perf_counter: x86: fixup nmi_watchdog vs perf_counter boo-boo
[deliverable/linux.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/hpet.h>
8 #include <linux/init.h>
9 #include <linux/cpu.h>
10 #include <linux/pm.h>
11 #include <linux/io.h>
12
13 #include <asm/fixmap.h>
14 #include <asm/i8253.h>
15 #include <asm/hpet.h>
16
17 #define HPET_MASK CLOCKSOURCE_MASK(32)
18 #define HPET_SHIFT 22
19
20 /* FSEC = 10^-15
21 NSEC = 10^-9 */
22 #define FSEC_PER_NSEC 1000000L
23
24 #define HPET_DEV_USED_BIT 2
25 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID 0x8
27 #define HPET_DEV_FSB_CAP 0x1000
28 #define HPET_DEV_PERI_CAP 0x2000
29
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31
32 /*
33 * HPET address is set in acpi/boot.c, when an ACPI entry exists
34 */
35 unsigned long hpet_address;
36 #ifdef CONFIG_PCI_MSI
37 static unsigned long hpet_num_timers;
38 #endif
39 static void __iomem *hpet_virt_address;
40
41 struct hpet_dev {
42 struct clock_event_device evt;
43 unsigned int num;
44 int cpu;
45 unsigned int irq;
46 unsigned int flags;
47 char name[10];
48 };
49
50 unsigned long hpet_readl(unsigned long a)
51 {
52 return readl(hpet_virt_address + a);
53 }
54
55 static inline void hpet_writel(unsigned long d, unsigned long a)
56 {
57 writel(d, hpet_virt_address + a);
58 }
59
60 #ifdef CONFIG_X86_64
61 #include <asm/pgtable.h>
62 #endif
63
64 static inline void hpet_set_mapping(void)
65 {
66 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
67 #ifdef CONFIG_X86_64
68 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
69 #endif
70 }
71
72 static inline void hpet_clear_mapping(void)
73 {
74 iounmap(hpet_virt_address);
75 hpet_virt_address = NULL;
76 }
77
78 /*
79 * HPET command line enable / disable
80 */
81 static int boot_hpet_disable;
82 int hpet_force_user;
83 static int hpet_verbose;
84
85 static int __init hpet_setup(char *str)
86 {
87 if (str) {
88 if (!strncmp("disable", str, 7))
89 boot_hpet_disable = 1;
90 if (!strncmp("force", str, 5))
91 hpet_force_user = 1;
92 if (!strncmp("verbose", str, 7))
93 hpet_verbose = 1;
94 }
95 return 1;
96 }
97 __setup("hpet=", hpet_setup);
98
99 static int __init disable_hpet(char *str)
100 {
101 boot_hpet_disable = 1;
102 return 1;
103 }
104 __setup("nohpet", disable_hpet);
105
106 static inline int is_hpet_capable(void)
107 {
108 return !boot_hpet_disable && hpet_address;
109 }
110
111 /*
112 * HPET timer interrupt enable / disable
113 */
114 static int hpet_legacy_int_enabled;
115
116 /**
117 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
118 */
119 int is_hpet_enabled(void)
120 {
121 return is_hpet_capable() && hpet_legacy_int_enabled;
122 }
123 EXPORT_SYMBOL_GPL(is_hpet_enabled);
124
125 static void _hpet_print_config(const char *function, int line)
126 {
127 u32 i, timers, l, h;
128 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
129 l = hpet_readl(HPET_ID);
130 h = hpet_readl(HPET_PERIOD);
131 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
132 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
133 l = hpet_readl(HPET_CFG);
134 h = hpet_readl(HPET_STATUS);
135 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
136 l = hpet_readl(HPET_COUNTER);
137 h = hpet_readl(HPET_COUNTER+4);
138 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
139
140 for (i = 0; i < timers; i++) {
141 l = hpet_readl(HPET_Tn_CFG(i));
142 h = hpet_readl(HPET_Tn_CFG(i)+4);
143 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
144 i, l, h);
145 l = hpet_readl(HPET_Tn_CMP(i));
146 h = hpet_readl(HPET_Tn_CMP(i)+4);
147 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
148 i, l, h);
149 l = hpet_readl(HPET_Tn_ROUTE(i));
150 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
151 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
152 i, l, h);
153 }
154 }
155
156 #define hpet_print_config() \
157 do { \
158 if (hpet_verbose) \
159 _hpet_print_config(__FUNCTION__, __LINE__); \
160 } while (0)
161
162 /*
163 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
164 * timer 0 and timer 1 in case of RTC emulation.
165 */
166 #ifdef CONFIG_HPET
167
168 static void hpet_reserve_msi_timers(struct hpet_data *hd);
169
170 static void hpet_reserve_platform_timers(unsigned long id)
171 {
172 struct hpet __iomem *hpet = hpet_virt_address;
173 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
174 unsigned int nrtimers, i;
175 struct hpet_data hd;
176
177 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
178
179 memset(&hd, 0, sizeof(hd));
180 hd.hd_phys_address = hpet_address;
181 hd.hd_address = hpet;
182 hd.hd_nirqs = nrtimers;
183 hpet_reserve_timer(&hd, 0);
184
185 #ifdef CONFIG_HPET_EMULATE_RTC
186 hpet_reserve_timer(&hd, 1);
187 #endif
188
189 /*
190 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
191 * is wrong for i8259!) not the output IRQ. Many BIOS writers
192 * don't bother configuring *any* comparator interrupts.
193 */
194 hd.hd_irq[0] = HPET_LEGACY_8254;
195 hd.hd_irq[1] = HPET_LEGACY_RTC;
196
197 for (i = 2; i < nrtimers; timer++, i++) {
198 hd.hd_irq[i] = (readl(&timer->hpet_config) &
199 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
200 }
201
202 hpet_reserve_msi_timers(&hd);
203
204 hpet_alloc(&hd);
205
206 }
207 #else
208 static void hpet_reserve_platform_timers(unsigned long id) { }
209 #endif
210
211 /*
212 * Common hpet info
213 */
214 static unsigned long hpet_period;
215
216 static void hpet_legacy_set_mode(enum clock_event_mode mode,
217 struct clock_event_device *evt);
218 static int hpet_legacy_next_event(unsigned long delta,
219 struct clock_event_device *evt);
220
221 /*
222 * The hpet clock event device
223 */
224 static struct clock_event_device hpet_clockevent = {
225 .name = "hpet",
226 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
227 .set_mode = hpet_legacy_set_mode,
228 .set_next_event = hpet_legacy_next_event,
229 .shift = 32,
230 .irq = 0,
231 .rating = 50,
232 };
233
234 static void hpet_stop_counter(void)
235 {
236 unsigned long cfg = hpet_readl(HPET_CFG);
237 cfg &= ~HPET_CFG_ENABLE;
238 hpet_writel(cfg, HPET_CFG);
239 }
240
241 static void hpet_reset_counter(void)
242 {
243 hpet_writel(0, HPET_COUNTER);
244 hpet_writel(0, HPET_COUNTER + 4);
245 }
246
247 static void hpet_start_counter(void)
248 {
249 unsigned long cfg = hpet_readl(HPET_CFG);
250 cfg |= HPET_CFG_ENABLE;
251 hpet_writel(cfg, HPET_CFG);
252 }
253
254 static void hpet_restart_counter(void)
255 {
256 hpet_stop_counter();
257 hpet_reset_counter();
258 hpet_start_counter();
259 }
260
261 static void hpet_resume_device(void)
262 {
263 force_hpet_resume();
264 }
265
266 static void hpet_resume_counter(void)
267 {
268 hpet_resume_device();
269 hpet_restart_counter();
270 }
271
272 static void hpet_enable_legacy_int(void)
273 {
274 unsigned long cfg = hpet_readl(HPET_CFG);
275
276 cfg |= HPET_CFG_LEGACY;
277 hpet_writel(cfg, HPET_CFG);
278 hpet_legacy_int_enabled = 1;
279 }
280
281 static void hpet_legacy_clockevent_register(void)
282 {
283 /* Start HPET legacy interrupts */
284 hpet_enable_legacy_int();
285
286 /*
287 * The mult factor is defined as (include/linux/clockchips.h)
288 * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
289 * hpet_period is in units of femtoseconds (per cycle), so
290 * mult/2^shift = cyc/ns = 10^6/hpet_period
291 * mult = (10^6 * 2^shift)/hpet_period
292 * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
293 */
294 hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
295 hpet_period, hpet_clockevent.shift);
296 /* Calculate the min / max delta */
297 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
298 &hpet_clockevent);
299 /* 5 usec minimum reprogramming delta. */
300 hpet_clockevent.min_delta_ns = 5000;
301
302 /*
303 * Start hpet with the boot cpu mask and make it
304 * global after the IO_APIC has been initialized.
305 */
306 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
307 clockevents_register_device(&hpet_clockevent);
308 global_clock_event = &hpet_clockevent;
309 printk(KERN_DEBUG "hpet clockevent registered\n");
310 }
311
312 static int hpet_setup_msi_irq(unsigned int irq);
313
314 static void hpet_set_mode(enum clock_event_mode mode,
315 struct clock_event_device *evt, int timer)
316 {
317 unsigned long cfg, cmp, now;
318 uint64_t delta;
319
320 switch (mode) {
321 case CLOCK_EVT_MODE_PERIODIC:
322 hpet_stop_counter();
323 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
324 delta >>= evt->shift;
325 now = hpet_readl(HPET_COUNTER);
326 cmp = now + (unsigned long) delta;
327 cfg = hpet_readl(HPET_Tn_CFG(timer));
328 /* Make sure we use edge triggered interrupts */
329 cfg &= ~HPET_TN_LEVEL;
330 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
331 HPET_TN_SETVAL | HPET_TN_32BIT;
332 hpet_writel(cfg, HPET_Tn_CFG(timer));
333 hpet_writel(cmp, HPET_Tn_CMP(timer));
334 udelay(1);
335 /*
336 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
337 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
338 * bit is automatically cleared after the first write.
339 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
340 * Publication # 24674)
341 */
342 hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer));
343 hpet_start_counter();
344 hpet_print_config();
345 break;
346
347 case CLOCK_EVT_MODE_ONESHOT:
348 cfg = hpet_readl(HPET_Tn_CFG(timer));
349 cfg &= ~HPET_TN_PERIODIC;
350 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
351 hpet_writel(cfg, HPET_Tn_CFG(timer));
352 break;
353
354 case CLOCK_EVT_MODE_UNUSED:
355 case CLOCK_EVT_MODE_SHUTDOWN:
356 cfg = hpet_readl(HPET_Tn_CFG(timer));
357 cfg &= ~HPET_TN_ENABLE;
358 hpet_writel(cfg, HPET_Tn_CFG(timer));
359 break;
360
361 case CLOCK_EVT_MODE_RESUME:
362 if (timer == 0) {
363 hpet_enable_legacy_int();
364 } else {
365 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
366 hpet_setup_msi_irq(hdev->irq);
367 disable_irq(hdev->irq);
368 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
369 enable_irq(hdev->irq);
370 }
371 hpet_print_config();
372 break;
373 }
374 }
375
376 static int hpet_next_event(unsigned long delta,
377 struct clock_event_device *evt, int timer)
378 {
379 u32 cnt;
380
381 cnt = hpet_readl(HPET_COUNTER);
382 cnt += (u32) delta;
383 hpet_writel(cnt, HPET_Tn_CMP(timer));
384
385 /*
386 * We need to read back the CMP register to make sure that
387 * what we wrote hit the chip before we compare it to the
388 * counter.
389 */
390 WARN_ON_ONCE((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt);
391
392 return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
393 }
394
395 static void hpet_legacy_set_mode(enum clock_event_mode mode,
396 struct clock_event_device *evt)
397 {
398 hpet_set_mode(mode, evt, 0);
399 }
400
401 static int hpet_legacy_next_event(unsigned long delta,
402 struct clock_event_device *evt)
403 {
404 return hpet_next_event(delta, evt, 0);
405 }
406
407 /*
408 * HPET MSI Support
409 */
410 #ifdef CONFIG_PCI_MSI
411
412 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
413 static struct hpet_dev *hpet_devs;
414
415 void hpet_msi_unmask(unsigned int irq)
416 {
417 struct hpet_dev *hdev = get_irq_data(irq);
418 unsigned long cfg;
419
420 /* unmask it */
421 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
422 cfg |= HPET_TN_FSB;
423 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
424 }
425
426 void hpet_msi_mask(unsigned int irq)
427 {
428 unsigned long cfg;
429 struct hpet_dev *hdev = get_irq_data(irq);
430
431 /* mask it */
432 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
433 cfg &= ~HPET_TN_FSB;
434 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
435 }
436
437 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
438 {
439 struct hpet_dev *hdev = get_irq_data(irq);
440
441 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
442 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
443 }
444
445 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
446 {
447 struct hpet_dev *hdev = get_irq_data(irq);
448
449 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
450 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
451 msg->address_hi = 0;
452 }
453
454 static void hpet_msi_set_mode(enum clock_event_mode mode,
455 struct clock_event_device *evt)
456 {
457 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
458 hpet_set_mode(mode, evt, hdev->num);
459 }
460
461 static int hpet_msi_next_event(unsigned long delta,
462 struct clock_event_device *evt)
463 {
464 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
465 return hpet_next_event(delta, evt, hdev->num);
466 }
467
468 static int hpet_setup_msi_irq(unsigned int irq)
469 {
470 if (arch_setup_hpet_msi(irq)) {
471 destroy_irq(irq);
472 return -EINVAL;
473 }
474 return 0;
475 }
476
477 static int hpet_assign_irq(struct hpet_dev *dev)
478 {
479 unsigned int irq;
480
481 irq = create_irq();
482 if (!irq)
483 return -EINVAL;
484
485 set_irq_data(irq, dev);
486
487 if (hpet_setup_msi_irq(irq))
488 return -EINVAL;
489
490 dev->irq = irq;
491 return 0;
492 }
493
494 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
495 {
496 struct hpet_dev *dev = (struct hpet_dev *)data;
497 struct clock_event_device *hevt = &dev->evt;
498
499 if (!hevt->event_handler) {
500 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
501 dev->num);
502 return IRQ_HANDLED;
503 }
504
505 hevt->event_handler(hevt);
506 return IRQ_HANDLED;
507 }
508
509 static int hpet_setup_irq(struct hpet_dev *dev)
510 {
511
512 if (request_irq(dev->irq, hpet_interrupt_handler,
513 IRQF_DISABLED|IRQF_NOBALANCING, dev->name, dev))
514 return -1;
515
516 disable_irq(dev->irq);
517 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
518 enable_irq(dev->irq);
519
520 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
521 dev->name, dev->irq);
522
523 return 0;
524 }
525
526 /* This should be called in specific @cpu */
527 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
528 {
529 struct clock_event_device *evt = &hdev->evt;
530 uint64_t hpet_freq;
531
532 WARN_ON(cpu != smp_processor_id());
533 if (!(hdev->flags & HPET_DEV_VALID))
534 return;
535
536 if (hpet_setup_msi_irq(hdev->irq))
537 return;
538
539 hdev->cpu = cpu;
540 per_cpu(cpu_hpet_dev, cpu) = hdev;
541 evt->name = hdev->name;
542 hpet_setup_irq(hdev);
543 evt->irq = hdev->irq;
544
545 evt->rating = 110;
546 evt->features = CLOCK_EVT_FEAT_ONESHOT;
547 if (hdev->flags & HPET_DEV_PERI_CAP)
548 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
549
550 evt->set_mode = hpet_msi_set_mode;
551 evt->set_next_event = hpet_msi_next_event;
552 evt->shift = 32;
553
554 /*
555 * The period is a femto seconds value. We need to calculate the
556 * scaled math multiplication factor for nanosecond to hpet tick
557 * conversion.
558 */
559 hpet_freq = 1000000000000000ULL;
560 do_div(hpet_freq, hpet_period);
561 evt->mult = div_sc((unsigned long) hpet_freq,
562 NSEC_PER_SEC, evt->shift);
563 /* Calculate the max delta */
564 evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
565 /* 5 usec minimum reprogramming delta. */
566 evt->min_delta_ns = 5000;
567
568 evt->cpumask = cpumask_of(hdev->cpu);
569 clockevents_register_device(evt);
570 }
571
572 #ifdef CONFIG_HPET
573 /* Reserve at least one timer for userspace (/dev/hpet) */
574 #define RESERVE_TIMERS 1
575 #else
576 #define RESERVE_TIMERS 0
577 #endif
578
579 static void hpet_msi_capability_lookup(unsigned int start_timer)
580 {
581 unsigned int id;
582 unsigned int num_timers;
583 unsigned int num_timers_used = 0;
584 int i;
585
586 id = hpet_readl(HPET_ID);
587
588 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
589 num_timers++; /* Value read out starts from 0 */
590 hpet_print_config();
591
592 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
593 if (!hpet_devs)
594 return;
595
596 hpet_num_timers = num_timers;
597
598 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
599 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
600 unsigned long cfg = hpet_readl(HPET_Tn_CFG(i));
601
602 /* Only consider HPET timer with MSI support */
603 if (!(cfg & HPET_TN_FSB_CAP))
604 continue;
605
606 hdev->flags = 0;
607 if (cfg & HPET_TN_PERIODIC_CAP)
608 hdev->flags |= HPET_DEV_PERI_CAP;
609 hdev->num = i;
610
611 sprintf(hdev->name, "hpet%d", i);
612 if (hpet_assign_irq(hdev))
613 continue;
614
615 hdev->flags |= HPET_DEV_FSB_CAP;
616 hdev->flags |= HPET_DEV_VALID;
617 num_timers_used++;
618 if (num_timers_used == num_possible_cpus())
619 break;
620 }
621
622 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
623 num_timers, num_timers_used);
624 }
625
626 #ifdef CONFIG_HPET
627 static void hpet_reserve_msi_timers(struct hpet_data *hd)
628 {
629 int i;
630
631 if (!hpet_devs)
632 return;
633
634 for (i = 0; i < hpet_num_timers; i++) {
635 struct hpet_dev *hdev = &hpet_devs[i];
636
637 if (!(hdev->flags & HPET_DEV_VALID))
638 continue;
639
640 hd->hd_irq[hdev->num] = hdev->irq;
641 hpet_reserve_timer(hd, hdev->num);
642 }
643 }
644 #endif
645
646 static struct hpet_dev *hpet_get_unused_timer(void)
647 {
648 int i;
649
650 if (!hpet_devs)
651 return NULL;
652
653 for (i = 0; i < hpet_num_timers; i++) {
654 struct hpet_dev *hdev = &hpet_devs[i];
655
656 if (!(hdev->flags & HPET_DEV_VALID))
657 continue;
658 if (test_and_set_bit(HPET_DEV_USED_BIT,
659 (unsigned long *)&hdev->flags))
660 continue;
661 return hdev;
662 }
663 return NULL;
664 }
665
666 struct hpet_work_struct {
667 struct delayed_work work;
668 struct completion complete;
669 };
670
671 static void hpet_work(struct work_struct *w)
672 {
673 struct hpet_dev *hdev;
674 int cpu = smp_processor_id();
675 struct hpet_work_struct *hpet_work;
676
677 hpet_work = container_of(w, struct hpet_work_struct, work.work);
678
679 hdev = hpet_get_unused_timer();
680 if (hdev)
681 init_one_hpet_msi_clockevent(hdev, cpu);
682
683 complete(&hpet_work->complete);
684 }
685
686 static int hpet_cpuhp_notify(struct notifier_block *n,
687 unsigned long action, void *hcpu)
688 {
689 unsigned long cpu = (unsigned long)hcpu;
690 struct hpet_work_struct work;
691 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
692
693 switch (action & 0xf) {
694 case CPU_ONLINE:
695 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
696 init_completion(&work.complete);
697 /* FIXME: add schedule_work_on() */
698 schedule_delayed_work_on(cpu, &work.work, 0);
699 wait_for_completion(&work.complete);
700 destroy_timer_on_stack(&work.work.timer);
701 break;
702 case CPU_DEAD:
703 if (hdev) {
704 free_irq(hdev->irq, hdev);
705 hdev->flags &= ~HPET_DEV_USED;
706 per_cpu(cpu_hpet_dev, cpu) = NULL;
707 }
708 break;
709 }
710 return NOTIFY_OK;
711 }
712 #else
713
714 static int hpet_setup_msi_irq(unsigned int irq)
715 {
716 return 0;
717 }
718 static void hpet_msi_capability_lookup(unsigned int start_timer)
719 {
720 return;
721 }
722
723 #ifdef CONFIG_HPET
724 static void hpet_reserve_msi_timers(struct hpet_data *hd)
725 {
726 return;
727 }
728 #endif
729
730 static int hpet_cpuhp_notify(struct notifier_block *n,
731 unsigned long action, void *hcpu)
732 {
733 return NOTIFY_OK;
734 }
735
736 #endif
737
738 /*
739 * Clock source related code
740 */
741 static cycle_t read_hpet(struct clocksource *cs)
742 {
743 return (cycle_t)hpet_readl(HPET_COUNTER);
744 }
745
746 #ifdef CONFIG_X86_64
747 static cycle_t __vsyscall_fn vread_hpet(void)
748 {
749 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
750 }
751 #endif
752
753 static struct clocksource clocksource_hpet = {
754 .name = "hpet",
755 .rating = 250,
756 .read = read_hpet,
757 .mask = HPET_MASK,
758 .shift = HPET_SHIFT,
759 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
760 .resume = hpet_resume_counter,
761 #ifdef CONFIG_X86_64
762 .vread = vread_hpet,
763 #endif
764 };
765
766 static int hpet_clocksource_register(void)
767 {
768 u64 start, now;
769 cycle_t t1;
770
771 /* Start the counter */
772 hpet_restart_counter();
773
774 /* Verify whether hpet counter works */
775 t1 = hpet_readl(HPET_COUNTER);
776 rdtscll(start);
777
778 /*
779 * We don't know the TSC frequency yet, but waiting for
780 * 200000 TSC cycles is safe:
781 * 4 GHz == 50us
782 * 1 GHz == 200us
783 */
784 do {
785 rep_nop();
786 rdtscll(now);
787 } while ((now - start) < 200000UL);
788
789 if (t1 == hpet_readl(HPET_COUNTER)) {
790 printk(KERN_WARNING
791 "HPET counter not counting. HPET disabled\n");
792 return -ENODEV;
793 }
794
795 /*
796 * The definition of mult is (include/linux/clocksource.h)
797 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
798 * so we first need to convert hpet_period to ns/cyc units:
799 * mult/2^shift = ns/cyc = hpet_period/10^6
800 * mult = (hpet_period * 2^shift)/10^6
801 * mult = (hpet_period << shift)/FSEC_PER_NSEC
802 */
803 clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
804
805 clocksource_register(&clocksource_hpet);
806
807 return 0;
808 }
809
810 /**
811 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
812 */
813 int __init hpet_enable(void)
814 {
815 unsigned long id;
816 int i;
817
818 if (!is_hpet_capable())
819 return 0;
820
821 hpet_set_mapping();
822
823 /*
824 * Read the period and check for a sane value:
825 */
826 hpet_period = hpet_readl(HPET_PERIOD);
827
828 /*
829 * AMD SB700 based systems with spread spectrum enabled use a
830 * SMM based HPET emulation to provide proper frequency
831 * setting. The SMM code is initialized with the first HPET
832 * register access and takes some time to complete. During
833 * this time the config register reads 0xffffffff. We check
834 * for max. 1000 loops whether the config register reads a non
835 * 0xffffffff value to make sure that HPET is up and running
836 * before we go further. A counting loop is safe, as the HPET
837 * access takes thousands of CPU cycles. On non SB700 based
838 * machines this check is only done once and has no side
839 * effects.
840 */
841 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
842 if (i == 1000) {
843 printk(KERN_WARNING
844 "HPET config register value = 0xFFFFFFFF. "
845 "Disabling HPET\n");
846 goto out_nohpet;
847 }
848 }
849
850 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
851 goto out_nohpet;
852
853 /*
854 * Read the HPET ID register to retrieve the IRQ routing
855 * information and the number of channels
856 */
857 id = hpet_readl(HPET_ID);
858 hpet_print_config();
859
860 #ifdef CONFIG_HPET_EMULATE_RTC
861 /*
862 * The legacy routing mode needs at least two channels, tick timer
863 * and the rtc emulation channel.
864 */
865 if (!(id & HPET_ID_NUMBER))
866 goto out_nohpet;
867 #endif
868
869 if (hpet_clocksource_register())
870 goto out_nohpet;
871
872 if (id & HPET_ID_LEGSUP) {
873 hpet_legacy_clockevent_register();
874 hpet_msi_capability_lookup(2);
875 return 1;
876 }
877 hpet_msi_capability_lookup(0);
878 return 0;
879
880 out_nohpet:
881 hpet_clear_mapping();
882 hpet_address = 0;
883 return 0;
884 }
885
886 /*
887 * Needs to be late, as the reserve_timer code calls kalloc !
888 *
889 * Not a problem on i386 as hpet_enable is called from late_time_init,
890 * but on x86_64 it is necessary !
891 */
892 static __init int hpet_late_init(void)
893 {
894 int cpu;
895
896 if (boot_hpet_disable)
897 return -ENODEV;
898
899 if (!hpet_address) {
900 if (!force_hpet_address)
901 return -ENODEV;
902
903 hpet_address = force_hpet_address;
904 hpet_enable();
905 }
906
907 if (!hpet_virt_address)
908 return -ENODEV;
909
910 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
911 hpet_print_config();
912
913 for_each_online_cpu(cpu) {
914 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
915 }
916
917 /* This notifier should be called after workqueue is ready */
918 hotcpu_notifier(hpet_cpuhp_notify, -20);
919
920 return 0;
921 }
922 fs_initcall(hpet_late_init);
923
924 void hpet_disable(void)
925 {
926 if (is_hpet_capable()) {
927 unsigned long cfg = hpet_readl(HPET_CFG);
928
929 if (hpet_legacy_int_enabled) {
930 cfg &= ~HPET_CFG_LEGACY;
931 hpet_legacy_int_enabled = 0;
932 }
933 cfg &= ~HPET_CFG_ENABLE;
934 hpet_writel(cfg, HPET_CFG);
935 }
936 }
937
938 #ifdef CONFIG_HPET_EMULATE_RTC
939
940 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
941 * is enabled, we support RTC interrupt functionality in software.
942 * RTC has 3 kinds of interrupts:
943 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
944 * is updated
945 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
946 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
947 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
948 * (1) and (2) above are implemented using polling at a frequency of
949 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
950 * overhead. (DEFAULT_RTC_INT_FREQ)
951 * For (3), we use interrupts at 64Hz or user specified periodic
952 * frequency, whichever is higher.
953 */
954 #include <linux/mc146818rtc.h>
955 #include <linux/rtc.h>
956 #include <asm/rtc.h>
957
958 #define DEFAULT_RTC_INT_FREQ 64
959 #define DEFAULT_RTC_SHIFT 6
960 #define RTC_NUM_INTS 1
961
962 static unsigned long hpet_rtc_flags;
963 static int hpet_prev_update_sec;
964 static struct rtc_time hpet_alarm_time;
965 static unsigned long hpet_pie_count;
966 static u32 hpet_t1_cmp;
967 static unsigned long hpet_default_delta;
968 static unsigned long hpet_pie_delta;
969 static unsigned long hpet_pie_limit;
970
971 static rtc_irq_handler irq_handler;
972
973 /*
974 * Check that the hpet counter c1 is ahead of the c2
975 */
976 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
977 {
978 return (s32)(c2 - c1) < 0;
979 }
980
981 /*
982 * Registers a IRQ handler.
983 */
984 int hpet_register_irq_handler(rtc_irq_handler handler)
985 {
986 if (!is_hpet_enabled())
987 return -ENODEV;
988 if (irq_handler)
989 return -EBUSY;
990
991 irq_handler = handler;
992
993 return 0;
994 }
995 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
996
997 /*
998 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
999 * and does cleanup.
1000 */
1001 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1002 {
1003 if (!is_hpet_enabled())
1004 return;
1005
1006 irq_handler = NULL;
1007 hpet_rtc_flags = 0;
1008 }
1009 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1010
1011 /*
1012 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1013 * is not supported by all HPET implementations for timer 1.
1014 *
1015 * hpet_rtc_timer_init() is called when the rtc is initialized.
1016 */
1017 int hpet_rtc_timer_init(void)
1018 {
1019 unsigned long cfg, cnt, delta, flags;
1020
1021 if (!is_hpet_enabled())
1022 return 0;
1023
1024 if (!hpet_default_delta) {
1025 uint64_t clc;
1026
1027 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1028 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1029 hpet_default_delta = (unsigned long) clc;
1030 }
1031
1032 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1033 delta = hpet_default_delta;
1034 else
1035 delta = hpet_pie_delta;
1036
1037 local_irq_save(flags);
1038
1039 cnt = delta + hpet_readl(HPET_COUNTER);
1040 hpet_writel(cnt, HPET_T1_CMP);
1041 hpet_t1_cmp = cnt;
1042
1043 cfg = hpet_readl(HPET_T1_CFG);
1044 cfg &= ~HPET_TN_PERIODIC;
1045 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1046 hpet_writel(cfg, HPET_T1_CFG);
1047
1048 local_irq_restore(flags);
1049
1050 return 1;
1051 }
1052 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1053
1054 /*
1055 * The functions below are called from rtc driver.
1056 * Return 0 if HPET is not being used.
1057 * Otherwise do the necessary changes and return 1.
1058 */
1059 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1060 {
1061 if (!is_hpet_enabled())
1062 return 0;
1063
1064 hpet_rtc_flags &= ~bit_mask;
1065 return 1;
1066 }
1067 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1068
1069 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1070 {
1071 unsigned long oldbits = hpet_rtc_flags;
1072
1073 if (!is_hpet_enabled())
1074 return 0;
1075
1076 hpet_rtc_flags |= bit_mask;
1077
1078 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1079 hpet_prev_update_sec = -1;
1080
1081 if (!oldbits)
1082 hpet_rtc_timer_init();
1083
1084 return 1;
1085 }
1086 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1087
1088 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1089 unsigned char sec)
1090 {
1091 if (!is_hpet_enabled())
1092 return 0;
1093
1094 hpet_alarm_time.tm_hour = hrs;
1095 hpet_alarm_time.tm_min = min;
1096 hpet_alarm_time.tm_sec = sec;
1097
1098 return 1;
1099 }
1100 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1101
1102 int hpet_set_periodic_freq(unsigned long freq)
1103 {
1104 uint64_t clc;
1105
1106 if (!is_hpet_enabled())
1107 return 0;
1108
1109 if (freq <= DEFAULT_RTC_INT_FREQ)
1110 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1111 else {
1112 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1113 do_div(clc, freq);
1114 clc >>= hpet_clockevent.shift;
1115 hpet_pie_delta = (unsigned long) clc;
1116 }
1117 return 1;
1118 }
1119 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1120
1121 int hpet_rtc_dropped_irq(void)
1122 {
1123 return is_hpet_enabled();
1124 }
1125 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1126
1127 static void hpet_rtc_timer_reinit(void)
1128 {
1129 unsigned long cfg, delta;
1130 int lost_ints = -1;
1131
1132 if (unlikely(!hpet_rtc_flags)) {
1133 cfg = hpet_readl(HPET_T1_CFG);
1134 cfg &= ~HPET_TN_ENABLE;
1135 hpet_writel(cfg, HPET_T1_CFG);
1136 return;
1137 }
1138
1139 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1140 delta = hpet_default_delta;
1141 else
1142 delta = hpet_pie_delta;
1143
1144 /*
1145 * Increment the comparator value until we are ahead of the
1146 * current count.
1147 */
1148 do {
1149 hpet_t1_cmp += delta;
1150 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1151 lost_ints++;
1152 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1153
1154 if (lost_ints) {
1155 if (hpet_rtc_flags & RTC_PIE)
1156 hpet_pie_count += lost_ints;
1157 if (printk_ratelimit())
1158 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1159 lost_ints);
1160 }
1161 }
1162
1163 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1164 {
1165 struct rtc_time curr_time;
1166 unsigned long rtc_int_flag = 0;
1167
1168 hpet_rtc_timer_reinit();
1169 memset(&curr_time, 0, sizeof(struct rtc_time));
1170
1171 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1172 get_rtc_time(&curr_time);
1173
1174 if (hpet_rtc_flags & RTC_UIE &&
1175 curr_time.tm_sec != hpet_prev_update_sec) {
1176 if (hpet_prev_update_sec >= 0)
1177 rtc_int_flag = RTC_UF;
1178 hpet_prev_update_sec = curr_time.tm_sec;
1179 }
1180
1181 if (hpet_rtc_flags & RTC_PIE &&
1182 ++hpet_pie_count >= hpet_pie_limit) {
1183 rtc_int_flag |= RTC_PF;
1184 hpet_pie_count = 0;
1185 }
1186
1187 if (hpet_rtc_flags & RTC_AIE &&
1188 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1189 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1190 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1191 rtc_int_flag |= RTC_AF;
1192
1193 if (rtc_int_flag) {
1194 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1195 if (irq_handler)
1196 irq_handler(rtc_int_flag, dev_id);
1197 }
1198 return IRQ_HANDLED;
1199 }
1200 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1201 #endif
This page took 0.05735 seconds and 5 git commands to generate.