92a44fdbc9d35b87fc3e6bc6c9873d412dcbf1d9
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event_intel_lbr.c
1 #include <linux/perf_event.h>
2 #include <linux/types.h>
3
4 #include <asm/perf_event.h>
5 #include <asm/msr.h>
6 #include <asm/insn.h>
7
8 #include "perf_event.h"
9
10 enum {
11 LBR_FORMAT_32 = 0x00,
12 LBR_FORMAT_LIP = 0x01,
13 LBR_FORMAT_EIP = 0x02,
14 LBR_FORMAT_EIP_FLAGS = 0x03,
15 LBR_FORMAT_EIP_FLAGS2 = 0x04,
16 LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_EIP_FLAGS2,
17 };
18
19 static enum {
20 LBR_EIP_FLAGS = 1,
21 LBR_TSX = 2,
22 } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
23 [LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS,
24 [LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
25 };
26
27 /*
28 * Intel LBR_SELECT bits
29 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
30 *
31 * Hardware branch filter (not available on all CPUs)
32 */
33 #define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
34 #define LBR_USER_BIT 1 /* do not capture at ring > 0 */
35 #define LBR_JCC_BIT 2 /* do not capture conditional branches */
36 #define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
37 #define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
38 #define LBR_RETURN_BIT 5 /* do not capture near returns */
39 #define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
40 #define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
41 #define LBR_FAR_BIT 8 /* do not capture far branches */
42 #define LBR_CALL_STACK_BIT 9 /* enable call stack */
43
44 #define LBR_KERNEL (1 << LBR_KERNEL_BIT)
45 #define LBR_USER (1 << LBR_USER_BIT)
46 #define LBR_JCC (1 << LBR_JCC_BIT)
47 #define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
48 #define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
49 #define LBR_RETURN (1 << LBR_RETURN_BIT)
50 #define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
51 #define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
52 #define LBR_FAR (1 << LBR_FAR_BIT)
53 #define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT)
54
55 #define LBR_PLM (LBR_KERNEL | LBR_USER)
56
57 #define LBR_SEL_MASK 0x1ff /* valid bits in LBR_SELECT */
58 #define LBR_NOT_SUPP -1 /* LBR filter not supported */
59 #define LBR_IGN 0 /* ignored */
60
61 #define LBR_ANY \
62 (LBR_JCC |\
63 LBR_REL_CALL |\
64 LBR_IND_CALL |\
65 LBR_RETURN |\
66 LBR_REL_JMP |\
67 LBR_IND_JMP |\
68 LBR_FAR)
69
70 #define LBR_FROM_FLAG_MISPRED (1ULL << 63)
71 #define LBR_FROM_FLAG_IN_TX (1ULL << 62)
72 #define LBR_FROM_FLAG_ABORT (1ULL << 61)
73
74 /*
75 * x86control flow change classification
76 * x86control flow changes include branches, interrupts, traps, faults
77 */
78 enum {
79 X86_BR_NONE = 0, /* unknown */
80
81 X86_BR_USER = 1 << 0, /* branch target is user */
82 X86_BR_KERNEL = 1 << 1, /* branch target is kernel */
83
84 X86_BR_CALL = 1 << 2, /* call */
85 X86_BR_RET = 1 << 3, /* return */
86 X86_BR_SYSCALL = 1 << 4, /* syscall */
87 X86_BR_SYSRET = 1 << 5, /* syscall return */
88 X86_BR_INT = 1 << 6, /* sw interrupt */
89 X86_BR_IRET = 1 << 7, /* return from interrupt */
90 X86_BR_JCC = 1 << 8, /* conditional */
91 X86_BR_JMP = 1 << 9, /* jump */
92 X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */
93 X86_BR_IND_CALL = 1 << 11,/* indirect calls */
94 X86_BR_ABORT = 1 << 12,/* transaction abort */
95 X86_BR_IN_TX = 1 << 13,/* in transaction */
96 X86_BR_NO_TX = 1 << 14,/* not in transaction */
97 X86_BR_CALL_STACK = 1 << 15,/* call stack */
98 };
99
100 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
101 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
102
103 #define X86_BR_ANY \
104 (X86_BR_CALL |\
105 X86_BR_RET |\
106 X86_BR_SYSCALL |\
107 X86_BR_SYSRET |\
108 X86_BR_INT |\
109 X86_BR_IRET |\
110 X86_BR_JCC |\
111 X86_BR_JMP |\
112 X86_BR_IRQ |\
113 X86_BR_ABORT |\
114 X86_BR_IND_CALL)
115
116 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
117
118 #define X86_BR_ANY_CALL \
119 (X86_BR_CALL |\
120 X86_BR_IND_CALL |\
121 X86_BR_SYSCALL |\
122 X86_BR_IRQ |\
123 X86_BR_INT)
124
125 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
126
127 /*
128 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
129 * otherwise it becomes near impossible to get a reliable stack.
130 */
131
132 static void __intel_pmu_lbr_enable(void)
133 {
134 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
135 u64 debugctl, lbr_select = 0;
136
137 if (cpuc->lbr_sel) {
138 lbr_select = cpuc->lbr_sel->config;
139 wrmsrl(MSR_LBR_SELECT, lbr_select);
140 }
141
142 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
143 debugctl |= DEBUGCTLMSR_LBR;
144 /*
145 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
146 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
147 * may cause superfluous increase/decrease of LBR_TOS.
148 */
149 if (!(lbr_select & LBR_CALL_STACK))
150 debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
151 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
152 }
153
154 static void __intel_pmu_lbr_disable(void)
155 {
156 u64 debugctl;
157
158 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
159 debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
160 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
161 }
162
163 static void intel_pmu_lbr_reset_32(void)
164 {
165 int i;
166
167 for (i = 0; i < x86_pmu.lbr_nr; i++)
168 wrmsrl(x86_pmu.lbr_from + i, 0);
169 }
170
171 static void intel_pmu_lbr_reset_64(void)
172 {
173 int i;
174
175 for (i = 0; i < x86_pmu.lbr_nr; i++) {
176 wrmsrl(x86_pmu.lbr_from + i, 0);
177 wrmsrl(x86_pmu.lbr_to + i, 0);
178 }
179 }
180
181 void intel_pmu_lbr_reset(void)
182 {
183 if (!x86_pmu.lbr_nr)
184 return;
185
186 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
187 intel_pmu_lbr_reset_32();
188 else
189 intel_pmu_lbr_reset_64();
190 }
191
192 /*
193 * TOS = most recently recorded branch
194 */
195 static inline u64 intel_pmu_lbr_tos(void)
196 {
197 u64 tos;
198
199 rdmsrl(x86_pmu.lbr_tos, tos);
200 return tos;
201 }
202
203 enum {
204 LBR_NONE,
205 LBR_VALID,
206 };
207
208 static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
209 {
210 int i;
211 unsigned lbr_idx, mask;
212 u64 tos;
213
214 if (task_ctx->lbr_callstack_users == 0 ||
215 task_ctx->lbr_stack_state == LBR_NONE) {
216 intel_pmu_lbr_reset();
217 return;
218 }
219
220 mask = x86_pmu.lbr_nr - 1;
221 tos = intel_pmu_lbr_tos();
222 for (i = 0; i < x86_pmu.lbr_nr; i++) {
223 lbr_idx = (tos - i) & mask;
224 wrmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
225 wrmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
226 }
227 task_ctx->lbr_stack_state = LBR_NONE;
228 }
229
230 static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
231 {
232 int i;
233 unsigned lbr_idx, mask;
234 u64 tos;
235
236 if (task_ctx->lbr_callstack_users == 0) {
237 task_ctx->lbr_stack_state = LBR_NONE;
238 return;
239 }
240
241 mask = x86_pmu.lbr_nr - 1;
242 tos = intel_pmu_lbr_tos();
243 for (i = 0; i < x86_pmu.lbr_nr; i++) {
244 lbr_idx = (tos - i) & mask;
245 rdmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
246 rdmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
247 }
248 task_ctx->lbr_stack_state = LBR_VALID;
249 }
250
251 void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
252 {
253 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
254 struct x86_perf_task_context *task_ctx;
255
256 if (!x86_pmu.lbr_nr)
257 return;
258
259 /*
260 * If LBR callstack feature is enabled and the stack was saved when
261 * the task was scheduled out, restore the stack. Otherwise flush
262 * the LBR stack.
263 */
264 task_ctx = ctx ? ctx->task_ctx_data : NULL;
265 if (task_ctx) {
266 if (sched_in) {
267 __intel_pmu_lbr_restore(task_ctx);
268 cpuc->lbr_context = ctx;
269 } else {
270 __intel_pmu_lbr_save(task_ctx);
271 }
272 return;
273 }
274
275 /*
276 * When sampling the branck stack in system-wide, it may be
277 * necessary to flush the stack on context switch. This happens
278 * when the branch stack does not tag its entries with the pid
279 * of the current task. Otherwise it becomes impossible to
280 * associate a branch entry with a task. This ambiguity is more
281 * likely to appear when the branch stack supports priv level
282 * filtering and the user sets it to monitor only at the user
283 * level (which could be a useful measurement in system-wide
284 * mode). In that case, the risk is high of having a branch
285 * stack with branch from multiple tasks.
286 */
287 if (sched_in) {
288 intel_pmu_lbr_reset();
289 cpuc->lbr_context = ctx;
290 }
291 }
292
293 static inline bool branch_user_callstack(unsigned br_sel)
294 {
295 return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
296 }
297
298 void intel_pmu_lbr_enable(struct perf_event *event)
299 {
300 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
301 struct x86_perf_task_context *task_ctx;
302
303 if (!x86_pmu.lbr_nr)
304 return;
305
306 /*
307 * Reset the LBR stack if we changed task context to
308 * avoid data leaks.
309 */
310 if (event->ctx->task && cpuc->lbr_context != event->ctx) {
311 intel_pmu_lbr_reset();
312 cpuc->lbr_context = event->ctx;
313 }
314 cpuc->br_sel = event->hw.branch_reg.reg;
315
316 if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
317 event->ctx->task_ctx_data) {
318 task_ctx = event->ctx->task_ctx_data;
319 task_ctx->lbr_callstack_users++;
320 }
321
322 cpuc->lbr_users++;
323 perf_sched_cb_inc(event->ctx->pmu);
324 }
325
326 void intel_pmu_lbr_disable(struct perf_event *event)
327 {
328 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
329 struct x86_perf_task_context *task_ctx;
330
331 if (!x86_pmu.lbr_nr)
332 return;
333
334 if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
335 event->ctx->task_ctx_data) {
336 task_ctx = event->ctx->task_ctx_data;
337 task_ctx->lbr_callstack_users--;
338 }
339
340 cpuc->lbr_users--;
341 WARN_ON_ONCE(cpuc->lbr_users < 0);
342 perf_sched_cb_dec(event->ctx->pmu);
343
344 if (cpuc->enabled && !cpuc->lbr_users) {
345 __intel_pmu_lbr_disable();
346 /* avoid stale pointer */
347 cpuc->lbr_context = NULL;
348 }
349 }
350
351 void intel_pmu_lbr_enable_all(void)
352 {
353 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
354
355 if (cpuc->lbr_users)
356 __intel_pmu_lbr_enable();
357 }
358
359 void intel_pmu_lbr_disable_all(void)
360 {
361 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
362
363 if (cpuc->lbr_users)
364 __intel_pmu_lbr_disable();
365 }
366
367 static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
368 {
369 unsigned long mask = x86_pmu.lbr_nr - 1;
370 u64 tos = intel_pmu_lbr_tos();
371 int i;
372
373 for (i = 0; i < x86_pmu.lbr_nr; i++) {
374 unsigned long lbr_idx = (tos - i) & mask;
375 union {
376 struct {
377 u32 from;
378 u32 to;
379 };
380 u64 lbr;
381 } msr_lastbranch;
382
383 rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
384
385 cpuc->lbr_entries[i].from = msr_lastbranch.from;
386 cpuc->lbr_entries[i].to = msr_lastbranch.to;
387 cpuc->lbr_entries[i].mispred = 0;
388 cpuc->lbr_entries[i].predicted = 0;
389 cpuc->lbr_entries[i].reserved = 0;
390 }
391 cpuc->lbr_stack.nr = i;
392 }
393
394 /*
395 * Due to lack of segmentation in Linux the effective address (offset)
396 * is the same as the linear address, allowing us to merge the LIP and EIP
397 * LBR formats.
398 */
399 static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
400 {
401 unsigned long mask = x86_pmu.lbr_nr - 1;
402 int lbr_format = x86_pmu.intel_cap.lbr_format;
403 u64 tos = intel_pmu_lbr_tos();
404 int i;
405 int out = 0;
406
407 for (i = 0; i < x86_pmu.lbr_nr; i++) {
408 unsigned long lbr_idx = (tos - i) & mask;
409 u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
410 int skip = 0;
411 int lbr_flags = lbr_desc[lbr_format];
412
413 rdmsrl(x86_pmu.lbr_from + lbr_idx, from);
414 rdmsrl(x86_pmu.lbr_to + lbr_idx, to);
415
416 if (lbr_flags & LBR_EIP_FLAGS) {
417 mis = !!(from & LBR_FROM_FLAG_MISPRED);
418 pred = !mis;
419 skip = 1;
420 }
421 if (lbr_flags & LBR_TSX) {
422 in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
423 abort = !!(from & LBR_FROM_FLAG_ABORT);
424 skip = 3;
425 }
426 from = (u64)((((s64)from) << skip) >> skip);
427
428 /*
429 * Some CPUs report duplicated abort records,
430 * with the second entry not having an abort bit set.
431 * Skip them here. This loop runs backwards,
432 * so we need to undo the previous record.
433 * If the abort just happened outside the window
434 * the extra entry cannot be removed.
435 */
436 if (abort && x86_pmu.lbr_double_abort && out > 0)
437 out--;
438
439 cpuc->lbr_entries[out].from = from;
440 cpuc->lbr_entries[out].to = to;
441 cpuc->lbr_entries[out].mispred = mis;
442 cpuc->lbr_entries[out].predicted = pred;
443 cpuc->lbr_entries[out].in_tx = in_tx;
444 cpuc->lbr_entries[out].abort = abort;
445 cpuc->lbr_entries[out].reserved = 0;
446 out++;
447 }
448 cpuc->lbr_stack.nr = out;
449 }
450
451 void intel_pmu_lbr_read(void)
452 {
453 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
454
455 if (!cpuc->lbr_users)
456 return;
457
458 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
459 intel_pmu_lbr_read_32(cpuc);
460 else
461 intel_pmu_lbr_read_64(cpuc);
462
463 intel_pmu_lbr_filter(cpuc);
464 }
465
466 /*
467 * SW filter is used:
468 * - in case there is no HW filter
469 * - in case the HW filter has errata or limitations
470 */
471 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
472 {
473 u64 br_type = event->attr.branch_sample_type;
474 int mask = 0;
475
476 if (br_type & PERF_SAMPLE_BRANCH_USER)
477 mask |= X86_BR_USER;
478
479 if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
480 mask |= X86_BR_KERNEL;
481
482 /* we ignore BRANCH_HV here */
483
484 if (br_type & PERF_SAMPLE_BRANCH_ANY)
485 mask |= X86_BR_ANY;
486
487 if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
488 mask |= X86_BR_ANY_CALL;
489
490 if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
491 mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
492
493 if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
494 mask |= X86_BR_IND_CALL;
495
496 if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
497 mask |= X86_BR_ABORT;
498
499 if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
500 mask |= X86_BR_IN_TX;
501
502 if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
503 mask |= X86_BR_NO_TX;
504
505 if (br_type & PERF_SAMPLE_BRANCH_COND)
506 mask |= X86_BR_JCC;
507
508 if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
509 if (!x86_pmu_has_lbr_callstack())
510 return -EOPNOTSUPP;
511 if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
512 return -EINVAL;
513 mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
514 X86_BR_CALL_STACK;
515 }
516
517 /*
518 * stash actual user request into reg, it may
519 * be used by fixup code for some CPU
520 */
521 event->hw.branch_reg.reg = mask;
522 return 0;
523 }
524
525 /*
526 * setup the HW LBR filter
527 * Used only when available, may not be enough to disambiguate
528 * all branches, may need the help of the SW filter
529 */
530 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
531 {
532 struct hw_perf_event_extra *reg;
533 u64 br_type = event->attr.branch_sample_type;
534 u64 mask = 0, v;
535 int i;
536
537 for (i = 0; i < PERF_SAMPLE_BRANCH_SELECT_MAP_SIZE; i++) {
538 if (!(br_type & (1ULL << i)))
539 continue;
540
541 v = x86_pmu.lbr_sel_map[i];
542 if (v == LBR_NOT_SUPP)
543 return -EOPNOTSUPP;
544
545 if (v != LBR_IGN)
546 mask |= v;
547 }
548 reg = &event->hw.branch_reg;
549 reg->idx = EXTRA_REG_LBR;
550
551 /*
552 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
553 * in suppress mode. So LBR_SELECT should be set to
554 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
555 */
556 reg->config = mask ^ x86_pmu.lbr_sel_mask;
557
558 return 0;
559 }
560
561 int intel_pmu_setup_lbr_filter(struct perf_event *event)
562 {
563 int ret = 0;
564
565 /*
566 * no LBR on this PMU
567 */
568 if (!x86_pmu.lbr_nr)
569 return -EOPNOTSUPP;
570
571 /*
572 * setup SW LBR filter
573 */
574 ret = intel_pmu_setup_sw_lbr_filter(event);
575 if (ret)
576 return ret;
577
578 /*
579 * setup HW LBR filter, if any
580 */
581 if (x86_pmu.lbr_sel_map)
582 ret = intel_pmu_setup_hw_lbr_filter(event);
583
584 return ret;
585 }
586
587 /*
588 * return the type of control flow change at address "from"
589 * intruction is not necessarily a branch (in case of interrupt).
590 *
591 * The branch type returned also includes the priv level of the
592 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
593 *
594 * If a branch type is unknown OR the instruction cannot be
595 * decoded (e.g., text page not present), then X86_BR_NONE is
596 * returned.
597 */
598 static int branch_type(unsigned long from, unsigned long to, int abort)
599 {
600 struct insn insn;
601 void *addr;
602 int bytes_read, bytes_left;
603 int ret = X86_BR_NONE;
604 int ext, to_plm, from_plm;
605 u8 buf[MAX_INSN_SIZE];
606 int is64 = 0;
607
608 to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
609 from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
610
611 /*
612 * maybe zero if lbr did not fill up after a reset by the time
613 * we get a PMU interrupt
614 */
615 if (from == 0 || to == 0)
616 return X86_BR_NONE;
617
618 if (abort)
619 return X86_BR_ABORT | to_plm;
620
621 if (from_plm == X86_BR_USER) {
622 /*
623 * can happen if measuring at the user level only
624 * and we interrupt in a kernel thread, e.g., idle.
625 */
626 if (!current->mm)
627 return X86_BR_NONE;
628
629 /* may fail if text not present */
630 bytes_left = copy_from_user_nmi(buf, (void __user *)from,
631 MAX_INSN_SIZE);
632 bytes_read = MAX_INSN_SIZE - bytes_left;
633 if (!bytes_read)
634 return X86_BR_NONE;
635
636 addr = buf;
637 } else {
638 /*
639 * The LBR logs any address in the IP, even if the IP just
640 * faulted. This means userspace can control the from address.
641 * Ensure we don't blindy read any address by validating it is
642 * a known text address.
643 */
644 if (kernel_text_address(from)) {
645 addr = (void *)from;
646 /*
647 * Assume we can get the maximum possible size
648 * when grabbing kernel data. This is not
649 * _strictly_ true since we could possibly be
650 * executing up next to a memory hole, but
651 * it is very unlikely to be a problem.
652 */
653 bytes_read = MAX_INSN_SIZE;
654 } else {
655 return X86_BR_NONE;
656 }
657 }
658
659 /*
660 * decoder needs to know the ABI especially
661 * on 64-bit systems running 32-bit apps
662 */
663 #ifdef CONFIG_X86_64
664 is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
665 #endif
666 insn_init(&insn, addr, bytes_read, is64);
667 insn_get_opcode(&insn);
668 if (!insn.opcode.got)
669 return X86_BR_ABORT;
670
671 switch (insn.opcode.bytes[0]) {
672 case 0xf:
673 switch (insn.opcode.bytes[1]) {
674 case 0x05: /* syscall */
675 case 0x34: /* sysenter */
676 ret = X86_BR_SYSCALL;
677 break;
678 case 0x07: /* sysret */
679 case 0x35: /* sysexit */
680 ret = X86_BR_SYSRET;
681 break;
682 case 0x80 ... 0x8f: /* conditional */
683 ret = X86_BR_JCC;
684 break;
685 default:
686 ret = X86_BR_NONE;
687 }
688 break;
689 case 0x70 ... 0x7f: /* conditional */
690 ret = X86_BR_JCC;
691 break;
692 case 0xc2: /* near ret */
693 case 0xc3: /* near ret */
694 case 0xca: /* far ret */
695 case 0xcb: /* far ret */
696 ret = X86_BR_RET;
697 break;
698 case 0xcf: /* iret */
699 ret = X86_BR_IRET;
700 break;
701 case 0xcc ... 0xce: /* int */
702 ret = X86_BR_INT;
703 break;
704 case 0xe8: /* call near rel */
705 case 0x9a: /* call far absolute */
706 ret = X86_BR_CALL;
707 break;
708 case 0xe0 ... 0xe3: /* loop jmp */
709 ret = X86_BR_JCC;
710 break;
711 case 0xe9 ... 0xeb: /* jmp */
712 ret = X86_BR_JMP;
713 break;
714 case 0xff: /* call near absolute, call far absolute ind */
715 insn_get_modrm(&insn);
716 ext = (insn.modrm.bytes[0] >> 3) & 0x7;
717 switch (ext) {
718 case 2: /* near ind call */
719 case 3: /* far ind call */
720 ret = X86_BR_IND_CALL;
721 break;
722 case 4:
723 case 5:
724 ret = X86_BR_JMP;
725 break;
726 }
727 break;
728 default:
729 ret = X86_BR_NONE;
730 }
731 /*
732 * interrupts, traps, faults (and thus ring transition) may
733 * occur on any instructions. Thus, to classify them correctly,
734 * we need to first look at the from and to priv levels. If they
735 * are different and to is in the kernel, then it indicates
736 * a ring transition. If the from instruction is not a ring
737 * transition instr (syscall, systenter, int), then it means
738 * it was a irq, trap or fault.
739 *
740 * we have no way of detecting kernel to kernel faults.
741 */
742 if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
743 && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
744 ret = X86_BR_IRQ;
745
746 /*
747 * branch priv level determined by target as
748 * is done by HW when LBR_SELECT is implemented
749 */
750 if (ret != X86_BR_NONE)
751 ret |= to_plm;
752
753 return ret;
754 }
755
756 /*
757 * implement actual branch filter based on user demand.
758 * Hardware may not exactly satisfy that request, thus
759 * we need to inspect opcodes. Mismatched branches are
760 * discarded. Therefore, the number of branches returned
761 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
762 */
763 static void
764 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
765 {
766 u64 from, to;
767 int br_sel = cpuc->br_sel;
768 int i, j, type;
769 bool compress = false;
770
771 /* if sampling all branches, then nothing to filter */
772 if ((br_sel & X86_BR_ALL) == X86_BR_ALL)
773 return;
774
775 for (i = 0; i < cpuc->lbr_stack.nr; i++) {
776
777 from = cpuc->lbr_entries[i].from;
778 to = cpuc->lbr_entries[i].to;
779
780 type = branch_type(from, to, cpuc->lbr_entries[i].abort);
781 if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
782 if (cpuc->lbr_entries[i].in_tx)
783 type |= X86_BR_IN_TX;
784 else
785 type |= X86_BR_NO_TX;
786 }
787
788 /* if type does not correspond, then discard */
789 if (type == X86_BR_NONE || (br_sel & type) != type) {
790 cpuc->lbr_entries[i].from = 0;
791 compress = true;
792 }
793 }
794
795 if (!compress)
796 return;
797
798 /* remove all entries with from=0 */
799 for (i = 0; i < cpuc->lbr_stack.nr; ) {
800 if (!cpuc->lbr_entries[i].from) {
801 j = i;
802 while (++j < cpuc->lbr_stack.nr)
803 cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
804 cpuc->lbr_stack.nr--;
805 if (!cpuc->lbr_entries[i].from)
806 continue;
807 }
808 i++;
809 }
810 }
811
812 /*
813 * Map interface branch filters onto LBR filters
814 */
815 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_SELECT_MAP_SIZE] = {
816 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
817 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
818 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
819 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
820 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP
821 | LBR_IND_JMP | LBR_FAR,
822 /*
823 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
824 */
825 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
826 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
827 /*
828 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
829 */
830 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
831 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
832 };
833
834 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_SELECT_MAP_SIZE] = {
835 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
836 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
837 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
838 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
839 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
840 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
841 | LBR_FAR,
842 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
843 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
844 };
845
846 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_SELECT_MAP_SIZE] = {
847 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
848 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
849 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
850 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
851 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
852 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
853 | LBR_FAR,
854 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
855 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
856 [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
857 | LBR_RETURN | LBR_CALL_STACK,
858 };
859
860 /* core */
861 void __init intel_pmu_lbr_init_core(void)
862 {
863 x86_pmu.lbr_nr = 4;
864 x86_pmu.lbr_tos = MSR_LBR_TOS;
865 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
866 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
867
868 /*
869 * SW branch filter usage:
870 * - compensate for lack of HW filter
871 */
872 pr_cont("4-deep LBR, ");
873 }
874
875 /* nehalem/westmere */
876 void __init intel_pmu_lbr_init_nhm(void)
877 {
878 x86_pmu.lbr_nr = 16;
879 x86_pmu.lbr_tos = MSR_LBR_TOS;
880 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
881 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
882
883 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
884 x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
885
886 /*
887 * SW branch filter usage:
888 * - workaround LBR_SEL errata (see above)
889 * - support syscall, sysret capture.
890 * That requires LBR_FAR but that means far
891 * jmp need to be filtered out
892 */
893 pr_cont("16-deep LBR, ");
894 }
895
896 /* sandy bridge */
897 void __init intel_pmu_lbr_init_snb(void)
898 {
899 x86_pmu.lbr_nr = 16;
900 x86_pmu.lbr_tos = MSR_LBR_TOS;
901 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
902 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
903
904 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
905 x86_pmu.lbr_sel_map = snb_lbr_sel_map;
906
907 /*
908 * SW branch filter usage:
909 * - support syscall, sysret capture.
910 * That requires LBR_FAR but that means far
911 * jmp need to be filtered out
912 */
913 pr_cont("16-deep LBR, ");
914 }
915
916 /* haswell */
917 void intel_pmu_lbr_init_hsw(void)
918 {
919 x86_pmu.lbr_nr = 16;
920 x86_pmu.lbr_tos = MSR_LBR_TOS;
921 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
922 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
923
924 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
925 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
926
927 pr_cont("16-deep LBR, ");
928 }
929
930 /* atom */
931 void __init intel_pmu_lbr_init_atom(void)
932 {
933 /*
934 * only models starting at stepping 10 seems
935 * to have an operational LBR which can freeze
936 * on PMU interrupt
937 */
938 if (boot_cpu_data.x86_model == 28
939 && boot_cpu_data.x86_mask < 10) {
940 pr_cont("LBR disabled due to erratum");
941 return;
942 }
943
944 x86_pmu.lbr_nr = 8;
945 x86_pmu.lbr_tos = MSR_LBR_TOS;
946 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
947 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
948
949 /*
950 * SW branch filter usage:
951 * - compensate for lack of HW filter
952 */
953 pr_cont("8-deep LBR, ");
954 }
This page took 0.081061 seconds and 4 git commands to generate.