_perf_event *hwc = &event->hw;
773
774 hwc->idx = cpuc->assign[i];
775 hwc->last_cpu = smp_processor_id();
776 hwc->last_tag = ++cpuc->tags[i];
777
778 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
779 hwc->config_base = 0;
780 hwc->event_base = 0;
781 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
782 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
783 /*
784 * We set it so that event_base + idx in wrmsr/rdmsr maps to
785 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
786 */
787 hwc->event_base =
788 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
789 } else {
790 hwc->config_base = x86_pmu.eventsel;
791 hwc->event_base = x86_pmu.perfctr;
792 }
793 }
794
795 static inline int match_prev_assignment(struct hw_perf_event *hwc,
796 struct cpu_hw_events *cpuc,
797 int i)
798 {
799 return hwc->idx == cpuc->assign[i] &&
800 hwc->last_cpu == smp_processor_id() &&
801 hwc->last_tag == cpuc->tags[i];
802 }
803
804 static void x86_pmu_start(struct perf_event *event, int flags);
805 static void x86_pmu_stop(struct perf_event *event, int flags);
806
807 static void x86_pmu_enable(struct pmu *pmu)
808 {
809 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
810 struct perf_event *event;
811 struct hw_perf_event *hwc;
812 int i, added = cpuc->n_added;
813
814 if (!x86_pmu_initialized())
815 return;
816
817 if (cpuc->enabled)
818 return;
819
820 if (cpuc->n_added) {
821 int n_running = cpuc->n_events - cpuc->n_added;
822 /*
823 * apply assignment obtained either from
824 * hw_perf_group_sched_in() or x86_pmu_enable()
825 *
826 * step1: save events moving to new counters
827 * step2: reprogram moved events into new counters
828 */
829 for (i = 0; i < n_running; i++) {
830 event = cpuc->event_list[i];
831 hwc = &event->hw;
832
833 /*
834 * we can avoid reprogramming counter if:
835 * - assigned same counter as last time
836 * - running on same CPU as last time
837 * - no other event has used the counter since
838 */
839 if (hwc->idx == -1 ||
840 match_prev_assignment(hwc, cpuc, i))
841 continue;
842
843 /*
844 * Ensure we don't accidentally enable a stopped
845 * counter simply because we rescheduled.
846 */
847 if (hwc->state & PERF_HES_STOPPED)
848 hwc->state |= PERF_HES_ARCH;
849
850 x86_pmu_stop(event, PERF_EF_UPDATE);
851 }
852
853 for (i = 0; i < cpuc->n_events; i++) {
854 event = cpuc->event_list[i];
855 hwc = &event->hw;
856
857 if (!match_prev_assignment(hwc, cpuc, i))
858 x86_assign_hw_event(event, cpuc, i);
859 else if (i < n_running)
860 continue;
861
862 if (hwc->state & PERF_HES_ARCH)
863 continue;
864
865 x86_pmu_start(event, PERF_EF_RELOAD);
866 }
867 cpuc->n_added = 0;
868 perf_events_lapic_init();
869 }
870
871 cpuc->enabled = 1;
872 barrier();
873
874 x86_pmu.enable_all(added);
875 }
876
877 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
878 u64 enable_mask)
879 {
880 wrmsrl(hwc->config_base + hwc->idx, hwc->config | enable_mask);
881 }
882
883 static inline void x86_pmu_disable_event(struct perf_event *event)
884 {
885 struct hw_perf_event *hwc = &event->hw;
886
887 wrmsrl(hwc->config_base + hwc->idx, hwc->config);
888 }
889
890 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
891
892 /*
893 * Set the next IRQ period, based on the hwc->period_left value.
894 * To be called with the event disabled in hw:
895 */
896 static int
897 x86_perf_event_set_period(struct perf_event *event)
898 {
899 struct hw_perf_event *hwc = &event->hw;
900 s64 left = local64_read(&hwc->period_left);
901 s64 period = hwc->sample_period;
902 int ret = 0, idx = hwc->idx;
903
904 if (idx == X86_PMC_IDX_FIXED_BTS)
905 return 0;
906
907 /*
908 * If we are way outside a reasonable range then just skip forward:
909 */
910 if (unlikely(left <= -period)) {
911 left = period;
912 local64_set(&hwc->period_left, left);
913 hwc->last_period = period;
914 ret = 1;
915 }
916
917 if (unlikely(left <= 0)) {
918 left += period;
919 local64_set(&hwc->period_left, left);
920 hwc->last_period = period;
921 ret = 1;
922 }
923 /*
924 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
925 */
926 if (unlikely(left < 2))
927 left = 2;
928
929 if (left > x86_pmu.max_period)
930 left = x86_pmu.max_period;
931
932 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
933
934 /*
935 * The hw event starts counting from this event offset,
936 * mark it to be able to extra future deltas:
937 */
938 local64_set(&hwc->prev_count, (u64)-left);
939
940 wrmsrl(hwc->event_base + idx, (u64)(-left) & x86_pmu.cntval_mask);
941
942 /*
943 * Due to erratum on certan cpu we need
944 * a second write to be sure the register
945 * is updated properly
946 */
947 if (x86_pmu.perfctr_second_write) {
948 wrmsrl(hwc->event_base + idx,
949 (u64)(-left) & x86_pmu.cntval_mask);
950 }
951
952 perf_event_update_userpage(event);
953
954 return ret;
955 }
956
957 static void x86_pmu_enable_event(struct perf_event *event)
958 {
959 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
960 if (cpuc->enabled)
961 __x86_pmu_enable_event(&event->hw,
962 ARCH_PERFMON_EVENTSEL_ENABLE);
963 }
964
965 /*
966 * Add a single event to the PMU.
967 *
968 * The event is added to the group of enabled events
969 * but only if it can be scehduled with existing events.
970 */
971 static int x86_pmu_add(struct perf_event *event, int flags)
972 {
973 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
974 struct hw_perf_event *hwc;
975 int assign[X86_PMC_IDX_MAX];
976 int n, n0, ret;
977
978 hwc = &event->hw;
979
980 perf_pmu_disable(event->pmu);
981 n0 = cpuc->n_events;
982 ret = n = collect_events(cpuc, event, false);
983 if (ret < 0)
984 goto out;
985
986 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
987 if (!(flags & PERF_EF_START))
988 hwc->state |= PERF_HES_ARCH;
989
990 /*
991 * If group events scheduling transaction was started,
992 * skip the schedulability test here, it will be peformed
993 * at commit time (->commit_txn) as a whole
994 */
995 if (cpuc->group_flag & PERF_EVENT_TXN)
996 goto done_collect;
997
998 ret = x86_pmu.schedule_events(cpuc, n, assign);
999 if (ret)
1000 goto out;
1001 /*
1002 * copy new assignment, now we know it is possible
1003 * will be used by hw_perf_enable()
1004 */
1005 memcpy(cpuc->assign, assign, n*sizeof(int));
1006
1007 done_collect:
1008 cpuc->n_events = n;
1009 cpuc->n_added += n - n0;
1010 cpuc->n_txn += n - n0;
1011
1012 ret = 0;
1013 out:
1014 perf_pmu_enable(event->pmu);
1015 return ret;
1016 }
1017
1018 static void x86_pmu_start(struct perf_event *event, int flags)
1019 {
1020 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1021 int idx = event->hw.idx;
1022
1023 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1024 return;
1025
1026 if (WARN_ON_ONCE(idx == -1))
1027 return;
1028
1029 if (flags & PERF_EF_RELOAD) {
1030 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1031 x86_perf_event_set_period(event);
1032 }
1033
1034 event->hw.state = 0;
1035
1036 cpuc->events[idx] = event;
1037 __set_bit(idx, cpuc->active_mask);
1038 __set_bit(idx, cpuc->running);
1039 x86_pmu.enable(event);
1040 perf_event_update_userpage(event);
1041 }
1042
1043 void perf_event_print_debug(void)
1044 {
1045 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1046 u64 pebs;
1047 struct cpu_hw_events *cpuc;
1048 unsigned long flags;
1049 int cpu, idx;
1050
1051 if (!x86_pmu.num_counters)
1052 return;
1053
1054 local_irq_save(flags);
1055
1056 cpu = smp_processor_id();
1057 cpuc = &per_cpu(cpu_hw_events, cpu);
1058
1059 if (x86_pmu.version >= 2) {
1060 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1061 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1062 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1063 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1064 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1065
1066 pr_info("\n");
1067 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1068 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1069 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1070 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1071 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1072 }
1073 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1074
1075 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1076 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1077 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1078
1079 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1080
1081 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1082 cpu, idx, pmc_ctrl);
1083 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1084 cpu, idx, pmc_count);
1085 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1086 cpu, idx, prev_left);
1087 }
1088 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1089 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1090
1091 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1092 cpu, idx, pmc_count);
1093 }
1094 local_irq_restore(flags);
1095 }
1096
1097 static void x86_pmu_stop(struct perf_event *event, int flags)
1098 {
1099 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1100 struct hw_perf_event *hwc = &event->hw;
1101
1102 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1103 x86_pmu.disable(event);
1104 cpuc->events[hwc->idx] = NULL;
1105 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1106 hwc->state |= PERF_HES_STOPPED;
1107 }
1108
1109 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1110 /*
1111 * Drain the remaining delta count out of a event
1112 * that we are disabling:
1113 */
1114 x86_perf_event_update(event);
1115 hwc->state |= PERF_HES_UPTODATE;
1116 }
1117 }
1118
1119 static void x86_pmu_del(struct perf_event *event, int flags)
1120 {
1121 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1122 int i;
1123
1124 /*
1125 * If we're called during a txn, we don't need to do anything.
1126 * The events never got scheduled and ->cancel_txn will truncate
1127 * the event_list.
1128 */
1129 if (cpuc->group_flag & PERF_EVENT_TXN)
1130 return;
1131
1132 x86_pmu_stop(event, PERF_EF_UPDATE);
1133
1134 for (i = 0; i < cpuc->n_events; i++) {
1135 if (event == cpuc->event_list[i]) {
1136
1137 if (x86_pmu.put_event_constraints)
1138 x86_pmu.put_event_constraints(cpuc, event);
1139
1140 while (++i < cpuc->n_events)
1141 cpuc->event_list[i-1] = cpuc->event_list[i];
1142
1143 --cpuc->n_events;
1144 break;
1145 }
1146 }
1147 perf_event_update_userpage(event);
1148 }
1149
1150 static int x86_pmu_handle_irq(struct pt_regs *regs)
1151 {
1152 struct perf_sample_data data;
1153 struct cpu_hw_events *cpuc;
1154 struct perf_event *event;
1155 int idx, handled = 0;
1156 u64 val;
1157
1158 perf_sample_data_init(&data, 0);
1159
1160 cpuc = &__get_cpu_var(cpu_hw_events);
1161
1162 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1163 if (!test_bit(idx, cpuc->active_mask)) {
1164 /*
1165 * Though we deactivated the counter some cpus
1166 * might still deliver spurious interrupts still
1167 * in flight. Catch them:
1168 */
1169 if (__test_and_clear_bit(idx, cpuc->running))
1170 handled++;
1171 continue;
1172 }
1173
1174 event = cpuc->events[idx];
1175
1176 val = x86_perf_event_update(event);
1177 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1178 continue;
1179
1180 /*
1181 * event overflow
1182 */
1183 handled++;
1184 data.period = event->hw.last_period;
1185
1186 if (!x86_perf_event_set_period(event))
1187 continue;
1188
1189 if (perf_event_overflow(event, 1, &data, regs))
1190 x86_pmu_stop(event, 0);
1191 }
1192
1193 if (handled)
1194 inc_irq_stat(apic_perf_irqs);
1195
1196 return handled;
1197 }
1198
1199 void perf_events_lapic_init(void)
1200 {
1201 if (!x86_pmu.apic || !x86_pmu_initialized())
1202 return;
1203
1204 /*
1205 * Always use NMI for PMU
1206 */
1207 apic_write(APIC_LVTPC, APIC_DM_NMI);
1208 }
1209
1210 struct pmu_nmi_state {
1211 unsigned int marked;
1212 int handled;
1213 };
1214
1215 static DEFINE_PER_CPU(struct pmu_nmi_state, pmu_nmi);
1216
1217 static int __kprobes
1218 perf_event_nmi_handler(struct notifier_block *self,
1219 unsigned long cmd, void *__args)
1220 {
1221 struct die_args *args = __args;
1222 unsigned int this_nmi;
1223 int handled;
1224
1225 if (!atomic_read(&active_events))
1226 return NOTIFY_DONE;
1227
1228 switch (cmd) {
1229 case DIE_NMI:
1230 case DIE_NMI_IPI:
1231 break;
1232 case DIE_NMIUNKNOWN:
1233 this_nmi = percpu_read(irq_stat.__nmi_count);
1234 if (this_nmi != __get_cpu_var(pmu_nmi).marked)
1235 /* let the kernel handle the unknown nmi */
1236 return NOTIFY_DONE;
1237 /*
1238 * This one is a PMU back-to-back nmi. Two events
1239 * trigger 'simultaneously' raising two back-to-back
1240 * NMIs. If the first NMI handles both, the latter
1241 * will be empty and daze the CPU. So, we drop it to
1242 * avoid false-positive 'unknown nmi' messages.
1243 */
1244 return NOTIFY_STOP;
1245 default:
1246 return NOTIFY_DONE;
1247 }
1248
1249 apic_write(APIC_LVTPC, APIC_DM_NMI);
1250
1251 handled = x86_pmu.handle_irq(args->regs);
1252 if (!handled)
1253 return NOTIFY_DONE;
1254
1255 this_nmi = percpu_read(irq_stat.__nmi_count);
1256 if ((handled > 1) ||
1257 /* the next nmi could be a back-to-back nmi */
1258 ((__get_cpu_var(pmu_nmi).marked == this_nmi) &&
1259 (__get_cpu_var(pmu_nmi).handled > 1))) {
1260 /*
1261 * We could have two subsequent back-to-back nmis: The
1262 * first handles more than one counter, the 2nd
1263 * handles only one counter and the 3rd handles no
1264 * counter.
1265 *
1266 * This is the 2nd nmi because the previous was
1267 * handling more than one counter. We will mark the
1268 * next (3rd) and then drop it if unhandled.
1269 */
1270 __get_cpu_var(pmu_nmi).marked = this_nmi + 1;
1271 __get_cpu_var(pmu_nmi).handled = handled;
1272 }
1273
1274 return NOTIFY_STOP;
1275 }
1276
1277 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1278 .notifier_call = perf_event_nmi_handler,
1279 .next = NULL,
1280 .priority = 1
1281 };
1282
1283 static struct event_constraint unconstrained;
1284 static struct event_constraint emptyconstraint;
1285
1286 static struct event_constraint *
1287 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1288 {
1289 struct event_constraint *c;
1290
1291 if (x86_pmu.event_constraints) {
1292 for_each_event_constraint(c, x86_pmu.event_constraints) {
1293 if ((event->hw.config & c->cmask) == c->code)
1294 return c;
1295 }
1296 }
1297
1298 return &unconstrained;
1299 }
1300
1301 #include "perf_event_amd.c"
1302 #include "perf_event_p6.c"
1303 #include "perf_event_p4.c"
1304 #include "perf_event_intel_lbr.c"
1305 #include "perf_event_intel_ds.c"
1306 #include "perf_event_intel.c"
1307
1308 static int __cpuinit
1309 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1310 {
1311 unsigned int cpu = (long)hcpu;
1312 int ret = NOTIFY_OK;
1313
1314 switch (action & ~CPU_TASKS_FROZEN) {
1315 case CPU_UP_PREPARE:
1316 if (x86_pmu.cpu_prepare)
1317 ret = x86_pmu.cpu_prepare(cpu);
1318 break;
1319
1320 case CPU_STARTING:
1321 if (x86_pmu.cpu_starting)
1322 x86_pmu.cpu_starting(cpu);
1323 break;
1324
1325 case CPU_DYING:
1326 if (x86_pmu.cpu_dying)
1327 x86_pmu.cpu_dying(cpu);
1328 break;
1329
1330 case CPU_UP_CANCELED:
1331 case CPU_DEAD:
1332 if (x86_pmu.cpu_dead)
1333 x86_pmu.cpu_dead(cpu);
1334 break;
1335
1336 default:
1337 break;
1338 }
1339
1340 return ret;
1341 }
1342
1343 static void __init pmu_check_apic(void)
1344 {
1345 if (cpu_has_apic)
1346 return;
1347
1348 x86_pmu.apic = 0;
1349 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1350 pr_info("no hardware sampling interrupt available.\n");
1351 }
1352
1353 void __init init_hw_perf_events(void)
1354 {
1355 struct event_constraint *c;
1356 int err;
1357
1358 pr_info("Performance Events: ");
1359
1360 switch (boot_cpu_data.x86_vendor) {
1361 case X86_VENDOR_INTEL:
1362 err = intel_pmu_init();
1363 break;
1364 case X86_VENDOR_AMD:
1365 err = amd_pmu_init();
1366 break;
1367 default:
1368 return;
1369 }
1370 if (err != 0) {
1371 pr_cont("no PMU driver, software events only.\n");
1372 return;
1373 }
1374
1375 pmu_check_apic();
1376
1377 pr_cont("%s PMU driver.\n", x86_pmu.name);
1378
1379 if (x86_pmu.quirks)
1380 x86_pmu.quirks();
1381
1382 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1383 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1384 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1385 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1386 }
1387 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1388
1389 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1390 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1391 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1392 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1393 }
1394
1395 x86_pmu.intel_ctrl |=
1396 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1397
1398 perf_events_lapic_init();
1399 register_die_notifier(&perf_event_nmi_notifier);
1400
1401 unconstrained = (struct event_constraint)
1402 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1403 0, x86_pmu.num_counters);
1404
1405 if (x86_pmu.event_constraints) {
1406 for_each_event_constraint(c, x86_pmu.event_constraints) {
1407 if (c->cmask != X86_RAW_EVENT_MASK)
1408 continue;
1409
1410 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1411 c->weight += x86_pmu.num_counters;
1412 }
1413 }
1414
1415 pr_info("... version: %d\n", x86_pmu.version);
1416 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1417 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1418 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1419 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1420 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1421 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1422
1423 perf_pmu_register(&pmu);
1424 perf_cpu_notifier(x86_pmu_notifier);
1425 }
1426
1427 static inline void x86_pmu_read(struct perf_event *event)
1428 {
1429 x86_perf_event_update(event);
1430 }
1431
1432 /*
1433 * Start group events scheduling transaction
1434 * Set the flag to make pmu::enable() not perform the
1435 * schedulability test, it will be performed at commit time
1436 */
1437 static void x86_pmu_start_txn(struct pmu *pmu)
1438 {
1439 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1440
1441 perf_pmu_disable(pmu);
1442 cpuc->group_flag |= PERF_EVENT_TXN;
1443 cpuc->n_txn = 0;
1444 }
1445
1446 /*
1447 * Stop group events scheduling transaction
1448 * Clear the flag and pmu::enable() will perform the
1449 * schedulability test.
1450 */
1451 static void x86_pmu_cancel_txn(struct pmu *pmu)
1452 {
1453 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1454
1455 cpuc->group_flag &= ~PERF_EVENT_TXN;
1456 /*
1457 * Truncate the collected events.
1458 */
1459 cpuc->n_added -= cpuc->n_txn;
1460 cpuc->n_events -= cpuc->n_txn;
1461 perf_pmu_enable(pmu);
1462 }
1463
1464 /*
1465 * Commit group events scheduling transaction
1466 * Perform the group schedulability test as a whole
1467 * Return 0 if success
1468 */
1469 static int x86_pmu_commit_txn(struct pmu *pmu)
1470 {
1471 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1472 int assign[X86_PMC_IDX_MAX];
1473 int n, ret;
1474
1475 n = cpuc->n_events;
1476
1477 if (!x86_pmu_initialized())
1478 return -EAGAIN;
1479
1480 ret = x86_pmu.schedule_events(cpuc, n, assign);
1481 if (ret)
1482 return ret;
1483
1484 /*
1485 * copy new assignment, now we know it is possible
1486 * will be used by hw_perf_enable()
1487 */
1488 memcpy(cpuc->assign, assign, n*sizeof(int));
1489
1490 cpuc->group_flag &= ~PERF_EVENT_TXN;
1491 perf_pmu_enable(pmu);
1492 return 0;
1493 }
1494
1495 /*
1496 * validate that we can schedule this event
1497 */
1498 static int validate_event(struct perf_event *event)
1499 {
1500 struct cpu_hw_events *fake_cpuc;
1501 struct event_constraint *c;
1502 int ret = 0;
1503
1504 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1505 if (!fake_cpuc)
1506 return -ENOMEM;
1507
1508 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1509
1510 if (!c || !c->weight)
1511 ret = -ENOSPC;
1512
1513 if (x86_pmu.put_event_constraints)
1514 x86_pmu.put_event_constraints(fake_cpuc, event);
1515
1516 kfree(fake_cpuc);
1517
1518 return ret;
1519 }
1520
1521 /*
1522 * validate a single event group
1523 *
1524 * validation include:
1525 * - check events are compatible which each other
1526 * - events do not compete for the same counter
1527 * - number of events <= number of counters
1528 *
1529 * validation ensures the group can be loaded onto the
1530 * PMU if it was the only group available.
1531 */
1532 static int validate_group(struct perf_event *event)
1533 {
1534 struct perf_event *leader = event->group_leader;
1535 struct cpu_hw_events *fake_cpuc;
1536 int ret, n;
1537
1538 ret = -ENOMEM;
1539 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1540 if (!fake_cpuc)
1541 goto out;
1542
1543 /*
1544 * the event is not yet connected with its
1545 * siblings therefore we must first collect
1546 * existing siblings, then add the new event
1547 * before we can simulate the scheduling
1548 */
1549 ret = -ENOSPC;
1550 n = collect_events(fake_cpuc, leader, true);
1551 if (n < 0)
1552 goto out_free;
1553
1554 fake_cpuc->n_events = n;
1555 n = collect_events(fake_cpuc, event, false);
1556 if (n < 0)
1557 goto out_free;
1558
1559 fake_cpuc->n_events = n;
1560
1561 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1562
1563 out_free:
1564 kfree(fake_cpuc);
1565 out:
1566 return ret;
1567 }
1568
1569 int x86_pmu_event_init(struct perf_event *event)
1570 {
1571 struct pmu *tmp;
1572 int err;
1573
1574 switch (event->attr.type) {
1575 case PERF_TYPE_RAW:
1576 case PERF_TYPE_HARDWARE:
1577 case PERF_TYPE_HW_CACHE:
1578 break;
1579
1580 default:
1581 return -ENOENT;
1582 }
1583
1584 err = __x86_pmu_event_init(event);
1585 if (!err) {
1586 /*
1587 * we temporarily connect event to its pmu
1588 * such that validate_group() can classify
1589 * it as an x86 event using is_x86_event()
1590 */
1591 tmp = event->pmu;
1592 event->pmu = &pmu;
1593
1594 if (event->group_leader != event)
1595 err = validate_group(event);
1596 else
1597 err = validate_event(event);
1598
1599 event->pmu = tmp;
1600 }
1601 if (err) {
1602 if (event->destroy)
1603 event->destroy(event);
1604 }
1605
1606 return err;
1607 }
1608
1609 static struct pmu pmu = {
1610 .pmu_enable = x86_pmu_enable,
1611 .pmu_disable = x86_pmu_disable,
1612
1613 .event_init = x86_pmu_event_init,
1614
1615 .add = x86_pmu_add,
1616 .del = x86_pmu_del,
1617 .start = x86_pmu_start,
1618 .stop = x86_pmu_stop,
1619 .read = x86_pmu_read,
1620
1621 .start_txn = x86_pmu_start_txn,
1622 .cancel_txn = x86_pmu_cancel_txn,
1623 .commit_txn = x86_pmu_commit_txn,
1624 };
1625
1626 /*
1627 * callchain support
1628 */
1629
1630 static void
1631 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1632 {
1633 /* Ignore warnings */
1634 }
1635
1636 static void backtrace_warning(void *data, char *msg)
1637 {
1638 /* Ignore warnings */
1639 }
1640
1641 static int backtrace_stack(void *data, char *name)
1642 {
1643 return 0;
1644 }
1645
1646 static void backtrace_address(void *data, unsigned long addr, int reliable)
1647 {
1648 struct perf_callchain_entry *entry = data;
1649
1650 perf_callchain_store(entry, addr);
1651 }
1652
1653 static const struct stacktrace_ops backtrace_ops = {
1654 .warning = backtrace_warning,
1655 .warning_symbol = backtrace_warning_symbol,
1656 .stack = backtrace_stack,
1657 .address = backtrace_address,
1658 .walk_stack = print_context_stack_bp,
1659 };
1660
1661 void
1662 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1663 {
1664 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1665 /* TODO: We don't support guest os callchain now */
1666 return;
1667 }
1668
1669 perf_callchain_store(entry, regs->ip);
1670
1671 dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
1672 }
1673
1674 #ifdef CONFIG_COMPAT
1675 static inline int
1676 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1677 {
1678 /* 32-bit process in 64-bit kernel. */
1679 struct stack_frame_ia32 frame;
1680 const void __user *fp;
1681
1682 if (!test_thread_flag(TIF_IA32))
1683 return 0;
1684
1685 fp = compat_ptr(regs->bp);
1686 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1687 unsigned long bytes;
1688 frame.next_frame = 0;
1689 frame.return_address = 0;
1690
1691 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1692 if (bytes != sizeof(frame))
1693 break;
1694
1695 if (fp < compat_ptr(regs->sp))
1696 break;
1697
1698 perf_callchain_store(entry, frame.return_address);
1699 fp = compat_ptr(frame.next_frame);
1700 }
1701 return 1;
1702 }
1703 #else
1704 static inline int
1705 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1706 {
1707 return 0;
1708 }
1709 #endif
1710
1711 void
1712 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1713 {
1714 struct stack_frame frame;
1715 const void __user *fp;
1716
1717 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1718 /* TODO: We don't support guest os callchain now */
1719 return;
1720 }
1721
1722 fp = (void __user *)regs->bp;
1723
1724 perf_callchain_store(entry, regs->ip);
1725
1726 if (perf_callchain_user32(regs, entry))
1727 return;
1728
1729 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1730 unsigned long bytes;
1731 frame.next_frame = NULL;
1732 frame.return_address = 0;
1733
1734 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1735 if (bytes != sizeof(frame))
1736 break;
1737
1738 if ((unsigned long)fp < regs->sp)
1739 break;
1740
1741 perf_callchain_store(entry, frame.return_address);
1742 fp = frame.next_frame;
1743 }
1744 }
1745
1746 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1747 {
1748 unsigned long ip;
1749
1750 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1751 ip = perf_guest_cbs->get_guest_ip();
1752 else
1753 ip = instruction_pointer(regs);
1754
1755 return ip;
1756 }
1757
1758 unsigned long perf_misc_flags(struct pt_regs *regs)
1759 {
1760 int misc = 0;
1761
1762 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1763 if (perf_guest_cbs->is_user_mode())
1764 misc |= PERF_RECORD_MISC_GUEST_USER;
1765 else
1766 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1767 } else {
1768 if (user_mode(regs))
1769 misc |= PERF_RECORD_MISC_USER;
1770 else
1771 misc |= PERF_RECORD_MISC_KERNEL;
1772 }
1773
1774 if (regs->flags & PERF_EFLAGS_EXACT)
1775 misc |= PERF_RECORD_MISC_EXACT_IP;
1776
1777 return misc;
1778 }
This page took 0.074693 seconds and 6 git commands to generate.