Merge remote-tracking branches 'asoc/topic/mediatek', 'asoc/topic/mtk', 'asoc/topic...
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/mmu_context.h>
35 #include <asm/tlbflush.h>
36 #include <asm/timer.h>
37 #include <asm/desc.h>
38 #include <asm/ldt.h>
39
40 #include "perf_event.h"
41
42 struct x86_pmu x86_pmu __read_mostly;
43
44 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
45 .enabled = 1,
46 };
47
48 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49
50 u64 __read_mostly hw_cache_event_ids
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
54 u64 __read_mostly hw_cache_extra_regs
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58
59 /*
60 * Propagate event elapsed time into the generic event.
61 * Can only be executed on the CPU where the event is active.
62 * Returns the delta events processed.
63 */
64 u64 x86_perf_event_update(struct perf_event *event)
65 {
66 struct hw_perf_event *hwc = &event->hw;
67 int shift = 64 - x86_pmu.cntval_bits;
68 u64 prev_raw_count, new_raw_count;
69 int idx = hwc->idx;
70 s64 delta;
71
72 if (idx == INTEL_PMC_IDX_FIXED_BTS)
73 return 0;
74
75 /*
76 * Careful: an NMI might modify the previous event value.
77 *
78 * Our tactic to handle this is to first atomically read and
79 * exchange a new raw count - then add that new-prev delta
80 * count to the generic event atomically:
81 */
82 again:
83 prev_raw_count = local64_read(&hwc->prev_count);
84 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
85
86 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
87 new_raw_count) != prev_raw_count)
88 goto again;
89
90 /*
91 * Now we have the new raw value and have updated the prev
92 * timestamp already. We can now calculate the elapsed delta
93 * (event-)time and add that to the generic event.
94 *
95 * Careful, not all hw sign-extends above the physical width
96 * of the count.
97 */
98 delta = (new_raw_count << shift) - (prev_raw_count << shift);
99 delta >>= shift;
100
101 local64_add(delta, &event->count);
102 local64_sub(delta, &hwc->period_left);
103
104 return new_raw_count;
105 }
106
107 /*
108 * Find and validate any extra registers to set up.
109 */
110 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111 {
112 struct hw_perf_event_extra *reg;
113 struct extra_reg *er;
114
115 reg = &event->hw.extra_reg;
116
117 if (!x86_pmu.extra_regs)
118 return 0;
119
120 for (er = x86_pmu.extra_regs; er->msr; er++) {
121 if (er->event != (config & er->config_mask))
122 continue;
123 if (event->attr.config1 & ~er->valid_mask)
124 return -EINVAL;
125 /* Check if the extra msrs can be safely accessed*/
126 if (!er->extra_msr_access)
127 return -ENXIO;
128
129 reg->idx = er->idx;
130 reg->config = event->attr.config1;
131 reg->reg = er->msr;
132 break;
133 }
134 return 0;
135 }
136
137 static atomic_t active_events;
138 static atomic_t pmc_refcount;
139 static DEFINE_MUTEX(pmc_reserve_mutex);
140
141 #ifdef CONFIG_X86_LOCAL_APIC
142
143 static bool reserve_pmc_hardware(void)
144 {
145 int i;
146
147 for (i = 0; i < x86_pmu.num_counters; i++) {
148 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
149 goto perfctr_fail;
150 }
151
152 for (i = 0; i < x86_pmu.num_counters; i++) {
153 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
154 goto eventsel_fail;
155 }
156
157 return true;
158
159 eventsel_fail:
160 for (i--; i >= 0; i--)
161 release_evntsel_nmi(x86_pmu_config_addr(i));
162
163 i = x86_pmu.num_counters;
164
165 perfctr_fail:
166 for (i--; i >= 0; i--)
167 release_perfctr_nmi(x86_pmu_event_addr(i));
168
169 return false;
170 }
171
172 static void release_pmc_hardware(void)
173 {
174 int i;
175
176 for (i = 0; i < x86_pmu.num_counters; i++) {
177 release_perfctr_nmi(x86_pmu_event_addr(i));
178 release_evntsel_nmi(x86_pmu_config_addr(i));
179 }
180 }
181
182 #else
183
184 static bool reserve_pmc_hardware(void) { return true; }
185 static void release_pmc_hardware(void) {}
186
187 #endif
188
189 static bool check_hw_exists(void)
190 {
191 u64 val, val_fail, val_new= ~0;
192 int i, reg, reg_fail, ret = 0;
193 int bios_fail = 0;
194 int reg_safe = -1;
195
196 /*
197 * Check to see if the BIOS enabled any of the counters, if so
198 * complain and bail.
199 */
200 for (i = 0; i < x86_pmu.num_counters; i++) {
201 reg = x86_pmu_config_addr(i);
202 ret = rdmsrl_safe(reg, &val);
203 if (ret)
204 goto msr_fail;
205 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
206 bios_fail = 1;
207 val_fail = val;
208 reg_fail = reg;
209 } else {
210 reg_safe = i;
211 }
212 }
213
214 if (x86_pmu.num_counters_fixed) {
215 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
216 ret = rdmsrl_safe(reg, &val);
217 if (ret)
218 goto msr_fail;
219 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
220 if (val & (0x03 << i*4)) {
221 bios_fail = 1;
222 val_fail = val;
223 reg_fail = reg;
224 }
225 }
226 }
227
228 /*
229 * If all the counters are enabled, the below test will always
230 * fail. The tools will also become useless in this scenario.
231 * Just fail and disable the hardware counters.
232 */
233
234 if (reg_safe == -1) {
235 reg = reg_safe;
236 goto msr_fail;
237 }
238
239 /*
240 * Read the current value, change it and read it back to see if it
241 * matches, this is needed to detect certain hardware emulators
242 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
243 */
244 reg = x86_pmu_event_addr(reg_safe);
245 if (rdmsrl_safe(reg, &val))
246 goto msr_fail;
247 val ^= 0xffffUL;
248 ret = wrmsrl_safe(reg, val);
249 ret |= rdmsrl_safe(reg, &val_new);
250 if (ret || val != val_new)
251 goto msr_fail;
252
253 /*
254 * We still allow the PMU driver to operate:
255 */
256 if (bios_fail) {
257 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
258 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
259 }
260
261 return true;
262
263 msr_fail:
264 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
265 printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
266 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
267 reg, val_new);
268
269 return false;
270 }
271
272 static void hw_perf_event_destroy(struct perf_event *event)
273 {
274 x86_release_hardware();
275 atomic_dec(&active_events);
276 }
277
278 void hw_perf_lbr_event_destroy(struct perf_event *event)
279 {
280 hw_perf_event_destroy(event);
281
282 /* undo the lbr/bts event accounting */
283 x86_del_exclusive(x86_lbr_exclusive_lbr);
284 }
285
286 static inline int x86_pmu_initialized(void)
287 {
288 return x86_pmu.handle_irq != NULL;
289 }
290
291 static inline int
292 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
293 {
294 struct perf_event_attr *attr = &event->attr;
295 unsigned int cache_type, cache_op, cache_result;
296 u64 config, val;
297
298 config = attr->config;
299
300 cache_type = (config >> 0) & 0xff;
301 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
302 return -EINVAL;
303
304 cache_op = (config >> 8) & 0xff;
305 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
306 return -EINVAL;
307
308 cache_result = (config >> 16) & 0xff;
309 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
310 return -EINVAL;
311
312 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
313
314 if (val == 0)
315 return -ENOENT;
316
317 if (val == -1)
318 return -EINVAL;
319
320 hwc->config |= val;
321 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
322 return x86_pmu_extra_regs(val, event);
323 }
324
325 int x86_reserve_hardware(void)
326 {
327 int err = 0;
328
329 if (!atomic_inc_not_zero(&pmc_refcount)) {
330 mutex_lock(&pmc_reserve_mutex);
331 if (atomic_read(&pmc_refcount) == 0) {
332 if (!reserve_pmc_hardware())
333 err = -EBUSY;
334 else
335 reserve_ds_buffers();
336 }
337 if (!err)
338 atomic_inc(&pmc_refcount);
339 mutex_unlock(&pmc_reserve_mutex);
340 }
341
342 return err;
343 }
344
345 void x86_release_hardware(void)
346 {
347 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
348 release_pmc_hardware();
349 release_ds_buffers();
350 mutex_unlock(&pmc_reserve_mutex);
351 }
352 }
353
354 /*
355 * Check if we can create event of a certain type (that no conflicting events
356 * are present).
357 */
358 int x86_add_exclusive(unsigned int what)
359 {
360 int i;
361
362 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
363 mutex_lock(&pmc_reserve_mutex);
364 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
365 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
366 goto fail_unlock;
367 }
368 atomic_inc(&x86_pmu.lbr_exclusive[what]);
369 mutex_unlock(&pmc_reserve_mutex);
370 }
371
372 atomic_inc(&active_events);
373 return 0;
374
375 fail_unlock:
376 mutex_unlock(&pmc_reserve_mutex);
377 return -EBUSY;
378 }
379
380 void x86_del_exclusive(unsigned int what)
381 {
382 atomic_dec(&x86_pmu.lbr_exclusive[what]);
383 atomic_dec(&active_events);
384 }
385
386 int x86_setup_perfctr(struct perf_event *event)
387 {
388 struct perf_event_attr *attr = &event->attr;
389 struct hw_perf_event *hwc = &event->hw;
390 u64 config;
391
392 if (!is_sampling_event(event)) {
393 hwc->sample_period = x86_pmu.max_period;
394 hwc->last_period = hwc->sample_period;
395 local64_set(&hwc->period_left, hwc->sample_period);
396 }
397
398 if (attr->type == PERF_TYPE_RAW)
399 return x86_pmu_extra_regs(event->attr.config, event);
400
401 if (attr->type == PERF_TYPE_HW_CACHE)
402 return set_ext_hw_attr(hwc, event);
403
404 if (attr->config >= x86_pmu.max_events)
405 return -EINVAL;
406
407 /*
408 * The generic map:
409 */
410 config = x86_pmu.event_map(attr->config);
411
412 if (config == 0)
413 return -ENOENT;
414
415 if (config == -1LL)
416 return -EINVAL;
417
418 /*
419 * Branch tracing:
420 */
421 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
422 !attr->freq && hwc->sample_period == 1) {
423 /* BTS is not supported by this architecture. */
424 if (!x86_pmu.bts_active)
425 return -EOPNOTSUPP;
426
427 /* BTS is currently only allowed for user-mode. */
428 if (!attr->exclude_kernel)
429 return -EOPNOTSUPP;
430
431 /* disallow bts if conflicting events are present */
432 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
433 return -EBUSY;
434
435 event->destroy = hw_perf_lbr_event_destroy;
436 }
437
438 hwc->config |= config;
439
440 return 0;
441 }
442
443 /*
444 * check that branch_sample_type is compatible with
445 * settings needed for precise_ip > 1 which implies
446 * using the LBR to capture ALL taken branches at the
447 * priv levels of the measurement
448 */
449 static inline int precise_br_compat(struct perf_event *event)
450 {
451 u64 m = event->attr.branch_sample_type;
452 u64 b = 0;
453
454 /* must capture all branches */
455 if (!(m & PERF_SAMPLE_BRANCH_ANY))
456 return 0;
457
458 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
459
460 if (!event->attr.exclude_user)
461 b |= PERF_SAMPLE_BRANCH_USER;
462
463 if (!event->attr.exclude_kernel)
464 b |= PERF_SAMPLE_BRANCH_KERNEL;
465
466 /*
467 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
468 */
469
470 return m == b;
471 }
472
473 int x86_pmu_hw_config(struct perf_event *event)
474 {
475 if (event->attr.precise_ip) {
476 int precise = 0;
477
478 /* Support for constant skid */
479 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
480 precise++;
481
482 /* Support for IP fixup */
483 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
484 precise++;
485 }
486
487 if (event->attr.precise_ip > precise)
488 return -EOPNOTSUPP;
489 }
490 /*
491 * check that PEBS LBR correction does not conflict with
492 * whatever the user is asking with attr->branch_sample_type
493 */
494 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
495 u64 *br_type = &event->attr.branch_sample_type;
496
497 if (has_branch_stack(event)) {
498 if (!precise_br_compat(event))
499 return -EOPNOTSUPP;
500
501 /* branch_sample_type is compatible */
502
503 } else {
504 /*
505 * user did not specify branch_sample_type
506 *
507 * For PEBS fixups, we capture all
508 * the branches at the priv level of the
509 * event.
510 */
511 *br_type = PERF_SAMPLE_BRANCH_ANY;
512
513 if (!event->attr.exclude_user)
514 *br_type |= PERF_SAMPLE_BRANCH_USER;
515
516 if (!event->attr.exclude_kernel)
517 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
518 }
519 }
520
521 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
522 event->attach_state |= PERF_ATTACH_TASK_DATA;
523
524 /*
525 * Generate PMC IRQs:
526 * (keep 'enabled' bit clear for now)
527 */
528 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
529
530 /*
531 * Count user and OS events unless requested not to
532 */
533 if (!event->attr.exclude_user)
534 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
535 if (!event->attr.exclude_kernel)
536 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
537
538 if (event->attr.type == PERF_TYPE_RAW)
539 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
540
541 if (event->attr.sample_period && x86_pmu.limit_period) {
542 if (x86_pmu.limit_period(event, event->attr.sample_period) >
543 event->attr.sample_period)
544 return -EINVAL;
545 }
546
547 return x86_setup_perfctr(event);
548 }
549
550 /*
551 * Setup the hardware configuration for a given attr_type
552 */
553 static int __x86_pmu_event_init(struct perf_event *event)
554 {
555 int err;
556
557 if (!x86_pmu_initialized())
558 return -ENODEV;
559
560 err = x86_reserve_hardware();
561 if (err)
562 return err;
563
564 atomic_inc(&active_events);
565 event->destroy = hw_perf_event_destroy;
566
567 event->hw.idx = -1;
568 event->hw.last_cpu = -1;
569 event->hw.last_tag = ~0ULL;
570
571 /* mark unused */
572 event->hw.extra_reg.idx = EXTRA_REG_NONE;
573 event->hw.branch_reg.idx = EXTRA_REG_NONE;
574
575 return x86_pmu.hw_config(event);
576 }
577
578 void x86_pmu_disable_all(void)
579 {
580 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
581 int idx;
582
583 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
584 u64 val;
585
586 if (!test_bit(idx, cpuc->active_mask))
587 continue;
588 rdmsrl(x86_pmu_config_addr(idx), val);
589 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
590 continue;
591 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
592 wrmsrl(x86_pmu_config_addr(idx), val);
593 }
594 }
595
596 static void x86_pmu_disable(struct pmu *pmu)
597 {
598 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
599
600 if (!x86_pmu_initialized())
601 return;
602
603 if (!cpuc->enabled)
604 return;
605
606 cpuc->n_added = 0;
607 cpuc->enabled = 0;
608 barrier();
609
610 x86_pmu.disable_all();
611 }
612
613 void x86_pmu_enable_all(int added)
614 {
615 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
616 int idx;
617
618 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
619 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
620
621 if (!test_bit(idx, cpuc->active_mask))
622 continue;
623
624 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
625 }
626 }
627
628 static struct pmu pmu;
629
630 static inline int is_x86_event(struct perf_event *event)
631 {
632 return event->pmu == &pmu;
633 }
634
635 /*
636 * Event scheduler state:
637 *
638 * Assign events iterating over all events and counters, beginning
639 * with events with least weights first. Keep the current iterator
640 * state in struct sched_state.
641 */
642 struct sched_state {
643 int weight;
644 int event; /* event index */
645 int counter; /* counter index */
646 int unassigned; /* number of events to be assigned left */
647 int nr_gp; /* number of GP counters used */
648 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
649 };
650
651 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
652 #define SCHED_STATES_MAX 2
653
654 struct perf_sched {
655 int max_weight;
656 int max_events;
657 int max_gp;
658 int saved_states;
659 struct event_constraint **constraints;
660 struct sched_state state;
661 struct sched_state saved[SCHED_STATES_MAX];
662 };
663
664 /*
665 * Initialize interator that runs through all events and counters.
666 */
667 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
668 int num, int wmin, int wmax, int gpmax)
669 {
670 int idx;
671
672 memset(sched, 0, sizeof(*sched));
673 sched->max_events = num;
674 sched->max_weight = wmax;
675 sched->max_gp = gpmax;
676 sched->constraints = constraints;
677
678 for (idx = 0; idx < num; idx++) {
679 if (constraints[idx]->weight == wmin)
680 break;
681 }
682
683 sched->state.event = idx; /* start with min weight */
684 sched->state.weight = wmin;
685 sched->state.unassigned = num;
686 }
687
688 static void perf_sched_save_state(struct perf_sched *sched)
689 {
690 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
691 return;
692
693 sched->saved[sched->saved_states] = sched->state;
694 sched->saved_states++;
695 }
696
697 static bool perf_sched_restore_state(struct perf_sched *sched)
698 {
699 if (!sched->saved_states)
700 return false;
701
702 sched->saved_states--;
703 sched->state = sched->saved[sched->saved_states];
704
705 /* continue with next counter: */
706 clear_bit(sched->state.counter++, sched->state.used);
707
708 return true;
709 }
710
711 /*
712 * Select a counter for the current event to schedule. Return true on
713 * success.
714 */
715 static bool __perf_sched_find_counter(struct perf_sched *sched)
716 {
717 struct event_constraint *c;
718 int idx;
719
720 if (!sched->state.unassigned)
721 return false;
722
723 if (sched->state.event >= sched->max_events)
724 return false;
725
726 c = sched->constraints[sched->state.event];
727 /* Prefer fixed purpose counters */
728 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
729 idx = INTEL_PMC_IDX_FIXED;
730 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
731 if (!__test_and_set_bit(idx, sched->state.used))
732 goto done;
733 }
734 }
735
736 /* Grab the first unused counter starting with idx */
737 idx = sched->state.counter;
738 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
739 if (!__test_and_set_bit(idx, sched->state.used)) {
740 if (sched->state.nr_gp++ >= sched->max_gp)
741 return false;
742
743 goto done;
744 }
745 }
746
747 return false;
748
749 done:
750 sched->state.counter = idx;
751
752 if (c->overlap)
753 perf_sched_save_state(sched);
754
755 return true;
756 }
757
758 static bool perf_sched_find_counter(struct perf_sched *sched)
759 {
760 while (!__perf_sched_find_counter(sched)) {
761 if (!perf_sched_restore_state(sched))
762 return false;
763 }
764
765 return true;
766 }
767
768 /*
769 * Go through all unassigned events and find the next one to schedule.
770 * Take events with the least weight first. Return true on success.
771 */
772 static bool perf_sched_next_event(struct perf_sched *sched)
773 {
774 struct event_constraint *c;
775
776 if (!sched->state.unassigned || !--sched->state.unassigned)
777 return false;
778
779 do {
780 /* next event */
781 sched->state.event++;
782 if (sched->state.event >= sched->max_events) {
783 /* next weight */
784 sched->state.event = 0;
785 sched->state.weight++;
786 if (sched->state.weight > sched->max_weight)
787 return false;
788 }
789 c = sched->constraints[sched->state.event];
790 } while (c->weight != sched->state.weight);
791
792 sched->state.counter = 0; /* start with first counter */
793
794 return true;
795 }
796
797 /*
798 * Assign a counter for each event.
799 */
800 int perf_assign_events(struct event_constraint **constraints, int n,
801 int wmin, int wmax, int gpmax, int *assign)
802 {
803 struct perf_sched sched;
804
805 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
806
807 do {
808 if (!perf_sched_find_counter(&sched))
809 break; /* failed */
810 if (assign)
811 assign[sched.state.event] = sched.state.counter;
812 } while (perf_sched_next_event(&sched));
813
814 return sched.state.unassigned;
815 }
816 EXPORT_SYMBOL_GPL(perf_assign_events);
817
818 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
819 {
820 struct event_constraint *c;
821 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
822 struct perf_event *e;
823 int i, wmin, wmax, unsched = 0;
824 struct hw_perf_event *hwc;
825
826 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
827
828 if (x86_pmu.start_scheduling)
829 x86_pmu.start_scheduling(cpuc);
830
831 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
832 cpuc->event_constraint[i] = NULL;
833 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
834 cpuc->event_constraint[i] = c;
835
836 wmin = min(wmin, c->weight);
837 wmax = max(wmax, c->weight);
838 }
839
840 /*
841 * fastpath, try to reuse previous register
842 */
843 for (i = 0; i < n; i++) {
844 hwc = &cpuc->event_list[i]->hw;
845 c = cpuc->event_constraint[i];
846
847 /* never assigned */
848 if (hwc->idx == -1)
849 break;
850
851 /* constraint still honored */
852 if (!test_bit(hwc->idx, c->idxmsk))
853 break;
854
855 /* not already used */
856 if (test_bit(hwc->idx, used_mask))
857 break;
858
859 __set_bit(hwc->idx, used_mask);
860 if (assign)
861 assign[i] = hwc->idx;
862 }
863
864 /* slow path */
865 if (i != n) {
866 int gpmax = x86_pmu.num_counters;
867
868 /*
869 * Do not allow scheduling of more than half the available
870 * generic counters.
871 *
872 * This helps avoid counter starvation of sibling thread by
873 * ensuring at most half the counters cannot be in exclusive
874 * mode. There is no designated counters for the limits. Any
875 * N/2 counters can be used. This helps with events with
876 * specific counter constraints.
877 */
878 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
879 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
880 gpmax /= 2;
881
882 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
883 wmax, gpmax, assign);
884 }
885
886 /*
887 * In case of success (unsched = 0), mark events as committed,
888 * so we do not put_constraint() in case new events are added
889 * and fail to be scheduled
890 *
891 * We invoke the lower level commit callback to lock the resource
892 *
893 * We do not need to do all of this in case we are called to
894 * validate an event group (assign == NULL)
895 */
896 if (!unsched && assign) {
897 for (i = 0; i < n; i++) {
898 e = cpuc->event_list[i];
899 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
900 if (x86_pmu.commit_scheduling)
901 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
902 }
903 } else {
904 for (i = 0; i < n; i++) {
905 e = cpuc->event_list[i];
906 /*
907 * do not put_constraint() on comitted events,
908 * because they are good to go
909 */
910 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
911 continue;
912
913 /*
914 * release events that failed scheduling
915 */
916 if (x86_pmu.put_event_constraints)
917 x86_pmu.put_event_constraints(cpuc, e);
918 }
919 }
920
921 if (x86_pmu.stop_scheduling)
922 x86_pmu.stop_scheduling(cpuc);
923
924 return unsched ? -EINVAL : 0;
925 }
926
927 /*
928 * dogrp: true if must collect siblings events (group)
929 * returns total number of events and error code
930 */
931 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
932 {
933 struct perf_event *event;
934 int n, max_count;
935
936 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
937
938 /* current number of events already accepted */
939 n = cpuc->n_events;
940
941 if (is_x86_event(leader)) {
942 if (n >= max_count)
943 return -EINVAL;
944 cpuc->event_list[n] = leader;
945 n++;
946 }
947 if (!dogrp)
948 return n;
949
950 list_for_each_entry(event, &leader->sibling_list, group_entry) {
951 if (!is_x86_event(event) ||
952 event->state <= PERF_EVENT_STATE_OFF)
953 continue;
954
955 if (n >= max_count)
956 return -EINVAL;
957
958 cpuc->event_list[n] = event;
959 n++;
960 }
961 return n;
962 }
963
964 static inline void x86_assign_hw_event(struct perf_event *event,
965 struct cpu_hw_events *cpuc, int i)
966 {
967 struct hw_perf_event *hwc = &event->hw;
968
969 hwc->idx = cpuc->assign[i];
970 hwc->last_cpu = smp_processor_id();
971 hwc->last_tag = ++cpuc->tags[i];
972
973 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
974 hwc->config_base = 0;
975 hwc->event_base = 0;
976 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
977 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
978 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
979 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
980 } else {
981 hwc->config_base = x86_pmu_config_addr(hwc->idx);
982 hwc->event_base = x86_pmu_event_addr(hwc->idx);
983 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
984 }
985 }
986
987 static inline int match_prev_assignment(struct hw_perf_event *hwc,
988 struct cpu_hw_events *cpuc,
989 int i)
990 {
991 return hwc->idx == cpuc->assign[i] &&
992 hwc->last_cpu == smp_processor_id() &&
993 hwc->last_tag == cpuc->tags[i];
994 }
995
996 static void x86_pmu_start(struct perf_event *event, int flags);
997
998 static void x86_pmu_enable(struct pmu *pmu)
999 {
1000 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1001 struct perf_event *event;
1002 struct hw_perf_event *hwc;
1003 int i, added = cpuc->n_added;
1004
1005 if (!x86_pmu_initialized())
1006 return;
1007
1008 if (cpuc->enabled)
1009 return;
1010
1011 if (cpuc->n_added) {
1012 int n_running = cpuc->n_events - cpuc->n_added;
1013 /*
1014 * apply assignment obtained either from
1015 * hw_perf_group_sched_in() or x86_pmu_enable()
1016 *
1017 * step1: save events moving to new counters
1018 */
1019 for (i = 0; i < n_running; i++) {
1020 event = cpuc->event_list[i];
1021 hwc = &event->hw;
1022
1023 /*
1024 * we can avoid reprogramming counter if:
1025 * - assigned same counter as last time
1026 * - running on same CPU as last time
1027 * - no other event has used the counter since
1028 */
1029 if (hwc->idx == -1 ||
1030 match_prev_assignment(hwc, cpuc, i))
1031 continue;
1032
1033 /*
1034 * Ensure we don't accidentally enable a stopped
1035 * counter simply because we rescheduled.
1036 */
1037 if (hwc->state & PERF_HES_STOPPED)
1038 hwc->state |= PERF_HES_ARCH;
1039
1040 x86_pmu_stop(event, PERF_EF_UPDATE);
1041 }
1042
1043 /*
1044 * step2: reprogram moved events into new counters
1045 */
1046 for (i = 0; i < cpuc->n_events; i++) {
1047 event = cpuc->event_list[i];
1048 hwc = &event->hw;
1049
1050 if (!match_prev_assignment(hwc, cpuc, i))
1051 x86_assign_hw_event(event, cpuc, i);
1052 else if (i < n_running)
1053 continue;
1054
1055 if (hwc->state & PERF_HES_ARCH)
1056 continue;
1057
1058 x86_pmu_start(event, PERF_EF_RELOAD);
1059 }
1060 cpuc->n_added = 0;
1061 perf_events_lapic_init();
1062 }
1063
1064 cpuc->enabled = 1;
1065 barrier();
1066
1067 x86_pmu.enable_all(added);
1068 }
1069
1070 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1071
1072 /*
1073 * Set the next IRQ period, based on the hwc->period_left value.
1074 * To be called with the event disabled in hw:
1075 */
1076 int x86_perf_event_set_period(struct perf_event *event)
1077 {
1078 struct hw_perf_event *hwc = &event->hw;
1079 s64 left = local64_read(&hwc->period_left);
1080 s64 period = hwc->sample_period;
1081 int ret = 0, idx = hwc->idx;
1082
1083 if (idx == INTEL_PMC_IDX_FIXED_BTS)
1084 return 0;
1085
1086 /*
1087 * If we are way outside a reasonable range then just skip forward:
1088 */
1089 if (unlikely(left <= -period)) {
1090 left = period;
1091 local64_set(&hwc->period_left, left);
1092 hwc->last_period = period;
1093 ret = 1;
1094 }
1095
1096 if (unlikely(left <= 0)) {
1097 left += period;
1098 local64_set(&hwc->period_left, left);
1099 hwc->last_period = period;
1100 ret = 1;
1101 }
1102 /*
1103 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1104 */
1105 if (unlikely(left < 2))
1106 left = 2;
1107
1108 if (left > x86_pmu.max_period)
1109 left = x86_pmu.max_period;
1110
1111 if (x86_pmu.limit_period)
1112 left = x86_pmu.limit_period(event, left);
1113
1114 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1115
1116 if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1117 local64_read(&hwc->prev_count) != (u64)-left) {
1118 /*
1119 * The hw event starts counting from this event offset,
1120 * mark it to be able to extra future deltas:
1121 */
1122 local64_set(&hwc->prev_count, (u64)-left);
1123
1124 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1125 }
1126
1127 /*
1128 * Due to erratum on certan cpu we need
1129 * a second write to be sure the register
1130 * is updated properly
1131 */
1132 if (x86_pmu.perfctr_second_write) {
1133 wrmsrl(hwc->event_base,
1134 (u64)(-left) & x86_pmu.cntval_mask);
1135 }
1136
1137 perf_event_update_userpage(event);
1138
1139 return ret;
1140 }
1141
1142 void x86_pmu_enable_event(struct perf_event *event)
1143 {
1144 if (__this_cpu_read(cpu_hw_events.enabled))
1145 __x86_pmu_enable_event(&event->hw,
1146 ARCH_PERFMON_EVENTSEL_ENABLE);
1147 }
1148
1149 /*
1150 * Add a single event to the PMU.
1151 *
1152 * The event is added to the group of enabled events
1153 * but only if it can be scehduled with existing events.
1154 */
1155 static int x86_pmu_add(struct perf_event *event, int flags)
1156 {
1157 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1158 struct hw_perf_event *hwc;
1159 int assign[X86_PMC_IDX_MAX];
1160 int n, n0, ret;
1161
1162 hwc = &event->hw;
1163
1164 n0 = cpuc->n_events;
1165 ret = n = collect_events(cpuc, event, false);
1166 if (ret < 0)
1167 goto out;
1168
1169 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1170 if (!(flags & PERF_EF_START))
1171 hwc->state |= PERF_HES_ARCH;
1172
1173 /*
1174 * If group events scheduling transaction was started,
1175 * skip the schedulability test here, it will be performed
1176 * at commit time (->commit_txn) as a whole.
1177 */
1178 if (cpuc->group_flag & PERF_EVENT_TXN)
1179 goto done_collect;
1180
1181 ret = x86_pmu.schedule_events(cpuc, n, assign);
1182 if (ret)
1183 goto out;
1184 /*
1185 * copy new assignment, now we know it is possible
1186 * will be used by hw_perf_enable()
1187 */
1188 memcpy(cpuc->assign, assign, n*sizeof(int));
1189
1190 done_collect:
1191 /*
1192 * Commit the collect_events() state. See x86_pmu_del() and
1193 * x86_pmu_*_txn().
1194 */
1195 cpuc->n_events = n;
1196 cpuc->n_added += n - n0;
1197 cpuc->n_txn += n - n0;
1198
1199 ret = 0;
1200 out:
1201 return ret;
1202 }
1203
1204 static void x86_pmu_start(struct perf_event *event, int flags)
1205 {
1206 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1207 int idx = event->hw.idx;
1208
1209 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1210 return;
1211
1212 if (WARN_ON_ONCE(idx == -1))
1213 return;
1214
1215 if (flags & PERF_EF_RELOAD) {
1216 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1217 x86_perf_event_set_period(event);
1218 }
1219
1220 event->hw.state = 0;
1221
1222 cpuc->events[idx] = event;
1223 __set_bit(idx, cpuc->active_mask);
1224 __set_bit(idx, cpuc->running);
1225 x86_pmu.enable(event);
1226 perf_event_update_userpage(event);
1227 }
1228
1229 void perf_event_print_debug(void)
1230 {
1231 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1232 u64 pebs, debugctl;
1233 struct cpu_hw_events *cpuc;
1234 unsigned long flags;
1235 int cpu, idx;
1236
1237 if (!x86_pmu.num_counters)
1238 return;
1239
1240 local_irq_save(flags);
1241
1242 cpu = smp_processor_id();
1243 cpuc = &per_cpu(cpu_hw_events, cpu);
1244
1245 if (x86_pmu.version >= 2) {
1246 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1247 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1248 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1249 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1250
1251 pr_info("\n");
1252 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1253 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1254 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1255 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1256 if (x86_pmu.pebs_constraints) {
1257 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1258 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1259 }
1260 if (x86_pmu.lbr_nr) {
1261 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1262 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1263 }
1264 }
1265 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1266
1267 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1268 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1269 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1270
1271 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1272
1273 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1274 cpu, idx, pmc_ctrl);
1275 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1276 cpu, idx, pmc_count);
1277 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1278 cpu, idx, prev_left);
1279 }
1280 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1281 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1282
1283 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1284 cpu, idx, pmc_count);
1285 }
1286 local_irq_restore(flags);
1287 }
1288
1289 void x86_pmu_stop(struct perf_event *event, int flags)
1290 {
1291 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1292 struct hw_perf_event *hwc = &event->hw;
1293
1294 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1295 x86_pmu.disable(event);
1296 cpuc->events[hwc->idx] = NULL;
1297 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1298 hwc->state |= PERF_HES_STOPPED;
1299 }
1300
1301 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1302 /*
1303 * Drain the remaining delta count out of a event
1304 * that we are disabling:
1305 */
1306 x86_perf_event_update(event);
1307 hwc->state |= PERF_HES_UPTODATE;
1308 }
1309 }
1310
1311 static void x86_pmu_del(struct perf_event *event, int flags)
1312 {
1313 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1314 int i;
1315
1316 /*
1317 * event is descheduled
1318 */
1319 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1320
1321 /*
1322 * If we're called during a txn, we don't need to do anything.
1323 * The events never got scheduled and ->cancel_txn will truncate
1324 * the event_list.
1325 *
1326 * XXX assumes any ->del() called during a TXN will only be on
1327 * an event added during that same TXN.
1328 */
1329 if (cpuc->group_flag & PERF_EVENT_TXN)
1330 return;
1331
1332 /*
1333 * Not a TXN, therefore cleanup properly.
1334 */
1335 x86_pmu_stop(event, PERF_EF_UPDATE);
1336
1337 for (i = 0; i < cpuc->n_events; i++) {
1338 if (event == cpuc->event_list[i])
1339 break;
1340 }
1341
1342 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1343 return;
1344
1345 /* If we have a newly added event; make sure to decrease n_added. */
1346 if (i >= cpuc->n_events - cpuc->n_added)
1347 --cpuc->n_added;
1348
1349 if (x86_pmu.put_event_constraints)
1350 x86_pmu.put_event_constraints(cpuc, event);
1351
1352 /* Delete the array entry. */
1353 while (++i < cpuc->n_events) {
1354 cpuc->event_list[i-1] = cpuc->event_list[i];
1355 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1356 }
1357 --cpuc->n_events;
1358
1359 perf_event_update_userpage(event);
1360 }
1361
1362 int x86_pmu_handle_irq(struct pt_regs *regs)
1363 {
1364 struct perf_sample_data data;
1365 struct cpu_hw_events *cpuc;
1366 struct perf_event *event;
1367 int idx, handled = 0;
1368 u64 val;
1369
1370 cpuc = this_cpu_ptr(&cpu_hw_events);
1371
1372 /*
1373 * Some chipsets need to unmask the LVTPC in a particular spot
1374 * inside the nmi handler. As a result, the unmasking was pushed
1375 * into all the nmi handlers.
1376 *
1377 * This generic handler doesn't seem to have any issues where the
1378 * unmasking occurs so it was left at the top.
1379 */
1380 apic_write(APIC_LVTPC, APIC_DM_NMI);
1381
1382 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1383 if (!test_bit(idx, cpuc->active_mask)) {
1384 /*
1385 * Though we deactivated the counter some cpus
1386 * might still deliver spurious interrupts still
1387 * in flight. Catch them:
1388 */
1389 if (__test_and_clear_bit(idx, cpuc->running))
1390 handled++;
1391 continue;
1392 }
1393
1394 event = cpuc->events[idx];
1395
1396 val = x86_perf_event_update(event);
1397 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1398 continue;
1399
1400 /*
1401 * event overflow
1402 */
1403 handled++;
1404 perf_sample_data_init(&data, 0, event->hw.last_period);
1405
1406 if (!x86_perf_event_set_period(event))
1407 continue;
1408
1409 if (perf_event_overflow(event, &data, regs))
1410 x86_pmu_stop(event, 0);
1411 }
1412
1413 if (handled)
1414 inc_irq_stat(apic_perf_irqs);
1415
1416 return handled;
1417 }
1418
1419 void perf_events_lapic_init(void)
1420 {
1421 if (!x86_pmu.apic || !x86_pmu_initialized())
1422 return;
1423
1424 /*
1425 * Always use NMI for PMU
1426 */
1427 apic_write(APIC_LVTPC, APIC_DM_NMI);
1428 }
1429
1430 static int
1431 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1432 {
1433 u64 start_clock;
1434 u64 finish_clock;
1435 int ret;
1436
1437 /*
1438 * All PMUs/events that share this PMI handler should make sure to
1439 * increment active_events for their events.
1440 */
1441 if (!atomic_read(&active_events))
1442 return NMI_DONE;
1443
1444 start_clock = sched_clock();
1445 ret = x86_pmu.handle_irq(regs);
1446 finish_clock = sched_clock();
1447
1448 perf_sample_event_took(finish_clock - start_clock);
1449
1450 return ret;
1451 }
1452 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1453
1454 struct event_constraint emptyconstraint;
1455 struct event_constraint unconstrained;
1456
1457 static int
1458 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1459 {
1460 unsigned int cpu = (long)hcpu;
1461 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1462 int i, ret = NOTIFY_OK;
1463
1464 switch (action & ~CPU_TASKS_FROZEN) {
1465 case CPU_UP_PREPARE:
1466 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1467 cpuc->kfree_on_online[i] = NULL;
1468 if (x86_pmu.cpu_prepare)
1469 ret = x86_pmu.cpu_prepare(cpu);
1470 break;
1471
1472 case CPU_STARTING:
1473 if (x86_pmu.cpu_starting)
1474 x86_pmu.cpu_starting(cpu);
1475 break;
1476
1477 case CPU_ONLINE:
1478 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1479 kfree(cpuc->kfree_on_online[i]);
1480 cpuc->kfree_on_online[i] = NULL;
1481 }
1482 break;
1483
1484 case CPU_DYING:
1485 if (x86_pmu.cpu_dying)
1486 x86_pmu.cpu_dying(cpu);
1487 break;
1488
1489 case CPU_UP_CANCELED:
1490 case CPU_DEAD:
1491 if (x86_pmu.cpu_dead)
1492 x86_pmu.cpu_dead(cpu);
1493 break;
1494
1495 default:
1496 break;
1497 }
1498
1499 return ret;
1500 }
1501
1502 static void __init pmu_check_apic(void)
1503 {
1504 if (cpu_has_apic)
1505 return;
1506
1507 x86_pmu.apic = 0;
1508 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1509 pr_info("no hardware sampling interrupt available.\n");
1510
1511 /*
1512 * If we have a PMU initialized but no APIC
1513 * interrupts, we cannot sample hardware
1514 * events (user-space has to fall back and
1515 * sample via a hrtimer based software event):
1516 */
1517 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1518
1519 }
1520
1521 static struct attribute_group x86_pmu_format_group = {
1522 .name = "format",
1523 .attrs = NULL,
1524 };
1525
1526 /*
1527 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1528 * out of events_attr attributes.
1529 */
1530 static void __init filter_events(struct attribute **attrs)
1531 {
1532 struct device_attribute *d;
1533 struct perf_pmu_events_attr *pmu_attr;
1534 int i, j;
1535
1536 for (i = 0; attrs[i]; i++) {
1537 d = (struct device_attribute *)attrs[i];
1538 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1539 /* str trumps id */
1540 if (pmu_attr->event_str)
1541 continue;
1542 if (x86_pmu.event_map(i))
1543 continue;
1544
1545 for (j = i; attrs[j]; j++)
1546 attrs[j] = attrs[j + 1];
1547
1548 /* Check the shifted attr. */
1549 i--;
1550 }
1551 }
1552
1553 /* Merge two pointer arrays */
1554 static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1555 {
1556 struct attribute **new;
1557 int j, i;
1558
1559 for (j = 0; a[j]; j++)
1560 ;
1561 for (i = 0; b[i]; i++)
1562 j++;
1563 j++;
1564
1565 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1566 if (!new)
1567 return NULL;
1568
1569 j = 0;
1570 for (i = 0; a[i]; i++)
1571 new[j++] = a[i];
1572 for (i = 0; b[i]; i++)
1573 new[j++] = b[i];
1574 new[j] = NULL;
1575
1576 return new;
1577 }
1578
1579 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1580 char *page)
1581 {
1582 struct perf_pmu_events_attr *pmu_attr = \
1583 container_of(attr, struct perf_pmu_events_attr, attr);
1584 u64 config = x86_pmu.event_map(pmu_attr->id);
1585
1586 /* string trumps id */
1587 if (pmu_attr->event_str)
1588 return sprintf(page, "%s", pmu_attr->event_str);
1589
1590 return x86_pmu.events_sysfs_show(page, config);
1591 }
1592
1593 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1594 EVENT_ATTR(instructions, INSTRUCTIONS );
1595 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1596 EVENT_ATTR(cache-misses, CACHE_MISSES );
1597 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1598 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1599 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1600 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1601 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1602 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1603
1604 static struct attribute *empty_attrs;
1605
1606 static struct attribute *events_attr[] = {
1607 EVENT_PTR(CPU_CYCLES),
1608 EVENT_PTR(INSTRUCTIONS),
1609 EVENT_PTR(CACHE_REFERENCES),
1610 EVENT_PTR(CACHE_MISSES),
1611 EVENT_PTR(BRANCH_INSTRUCTIONS),
1612 EVENT_PTR(BRANCH_MISSES),
1613 EVENT_PTR(BUS_CYCLES),
1614 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1615 EVENT_PTR(STALLED_CYCLES_BACKEND),
1616 EVENT_PTR(REF_CPU_CYCLES),
1617 NULL,
1618 };
1619
1620 static struct attribute_group x86_pmu_events_group = {
1621 .name = "events",
1622 .attrs = events_attr,
1623 };
1624
1625 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1626 {
1627 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1628 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1629 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1630 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1631 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1632 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1633 ssize_t ret;
1634
1635 /*
1636 * We have whole page size to spend and just little data
1637 * to write, so we can safely use sprintf.
1638 */
1639 ret = sprintf(page, "event=0x%02llx", event);
1640
1641 if (umask)
1642 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1643
1644 if (edge)
1645 ret += sprintf(page + ret, ",edge");
1646
1647 if (pc)
1648 ret += sprintf(page + ret, ",pc");
1649
1650 if (any)
1651 ret += sprintf(page + ret, ",any");
1652
1653 if (inv)
1654 ret += sprintf(page + ret, ",inv");
1655
1656 if (cmask)
1657 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1658
1659 ret += sprintf(page + ret, "\n");
1660
1661 return ret;
1662 }
1663
1664 static int __init init_hw_perf_events(void)
1665 {
1666 struct x86_pmu_quirk *quirk;
1667 int err;
1668
1669 pr_info("Performance Events: ");
1670
1671 switch (boot_cpu_data.x86_vendor) {
1672 case X86_VENDOR_INTEL:
1673 err = intel_pmu_init();
1674 break;
1675 case X86_VENDOR_AMD:
1676 err = amd_pmu_init();
1677 break;
1678 default:
1679 err = -ENOTSUPP;
1680 }
1681 if (err != 0) {
1682 pr_cont("no PMU driver, software events only.\n");
1683 return 0;
1684 }
1685
1686 pmu_check_apic();
1687
1688 /* sanity check that the hardware exists or is emulated */
1689 if (!check_hw_exists())
1690 return 0;
1691
1692 pr_cont("%s PMU driver.\n", x86_pmu.name);
1693
1694 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1695
1696 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1697 quirk->func();
1698
1699 if (!x86_pmu.intel_ctrl)
1700 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1701
1702 perf_events_lapic_init();
1703 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1704
1705 unconstrained = (struct event_constraint)
1706 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1707 0, x86_pmu.num_counters, 0, 0);
1708
1709 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1710
1711 if (x86_pmu.event_attrs)
1712 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1713
1714 if (!x86_pmu.events_sysfs_show)
1715 x86_pmu_events_group.attrs = &empty_attrs;
1716 else
1717 filter_events(x86_pmu_events_group.attrs);
1718
1719 if (x86_pmu.cpu_events) {
1720 struct attribute **tmp;
1721
1722 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1723 if (!WARN_ON(!tmp))
1724 x86_pmu_events_group.attrs = tmp;
1725 }
1726
1727 pr_info("... version: %d\n", x86_pmu.version);
1728 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1729 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1730 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1731 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1732 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1733 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1734
1735 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1736 perf_cpu_notifier(x86_pmu_notifier);
1737
1738 return 0;
1739 }
1740 early_initcall(init_hw_perf_events);
1741
1742 static inline void x86_pmu_read(struct perf_event *event)
1743 {
1744 x86_perf_event_update(event);
1745 }
1746
1747 /*
1748 * Start group events scheduling transaction
1749 * Set the flag to make pmu::enable() not perform the
1750 * schedulability test, it will be performed at commit time
1751 */
1752 static void x86_pmu_start_txn(struct pmu *pmu)
1753 {
1754 perf_pmu_disable(pmu);
1755 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1756 __this_cpu_write(cpu_hw_events.n_txn, 0);
1757 }
1758
1759 /*
1760 * Stop group events scheduling transaction
1761 * Clear the flag and pmu::enable() will perform the
1762 * schedulability test.
1763 */
1764 static void x86_pmu_cancel_txn(struct pmu *pmu)
1765 {
1766 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1767 /*
1768 * Truncate collected array by the number of events added in this
1769 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1770 */
1771 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1772 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1773 perf_pmu_enable(pmu);
1774 }
1775
1776 /*
1777 * Commit group events scheduling transaction
1778 * Perform the group schedulability test as a whole
1779 * Return 0 if success
1780 *
1781 * Does not cancel the transaction on failure; expects the caller to do this.
1782 */
1783 static int x86_pmu_commit_txn(struct pmu *pmu)
1784 {
1785 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1786 int assign[X86_PMC_IDX_MAX];
1787 int n, ret;
1788
1789 n = cpuc->n_events;
1790
1791 if (!x86_pmu_initialized())
1792 return -EAGAIN;
1793
1794 ret = x86_pmu.schedule_events(cpuc, n, assign);
1795 if (ret)
1796 return ret;
1797
1798 /*
1799 * copy new assignment, now we know it is possible
1800 * will be used by hw_perf_enable()
1801 */
1802 memcpy(cpuc->assign, assign, n*sizeof(int));
1803
1804 cpuc->group_flag &= ~PERF_EVENT_TXN;
1805 perf_pmu_enable(pmu);
1806 return 0;
1807 }
1808 /*
1809 * a fake_cpuc is used to validate event groups. Due to
1810 * the extra reg logic, we need to also allocate a fake
1811 * per_core and per_cpu structure. Otherwise, group events
1812 * using extra reg may conflict without the kernel being
1813 * able to catch this when the last event gets added to
1814 * the group.
1815 */
1816 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1817 {
1818 kfree(cpuc->shared_regs);
1819 kfree(cpuc);
1820 }
1821
1822 static struct cpu_hw_events *allocate_fake_cpuc(void)
1823 {
1824 struct cpu_hw_events *cpuc;
1825 int cpu = raw_smp_processor_id();
1826
1827 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1828 if (!cpuc)
1829 return ERR_PTR(-ENOMEM);
1830
1831 /* only needed, if we have extra_regs */
1832 if (x86_pmu.extra_regs) {
1833 cpuc->shared_regs = allocate_shared_regs(cpu);
1834 if (!cpuc->shared_regs)
1835 goto error;
1836 }
1837 cpuc->is_fake = 1;
1838 return cpuc;
1839 error:
1840 free_fake_cpuc(cpuc);
1841 return ERR_PTR(-ENOMEM);
1842 }
1843
1844 /*
1845 * validate that we can schedule this event
1846 */
1847 static int validate_event(struct perf_event *event)
1848 {
1849 struct cpu_hw_events *fake_cpuc;
1850 struct event_constraint *c;
1851 int ret = 0;
1852
1853 fake_cpuc = allocate_fake_cpuc();
1854 if (IS_ERR(fake_cpuc))
1855 return PTR_ERR(fake_cpuc);
1856
1857 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1858
1859 if (!c || !c->weight)
1860 ret = -EINVAL;
1861
1862 if (x86_pmu.put_event_constraints)
1863 x86_pmu.put_event_constraints(fake_cpuc, event);
1864
1865 free_fake_cpuc(fake_cpuc);
1866
1867 return ret;
1868 }
1869
1870 /*
1871 * validate a single event group
1872 *
1873 * validation include:
1874 * - check events are compatible which each other
1875 * - events do not compete for the same counter
1876 * - number of events <= number of counters
1877 *
1878 * validation ensures the group can be loaded onto the
1879 * PMU if it was the only group available.
1880 */
1881 static int validate_group(struct perf_event *event)
1882 {
1883 struct perf_event *leader = event->group_leader;
1884 struct cpu_hw_events *fake_cpuc;
1885 int ret = -EINVAL, n;
1886
1887 fake_cpuc = allocate_fake_cpuc();
1888 if (IS_ERR(fake_cpuc))
1889 return PTR_ERR(fake_cpuc);
1890 /*
1891 * the event is not yet connected with its
1892 * siblings therefore we must first collect
1893 * existing siblings, then add the new event
1894 * before we can simulate the scheduling
1895 */
1896 n = collect_events(fake_cpuc, leader, true);
1897 if (n < 0)
1898 goto out;
1899
1900 fake_cpuc->n_events = n;
1901 n = collect_events(fake_cpuc, event, false);
1902 if (n < 0)
1903 goto out;
1904
1905 fake_cpuc->n_events = n;
1906
1907 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1908
1909 out:
1910 free_fake_cpuc(fake_cpuc);
1911 return ret;
1912 }
1913
1914 static int x86_pmu_event_init(struct perf_event *event)
1915 {
1916 struct pmu *tmp;
1917 int err;
1918
1919 switch (event->attr.type) {
1920 case PERF_TYPE_RAW:
1921 case PERF_TYPE_HARDWARE:
1922 case PERF_TYPE_HW_CACHE:
1923 break;
1924
1925 default:
1926 return -ENOENT;
1927 }
1928
1929 err = __x86_pmu_event_init(event);
1930 if (!err) {
1931 /*
1932 * we temporarily connect event to its pmu
1933 * such that validate_group() can classify
1934 * it as an x86 event using is_x86_event()
1935 */
1936 tmp = event->pmu;
1937 event->pmu = &pmu;
1938
1939 if (event->group_leader != event)
1940 err = validate_group(event);
1941 else
1942 err = validate_event(event);
1943
1944 event->pmu = tmp;
1945 }
1946 if (err) {
1947 if (event->destroy)
1948 event->destroy(event);
1949 }
1950
1951 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
1952 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
1953
1954 return err;
1955 }
1956
1957 static void refresh_pce(void *ignored)
1958 {
1959 if (current->mm)
1960 load_mm_cr4(current->mm);
1961 }
1962
1963 static void x86_pmu_event_mapped(struct perf_event *event)
1964 {
1965 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1966 return;
1967
1968 if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
1969 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1970 }
1971
1972 static void x86_pmu_event_unmapped(struct perf_event *event)
1973 {
1974 if (!current->mm)
1975 return;
1976
1977 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1978 return;
1979
1980 if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
1981 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1982 }
1983
1984 static int x86_pmu_event_idx(struct perf_event *event)
1985 {
1986 int idx = event->hw.idx;
1987
1988 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1989 return 0;
1990
1991 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1992 idx -= INTEL_PMC_IDX_FIXED;
1993 idx |= 1 << 30;
1994 }
1995
1996 return idx + 1;
1997 }
1998
1999 static ssize_t get_attr_rdpmc(struct device *cdev,
2000 struct device_attribute *attr,
2001 char *buf)
2002 {
2003 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2004 }
2005
2006 static ssize_t set_attr_rdpmc(struct device *cdev,
2007 struct device_attribute *attr,
2008 const char *buf, size_t count)
2009 {
2010 unsigned long val;
2011 ssize_t ret;
2012
2013 ret = kstrtoul(buf, 0, &val);
2014 if (ret)
2015 return ret;
2016
2017 if (val > 2)
2018 return -EINVAL;
2019
2020 if (x86_pmu.attr_rdpmc_broken)
2021 return -ENOTSUPP;
2022
2023 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2024 /*
2025 * Changing into or out of always available, aka
2026 * perf-event-bypassing mode. This path is extremely slow,
2027 * but only root can trigger it, so it's okay.
2028 */
2029 if (val == 2)
2030 static_key_slow_inc(&rdpmc_always_available);
2031 else
2032 static_key_slow_dec(&rdpmc_always_available);
2033 on_each_cpu(refresh_pce, NULL, 1);
2034 }
2035
2036 x86_pmu.attr_rdpmc = val;
2037
2038 return count;
2039 }
2040
2041 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2042
2043 static struct attribute *x86_pmu_attrs[] = {
2044 &dev_attr_rdpmc.attr,
2045 NULL,
2046 };
2047
2048 static struct attribute_group x86_pmu_attr_group = {
2049 .attrs = x86_pmu_attrs,
2050 };
2051
2052 static const struct attribute_group *x86_pmu_attr_groups[] = {
2053 &x86_pmu_attr_group,
2054 &x86_pmu_format_group,
2055 &x86_pmu_events_group,
2056 NULL,
2057 };
2058
2059 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2060 {
2061 if (x86_pmu.sched_task)
2062 x86_pmu.sched_task(ctx, sched_in);
2063 }
2064
2065 void perf_check_microcode(void)
2066 {
2067 if (x86_pmu.check_microcode)
2068 x86_pmu.check_microcode();
2069 }
2070 EXPORT_SYMBOL_GPL(perf_check_microcode);
2071
2072 static struct pmu pmu = {
2073 .pmu_enable = x86_pmu_enable,
2074 .pmu_disable = x86_pmu_disable,
2075
2076 .attr_groups = x86_pmu_attr_groups,
2077
2078 .event_init = x86_pmu_event_init,
2079
2080 .event_mapped = x86_pmu_event_mapped,
2081 .event_unmapped = x86_pmu_event_unmapped,
2082
2083 .add = x86_pmu_add,
2084 .del = x86_pmu_del,
2085 .start = x86_pmu_start,
2086 .stop = x86_pmu_stop,
2087 .read = x86_pmu_read,
2088
2089 .start_txn = x86_pmu_start_txn,
2090 .cancel_txn = x86_pmu_cancel_txn,
2091 .commit_txn = x86_pmu_commit_txn,
2092
2093 .event_idx = x86_pmu_event_idx,
2094 .sched_task = x86_pmu_sched_task,
2095 .task_ctx_size = sizeof(struct x86_perf_task_context),
2096 };
2097
2098 void arch_perf_update_userpage(struct perf_event *event,
2099 struct perf_event_mmap_page *userpg, u64 now)
2100 {
2101 struct cyc2ns_data *data;
2102
2103 userpg->cap_user_time = 0;
2104 userpg->cap_user_time_zero = 0;
2105 userpg->cap_user_rdpmc =
2106 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2107 userpg->pmc_width = x86_pmu.cntval_bits;
2108
2109 if (!sched_clock_stable())
2110 return;
2111
2112 data = cyc2ns_read_begin();
2113
2114 /*
2115 * Internal timekeeping for enabled/running/stopped times
2116 * is always in the local_clock domain.
2117 */
2118 userpg->cap_user_time = 1;
2119 userpg->time_mult = data->cyc2ns_mul;
2120 userpg->time_shift = data->cyc2ns_shift;
2121 userpg->time_offset = data->cyc2ns_offset - now;
2122
2123 /*
2124 * cap_user_time_zero doesn't make sense when we're using a different
2125 * time base for the records.
2126 */
2127 if (event->clock == &local_clock) {
2128 userpg->cap_user_time_zero = 1;
2129 userpg->time_zero = data->cyc2ns_offset;
2130 }
2131
2132 cyc2ns_read_end(data);
2133 }
2134
2135 /*
2136 * callchain support
2137 */
2138
2139 static int backtrace_stack(void *data, char *name)
2140 {
2141 return 0;
2142 }
2143
2144 static void backtrace_address(void *data, unsigned long addr, int reliable)
2145 {
2146 struct perf_callchain_entry *entry = data;
2147
2148 perf_callchain_store(entry, addr);
2149 }
2150
2151 static const struct stacktrace_ops backtrace_ops = {
2152 .stack = backtrace_stack,
2153 .address = backtrace_address,
2154 .walk_stack = print_context_stack_bp,
2155 };
2156
2157 void
2158 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
2159 {
2160 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2161 /* TODO: We don't support guest os callchain now */
2162 return;
2163 }
2164
2165 perf_callchain_store(entry, regs->ip);
2166
2167 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2168 }
2169
2170 static inline int
2171 valid_user_frame(const void __user *fp, unsigned long size)
2172 {
2173 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2174 }
2175
2176 static unsigned long get_segment_base(unsigned int segment)
2177 {
2178 struct desc_struct *desc;
2179 int idx = segment >> 3;
2180
2181 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2182 struct ldt_struct *ldt;
2183
2184 if (idx > LDT_ENTRIES)
2185 return 0;
2186
2187 /* IRQs are off, so this synchronizes with smp_store_release */
2188 ldt = lockless_dereference(current->active_mm->context.ldt);
2189 if (!ldt || idx > ldt->size)
2190 return 0;
2191
2192 desc = &ldt->entries[idx];
2193 } else {
2194 if (idx > GDT_ENTRIES)
2195 return 0;
2196
2197 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2198 }
2199
2200 return get_desc_base(desc);
2201 }
2202
2203 #ifdef CONFIG_COMPAT
2204
2205 #include <asm/compat.h>
2206
2207 static inline int
2208 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2209 {
2210 /* 32-bit process in 64-bit kernel. */
2211 unsigned long ss_base, cs_base;
2212 struct stack_frame_ia32 frame;
2213 const void __user *fp;
2214
2215 if (!test_thread_flag(TIF_IA32))
2216 return 0;
2217
2218 cs_base = get_segment_base(regs->cs);
2219 ss_base = get_segment_base(regs->ss);
2220
2221 fp = compat_ptr(ss_base + regs->bp);
2222 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2223 unsigned long bytes;
2224 frame.next_frame = 0;
2225 frame.return_address = 0;
2226
2227 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2228 if (bytes != 0)
2229 break;
2230
2231 if (!valid_user_frame(fp, sizeof(frame)))
2232 break;
2233
2234 perf_callchain_store(entry, cs_base + frame.return_address);
2235 fp = compat_ptr(ss_base + frame.next_frame);
2236 }
2237 return 1;
2238 }
2239 #else
2240 static inline int
2241 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2242 {
2243 return 0;
2244 }
2245 #endif
2246
2247 void
2248 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
2249 {
2250 struct stack_frame frame;
2251 const void __user *fp;
2252
2253 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2254 /* TODO: We don't support guest os callchain now */
2255 return;
2256 }
2257
2258 /*
2259 * We don't know what to do with VM86 stacks.. ignore them for now.
2260 */
2261 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2262 return;
2263
2264 fp = (void __user *)regs->bp;
2265
2266 perf_callchain_store(entry, regs->ip);
2267
2268 if (!current->mm)
2269 return;
2270
2271 if (perf_callchain_user32(regs, entry))
2272 return;
2273
2274 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2275 unsigned long bytes;
2276 frame.next_frame = NULL;
2277 frame.return_address = 0;
2278
2279 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2280 if (bytes != 0)
2281 break;
2282
2283 if (!valid_user_frame(fp, sizeof(frame)))
2284 break;
2285
2286 perf_callchain_store(entry, frame.return_address);
2287 fp = frame.next_frame;
2288 }
2289 }
2290
2291 /*
2292 * Deal with code segment offsets for the various execution modes:
2293 *
2294 * VM86 - the good olde 16 bit days, where the linear address is
2295 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2296 *
2297 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2298 * to figure out what the 32bit base address is.
2299 *
2300 * X32 - has TIF_X32 set, but is running in x86_64
2301 *
2302 * X86_64 - CS,DS,SS,ES are all zero based.
2303 */
2304 static unsigned long code_segment_base(struct pt_regs *regs)
2305 {
2306 /*
2307 * For IA32 we look at the GDT/LDT segment base to convert the
2308 * effective IP to a linear address.
2309 */
2310
2311 #ifdef CONFIG_X86_32
2312 /*
2313 * If we are in VM86 mode, add the segment offset to convert to a
2314 * linear address.
2315 */
2316 if (regs->flags & X86_VM_MASK)
2317 return 0x10 * regs->cs;
2318
2319 if (user_mode(regs) && regs->cs != __USER_CS)
2320 return get_segment_base(regs->cs);
2321 #else
2322 if (user_mode(regs) && !user_64bit_mode(regs) &&
2323 regs->cs != __USER32_CS)
2324 return get_segment_base(regs->cs);
2325 #endif
2326 return 0;
2327 }
2328
2329 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2330 {
2331 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2332 return perf_guest_cbs->get_guest_ip();
2333
2334 return regs->ip + code_segment_base(regs);
2335 }
2336
2337 unsigned long perf_misc_flags(struct pt_regs *regs)
2338 {
2339 int misc = 0;
2340
2341 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2342 if (perf_guest_cbs->is_user_mode())
2343 misc |= PERF_RECORD_MISC_GUEST_USER;
2344 else
2345 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2346 } else {
2347 if (user_mode(regs))
2348 misc |= PERF_RECORD_MISC_USER;
2349 else
2350 misc |= PERF_RECORD_MISC_KERNEL;
2351 }
2352
2353 if (regs->flags & PERF_EFLAGS_EXACT)
2354 misc |= PERF_RECORD_MISC_EXACT_IP;
2355
2356 return misc;
2357 }
2358
2359 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2360 {
2361 cap->version = x86_pmu.version;
2362 cap->num_counters_gp = x86_pmu.num_counters;
2363 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2364 cap->bit_width_gp = x86_pmu.cntval_bits;
2365 cap->bit_width_fixed = x86_pmu.cntval_bits;
2366 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2367 cap->events_mask_len = x86_pmu.events_mask_len;
2368 }
2369 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
This page took 0.21693 seconds and 6 git commands to generate.