23b4ecdffa9bcc76dc0659ab6e6ed1c7882ad677
[deliverable/linux.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/slab.h>
8 #include <linux/hpet.h>
9 #include <linux/init.h>
10 #include <linux/cpu.h>
11 #include <linux/pm.h>
12 #include <linux/io.h>
13
14 #include <asm/fixmap.h>
15 #include <asm/i8253.h>
16 #include <asm/hpet.h>
17
18 #define HPET_MASK CLOCKSOURCE_MASK(32)
19 #define HPET_SHIFT 22
20
21 /* FSEC = 10^-15
22 NSEC = 10^-9 */
23 #define FSEC_PER_NSEC 1000000L
24
25 #define HPET_DEV_USED_BIT 2
26 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
27 #define HPET_DEV_VALID 0x8
28 #define HPET_DEV_FSB_CAP 0x1000
29 #define HPET_DEV_PERI_CAP 0x2000
30
31 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
32
33 /*
34 * HPET address is set in acpi/boot.c, when an ACPI entry exists
35 */
36 unsigned long hpet_address;
37 u8 hpet_blockid; /* OS timer block num */
38 u8 hpet_msi_disable;
39
40 #ifdef CONFIG_PCI_MSI
41 static unsigned long hpet_num_timers;
42 #endif
43 static void __iomem *hpet_virt_address;
44
45 struct hpet_dev {
46 struct clock_event_device evt;
47 unsigned int num;
48 int cpu;
49 unsigned int irq;
50 unsigned int flags;
51 char name[10];
52 };
53
54 inline unsigned int hpet_readl(unsigned int a)
55 {
56 return readl(hpet_virt_address + a);
57 }
58
59 static inline void hpet_writel(unsigned int d, unsigned int a)
60 {
61 writel(d, hpet_virt_address + a);
62 }
63
64 #ifdef CONFIG_X86_64
65 #include <asm/pgtable.h>
66 #endif
67
68 static inline void hpet_set_mapping(void)
69 {
70 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
71 #ifdef CONFIG_X86_64
72 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
73 #endif
74 }
75
76 static inline void hpet_clear_mapping(void)
77 {
78 iounmap(hpet_virt_address);
79 hpet_virt_address = NULL;
80 }
81
82 /*
83 * HPET command line enable / disable
84 */
85 static int boot_hpet_disable;
86 int hpet_force_user;
87 static int hpet_verbose;
88
89 static int __init hpet_setup(char *str)
90 {
91 if (str) {
92 if (!strncmp("disable", str, 7))
93 boot_hpet_disable = 1;
94 if (!strncmp("force", str, 5))
95 hpet_force_user = 1;
96 if (!strncmp("verbose", str, 7))
97 hpet_verbose = 1;
98 }
99 return 1;
100 }
101 __setup("hpet=", hpet_setup);
102
103 static int __init disable_hpet(char *str)
104 {
105 boot_hpet_disable = 1;
106 return 1;
107 }
108 __setup("nohpet", disable_hpet);
109
110 static inline int is_hpet_capable(void)
111 {
112 return !boot_hpet_disable && hpet_address;
113 }
114
115 /*
116 * HPET timer interrupt enable / disable
117 */
118 static int hpet_legacy_int_enabled;
119
120 /**
121 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
122 */
123 int is_hpet_enabled(void)
124 {
125 return is_hpet_capable() && hpet_legacy_int_enabled;
126 }
127 EXPORT_SYMBOL_GPL(is_hpet_enabled);
128
129 static void _hpet_print_config(const char *function, int line)
130 {
131 u32 i, timers, l, h;
132 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
133 l = hpet_readl(HPET_ID);
134 h = hpet_readl(HPET_PERIOD);
135 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
136 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
137 l = hpet_readl(HPET_CFG);
138 h = hpet_readl(HPET_STATUS);
139 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
140 l = hpet_readl(HPET_COUNTER);
141 h = hpet_readl(HPET_COUNTER+4);
142 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
143
144 for (i = 0; i < timers; i++) {
145 l = hpet_readl(HPET_Tn_CFG(i));
146 h = hpet_readl(HPET_Tn_CFG(i)+4);
147 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
148 i, l, h);
149 l = hpet_readl(HPET_Tn_CMP(i));
150 h = hpet_readl(HPET_Tn_CMP(i)+4);
151 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
152 i, l, h);
153 l = hpet_readl(HPET_Tn_ROUTE(i));
154 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
155 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
156 i, l, h);
157 }
158 }
159
160 #define hpet_print_config() \
161 do { \
162 if (hpet_verbose) \
163 _hpet_print_config(__FUNCTION__, __LINE__); \
164 } while (0)
165
166 /*
167 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
168 * timer 0 and timer 1 in case of RTC emulation.
169 */
170 #ifdef CONFIG_HPET
171
172 static void hpet_reserve_msi_timers(struct hpet_data *hd);
173
174 static void hpet_reserve_platform_timers(unsigned int id)
175 {
176 struct hpet __iomem *hpet = hpet_virt_address;
177 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
178 unsigned int nrtimers, i;
179 struct hpet_data hd;
180
181 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
182
183 memset(&hd, 0, sizeof(hd));
184 hd.hd_phys_address = hpet_address;
185 hd.hd_address = hpet;
186 hd.hd_nirqs = nrtimers;
187 hpet_reserve_timer(&hd, 0);
188
189 #ifdef CONFIG_HPET_EMULATE_RTC
190 hpet_reserve_timer(&hd, 1);
191 #endif
192
193 /*
194 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
195 * is wrong for i8259!) not the output IRQ. Many BIOS writers
196 * don't bother configuring *any* comparator interrupts.
197 */
198 hd.hd_irq[0] = HPET_LEGACY_8254;
199 hd.hd_irq[1] = HPET_LEGACY_RTC;
200
201 for (i = 2; i < nrtimers; timer++, i++) {
202 hd.hd_irq[i] = (readl(&timer->hpet_config) &
203 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
204 }
205
206 hpet_reserve_msi_timers(&hd);
207
208 hpet_alloc(&hd);
209
210 }
211 #else
212 static void hpet_reserve_platform_timers(unsigned int id) { }
213 #endif
214
215 /*
216 * Common hpet info
217 */
218 static unsigned long hpet_period;
219
220 static void hpet_legacy_set_mode(enum clock_event_mode mode,
221 struct clock_event_device *evt);
222 static int hpet_legacy_next_event(unsigned long delta,
223 struct clock_event_device *evt);
224
225 /*
226 * The hpet clock event device
227 */
228 static struct clock_event_device hpet_clockevent = {
229 .name = "hpet",
230 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
231 .set_mode = hpet_legacy_set_mode,
232 .set_next_event = hpet_legacy_next_event,
233 .shift = 32,
234 .irq = 0,
235 .rating = 50,
236 };
237
238 static void hpet_stop_counter(void)
239 {
240 unsigned long cfg = hpet_readl(HPET_CFG);
241 cfg &= ~HPET_CFG_ENABLE;
242 hpet_writel(cfg, HPET_CFG);
243 }
244
245 static void hpet_reset_counter(void)
246 {
247 hpet_writel(0, HPET_COUNTER);
248 hpet_writel(0, HPET_COUNTER + 4);
249 }
250
251 static void hpet_start_counter(void)
252 {
253 unsigned int cfg = hpet_readl(HPET_CFG);
254 cfg |= HPET_CFG_ENABLE;
255 hpet_writel(cfg, HPET_CFG);
256 }
257
258 static void hpet_restart_counter(void)
259 {
260 hpet_stop_counter();
261 hpet_reset_counter();
262 hpet_start_counter();
263 }
264
265 static void hpet_resume_device(void)
266 {
267 force_hpet_resume();
268 }
269
270 static void hpet_resume_counter(struct clocksource *cs)
271 {
272 hpet_resume_device();
273 hpet_restart_counter();
274 }
275
276 static void hpet_enable_legacy_int(void)
277 {
278 unsigned int cfg = hpet_readl(HPET_CFG);
279
280 cfg |= HPET_CFG_LEGACY;
281 hpet_writel(cfg, HPET_CFG);
282 hpet_legacy_int_enabled = 1;
283 }
284
285 static void hpet_legacy_clockevent_register(void)
286 {
287 /* Start HPET legacy interrupts */
288 hpet_enable_legacy_int();
289
290 /*
291 * The mult factor is defined as (include/linux/clockchips.h)
292 * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
293 * hpet_period is in units of femtoseconds (per cycle), so
294 * mult/2^shift = cyc/ns = 10^6/hpet_period
295 * mult = (10^6 * 2^shift)/hpet_period
296 * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
297 */
298 hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
299 hpet_period, hpet_clockevent.shift);
300 /* Calculate the min / max delta */
301 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
302 &hpet_clockevent);
303 /* 5 usec minimum reprogramming delta. */
304 hpet_clockevent.min_delta_ns = 5000;
305
306 /*
307 * Start hpet with the boot cpu mask and make it
308 * global after the IO_APIC has been initialized.
309 */
310 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
311 clockevents_register_device(&hpet_clockevent);
312 global_clock_event = &hpet_clockevent;
313 printk(KERN_DEBUG "hpet clockevent registered\n");
314 }
315
316 static int hpet_setup_msi_irq(unsigned int irq);
317
318 static void hpet_set_mode(enum clock_event_mode mode,
319 struct clock_event_device *evt, int timer)
320 {
321 unsigned int cfg, cmp, now;
322 uint64_t delta;
323
324 switch (mode) {
325 case CLOCK_EVT_MODE_PERIODIC:
326 hpet_stop_counter();
327 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
328 delta >>= evt->shift;
329 now = hpet_readl(HPET_COUNTER);
330 cmp = now + (unsigned int) delta;
331 cfg = hpet_readl(HPET_Tn_CFG(timer));
332 /* Make sure we use edge triggered interrupts */
333 cfg &= ~HPET_TN_LEVEL;
334 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
335 HPET_TN_SETVAL | HPET_TN_32BIT;
336 hpet_writel(cfg, HPET_Tn_CFG(timer));
337 hpet_writel(cmp, HPET_Tn_CMP(timer));
338 udelay(1);
339 /*
340 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
341 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
342 * bit is automatically cleared after the first write.
343 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
344 * Publication # 24674)
345 */
346 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
347 hpet_start_counter();
348 hpet_print_config();
349 break;
350
351 case CLOCK_EVT_MODE_ONESHOT:
352 cfg = hpet_readl(HPET_Tn_CFG(timer));
353 cfg &= ~HPET_TN_PERIODIC;
354 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
355 hpet_writel(cfg, HPET_Tn_CFG(timer));
356 break;
357
358 case CLOCK_EVT_MODE_UNUSED:
359 case CLOCK_EVT_MODE_SHUTDOWN:
360 cfg = hpet_readl(HPET_Tn_CFG(timer));
361 cfg &= ~HPET_TN_ENABLE;
362 hpet_writel(cfg, HPET_Tn_CFG(timer));
363 break;
364
365 case CLOCK_EVT_MODE_RESUME:
366 if (timer == 0) {
367 hpet_enable_legacy_int();
368 } else {
369 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
370 hpet_setup_msi_irq(hdev->irq);
371 disable_irq(hdev->irq);
372 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
373 enable_irq(hdev->irq);
374 }
375 hpet_print_config();
376 break;
377 }
378 }
379
380 static int hpet_next_event(unsigned long delta,
381 struct clock_event_device *evt, int timer)
382 {
383 u32 cnt;
384
385 cnt = hpet_readl(HPET_COUNTER);
386 cnt += (u32) delta;
387 hpet_writel(cnt, HPET_Tn_CMP(timer));
388
389 /*
390 * We need to read back the CMP register on certain HPET
391 * implementations (ATI chipsets) which seem to delay the
392 * transfer of the compare register into the internal compare
393 * logic. With small deltas this might actually be too late as
394 * the counter could already be higher than the compare value
395 * at that point and we would wait for the next hpet interrupt
396 * forever. We found out that reading the CMP register back
397 * forces the transfer so we can rely on the comparison with
398 * the counter register below. If the read back from the
399 * compare register does not match the value we programmed
400 * then we might have a real hardware problem. We can not do
401 * much about it here, but at least alert the user/admin with
402 * a prominent warning.
403 * An erratum on some chipsets (ICH9,..), results in comparator read
404 * immediately following a write returning old value. Workaround
405 * for this is to read this value second time, when first
406 * read returns old value.
407 */
408 if (unlikely((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt)) {
409 WARN_ONCE(hpet_readl(HPET_Tn_CMP(timer)) != cnt,
410 KERN_WARNING "hpet: compare register read back failed.\n");
411 }
412
413 return (s32)(hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
414 }
415
416 static void hpet_legacy_set_mode(enum clock_event_mode mode,
417 struct clock_event_device *evt)
418 {
419 hpet_set_mode(mode, evt, 0);
420 }
421
422 static int hpet_legacy_next_event(unsigned long delta,
423 struct clock_event_device *evt)
424 {
425 return hpet_next_event(delta, evt, 0);
426 }
427
428 /*
429 * HPET MSI Support
430 */
431 #ifdef CONFIG_PCI_MSI
432
433 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
434 static struct hpet_dev *hpet_devs;
435
436 void hpet_msi_unmask(unsigned int irq)
437 {
438 struct hpet_dev *hdev = get_irq_data(irq);
439 unsigned int cfg;
440
441 /* unmask it */
442 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
443 cfg |= HPET_TN_FSB;
444 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
445 }
446
447 void hpet_msi_mask(unsigned int irq)
448 {
449 unsigned int cfg;
450 struct hpet_dev *hdev = get_irq_data(irq);
451
452 /* mask it */
453 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
454 cfg &= ~HPET_TN_FSB;
455 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
456 }
457
458 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
459 {
460 struct hpet_dev *hdev = get_irq_data(irq);
461
462 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
463 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
464 }
465
466 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
467 {
468 struct hpet_dev *hdev = get_irq_data(irq);
469
470 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
471 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
472 msg->address_hi = 0;
473 }
474
475 static void hpet_msi_set_mode(enum clock_event_mode mode,
476 struct clock_event_device *evt)
477 {
478 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
479 hpet_set_mode(mode, evt, hdev->num);
480 }
481
482 static int hpet_msi_next_event(unsigned long delta,
483 struct clock_event_device *evt)
484 {
485 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
486 return hpet_next_event(delta, evt, hdev->num);
487 }
488
489 static int hpet_setup_msi_irq(unsigned int irq)
490 {
491 if (arch_setup_hpet_msi(irq, hpet_blockid)) {
492 destroy_irq(irq);
493 return -EINVAL;
494 }
495 return 0;
496 }
497
498 static int hpet_assign_irq(struct hpet_dev *dev)
499 {
500 unsigned int irq;
501
502 irq = create_irq();
503 if (!irq)
504 return -EINVAL;
505
506 set_irq_data(irq, dev);
507
508 if (hpet_setup_msi_irq(irq))
509 return -EINVAL;
510
511 dev->irq = irq;
512 return 0;
513 }
514
515 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
516 {
517 struct hpet_dev *dev = (struct hpet_dev *)data;
518 struct clock_event_device *hevt = &dev->evt;
519
520 if (!hevt->event_handler) {
521 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
522 dev->num);
523 return IRQ_HANDLED;
524 }
525
526 hevt->event_handler(hevt);
527 return IRQ_HANDLED;
528 }
529
530 static int hpet_setup_irq(struct hpet_dev *dev)
531 {
532
533 if (request_irq(dev->irq, hpet_interrupt_handler,
534 IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
535 dev->name, dev))
536 return -1;
537
538 disable_irq(dev->irq);
539 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
540 enable_irq(dev->irq);
541
542 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
543 dev->name, dev->irq);
544
545 return 0;
546 }
547
548 /* This should be called in specific @cpu */
549 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
550 {
551 struct clock_event_device *evt = &hdev->evt;
552 uint64_t hpet_freq;
553
554 WARN_ON(cpu != smp_processor_id());
555 if (!(hdev->flags & HPET_DEV_VALID))
556 return;
557
558 if (hpet_setup_msi_irq(hdev->irq))
559 return;
560
561 hdev->cpu = cpu;
562 per_cpu(cpu_hpet_dev, cpu) = hdev;
563 evt->name = hdev->name;
564 hpet_setup_irq(hdev);
565 evt->irq = hdev->irq;
566
567 evt->rating = 110;
568 evt->features = CLOCK_EVT_FEAT_ONESHOT;
569 if (hdev->flags & HPET_DEV_PERI_CAP)
570 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
571
572 evt->set_mode = hpet_msi_set_mode;
573 evt->set_next_event = hpet_msi_next_event;
574 evt->shift = 32;
575
576 /*
577 * The period is a femto seconds value. We need to calculate the
578 * scaled math multiplication factor for nanosecond to hpet tick
579 * conversion.
580 */
581 hpet_freq = 1000000000000000ULL;
582 do_div(hpet_freq, hpet_period);
583 evt->mult = div_sc((unsigned long) hpet_freq,
584 NSEC_PER_SEC, evt->shift);
585 /* Calculate the max delta */
586 evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
587 /* 5 usec minimum reprogramming delta. */
588 evt->min_delta_ns = 5000;
589
590 evt->cpumask = cpumask_of(hdev->cpu);
591 clockevents_register_device(evt);
592 }
593
594 #ifdef CONFIG_HPET
595 /* Reserve at least one timer for userspace (/dev/hpet) */
596 #define RESERVE_TIMERS 1
597 #else
598 #define RESERVE_TIMERS 0
599 #endif
600
601 static void hpet_msi_capability_lookup(unsigned int start_timer)
602 {
603 unsigned int id;
604 unsigned int num_timers;
605 unsigned int num_timers_used = 0;
606 int i;
607
608 if (hpet_msi_disable)
609 return;
610
611 if (boot_cpu_has(X86_FEATURE_ARAT))
612 return;
613 id = hpet_readl(HPET_ID);
614
615 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
616 num_timers++; /* Value read out starts from 0 */
617 hpet_print_config();
618
619 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
620 if (!hpet_devs)
621 return;
622
623 hpet_num_timers = num_timers;
624
625 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
626 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
627 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
628
629 /* Only consider HPET timer with MSI support */
630 if (!(cfg & HPET_TN_FSB_CAP))
631 continue;
632
633 hdev->flags = 0;
634 if (cfg & HPET_TN_PERIODIC_CAP)
635 hdev->flags |= HPET_DEV_PERI_CAP;
636 hdev->num = i;
637
638 sprintf(hdev->name, "hpet%d", i);
639 if (hpet_assign_irq(hdev))
640 continue;
641
642 hdev->flags |= HPET_DEV_FSB_CAP;
643 hdev->flags |= HPET_DEV_VALID;
644 num_timers_used++;
645 if (num_timers_used == num_possible_cpus())
646 break;
647 }
648
649 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
650 num_timers, num_timers_used);
651 }
652
653 #ifdef CONFIG_HPET
654 static void hpet_reserve_msi_timers(struct hpet_data *hd)
655 {
656 int i;
657
658 if (!hpet_devs)
659 return;
660
661 for (i = 0; i < hpet_num_timers; i++) {
662 struct hpet_dev *hdev = &hpet_devs[i];
663
664 if (!(hdev->flags & HPET_DEV_VALID))
665 continue;
666
667 hd->hd_irq[hdev->num] = hdev->irq;
668 hpet_reserve_timer(hd, hdev->num);
669 }
670 }
671 #endif
672
673 static struct hpet_dev *hpet_get_unused_timer(void)
674 {
675 int i;
676
677 if (!hpet_devs)
678 return NULL;
679
680 for (i = 0; i < hpet_num_timers; i++) {
681 struct hpet_dev *hdev = &hpet_devs[i];
682
683 if (!(hdev->flags & HPET_DEV_VALID))
684 continue;
685 if (test_and_set_bit(HPET_DEV_USED_BIT,
686 (unsigned long *)&hdev->flags))
687 continue;
688 return hdev;
689 }
690 return NULL;
691 }
692
693 struct hpet_work_struct {
694 struct delayed_work work;
695 struct completion complete;
696 };
697
698 static void hpet_work(struct work_struct *w)
699 {
700 struct hpet_dev *hdev;
701 int cpu = smp_processor_id();
702 struct hpet_work_struct *hpet_work;
703
704 hpet_work = container_of(w, struct hpet_work_struct, work.work);
705
706 hdev = hpet_get_unused_timer();
707 if (hdev)
708 init_one_hpet_msi_clockevent(hdev, cpu);
709
710 complete(&hpet_work->complete);
711 }
712
713 static int hpet_cpuhp_notify(struct notifier_block *n,
714 unsigned long action, void *hcpu)
715 {
716 unsigned long cpu = (unsigned long)hcpu;
717 struct hpet_work_struct work;
718 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
719
720 switch (action & 0xf) {
721 case CPU_ONLINE:
722 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
723 init_completion(&work.complete);
724 /* FIXME: add schedule_work_on() */
725 schedule_delayed_work_on(cpu, &work.work, 0);
726 wait_for_completion(&work.complete);
727 destroy_timer_on_stack(&work.work.timer);
728 break;
729 case CPU_DEAD:
730 if (hdev) {
731 free_irq(hdev->irq, hdev);
732 hdev->flags &= ~HPET_DEV_USED;
733 per_cpu(cpu_hpet_dev, cpu) = NULL;
734 }
735 break;
736 }
737 return NOTIFY_OK;
738 }
739 #else
740
741 static int hpet_setup_msi_irq(unsigned int irq)
742 {
743 return 0;
744 }
745 static void hpet_msi_capability_lookup(unsigned int start_timer)
746 {
747 return;
748 }
749
750 #ifdef CONFIG_HPET
751 static void hpet_reserve_msi_timers(struct hpet_data *hd)
752 {
753 return;
754 }
755 #endif
756
757 static int hpet_cpuhp_notify(struct notifier_block *n,
758 unsigned long action, void *hcpu)
759 {
760 return NOTIFY_OK;
761 }
762
763 #endif
764
765 /*
766 * Clock source related code
767 */
768 static cycle_t read_hpet(struct clocksource *cs)
769 {
770 return (cycle_t)hpet_readl(HPET_COUNTER);
771 }
772
773 #ifdef CONFIG_X86_64
774 static cycle_t __vsyscall_fn vread_hpet(void)
775 {
776 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
777 }
778 #endif
779
780 static struct clocksource clocksource_hpet = {
781 .name = "hpet",
782 .rating = 250,
783 .read = read_hpet,
784 .mask = HPET_MASK,
785 .shift = HPET_SHIFT,
786 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
787 .resume = hpet_resume_counter,
788 #ifdef CONFIG_X86_64
789 .vread = vread_hpet,
790 #endif
791 };
792
793 static int hpet_clocksource_register(void)
794 {
795 u64 start, now;
796 cycle_t t1;
797
798 /* Start the counter */
799 hpet_restart_counter();
800
801 /* Verify whether hpet counter works */
802 t1 = hpet_readl(HPET_COUNTER);
803 rdtscll(start);
804
805 /*
806 * We don't know the TSC frequency yet, but waiting for
807 * 200000 TSC cycles is safe:
808 * 4 GHz == 50us
809 * 1 GHz == 200us
810 */
811 do {
812 rep_nop();
813 rdtscll(now);
814 } while ((now - start) < 200000UL);
815
816 if (t1 == hpet_readl(HPET_COUNTER)) {
817 printk(KERN_WARNING
818 "HPET counter not counting. HPET disabled\n");
819 return -ENODEV;
820 }
821
822 /*
823 * The definition of mult is (include/linux/clocksource.h)
824 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
825 * so we first need to convert hpet_period to ns/cyc units:
826 * mult/2^shift = ns/cyc = hpet_period/10^6
827 * mult = (hpet_period * 2^shift)/10^6
828 * mult = (hpet_period << shift)/FSEC_PER_NSEC
829 */
830 clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
831
832 clocksource_register(&clocksource_hpet);
833
834 return 0;
835 }
836
837 /**
838 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
839 */
840 int __init hpet_enable(void)
841 {
842 unsigned int id;
843 int i;
844
845 if (!is_hpet_capable())
846 return 0;
847
848 hpet_set_mapping();
849
850 /*
851 * Read the period and check for a sane value:
852 */
853 hpet_period = hpet_readl(HPET_PERIOD);
854
855 /*
856 * AMD SB700 based systems with spread spectrum enabled use a
857 * SMM based HPET emulation to provide proper frequency
858 * setting. The SMM code is initialized with the first HPET
859 * register access and takes some time to complete. During
860 * this time the config register reads 0xffffffff. We check
861 * for max. 1000 loops whether the config register reads a non
862 * 0xffffffff value to make sure that HPET is up and running
863 * before we go further. A counting loop is safe, as the HPET
864 * access takes thousands of CPU cycles. On non SB700 based
865 * machines this check is only done once and has no side
866 * effects.
867 */
868 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
869 if (i == 1000) {
870 printk(KERN_WARNING
871 "HPET config register value = 0xFFFFFFFF. "
872 "Disabling HPET\n");
873 goto out_nohpet;
874 }
875 }
876
877 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
878 goto out_nohpet;
879
880 /*
881 * Read the HPET ID register to retrieve the IRQ routing
882 * information and the number of channels
883 */
884 id = hpet_readl(HPET_ID);
885 hpet_print_config();
886
887 #ifdef CONFIG_HPET_EMULATE_RTC
888 /*
889 * The legacy routing mode needs at least two channels, tick timer
890 * and the rtc emulation channel.
891 */
892 if (!(id & HPET_ID_NUMBER))
893 goto out_nohpet;
894 #endif
895
896 if (hpet_clocksource_register())
897 goto out_nohpet;
898
899 if (id & HPET_ID_LEGSUP) {
900 hpet_legacy_clockevent_register();
901 return 1;
902 }
903 return 0;
904
905 out_nohpet:
906 hpet_clear_mapping();
907 hpet_address = 0;
908 return 0;
909 }
910
911 /*
912 * Needs to be late, as the reserve_timer code calls kalloc !
913 *
914 * Not a problem on i386 as hpet_enable is called from late_time_init,
915 * but on x86_64 it is necessary !
916 */
917 static __init int hpet_late_init(void)
918 {
919 int cpu;
920
921 if (boot_hpet_disable)
922 return -ENODEV;
923
924 if (!hpet_address) {
925 if (!force_hpet_address)
926 return -ENODEV;
927
928 hpet_address = force_hpet_address;
929 hpet_enable();
930 }
931
932 if (!hpet_virt_address)
933 return -ENODEV;
934
935 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
936 hpet_msi_capability_lookup(2);
937 else
938 hpet_msi_capability_lookup(0);
939
940 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
941 hpet_print_config();
942
943 if (hpet_msi_disable)
944 return 0;
945
946 if (boot_cpu_has(X86_FEATURE_ARAT))
947 return 0;
948
949 for_each_online_cpu(cpu) {
950 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
951 }
952
953 /* This notifier should be called after workqueue is ready */
954 hotcpu_notifier(hpet_cpuhp_notify, -20);
955
956 return 0;
957 }
958 fs_initcall(hpet_late_init);
959
960 void hpet_disable(void)
961 {
962 if (is_hpet_capable()) {
963 unsigned int cfg = hpet_readl(HPET_CFG);
964
965 if (hpet_legacy_int_enabled) {
966 cfg &= ~HPET_CFG_LEGACY;
967 hpet_legacy_int_enabled = 0;
968 }
969 cfg &= ~HPET_CFG_ENABLE;
970 hpet_writel(cfg, HPET_CFG);
971 }
972 }
973
974 #ifdef CONFIG_HPET_EMULATE_RTC
975
976 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
977 * is enabled, we support RTC interrupt functionality in software.
978 * RTC has 3 kinds of interrupts:
979 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
980 * is updated
981 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
982 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
983 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
984 * (1) and (2) above are implemented using polling at a frequency of
985 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
986 * overhead. (DEFAULT_RTC_INT_FREQ)
987 * For (3), we use interrupts at 64Hz or user specified periodic
988 * frequency, whichever is higher.
989 */
990 #include <linux/mc146818rtc.h>
991 #include <linux/rtc.h>
992 #include <asm/rtc.h>
993
994 #define DEFAULT_RTC_INT_FREQ 64
995 #define DEFAULT_RTC_SHIFT 6
996 #define RTC_NUM_INTS 1
997
998 static unsigned long hpet_rtc_flags;
999 static int hpet_prev_update_sec;
1000 static struct rtc_time hpet_alarm_time;
1001 static unsigned long hpet_pie_count;
1002 static u32 hpet_t1_cmp;
1003 static u32 hpet_default_delta;
1004 static u32 hpet_pie_delta;
1005 static unsigned long hpet_pie_limit;
1006
1007 static rtc_irq_handler irq_handler;
1008
1009 /*
1010 * Check that the hpet counter c1 is ahead of the c2
1011 */
1012 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1013 {
1014 return (s32)(c2 - c1) < 0;
1015 }
1016
1017 /*
1018 * Registers a IRQ handler.
1019 */
1020 int hpet_register_irq_handler(rtc_irq_handler handler)
1021 {
1022 if (!is_hpet_enabled())
1023 return -ENODEV;
1024 if (irq_handler)
1025 return -EBUSY;
1026
1027 irq_handler = handler;
1028
1029 return 0;
1030 }
1031 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1032
1033 /*
1034 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1035 * and does cleanup.
1036 */
1037 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1038 {
1039 if (!is_hpet_enabled())
1040 return;
1041
1042 irq_handler = NULL;
1043 hpet_rtc_flags = 0;
1044 }
1045 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1046
1047 /*
1048 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1049 * is not supported by all HPET implementations for timer 1.
1050 *
1051 * hpet_rtc_timer_init() is called when the rtc is initialized.
1052 */
1053 int hpet_rtc_timer_init(void)
1054 {
1055 unsigned int cfg, cnt, delta;
1056 unsigned long flags;
1057
1058 if (!is_hpet_enabled())
1059 return 0;
1060
1061 if (!hpet_default_delta) {
1062 uint64_t clc;
1063
1064 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1065 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1066 hpet_default_delta = clc;
1067 }
1068
1069 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1070 delta = hpet_default_delta;
1071 else
1072 delta = hpet_pie_delta;
1073
1074 local_irq_save(flags);
1075
1076 cnt = delta + hpet_readl(HPET_COUNTER);
1077 hpet_writel(cnt, HPET_T1_CMP);
1078 hpet_t1_cmp = cnt;
1079
1080 cfg = hpet_readl(HPET_T1_CFG);
1081 cfg &= ~HPET_TN_PERIODIC;
1082 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1083 hpet_writel(cfg, HPET_T1_CFG);
1084
1085 local_irq_restore(flags);
1086
1087 return 1;
1088 }
1089 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1090
1091 /*
1092 * The functions below are called from rtc driver.
1093 * Return 0 if HPET is not being used.
1094 * Otherwise do the necessary changes and return 1.
1095 */
1096 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1097 {
1098 if (!is_hpet_enabled())
1099 return 0;
1100
1101 hpet_rtc_flags &= ~bit_mask;
1102 return 1;
1103 }
1104 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1105
1106 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1107 {
1108 unsigned long oldbits = hpet_rtc_flags;
1109
1110 if (!is_hpet_enabled())
1111 return 0;
1112
1113 hpet_rtc_flags |= bit_mask;
1114
1115 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1116 hpet_prev_update_sec = -1;
1117
1118 if (!oldbits)
1119 hpet_rtc_timer_init();
1120
1121 return 1;
1122 }
1123 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1124
1125 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1126 unsigned char sec)
1127 {
1128 if (!is_hpet_enabled())
1129 return 0;
1130
1131 hpet_alarm_time.tm_hour = hrs;
1132 hpet_alarm_time.tm_min = min;
1133 hpet_alarm_time.tm_sec = sec;
1134
1135 return 1;
1136 }
1137 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1138
1139 int hpet_set_periodic_freq(unsigned long freq)
1140 {
1141 uint64_t clc;
1142
1143 if (!is_hpet_enabled())
1144 return 0;
1145
1146 if (freq <= DEFAULT_RTC_INT_FREQ)
1147 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1148 else {
1149 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1150 do_div(clc, freq);
1151 clc >>= hpet_clockevent.shift;
1152 hpet_pie_delta = clc;
1153 hpet_pie_limit = 0;
1154 }
1155 return 1;
1156 }
1157 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1158
1159 int hpet_rtc_dropped_irq(void)
1160 {
1161 return is_hpet_enabled();
1162 }
1163 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1164
1165 static void hpet_rtc_timer_reinit(void)
1166 {
1167 unsigned int cfg, delta;
1168 int lost_ints = -1;
1169
1170 if (unlikely(!hpet_rtc_flags)) {
1171 cfg = hpet_readl(HPET_T1_CFG);
1172 cfg &= ~HPET_TN_ENABLE;
1173 hpet_writel(cfg, HPET_T1_CFG);
1174 return;
1175 }
1176
1177 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1178 delta = hpet_default_delta;
1179 else
1180 delta = hpet_pie_delta;
1181
1182 /*
1183 * Increment the comparator value until we are ahead of the
1184 * current count.
1185 */
1186 do {
1187 hpet_t1_cmp += delta;
1188 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1189 lost_ints++;
1190 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1191
1192 if (lost_ints) {
1193 if (hpet_rtc_flags & RTC_PIE)
1194 hpet_pie_count += lost_ints;
1195 if (printk_ratelimit())
1196 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1197 lost_ints);
1198 }
1199 }
1200
1201 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1202 {
1203 struct rtc_time curr_time;
1204 unsigned long rtc_int_flag = 0;
1205
1206 hpet_rtc_timer_reinit();
1207 memset(&curr_time, 0, sizeof(struct rtc_time));
1208
1209 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1210 get_rtc_time(&curr_time);
1211
1212 if (hpet_rtc_flags & RTC_UIE &&
1213 curr_time.tm_sec != hpet_prev_update_sec) {
1214 if (hpet_prev_update_sec >= 0)
1215 rtc_int_flag = RTC_UF;
1216 hpet_prev_update_sec = curr_time.tm_sec;
1217 }
1218
1219 if (hpet_rtc_flags & RTC_PIE &&
1220 ++hpet_pie_count >= hpet_pie_limit) {
1221 rtc_int_flag |= RTC_PF;
1222 hpet_pie_count = 0;
1223 }
1224
1225 if (hpet_rtc_flags & RTC_AIE &&
1226 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1227 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1228 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1229 rtc_int_flag |= RTC_AF;
1230
1231 if (rtc_int_flag) {
1232 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1233 if (irq_handler)
1234 irq_handler(rtc_int_flag, dev_id);
1235 }
1236 return IRQ_HANDLED;
1237 }
1238 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1239 #endif
This page took 0.076674 seconds and 5 git commands to generate.