a2d1176c38ee0d59b3e47925a79d8aebdff73d20
[deliverable/linux.git] / arch / x86 / kernel / ds.c
1 /*
2 * Debug Store support
3 *
4 * This provides a low-level interface to the hardware's Debug Store
5 * feature that is used for branch trace store (BTS) and
6 * precise-event based sampling (PEBS).
7 *
8 * It manages:
9 * - per-thread and per-cpu allocation of BTS and PEBS
10 * - buffer memory allocation (optional)
11 * - buffer overflow handling
12 * - buffer access
13 *
14 * It assumes:
15 * - get_task_struct on all parameter tasks
16 * - current is allowed to trace parameter tasks
17 *
18 *
19 * Copyright (C) 2007-2008 Intel Corporation.
20 * Markus Metzger <markus.t.metzger@intel.com>, 2007-2008
21 */
22
23
24 #include <asm/ds.h>
25
26 #include <linux/errno.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/mm.h>
31
32
33 /*
34 * The configuration for a particular DS hardware implementation.
35 */
36 struct ds_configuration {
37 /* the size of the DS structure in bytes */
38 unsigned char sizeof_ds;
39 /* the size of one pointer-typed field in the DS structure in bytes;
40 this covers the first 8 fields related to buffer management. */
41 unsigned char sizeof_field;
42 /* the size of a BTS/PEBS record in bytes */
43 unsigned char sizeof_rec[2];
44 };
45 static struct ds_configuration ds_cfg;
46
47
48 /*
49 * Debug Store (DS) save area configuration (see Intel64 and IA32
50 * Architectures Software Developer's Manual, section 18.5)
51 *
52 * The DS configuration consists of the following fields; different
53 * architetures vary in the size of those fields.
54 * - double-word aligned base linear address of the BTS buffer
55 * - write pointer into the BTS buffer
56 * - end linear address of the BTS buffer (one byte beyond the end of
57 * the buffer)
58 * - interrupt pointer into BTS buffer
59 * (interrupt occurs when write pointer passes interrupt pointer)
60 * - double-word aligned base linear address of the PEBS buffer
61 * - write pointer into the PEBS buffer
62 * - end linear address of the PEBS buffer (one byte beyond the end of
63 * the buffer)
64 * - interrupt pointer into PEBS buffer
65 * (interrupt occurs when write pointer passes interrupt pointer)
66 * - value to which counter is reset following counter overflow
67 *
68 * Later architectures use 64bit pointers throughout, whereas earlier
69 * architectures use 32bit pointers in 32bit mode.
70 *
71 *
72 * We compute the base address for the first 8 fields based on:
73 * - the field size stored in the DS configuration
74 * - the relative field position
75 * - an offset giving the start of the respective region
76 *
77 * This offset is further used to index various arrays holding
78 * information for BTS and PEBS at the respective index.
79 *
80 * On later 32bit processors, we only access the lower 32bit of the
81 * 64bit pointer fields. The upper halves will be zeroed out.
82 */
83
84 enum ds_field {
85 ds_buffer_base = 0,
86 ds_index,
87 ds_absolute_maximum,
88 ds_interrupt_threshold,
89 };
90
91 enum ds_qualifier {
92 ds_bts = 0,
93 ds_pebs
94 };
95
96 static inline unsigned long ds_get(const unsigned char *base,
97 enum ds_qualifier qual, enum ds_field field)
98 {
99 base += (ds_cfg.sizeof_field * (field + (4 * qual)));
100 return *(unsigned long *)base;
101 }
102
103 static inline void ds_set(unsigned char *base, enum ds_qualifier qual,
104 enum ds_field field, unsigned long value)
105 {
106 base += (ds_cfg.sizeof_field * (field + (4 * qual)));
107 (*(unsigned long *)base) = value;
108 }
109
110
111 /*
112 * Locking is done only for allocating BTS or PEBS resources and for
113 * guarding context and buffer memory allocation.
114 *
115 * Most functions require the current task to own the ds context part
116 * they are going to access. All the locking is done when validating
117 * access to the context.
118 */
119 static spinlock_t ds_lock = __SPIN_LOCK_UNLOCKED(ds_lock);
120
121 /*
122 * Validate that the current task is allowed to access the BTS/PEBS
123 * buffer of the parameter task.
124 *
125 * Returns 0, if access is granted; -Eerrno, otherwise.
126 */
127 static inline int ds_validate_access(struct ds_context *context,
128 enum ds_qualifier qual)
129 {
130 if (!context)
131 return -EPERM;
132
133 if (context->owner[qual] == current)
134 return 0;
135
136 return -EPERM;
137 }
138
139
140 /*
141 * We either support (system-wide) per-cpu or per-thread allocation.
142 * We distinguish the two based on the task_struct pointer, where a
143 * NULL pointer indicates per-cpu allocation for the current cpu.
144 *
145 * Allocations are use-counted. As soon as resources are allocated,
146 * further allocations must be of the same type (per-cpu or
147 * per-thread). We model this by counting allocations (i.e. the number
148 * of tracers of a certain type) for one type negatively:
149 * =0 no tracers
150 * >0 number of per-thread tracers
151 * <0 number of per-cpu tracers
152 *
153 * The below functions to get and put tracers and to check the
154 * allocation type require the ds_lock to be held by the caller.
155 *
156 * Tracers essentially gives the number of ds contexts for a certain
157 * type of allocation.
158 */
159 static long tracers;
160
161 static inline void get_tracer(struct task_struct *task)
162 {
163 tracers += (task ? 1 : -1);
164 }
165
166 static inline void put_tracer(struct task_struct *task)
167 {
168 tracers -= (task ? 1 : -1);
169 }
170
171 static inline int check_tracer(struct task_struct *task)
172 {
173 return (task ? (tracers >= 0) : (tracers <= 0));
174 }
175
176
177 /*
178 * The DS context is either attached to a thread or to a cpu:
179 * - in the former case, the thread_struct contains a pointer to the
180 * attached context.
181 * - in the latter case, we use a static array of per-cpu context
182 * pointers.
183 *
184 * Contexts are use-counted. They are allocated on first access and
185 * deallocated when the last user puts the context.
186 *
187 * We distinguish between an allocating and a non-allocating get of a
188 * context:
189 * - the allocating get is used for requesting BTS/PEBS resources. It
190 * requires the caller to hold the global ds_lock.
191 * - the non-allocating get is used for all other cases. A
192 * non-existing context indicates an error. It acquires and releases
193 * the ds_lock itself for obtaining the context.
194 *
195 * A context and its DS configuration are allocated and deallocated
196 * together. A context always has a DS configuration of the
197 * appropriate size.
198 */
199 static DEFINE_PER_CPU(struct ds_context *, system_context);
200
201 #define this_system_context per_cpu(system_context, smp_processor_id())
202
203 /*
204 * Returns the pointer to the parameter task's context or to the
205 * system-wide context, if task is NULL.
206 *
207 * Increases the use count of the returned context, if not NULL.
208 */
209 static inline struct ds_context *ds_get_context(struct task_struct *task)
210 {
211 struct ds_context *context;
212 unsigned long irq;
213
214 spin_lock_irqsave(&ds_lock, irq);
215
216 context = (task ? task->thread.ds_ctx : this_system_context);
217 if (context)
218 context->count++;
219
220 spin_unlock_irqrestore(&ds_lock, irq);
221
222 return context;
223 }
224
225 /*
226 * Same as ds_get_context, but allocates the context and it's DS
227 * structure, if necessary; returns NULL; if out of memory.
228 */
229 static inline struct ds_context *ds_alloc_context(struct task_struct *task)
230 {
231 struct ds_context **p_context =
232 (task ? &task->thread.ds_ctx : &this_system_context);
233 struct ds_context *context = *p_context;
234 unsigned long irq;
235
236 if (!context) {
237 context = kzalloc(sizeof(*context), GFP_KERNEL);
238 if (!context)
239 return NULL;
240
241 context->ds = kzalloc(ds_cfg.sizeof_ds, GFP_KERNEL);
242 if (!context->ds) {
243 kfree(context);
244 return NULL;
245 }
246
247 spin_lock_irqsave(&ds_lock, irq);
248
249 if (*p_context) {
250 kfree(context->ds);
251 kfree(context);
252
253 context = *p_context;
254 } else {
255 *p_context = context;
256
257 context->this = p_context;
258 context->task = task;
259
260 if (task)
261 set_tsk_thread_flag(task, TIF_DS_AREA_MSR);
262
263 if (!task || (task == current))
264 wrmsrl(MSR_IA32_DS_AREA,
265 (unsigned long)context->ds);
266 }
267 spin_unlock_irqrestore(&ds_lock, irq);
268 }
269
270 context->count++;
271
272 return context;
273 }
274
275 /*
276 * Decreases the use count of the parameter context, if not NULL.
277 * Deallocates the context, if the use count reaches zero.
278 */
279 static inline void ds_put_context(struct ds_context *context)
280 {
281 unsigned long irq;
282
283 if (!context)
284 return;
285
286 spin_lock_irqsave(&ds_lock, irq);
287
288 if (--context->count)
289 goto out;
290
291 *(context->this) = NULL;
292
293 if (context->task)
294 clear_tsk_thread_flag(context->task, TIF_DS_AREA_MSR);
295
296 if (!context->task || (context->task == current))
297 wrmsrl(MSR_IA32_DS_AREA, 0);
298
299 put_tracer(context->task);
300
301 /* free any leftover buffers from tracers that did not
302 * deallocate them properly. */
303 kfree(context->buffer[ds_bts]);
304 kfree(context->buffer[ds_pebs]);
305 kfree(context->ds);
306 kfree(context);
307 out:
308 spin_unlock_irqrestore(&ds_lock, irq);
309 }
310
311
312 /*
313 * Handle a buffer overflow
314 *
315 * task: the task whose buffers are overflowing;
316 * NULL for a buffer overflow on the current cpu
317 * context: the ds context
318 * qual: the buffer type
319 */
320 static void ds_overflow(struct task_struct *task, struct ds_context *context,
321 enum ds_qualifier qual)
322 {
323 if (!context)
324 return;
325
326 if (context->callback[qual])
327 (*context->callback[qual])(task);
328
329 /* todo: do some more overflow handling */
330 }
331
332
333 /*
334 * Allocate a non-pageable buffer of the parameter size.
335 * Checks the memory and the locked memory rlimit.
336 *
337 * Returns the buffer, if successful;
338 * NULL, if out of memory or rlimit exceeded.
339 *
340 * size: the requested buffer size in bytes
341 * pages (out): if not NULL, contains the number of pages reserved
342 */
343 static inline void *ds_allocate_buffer(size_t size, unsigned int *pages)
344 {
345 unsigned long rlim, vm, pgsz;
346 void *buffer;
347
348 pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
349
350 rlim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
351 vm = current->mm->total_vm + pgsz;
352 if (rlim < vm)
353 return NULL;
354
355 rlim = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
356 vm = current->mm->locked_vm + pgsz;
357 if (rlim < vm)
358 return NULL;
359
360 buffer = kzalloc(size, GFP_KERNEL);
361 if (!buffer)
362 return NULL;
363
364 current->mm->total_vm += pgsz;
365 current->mm->locked_vm += pgsz;
366
367 if (pages)
368 *pages = pgsz;
369
370 return buffer;
371 }
372
373 static int ds_request(struct task_struct *task, void *base, size_t size,
374 ds_ovfl_callback_t ovfl, enum ds_qualifier qual)
375 {
376 struct ds_context *context;
377 unsigned long buffer, adj;
378 const unsigned long alignment = (1 << 3);
379 unsigned long irq;
380 int error = 0;
381
382 if (!ds_cfg.sizeof_ds)
383 return -EOPNOTSUPP;
384
385 /* we require some space to do alignment adjustments below */
386 if (size < (alignment + ds_cfg.sizeof_rec[qual]))
387 return -EINVAL;
388
389 /* buffer overflow notification is not yet implemented */
390 if (ovfl)
391 return -EOPNOTSUPP;
392
393
394 context = ds_alloc_context(task);
395 if (!context)
396 return -ENOMEM;
397
398 spin_lock_irqsave(&ds_lock, irq);
399
400 error = -EPERM;
401 if (!check_tracer(task))
402 goto out_unlock;
403
404 get_tracer(task);
405
406 error = -EALREADY;
407 if (context->owner[qual] == current)
408 goto out_put_tracer;
409 error = -EPERM;
410 if (context->owner[qual] != NULL)
411 goto out_put_tracer;
412 context->owner[qual] = current;
413
414 spin_unlock_irqrestore(&ds_lock, irq);
415
416
417 error = -ENOMEM;
418 if (!base) {
419 base = ds_allocate_buffer(size, &context->pages[qual]);
420 if (!base)
421 goto out_release;
422
423 context->buffer[qual] = base;
424 }
425 error = 0;
426
427 context->callback[qual] = ovfl;
428
429 /* adjust the buffer address and size to meet alignment
430 * constraints:
431 * - buffer is double-word aligned
432 * - size is multiple of record size
433 *
434 * We checked the size at the very beginning; we have enough
435 * space to do the adjustment.
436 */
437 buffer = (unsigned long)base;
438
439 adj = ALIGN(buffer, alignment) - buffer;
440 buffer += adj;
441 size -= adj;
442
443 size /= ds_cfg.sizeof_rec[qual];
444 size *= ds_cfg.sizeof_rec[qual];
445
446 ds_set(context->ds, qual, ds_buffer_base, buffer);
447 ds_set(context->ds, qual, ds_index, buffer);
448 ds_set(context->ds, qual, ds_absolute_maximum, buffer + size);
449
450 if (ovfl) {
451 /* todo: select a suitable interrupt threshold */
452 } else
453 ds_set(context->ds, qual,
454 ds_interrupt_threshold, buffer + size + 1);
455
456 /* we keep the context until ds_release */
457 return error;
458
459 out_release:
460 context->owner[qual] = NULL;
461 ds_put_context(context);
462 put_tracer(task);
463 return error;
464
465 out_put_tracer:
466 spin_unlock_irqrestore(&ds_lock, irq);
467 ds_put_context(context);
468 put_tracer(task);
469 return error;
470
471 out_unlock:
472 spin_unlock_irqrestore(&ds_lock, irq);
473 ds_put_context(context);
474 return error;
475 }
476
477 int ds_request_bts(struct task_struct *task, void *base, size_t size,
478 ds_ovfl_callback_t ovfl)
479 {
480 return ds_request(task, base, size, ovfl, ds_bts);
481 }
482
483 int ds_request_pebs(struct task_struct *task, void *base, size_t size,
484 ds_ovfl_callback_t ovfl)
485 {
486 return ds_request(task, base, size, ovfl, ds_pebs);
487 }
488
489 static int ds_release(struct task_struct *task, enum ds_qualifier qual)
490 {
491 struct ds_context *context;
492 int error;
493
494 context = ds_get_context(task);
495 error = ds_validate_access(context, qual);
496 if (error < 0)
497 goto out;
498
499 kfree(context->buffer[qual]);
500 context->buffer[qual] = NULL;
501
502 current->mm->total_vm -= context->pages[qual];
503 current->mm->locked_vm -= context->pages[qual];
504 context->pages[qual] = 0;
505 context->owner[qual] = NULL;
506
507 /*
508 * we put the context twice:
509 * once for the ds_get_context
510 * once for the corresponding ds_request
511 */
512 ds_put_context(context);
513 out:
514 ds_put_context(context);
515 return error;
516 }
517
518 int ds_release_bts(struct task_struct *task)
519 {
520 return ds_release(task, ds_bts);
521 }
522
523 int ds_release_pebs(struct task_struct *task)
524 {
525 return ds_release(task, ds_pebs);
526 }
527
528 static int ds_get_index(struct task_struct *task, size_t *pos,
529 enum ds_qualifier qual)
530 {
531 struct ds_context *context;
532 unsigned long base, index;
533 int error;
534
535 context = ds_get_context(task);
536 error = ds_validate_access(context, qual);
537 if (error < 0)
538 goto out;
539
540 base = ds_get(context->ds, qual, ds_buffer_base);
541 index = ds_get(context->ds, qual, ds_index);
542
543 error = ((index - base) / ds_cfg.sizeof_rec[qual]);
544 if (pos)
545 *pos = error;
546 out:
547 ds_put_context(context);
548 return error;
549 }
550
551 int ds_get_bts_index(struct task_struct *task, size_t *pos)
552 {
553 return ds_get_index(task, pos, ds_bts);
554 }
555
556 int ds_get_pebs_index(struct task_struct *task, size_t *pos)
557 {
558 return ds_get_index(task, pos, ds_pebs);
559 }
560
561 static int ds_get_end(struct task_struct *task, size_t *pos,
562 enum ds_qualifier qual)
563 {
564 struct ds_context *context;
565 unsigned long base, end;
566 int error;
567
568 context = ds_get_context(task);
569 error = ds_validate_access(context, qual);
570 if (error < 0)
571 goto out;
572
573 base = ds_get(context->ds, qual, ds_buffer_base);
574 end = ds_get(context->ds, qual, ds_absolute_maximum);
575
576 error = ((end - base) / ds_cfg.sizeof_rec[qual]);
577 if (pos)
578 *pos = error;
579 out:
580 ds_put_context(context);
581 return error;
582 }
583
584 int ds_get_bts_end(struct task_struct *task, size_t *pos)
585 {
586 return ds_get_end(task, pos, ds_bts);
587 }
588
589 int ds_get_pebs_end(struct task_struct *task, size_t *pos)
590 {
591 return ds_get_end(task, pos, ds_pebs);
592 }
593
594 static int ds_access(struct task_struct *task, size_t index,
595 const void **record, enum ds_qualifier qual)
596 {
597 struct ds_context *context;
598 unsigned long base, idx;
599 int error;
600
601 if (!record)
602 return -EINVAL;
603
604 context = ds_get_context(task);
605 error = ds_validate_access(context, qual);
606 if (error < 0)
607 goto out;
608
609 base = ds_get(context->ds, qual, ds_buffer_base);
610 idx = base + (index * ds_cfg.sizeof_rec[qual]);
611
612 error = -EINVAL;
613 if (idx > ds_get(context->ds, qual, ds_absolute_maximum))
614 goto out;
615
616 *record = (const void *)idx;
617 error = ds_cfg.sizeof_rec[qual];
618 out:
619 ds_put_context(context);
620 return error;
621 }
622
623 int ds_access_bts(struct task_struct *task, size_t index, const void **record)
624 {
625 return ds_access(task, index, record, ds_bts);
626 }
627
628 int ds_access_pebs(struct task_struct *task, size_t index, const void **record)
629 {
630 return ds_access(task, index, record, ds_pebs);
631 }
632
633 static int ds_write(struct task_struct *task, const void *record, size_t size,
634 enum ds_qualifier qual, int force)
635 {
636 struct ds_context *context;
637 int error;
638
639 if (!record)
640 return -EINVAL;
641
642 error = -EPERM;
643 context = ds_get_context(task);
644 if (!context)
645 goto out;
646
647 if (!force) {
648 error = ds_validate_access(context, qual);
649 if (error < 0)
650 goto out;
651 }
652
653 error = 0;
654 while (size) {
655 unsigned long base, index, end, write_end, int_th;
656 unsigned long write_size, adj_write_size;
657
658 /*
659 * write as much as possible without producing an
660 * overflow interrupt.
661 *
662 * interrupt_threshold must either be
663 * - bigger than absolute_maximum or
664 * - point to a record between buffer_base and absolute_maximum
665 *
666 * index points to a valid record.
667 */
668 base = ds_get(context->ds, qual, ds_buffer_base);
669 index = ds_get(context->ds, qual, ds_index);
670 end = ds_get(context->ds, qual, ds_absolute_maximum);
671 int_th = ds_get(context->ds, qual, ds_interrupt_threshold);
672
673 write_end = min(end, int_th);
674
675 /* if we are already beyond the interrupt threshold,
676 * we fill the entire buffer */
677 if (write_end <= index)
678 write_end = end;
679
680 if (write_end <= index)
681 goto out;
682
683 write_size = min((unsigned long) size, write_end - index);
684 memcpy((void *)index, record, write_size);
685
686 record = (const char *)record + write_size;
687 size -= write_size;
688 error += write_size;
689
690 adj_write_size = write_size / ds_cfg.sizeof_rec[qual];
691 adj_write_size *= ds_cfg.sizeof_rec[qual];
692
693 /* zero out trailing bytes */
694 memset((char *)index + write_size, 0,
695 adj_write_size - write_size);
696 index += adj_write_size;
697
698 if (index >= end)
699 index = base;
700 ds_set(context->ds, qual, ds_index, index);
701
702 if (index >= int_th)
703 ds_overflow(task, context, qual);
704 }
705
706 out:
707 ds_put_context(context);
708 return error;
709 }
710
711 int ds_write_bts(struct task_struct *task, const void *record, size_t size)
712 {
713 return ds_write(task, record, size, ds_bts, /* force = */ 0);
714 }
715
716 int ds_write_pebs(struct task_struct *task, const void *record, size_t size)
717 {
718 return ds_write(task, record, size, ds_pebs, /* force = */ 0);
719 }
720
721 int ds_unchecked_write_bts(struct task_struct *task,
722 const void *record, size_t size)
723 {
724 return ds_write(task, record, size, ds_bts, /* force = */ 1);
725 }
726
727 int ds_unchecked_write_pebs(struct task_struct *task,
728 const void *record, size_t size)
729 {
730 return ds_write(task, record, size, ds_pebs, /* force = */ 1);
731 }
732
733 static int ds_reset_or_clear(struct task_struct *task,
734 enum ds_qualifier qual, int clear)
735 {
736 struct ds_context *context;
737 unsigned long base, end;
738 int error;
739
740 context = ds_get_context(task);
741 error = ds_validate_access(context, qual);
742 if (error < 0)
743 goto out;
744
745 base = ds_get(context->ds, qual, ds_buffer_base);
746 end = ds_get(context->ds, qual, ds_absolute_maximum);
747
748 if (clear)
749 memset((void *)base, 0, end - base);
750
751 ds_set(context->ds, qual, ds_index, base);
752
753 error = 0;
754 out:
755 ds_put_context(context);
756 return error;
757 }
758
759 int ds_reset_bts(struct task_struct *task)
760 {
761 return ds_reset_or_clear(task, ds_bts, /* clear = */ 0);
762 }
763
764 int ds_reset_pebs(struct task_struct *task)
765 {
766 return ds_reset_or_clear(task, ds_pebs, /* clear = */ 0);
767 }
768
769 int ds_clear_bts(struct task_struct *task)
770 {
771 return ds_reset_or_clear(task, ds_bts, /* clear = */ 1);
772 }
773
774 int ds_clear_pebs(struct task_struct *task)
775 {
776 return ds_reset_or_clear(task, ds_pebs, /* clear = */ 1);
777 }
778
779 int ds_get_pebs_reset(struct task_struct *task, u64 *value)
780 {
781 struct ds_context *context;
782 int error;
783
784 if (!value)
785 return -EINVAL;
786
787 context = ds_get_context(task);
788 error = ds_validate_access(context, ds_pebs);
789 if (error < 0)
790 goto out;
791
792 *value = *(u64 *)(context->ds + (ds_cfg.sizeof_field * 8));
793
794 error = 0;
795 out:
796 ds_put_context(context);
797 return error;
798 }
799
800 int ds_set_pebs_reset(struct task_struct *task, u64 value)
801 {
802 struct ds_context *context;
803 int error;
804
805 context = ds_get_context(task);
806 error = ds_validate_access(context, ds_pebs);
807 if (error < 0)
808 goto out;
809
810 *(u64 *)(context->ds + (ds_cfg.sizeof_field * 8)) = value;
811
812 error = 0;
813 out:
814 ds_put_context(context);
815 return error;
816 }
817
818 static const struct ds_configuration ds_cfg_var = {
819 .sizeof_ds = sizeof(long) * 12,
820 .sizeof_field = sizeof(long),
821 .sizeof_rec[ds_bts] = sizeof(long) * 3,
822 #ifdef __i386__
823 .sizeof_rec[ds_pebs] = sizeof(long) * 10
824 #else
825 .sizeof_rec[ds_pebs] = sizeof(long) * 18
826 #endif
827 };
828 static const struct ds_configuration ds_cfg_64 = {
829 .sizeof_ds = 8 * 12,
830 .sizeof_field = 8,
831 .sizeof_rec[ds_bts] = 8 * 3,
832 #ifdef __i386__
833 .sizeof_rec[ds_pebs] = 8 * 10
834 #else
835 .sizeof_rec[ds_pebs] = 8 * 18
836 #endif
837 };
838
839 static inline void
840 ds_configure(const struct ds_configuration *cfg)
841 {
842 ds_cfg = *cfg;
843 }
844
845 void __cpuinit ds_init_intel(struct cpuinfo_x86 *c)
846 {
847 switch (c->x86) {
848 case 0x6:
849 switch (c->x86_model) {
850 case 0xD:
851 case 0xE: /* Pentium M */
852 ds_configure(&ds_cfg_var);
853 break;
854 case 0xF: /* Core2 */
855 case 0x1C: /* Atom */
856 ds_configure(&ds_cfg_64);
857 break;
858 default:
859 /* sorry, don't know about them */
860 break;
861 }
862 break;
863 case 0xF:
864 switch (c->x86_model) {
865 case 0x0:
866 case 0x1:
867 case 0x2: /* Netburst */
868 ds_configure(&ds_cfg_var);
869 break;
870 default:
871 /* sorry, don't know about them */
872 break;
873 }
874 break;
875 default:
876 /* sorry, don't know about them */
877 break;
878 }
879 }
880
881 void ds_free(struct ds_context *context)
882 {
883 /* This is called when the task owning the parameter context
884 * is dying. There should not be any user of that context left
885 * to disturb us, anymore. */
886 unsigned long leftovers = context->count;
887 while (leftovers--)
888 ds_put_context(context);
889 }
This page took 0.050598 seconds and 5 git commands to generate.