Merge remote-tracking branches 'spi/topic/img-spfi', 'spi/topic/imx', 'spi/topic...
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event_intel_ds.c
1 #include <linux/bitops.h>
2 #include <linux/types.h>
3 #include <linux/slab.h>
4
5 #include <asm/perf_event.h>
6 #include <asm/insn.h>
7
8 #include "perf_event.h"
9
10 /* The size of a BTS record in bytes: */
11 #define BTS_RECORD_SIZE 24
12
13 #define BTS_BUFFER_SIZE (PAGE_SIZE << 4)
14 #define PEBS_BUFFER_SIZE PAGE_SIZE
15 #define PEBS_FIXUP_SIZE PAGE_SIZE
16
17 /*
18 * pebs_record_32 for p4 and core not supported
19
20 struct pebs_record_32 {
21 u32 flags, ip;
22 u32 ax, bc, cx, dx;
23 u32 si, di, bp, sp;
24 };
25
26 */
27
28 union intel_x86_pebs_dse {
29 u64 val;
30 struct {
31 unsigned int ld_dse:4;
32 unsigned int ld_stlb_miss:1;
33 unsigned int ld_locked:1;
34 unsigned int ld_reserved:26;
35 };
36 struct {
37 unsigned int st_l1d_hit:1;
38 unsigned int st_reserved1:3;
39 unsigned int st_stlb_miss:1;
40 unsigned int st_locked:1;
41 unsigned int st_reserved2:26;
42 };
43 };
44
45
46 /*
47 * Map PEBS Load Latency Data Source encodings to generic
48 * memory data source information
49 */
50 #define P(a, b) PERF_MEM_S(a, b)
51 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
52 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
53
54 static const u64 pebs_data_source[] = {
55 P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
56 OP_LH | P(LVL, L1) | P(SNOOP, NONE), /* 0x01: L1 local */
57 OP_LH | P(LVL, LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
58 OP_LH | P(LVL, L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
59 OP_LH | P(LVL, L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
60 OP_LH | P(LVL, L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
61 OP_LH | P(LVL, L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
62 OP_LH | P(LVL, L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
63 OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
64 OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
65 OP_LH | P(LVL, LOC_RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
66 OP_LH | P(LVL, REM_RAM1) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
67 OP_LH | P(LVL, LOC_RAM) | SNOOP_NONE_MISS,/* 0x0c: L3 miss, excl */
68 OP_LH | P(LVL, REM_RAM1) | SNOOP_NONE_MISS,/* 0x0d: L3 miss, excl */
69 OP_LH | P(LVL, IO) | P(SNOOP, NONE), /* 0x0e: I/O */
70 OP_LH | P(LVL, UNC) | P(SNOOP, NONE), /* 0x0f: uncached */
71 };
72
73 static u64 precise_store_data(u64 status)
74 {
75 union intel_x86_pebs_dse dse;
76 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
77
78 dse.val = status;
79
80 /*
81 * bit 4: TLB access
82 * 1 = stored missed 2nd level TLB
83 *
84 * so it either hit the walker or the OS
85 * otherwise hit 2nd level TLB
86 */
87 if (dse.st_stlb_miss)
88 val |= P(TLB, MISS);
89 else
90 val |= P(TLB, HIT);
91
92 /*
93 * bit 0: hit L1 data cache
94 * if not set, then all we know is that
95 * it missed L1D
96 */
97 if (dse.st_l1d_hit)
98 val |= P(LVL, HIT);
99 else
100 val |= P(LVL, MISS);
101
102 /*
103 * bit 5: Locked prefix
104 */
105 if (dse.st_locked)
106 val |= P(LOCK, LOCKED);
107
108 return val;
109 }
110
111 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
112 {
113 union perf_mem_data_src dse;
114
115 dse.val = PERF_MEM_NA;
116
117 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
118 dse.mem_op = PERF_MEM_OP_STORE;
119 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
120 dse.mem_op = PERF_MEM_OP_LOAD;
121
122 /*
123 * L1 info only valid for following events:
124 *
125 * MEM_UOPS_RETIRED.STLB_MISS_STORES
126 * MEM_UOPS_RETIRED.LOCK_STORES
127 * MEM_UOPS_RETIRED.SPLIT_STORES
128 * MEM_UOPS_RETIRED.ALL_STORES
129 */
130 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
131 if (status & 1)
132 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
133 else
134 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
135 }
136 return dse.val;
137 }
138
139 static u64 load_latency_data(u64 status)
140 {
141 union intel_x86_pebs_dse dse;
142 u64 val;
143 int model = boot_cpu_data.x86_model;
144 int fam = boot_cpu_data.x86;
145
146 dse.val = status;
147
148 /*
149 * use the mapping table for bit 0-3
150 */
151 val = pebs_data_source[dse.ld_dse];
152
153 /*
154 * Nehalem models do not support TLB, Lock infos
155 */
156 if (fam == 0x6 && (model == 26 || model == 30
157 || model == 31 || model == 46)) {
158 val |= P(TLB, NA) | P(LOCK, NA);
159 return val;
160 }
161 /*
162 * bit 4: TLB access
163 * 0 = did not miss 2nd level TLB
164 * 1 = missed 2nd level TLB
165 */
166 if (dse.ld_stlb_miss)
167 val |= P(TLB, MISS) | P(TLB, L2);
168 else
169 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
170
171 /*
172 * bit 5: locked prefix
173 */
174 if (dse.ld_locked)
175 val |= P(LOCK, LOCKED);
176
177 return val;
178 }
179
180 struct pebs_record_core {
181 u64 flags, ip;
182 u64 ax, bx, cx, dx;
183 u64 si, di, bp, sp;
184 u64 r8, r9, r10, r11;
185 u64 r12, r13, r14, r15;
186 };
187
188 struct pebs_record_nhm {
189 u64 flags, ip;
190 u64 ax, bx, cx, dx;
191 u64 si, di, bp, sp;
192 u64 r8, r9, r10, r11;
193 u64 r12, r13, r14, r15;
194 u64 status, dla, dse, lat;
195 };
196
197 /*
198 * Same as pebs_record_nhm, with two additional fields.
199 */
200 struct pebs_record_hsw {
201 u64 flags, ip;
202 u64 ax, bx, cx, dx;
203 u64 si, di, bp, sp;
204 u64 r8, r9, r10, r11;
205 u64 r12, r13, r14, r15;
206 u64 status, dla, dse, lat;
207 u64 real_ip, tsx_tuning;
208 };
209
210 union hsw_tsx_tuning {
211 struct {
212 u32 cycles_last_block : 32,
213 hle_abort : 1,
214 rtm_abort : 1,
215 instruction_abort : 1,
216 non_instruction_abort : 1,
217 retry : 1,
218 data_conflict : 1,
219 capacity_writes : 1,
220 capacity_reads : 1;
221 };
222 u64 value;
223 };
224
225 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
226
227 void init_debug_store_on_cpu(int cpu)
228 {
229 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
230
231 if (!ds)
232 return;
233
234 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
235 (u32)((u64)(unsigned long)ds),
236 (u32)((u64)(unsigned long)ds >> 32));
237 }
238
239 void fini_debug_store_on_cpu(int cpu)
240 {
241 if (!per_cpu(cpu_hw_events, cpu).ds)
242 return;
243
244 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
245 }
246
247 static DEFINE_PER_CPU(void *, insn_buffer);
248
249 static int alloc_pebs_buffer(int cpu)
250 {
251 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
252 int node = cpu_to_node(cpu);
253 int max, thresh = 1; /* always use a single PEBS record */
254 void *buffer, *ibuffer;
255
256 if (!x86_pmu.pebs)
257 return 0;
258
259 buffer = kzalloc_node(PEBS_BUFFER_SIZE, GFP_KERNEL, node);
260 if (unlikely(!buffer))
261 return -ENOMEM;
262
263 /*
264 * HSW+ already provides us the eventing ip; no need to allocate this
265 * buffer then.
266 */
267 if (x86_pmu.intel_cap.pebs_format < 2) {
268 ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
269 if (!ibuffer) {
270 kfree(buffer);
271 return -ENOMEM;
272 }
273 per_cpu(insn_buffer, cpu) = ibuffer;
274 }
275
276 max = PEBS_BUFFER_SIZE / x86_pmu.pebs_record_size;
277
278 ds->pebs_buffer_base = (u64)(unsigned long)buffer;
279 ds->pebs_index = ds->pebs_buffer_base;
280 ds->pebs_absolute_maximum = ds->pebs_buffer_base +
281 max * x86_pmu.pebs_record_size;
282
283 ds->pebs_interrupt_threshold = ds->pebs_buffer_base +
284 thresh * x86_pmu.pebs_record_size;
285
286 return 0;
287 }
288
289 static void release_pebs_buffer(int cpu)
290 {
291 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
292
293 if (!ds || !x86_pmu.pebs)
294 return;
295
296 kfree(per_cpu(insn_buffer, cpu));
297 per_cpu(insn_buffer, cpu) = NULL;
298
299 kfree((void *)(unsigned long)ds->pebs_buffer_base);
300 ds->pebs_buffer_base = 0;
301 }
302
303 static int alloc_bts_buffer(int cpu)
304 {
305 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
306 int node = cpu_to_node(cpu);
307 int max, thresh;
308 void *buffer;
309
310 if (!x86_pmu.bts)
311 return 0;
312
313 buffer = kzalloc_node(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, node);
314 if (unlikely(!buffer)) {
315 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
316 return -ENOMEM;
317 }
318
319 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
320 thresh = max / 16;
321
322 ds->bts_buffer_base = (u64)(unsigned long)buffer;
323 ds->bts_index = ds->bts_buffer_base;
324 ds->bts_absolute_maximum = ds->bts_buffer_base +
325 max * BTS_RECORD_SIZE;
326 ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
327 thresh * BTS_RECORD_SIZE;
328
329 return 0;
330 }
331
332 static void release_bts_buffer(int cpu)
333 {
334 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
335
336 if (!ds || !x86_pmu.bts)
337 return;
338
339 kfree((void *)(unsigned long)ds->bts_buffer_base);
340 ds->bts_buffer_base = 0;
341 }
342
343 static int alloc_ds_buffer(int cpu)
344 {
345 int node = cpu_to_node(cpu);
346 struct debug_store *ds;
347
348 ds = kzalloc_node(sizeof(*ds), GFP_KERNEL, node);
349 if (unlikely(!ds))
350 return -ENOMEM;
351
352 per_cpu(cpu_hw_events, cpu).ds = ds;
353
354 return 0;
355 }
356
357 static void release_ds_buffer(int cpu)
358 {
359 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
360
361 if (!ds)
362 return;
363
364 per_cpu(cpu_hw_events, cpu).ds = NULL;
365 kfree(ds);
366 }
367
368 void release_ds_buffers(void)
369 {
370 int cpu;
371
372 if (!x86_pmu.bts && !x86_pmu.pebs)
373 return;
374
375 get_online_cpus();
376 for_each_online_cpu(cpu)
377 fini_debug_store_on_cpu(cpu);
378
379 for_each_possible_cpu(cpu) {
380 release_pebs_buffer(cpu);
381 release_bts_buffer(cpu);
382 release_ds_buffer(cpu);
383 }
384 put_online_cpus();
385 }
386
387 void reserve_ds_buffers(void)
388 {
389 int bts_err = 0, pebs_err = 0;
390 int cpu;
391
392 x86_pmu.bts_active = 0;
393 x86_pmu.pebs_active = 0;
394
395 if (!x86_pmu.bts && !x86_pmu.pebs)
396 return;
397
398 if (!x86_pmu.bts)
399 bts_err = 1;
400
401 if (!x86_pmu.pebs)
402 pebs_err = 1;
403
404 get_online_cpus();
405
406 for_each_possible_cpu(cpu) {
407 if (alloc_ds_buffer(cpu)) {
408 bts_err = 1;
409 pebs_err = 1;
410 }
411
412 if (!bts_err && alloc_bts_buffer(cpu))
413 bts_err = 1;
414
415 if (!pebs_err && alloc_pebs_buffer(cpu))
416 pebs_err = 1;
417
418 if (bts_err && pebs_err)
419 break;
420 }
421
422 if (bts_err) {
423 for_each_possible_cpu(cpu)
424 release_bts_buffer(cpu);
425 }
426
427 if (pebs_err) {
428 for_each_possible_cpu(cpu)
429 release_pebs_buffer(cpu);
430 }
431
432 if (bts_err && pebs_err) {
433 for_each_possible_cpu(cpu)
434 release_ds_buffer(cpu);
435 } else {
436 if (x86_pmu.bts && !bts_err)
437 x86_pmu.bts_active = 1;
438
439 if (x86_pmu.pebs && !pebs_err)
440 x86_pmu.pebs_active = 1;
441
442 for_each_online_cpu(cpu)
443 init_debug_store_on_cpu(cpu);
444 }
445
446 put_online_cpus();
447 }
448
449 /*
450 * BTS
451 */
452
453 struct event_constraint bts_constraint =
454 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
455
456 void intel_pmu_enable_bts(u64 config)
457 {
458 unsigned long debugctlmsr;
459
460 debugctlmsr = get_debugctlmsr();
461
462 debugctlmsr |= DEBUGCTLMSR_TR;
463 debugctlmsr |= DEBUGCTLMSR_BTS;
464 debugctlmsr |= DEBUGCTLMSR_BTINT;
465
466 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
467 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
468
469 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
470 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
471
472 update_debugctlmsr(debugctlmsr);
473 }
474
475 void intel_pmu_disable_bts(void)
476 {
477 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
478 unsigned long debugctlmsr;
479
480 if (!cpuc->ds)
481 return;
482
483 debugctlmsr = get_debugctlmsr();
484
485 debugctlmsr &=
486 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
487 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
488
489 update_debugctlmsr(debugctlmsr);
490 }
491
492 int intel_pmu_drain_bts_buffer(void)
493 {
494 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
495 struct debug_store *ds = cpuc->ds;
496 struct bts_record {
497 u64 from;
498 u64 to;
499 u64 flags;
500 };
501 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
502 struct bts_record *at, *top;
503 struct perf_output_handle handle;
504 struct perf_event_header header;
505 struct perf_sample_data data;
506 struct pt_regs regs;
507
508 if (!event)
509 return 0;
510
511 if (!x86_pmu.bts_active)
512 return 0;
513
514 at = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
515 top = (struct bts_record *)(unsigned long)ds->bts_index;
516
517 if (top <= at)
518 return 0;
519
520 memset(&regs, 0, sizeof(regs));
521
522 ds->bts_index = ds->bts_buffer_base;
523
524 perf_sample_data_init(&data, 0, event->hw.last_period);
525
526 /*
527 * Prepare a generic sample, i.e. fill in the invariant fields.
528 * We will overwrite the from and to address before we output
529 * the sample.
530 */
531 perf_prepare_sample(&header, &data, event, &regs);
532
533 if (perf_output_begin(&handle, event, header.size * (top - at)))
534 return 1;
535
536 for (; at < top; at++) {
537 data.ip = at->from;
538 data.addr = at->to;
539
540 perf_output_sample(&handle, &header, &data, event);
541 }
542
543 perf_output_end(&handle);
544
545 /* There's new data available. */
546 event->hw.interrupts++;
547 event->pending_kill = POLL_IN;
548 return 1;
549 }
550
551 /*
552 * PEBS
553 */
554 struct event_constraint intel_core2_pebs_event_constraints[] = {
555 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
556 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
557 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
558 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
559 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
560 EVENT_CONSTRAINT_END
561 };
562
563 struct event_constraint intel_atom_pebs_event_constraints[] = {
564 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
565 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
566 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
567 EVENT_CONSTRAINT_END
568 };
569
570 struct event_constraint intel_slm_pebs_event_constraints[] = {
571 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
572 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
573 /* Allow all events as PEBS with no flags */
574 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
575 EVENT_CONSTRAINT_END
576 };
577
578 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
579 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
580 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
581 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
582 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
583 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
584 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
585 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
586 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
587 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
588 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
589 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
590 EVENT_CONSTRAINT_END
591 };
592
593 struct event_constraint intel_westmere_pebs_event_constraints[] = {
594 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
595 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
596 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
597 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
598 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
599 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
600 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
601 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
602 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
603 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
604 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
605 EVENT_CONSTRAINT_END
606 };
607
608 struct event_constraint intel_snb_pebs_event_constraints[] = {
609 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
610 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
611 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
612 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
613 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
614 /* Allow all events as PEBS with no flags */
615 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
616 EVENT_CONSTRAINT_END
617 };
618
619 struct event_constraint intel_ivb_pebs_event_constraints[] = {
620 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
621 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
622 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
623 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
624 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
625 /* Allow all events as PEBS with no flags */
626 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
627 EVENT_CONSTRAINT_END
628 };
629
630 struct event_constraint intel_hsw_pebs_event_constraints[] = {
631 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
632 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
633 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
634 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
635 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
636 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
637 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
638 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
639 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
640 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
641 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
642 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
643 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
644 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
645 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
646 /* Allow all events as PEBS with no flags */
647 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
648 EVENT_CONSTRAINT_END
649 };
650
651 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
652 {
653 struct event_constraint *c;
654
655 if (!event->attr.precise_ip)
656 return NULL;
657
658 if (x86_pmu.pebs_constraints) {
659 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
660 if ((event->hw.config & c->cmask) == c->code) {
661 event->hw.flags |= c->flags;
662 return c;
663 }
664 }
665 }
666
667 return &emptyconstraint;
668 }
669
670 void intel_pmu_pebs_enable(struct perf_event *event)
671 {
672 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
673 struct hw_perf_event *hwc = &event->hw;
674
675 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
676
677 cpuc->pebs_enabled |= 1ULL << hwc->idx;
678
679 if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
680 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
681 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
682 cpuc->pebs_enabled |= 1ULL << 63;
683 }
684
685 void intel_pmu_pebs_disable(struct perf_event *event)
686 {
687 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
688 struct hw_perf_event *hwc = &event->hw;
689
690 cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
691
692 if (event->hw.constraint->flags & PERF_X86_EVENT_PEBS_LDLAT)
693 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
694 else if (event->hw.constraint->flags & PERF_X86_EVENT_PEBS_ST)
695 cpuc->pebs_enabled &= ~(1ULL << 63);
696
697 if (cpuc->enabled)
698 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
699
700 hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
701 }
702
703 void intel_pmu_pebs_enable_all(void)
704 {
705 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
706
707 if (cpuc->pebs_enabled)
708 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
709 }
710
711 void intel_pmu_pebs_disable_all(void)
712 {
713 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
714
715 if (cpuc->pebs_enabled)
716 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
717 }
718
719 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
720 {
721 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
722 unsigned long from = cpuc->lbr_entries[0].from;
723 unsigned long old_to, to = cpuc->lbr_entries[0].to;
724 unsigned long ip = regs->ip;
725 int is_64bit = 0;
726 void *kaddr;
727 int size;
728
729 /*
730 * We don't need to fixup if the PEBS assist is fault like
731 */
732 if (!x86_pmu.intel_cap.pebs_trap)
733 return 1;
734
735 /*
736 * No LBR entry, no basic block, no rewinding
737 */
738 if (!cpuc->lbr_stack.nr || !from || !to)
739 return 0;
740
741 /*
742 * Basic blocks should never cross user/kernel boundaries
743 */
744 if (kernel_ip(ip) != kernel_ip(to))
745 return 0;
746
747 /*
748 * unsigned math, either ip is before the start (impossible) or
749 * the basic block is larger than 1 page (sanity)
750 */
751 if ((ip - to) > PEBS_FIXUP_SIZE)
752 return 0;
753
754 /*
755 * We sampled a branch insn, rewind using the LBR stack
756 */
757 if (ip == to) {
758 set_linear_ip(regs, from);
759 return 1;
760 }
761
762 size = ip - to;
763 if (!kernel_ip(ip)) {
764 int bytes;
765 u8 *buf = this_cpu_read(insn_buffer);
766
767 /* 'size' must fit our buffer, see above */
768 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
769 if (bytes != 0)
770 return 0;
771
772 kaddr = buf;
773 } else {
774 kaddr = (void *)to;
775 }
776
777 do {
778 struct insn insn;
779
780 old_to = to;
781
782 #ifdef CONFIG_X86_64
783 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
784 #endif
785 insn_init(&insn, kaddr, size, is_64bit);
786 insn_get_length(&insn);
787 /*
788 * Make sure there was not a problem decoding the
789 * instruction and getting the length. This is
790 * doubly important because we have an infinite
791 * loop if insn.length=0.
792 */
793 if (!insn.length)
794 break;
795
796 to += insn.length;
797 kaddr += insn.length;
798 size -= insn.length;
799 } while (to < ip);
800
801 if (to == ip) {
802 set_linear_ip(regs, old_to);
803 return 1;
804 }
805
806 /*
807 * Even though we decoded the basic block, the instruction stream
808 * never matched the given IP, either the TO or the IP got corrupted.
809 */
810 return 0;
811 }
812
813 static inline u64 intel_hsw_weight(struct pebs_record_hsw *pebs)
814 {
815 if (pebs->tsx_tuning) {
816 union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
817 return tsx.cycles_last_block;
818 }
819 return 0;
820 }
821
822 static inline u64 intel_hsw_transaction(struct pebs_record_hsw *pebs)
823 {
824 u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
825
826 /* For RTM XABORTs also log the abort code from AX */
827 if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
828 txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
829 return txn;
830 }
831
832 static void __intel_pmu_pebs_event(struct perf_event *event,
833 struct pt_regs *iregs, void *__pebs)
834 {
835 #define PERF_X86_EVENT_PEBS_HSW_PREC \
836 (PERF_X86_EVENT_PEBS_ST_HSW | \
837 PERF_X86_EVENT_PEBS_LD_HSW | \
838 PERF_X86_EVENT_PEBS_NA_HSW)
839 /*
840 * We cast to the biggest pebs_record but are careful not to
841 * unconditionally access the 'extra' entries.
842 */
843 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
844 struct pebs_record_hsw *pebs = __pebs;
845 struct perf_sample_data data;
846 struct pt_regs regs;
847 u64 sample_type;
848 int fll, fst, dsrc;
849 int fl = event->hw.flags;
850
851 if (!intel_pmu_save_and_restart(event))
852 return;
853
854 sample_type = event->attr.sample_type;
855 dsrc = sample_type & PERF_SAMPLE_DATA_SRC;
856
857 fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
858 fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
859
860 perf_sample_data_init(&data, 0, event->hw.last_period);
861
862 data.period = event->hw.last_period;
863
864 /*
865 * Use latency for weight (only avail with PEBS-LL)
866 */
867 if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
868 data.weight = pebs->lat;
869
870 /*
871 * data.data_src encodes the data source
872 */
873 if (dsrc) {
874 u64 val = PERF_MEM_NA;
875 if (fll)
876 val = load_latency_data(pebs->dse);
877 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
878 val = precise_datala_hsw(event, pebs->dse);
879 else if (fst)
880 val = precise_store_data(pebs->dse);
881 data.data_src.val = val;
882 }
883
884 /*
885 * We use the interrupt regs as a base because the PEBS record
886 * does not contain a full regs set, specifically it seems to
887 * lack segment descriptors, which get used by things like
888 * user_mode().
889 *
890 * In the simple case fix up only the IP and BP,SP regs, for
891 * PERF_SAMPLE_IP and PERF_SAMPLE_CALLCHAIN to function properly.
892 * A possible PERF_SAMPLE_REGS will have to transfer all regs.
893 */
894 regs = *iregs;
895 regs.flags = pebs->flags;
896 set_linear_ip(&regs, pebs->ip);
897 regs.bp = pebs->bp;
898 regs.sp = pebs->sp;
899
900 if (sample_type & PERF_SAMPLE_REGS_INTR) {
901 regs.ax = pebs->ax;
902 regs.bx = pebs->bx;
903 regs.cx = pebs->cx;
904 regs.dx = pebs->dx;
905 regs.si = pebs->si;
906 regs.di = pebs->di;
907 regs.bp = pebs->bp;
908 regs.sp = pebs->sp;
909
910 regs.flags = pebs->flags;
911 #ifndef CONFIG_X86_32
912 regs.r8 = pebs->r8;
913 regs.r9 = pebs->r9;
914 regs.r10 = pebs->r10;
915 regs.r11 = pebs->r11;
916 regs.r12 = pebs->r12;
917 regs.r13 = pebs->r13;
918 regs.r14 = pebs->r14;
919 regs.r15 = pebs->r15;
920 #endif
921 }
922
923 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
924 regs.ip = pebs->real_ip;
925 regs.flags |= PERF_EFLAGS_EXACT;
926 } else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(&regs))
927 regs.flags |= PERF_EFLAGS_EXACT;
928 else
929 regs.flags &= ~PERF_EFLAGS_EXACT;
930
931 if ((sample_type & PERF_SAMPLE_ADDR) &&
932 x86_pmu.intel_cap.pebs_format >= 1)
933 data.addr = pebs->dla;
934
935 if (x86_pmu.intel_cap.pebs_format >= 2) {
936 /* Only set the TSX weight when no memory weight. */
937 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
938 data.weight = intel_hsw_weight(pebs);
939
940 if (sample_type & PERF_SAMPLE_TRANSACTION)
941 data.txn = intel_hsw_transaction(pebs);
942 }
943
944 if (has_branch_stack(event))
945 data.br_stack = &cpuc->lbr_stack;
946
947 if (perf_event_overflow(event, &data, &regs))
948 x86_pmu_stop(event, 0);
949 }
950
951 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
952 {
953 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
954 struct debug_store *ds = cpuc->ds;
955 struct perf_event *event = cpuc->events[0]; /* PMC0 only */
956 struct pebs_record_core *at, *top;
957 int n;
958
959 if (!x86_pmu.pebs_active)
960 return;
961
962 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
963 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
964
965 /*
966 * Whatever else happens, drain the thing
967 */
968 ds->pebs_index = ds->pebs_buffer_base;
969
970 if (!test_bit(0, cpuc->active_mask))
971 return;
972
973 WARN_ON_ONCE(!event);
974
975 if (!event->attr.precise_ip)
976 return;
977
978 n = top - at;
979 if (n <= 0)
980 return;
981
982 /*
983 * Should not happen, we program the threshold at 1 and do not
984 * set a reset value.
985 */
986 WARN_ONCE(n > 1, "bad leftover pebs %d\n", n);
987 at += n - 1;
988
989 __intel_pmu_pebs_event(event, iregs, at);
990 }
991
992 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
993 {
994 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
995 struct debug_store *ds = cpuc->ds;
996 struct perf_event *event = NULL;
997 void *at, *top;
998 u64 status = 0;
999 int bit;
1000
1001 if (!x86_pmu.pebs_active)
1002 return;
1003
1004 at = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1005 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1006
1007 ds->pebs_index = ds->pebs_buffer_base;
1008
1009 if (unlikely(at > top))
1010 return;
1011
1012 /*
1013 * Should not happen, we program the threshold at 1 and do not
1014 * set a reset value.
1015 */
1016 WARN_ONCE(top - at > x86_pmu.max_pebs_events * x86_pmu.pebs_record_size,
1017 "Unexpected number of pebs records %ld\n",
1018 (long)(top - at) / x86_pmu.pebs_record_size);
1019
1020 for (; at < top; at += x86_pmu.pebs_record_size) {
1021 struct pebs_record_nhm *p = at;
1022
1023 for_each_set_bit(bit, (unsigned long *)&p->status,
1024 x86_pmu.max_pebs_events) {
1025 event = cpuc->events[bit];
1026 if (!test_bit(bit, cpuc->active_mask))
1027 continue;
1028
1029 WARN_ON_ONCE(!event);
1030
1031 if (!event->attr.precise_ip)
1032 continue;
1033
1034 if (__test_and_set_bit(bit, (unsigned long *)&status))
1035 continue;
1036
1037 break;
1038 }
1039
1040 if (!event || bit >= x86_pmu.max_pebs_events)
1041 continue;
1042
1043 __intel_pmu_pebs_event(event, iregs, at);
1044 }
1045 }
1046
1047 /*
1048 * BTS, PEBS probe and setup
1049 */
1050
1051 void __init intel_ds_init(void)
1052 {
1053 /*
1054 * No support for 32bit formats
1055 */
1056 if (!boot_cpu_has(X86_FEATURE_DTES64))
1057 return;
1058
1059 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS);
1060 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1061 if (x86_pmu.pebs) {
1062 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
1063 int format = x86_pmu.intel_cap.pebs_format;
1064
1065 switch (format) {
1066 case 0:
1067 printk(KERN_CONT "PEBS fmt0%c, ", pebs_type);
1068 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1069 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
1070 break;
1071
1072 case 1:
1073 printk(KERN_CONT "PEBS fmt1%c, ", pebs_type);
1074 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
1075 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1076 break;
1077
1078 case 2:
1079 pr_cont("PEBS fmt2%c, ", pebs_type);
1080 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1081 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1082 break;
1083
1084 default:
1085 printk(KERN_CONT "no PEBS fmt%d%c, ", format, pebs_type);
1086 x86_pmu.pebs = 0;
1087 }
1088 }
1089 }
1090
1091 void perf_restore_debug_store(void)
1092 {
1093 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1094
1095 if (!x86_pmu.bts && !x86_pmu.pebs)
1096 return;
1097
1098 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1099 }
This page took 0.055246 seconds and 5 git commands to generate.