Merge remote-tracking branches 'asoc/topic/txx9', 'asoc/topic/wm8750', 'asoc/topic...
[deliverable/linux.git] / arch / x86 / kernel / i387.c
1 /*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8 #include <linux/module.h>
9 #include <linux/regset.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12
13 #include <asm/sigcontext.h>
14 #include <asm/processor.h>
15 #include <asm/math_emu.h>
16 #include <asm/uaccess.h>
17 #include <asm/ptrace.h>
18 #include <asm/i387.h>
19 #include <asm/fpu-internal.h>
20 #include <asm/user.h>
21
22 /*
23 * Were we in an interrupt that interrupted kernel mode?
24 *
25 * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
26 * pair does nothing at all: the thread must not have fpu (so
27 * that we don't try to save the FPU state), and TS must
28 * be set (so that the clts/stts pair does nothing that is
29 * visible in the interrupted kernel thread).
30 *
31 * Except for the eagerfpu case when we return 1 unless we've already
32 * been eager and saved the state in kernel_fpu_begin().
33 */
34 static inline bool interrupted_kernel_fpu_idle(void)
35 {
36 if (use_eager_fpu())
37 return __thread_has_fpu(current);
38
39 return !__thread_has_fpu(current) &&
40 (read_cr0() & X86_CR0_TS);
41 }
42
43 /*
44 * Were we in user mode (or vm86 mode) when we were
45 * interrupted?
46 *
47 * Doing kernel_fpu_begin/end() is ok if we are running
48 * in an interrupt context from user mode - we'll just
49 * save the FPU state as required.
50 */
51 static inline bool interrupted_user_mode(void)
52 {
53 struct pt_regs *regs = get_irq_regs();
54 return regs && user_mode_vm(regs);
55 }
56
57 /*
58 * Can we use the FPU in kernel mode with the
59 * whole "kernel_fpu_begin/end()" sequence?
60 *
61 * It's always ok in process context (ie "not interrupt")
62 * but it is sometimes ok even from an irq.
63 */
64 bool irq_fpu_usable(void)
65 {
66 return !in_interrupt() ||
67 interrupted_user_mode() ||
68 interrupted_kernel_fpu_idle();
69 }
70 EXPORT_SYMBOL(irq_fpu_usable);
71
72 void __kernel_fpu_begin(void)
73 {
74 struct task_struct *me = current;
75
76 if (__thread_has_fpu(me)) {
77 __thread_clear_has_fpu(me);
78 __save_init_fpu(me);
79 /* We do 'stts()' in __kernel_fpu_end() */
80 } else if (!use_eager_fpu()) {
81 this_cpu_write(fpu_owner_task, NULL);
82 clts();
83 }
84 }
85 EXPORT_SYMBOL(__kernel_fpu_begin);
86
87 void __kernel_fpu_end(void)
88 {
89 if (use_eager_fpu()) {
90 /*
91 * For eager fpu, most the time, tsk_used_math() is true.
92 * Restore the user math as we are done with the kernel usage.
93 * At few instances during thread exit, signal handling etc,
94 * tsk_used_math() is false. Those few places will take proper
95 * actions, so we don't need to restore the math here.
96 */
97 if (likely(tsk_used_math(current)))
98 math_state_restore();
99 } else {
100 stts();
101 }
102 }
103 EXPORT_SYMBOL(__kernel_fpu_end);
104
105 void unlazy_fpu(struct task_struct *tsk)
106 {
107 preempt_disable();
108 if (__thread_has_fpu(tsk)) {
109 __save_init_fpu(tsk);
110 __thread_fpu_end(tsk);
111 } else
112 tsk->thread.fpu_counter = 0;
113 preempt_enable();
114 }
115 EXPORT_SYMBOL(unlazy_fpu);
116
117 unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
118 unsigned int xstate_size;
119 EXPORT_SYMBOL_GPL(xstate_size);
120 static struct i387_fxsave_struct fx_scratch;
121
122 static void mxcsr_feature_mask_init(void)
123 {
124 unsigned long mask = 0;
125
126 if (cpu_has_fxsr) {
127 memset(&fx_scratch, 0, sizeof(struct i387_fxsave_struct));
128 asm volatile("fxsave %0" : "+m" (fx_scratch));
129 mask = fx_scratch.mxcsr_mask;
130 if (mask == 0)
131 mask = 0x0000ffbf;
132 }
133 mxcsr_feature_mask &= mask;
134 }
135
136 static void init_thread_xstate(void)
137 {
138 /*
139 * Note that xstate_size might be overwriten later during
140 * xsave_init().
141 */
142
143 if (!cpu_has_fpu) {
144 /*
145 * Disable xsave as we do not support it if i387
146 * emulation is enabled.
147 */
148 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
149 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
150 xstate_size = sizeof(struct i387_soft_struct);
151 return;
152 }
153
154 if (cpu_has_fxsr)
155 xstate_size = sizeof(struct i387_fxsave_struct);
156 else
157 xstate_size = sizeof(struct i387_fsave_struct);
158 }
159
160 /*
161 * Called at bootup to set up the initial FPU state that is later cloned
162 * into all processes.
163 */
164
165 void fpu_init(void)
166 {
167 unsigned long cr0;
168 unsigned long cr4_mask = 0;
169
170 #ifndef CONFIG_MATH_EMULATION
171 if (!cpu_has_fpu) {
172 pr_emerg("No FPU found and no math emulation present\n");
173 pr_emerg("Giving up\n");
174 for (;;)
175 asm volatile("hlt");
176 }
177 #endif
178 if (cpu_has_fxsr)
179 cr4_mask |= X86_CR4_OSFXSR;
180 if (cpu_has_xmm)
181 cr4_mask |= X86_CR4_OSXMMEXCPT;
182 if (cr4_mask)
183 set_in_cr4(cr4_mask);
184
185 cr0 = read_cr0();
186 cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
187 if (!cpu_has_fpu)
188 cr0 |= X86_CR0_EM;
189 write_cr0(cr0);
190
191 /*
192 * init_thread_xstate is only called once to avoid overriding
193 * xstate_size during boot time or during CPU hotplug.
194 */
195 if (xstate_size == 0)
196 init_thread_xstate();
197
198 mxcsr_feature_mask_init();
199 xsave_init();
200 eager_fpu_init();
201 }
202
203 void fpu_finit(struct fpu *fpu)
204 {
205 if (!cpu_has_fpu) {
206 finit_soft_fpu(&fpu->state->soft);
207 return;
208 }
209
210 if (cpu_has_fxsr) {
211 fx_finit(&fpu->state->fxsave);
212 } else {
213 struct i387_fsave_struct *fp = &fpu->state->fsave;
214 memset(fp, 0, xstate_size);
215 fp->cwd = 0xffff037fu;
216 fp->swd = 0xffff0000u;
217 fp->twd = 0xffffffffu;
218 fp->fos = 0xffff0000u;
219 }
220 }
221 EXPORT_SYMBOL_GPL(fpu_finit);
222
223 /*
224 * The _current_ task is using the FPU for the first time
225 * so initialize it and set the mxcsr to its default
226 * value at reset if we support XMM instructions and then
227 * remember the current task has used the FPU.
228 */
229 int init_fpu(struct task_struct *tsk)
230 {
231 int ret;
232
233 if (tsk_used_math(tsk)) {
234 if (cpu_has_fpu && tsk == current)
235 unlazy_fpu(tsk);
236 tsk->thread.fpu.last_cpu = ~0;
237 return 0;
238 }
239
240 /*
241 * Memory allocation at the first usage of the FPU and other state.
242 */
243 ret = fpu_alloc(&tsk->thread.fpu);
244 if (ret)
245 return ret;
246
247 fpu_finit(&tsk->thread.fpu);
248
249 set_stopped_child_used_math(tsk);
250 return 0;
251 }
252 EXPORT_SYMBOL_GPL(init_fpu);
253
254 /*
255 * The xstateregs_active() routine is the same as the fpregs_active() routine,
256 * as the "regset->n" for the xstate regset will be updated based on the feature
257 * capabilites supported by the xsave.
258 */
259 int fpregs_active(struct task_struct *target, const struct user_regset *regset)
260 {
261 return tsk_used_math(target) ? regset->n : 0;
262 }
263
264 int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
265 {
266 return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0;
267 }
268
269 int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
270 unsigned int pos, unsigned int count,
271 void *kbuf, void __user *ubuf)
272 {
273 int ret;
274
275 if (!cpu_has_fxsr)
276 return -ENODEV;
277
278 ret = init_fpu(target);
279 if (ret)
280 return ret;
281
282 sanitize_i387_state(target);
283
284 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
285 &target->thread.fpu.state->fxsave, 0, -1);
286 }
287
288 int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
289 unsigned int pos, unsigned int count,
290 const void *kbuf, const void __user *ubuf)
291 {
292 int ret;
293
294 if (!cpu_has_fxsr)
295 return -ENODEV;
296
297 ret = init_fpu(target);
298 if (ret)
299 return ret;
300
301 sanitize_i387_state(target);
302
303 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
304 &target->thread.fpu.state->fxsave, 0, -1);
305
306 /*
307 * mxcsr reserved bits must be masked to zero for security reasons.
308 */
309 target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
310
311 /*
312 * update the header bits in the xsave header, indicating the
313 * presence of FP and SSE state.
314 */
315 if (cpu_has_xsave)
316 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
317
318 return ret;
319 }
320
321 int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
322 unsigned int pos, unsigned int count,
323 void *kbuf, void __user *ubuf)
324 {
325 int ret;
326
327 if (!cpu_has_xsave)
328 return -ENODEV;
329
330 ret = init_fpu(target);
331 if (ret)
332 return ret;
333
334 /*
335 * Copy the 48bytes defined by the software first into the xstate
336 * memory layout in the thread struct, so that we can copy the entire
337 * xstateregs to the user using one user_regset_copyout().
338 */
339 memcpy(&target->thread.fpu.state->fxsave.sw_reserved,
340 xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
341
342 /*
343 * Copy the xstate memory layout.
344 */
345 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
346 &target->thread.fpu.state->xsave, 0, -1);
347 return ret;
348 }
349
350 int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
351 unsigned int pos, unsigned int count,
352 const void *kbuf, const void __user *ubuf)
353 {
354 int ret;
355 struct xsave_hdr_struct *xsave_hdr;
356
357 if (!cpu_has_xsave)
358 return -ENODEV;
359
360 ret = init_fpu(target);
361 if (ret)
362 return ret;
363
364 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
365 &target->thread.fpu.state->xsave, 0, -1);
366
367 /*
368 * mxcsr reserved bits must be masked to zero for security reasons.
369 */
370 target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
371
372 xsave_hdr = &target->thread.fpu.state->xsave.xsave_hdr;
373
374 xsave_hdr->xstate_bv &= pcntxt_mask;
375 /*
376 * These bits must be zero.
377 */
378 memset(xsave_hdr->reserved, 0, 48);
379
380 return ret;
381 }
382
383 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
384
385 /*
386 * FPU tag word conversions.
387 */
388
389 static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
390 {
391 unsigned int tmp; /* to avoid 16 bit prefixes in the code */
392
393 /* Transform each pair of bits into 01 (valid) or 00 (empty) */
394 tmp = ~twd;
395 tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
396 /* and move the valid bits to the lower byte. */
397 tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
398 tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
399 tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
400
401 return tmp;
402 }
403
404 #define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16)
405 #define FP_EXP_TAG_VALID 0
406 #define FP_EXP_TAG_ZERO 1
407 #define FP_EXP_TAG_SPECIAL 2
408 #define FP_EXP_TAG_EMPTY 3
409
410 static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
411 {
412 struct _fpxreg *st;
413 u32 tos = (fxsave->swd >> 11) & 7;
414 u32 twd = (unsigned long) fxsave->twd;
415 u32 tag;
416 u32 ret = 0xffff0000u;
417 int i;
418
419 for (i = 0; i < 8; i++, twd >>= 1) {
420 if (twd & 0x1) {
421 st = FPREG_ADDR(fxsave, (i - tos) & 7);
422
423 switch (st->exponent & 0x7fff) {
424 case 0x7fff:
425 tag = FP_EXP_TAG_SPECIAL;
426 break;
427 case 0x0000:
428 if (!st->significand[0] &&
429 !st->significand[1] &&
430 !st->significand[2] &&
431 !st->significand[3])
432 tag = FP_EXP_TAG_ZERO;
433 else
434 tag = FP_EXP_TAG_SPECIAL;
435 break;
436 default:
437 if (st->significand[3] & 0x8000)
438 tag = FP_EXP_TAG_VALID;
439 else
440 tag = FP_EXP_TAG_SPECIAL;
441 break;
442 }
443 } else {
444 tag = FP_EXP_TAG_EMPTY;
445 }
446 ret |= tag << (2 * i);
447 }
448 return ret;
449 }
450
451 /*
452 * FXSR floating point environment conversions.
453 */
454
455 void
456 convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
457 {
458 struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
459 struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
460 struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
461 int i;
462
463 env->cwd = fxsave->cwd | 0xffff0000u;
464 env->swd = fxsave->swd | 0xffff0000u;
465 env->twd = twd_fxsr_to_i387(fxsave);
466
467 #ifdef CONFIG_X86_64
468 env->fip = fxsave->rip;
469 env->foo = fxsave->rdp;
470 /*
471 * should be actually ds/cs at fpu exception time, but
472 * that information is not available in 64bit mode.
473 */
474 env->fcs = task_pt_regs(tsk)->cs;
475 if (tsk == current) {
476 savesegment(ds, env->fos);
477 } else {
478 env->fos = tsk->thread.ds;
479 }
480 env->fos |= 0xffff0000;
481 #else
482 env->fip = fxsave->fip;
483 env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
484 env->foo = fxsave->foo;
485 env->fos = fxsave->fos;
486 #endif
487
488 for (i = 0; i < 8; ++i)
489 memcpy(&to[i], &from[i], sizeof(to[0]));
490 }
491
492 void convert_to_fxsr(struct task_struct *tsk,
493 const struct user_i387_ia32_struct *env)
494
495 {
496 struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
497 struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
498 struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
499 int i;
500
501 fxsave->cwd = env->cwd;
502 fxsave->swd = env->swd;
503 fxsave->twd = twd_i387_to_fxsr(env->twd);
504 fxsave->fop = (u16) ((u32) env->fcs >> 16);
505 #ifdef CONFIG_X86_64
506 fxsave->rip = env->fip;
507 fxsave->rdp = env->foo;
508 /* cs and ds ignored */
509 #else
510 fxsave->fip = env->fip;
511 fxsave->fcs = (env->fcs & 0xffff);
512 fxsave->foo = env->foo;
513 fxsave->fos = env->fos;
514 #endif
515
516 for (i = 0; i < 8; ++i)
517 memcpy(&to[i], &from[i], sizeof(from[0]));
518 }
519
520 int fpregs_get(struct task_struct *target, const struct user_regset *regset,
521 unsigned int pos, unsigned int count,
522 void *kbuf, void __user *ubuf)
523 {
524 struct user_i387_ia32_struct env;
525 int ret;
526
527 ret = init_fpu(target);
528 if (ret)
529 return ret;
530
531 if (!static_cpu_has(X86_FEATURE_FPU))
532 return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
533
534 if (!cpu_has_fxsr)
535 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
536 &target->thread.fpu.state->fsave, 0,
537 -1);
538
539 sanitize_i387_state(target);
540
541 if (kbuf && pos == 0 && count == sizeof(env)) {
542 convert_from_fxsr(kbuf, target);
543 return 0;
544 }
545
546 convert_from_fxsr(&env, target);
547
548 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
549 }
550
551 int fpregs_set(struct task_struct *target, const struct user_regset *regset,
552 unsigned int pos, unsigned int count,
553 const void *kbuf, const void __user *ubuf)
554 {
555 struct user_i387_ia32_struct env;
556 int ret;
557
558 ret = init_fpu(target);
559 if (ret)
560 return ret;
561
562 sanitize_i387_state(target);
563
564 if (!static_cpu_has(X86_FEATURE_FPU))
565 return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
566
567 if (!cpu_has_fxsr)
568 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
569 &target->thread.fpu.state->fsave, 0,
570 -1);
571
572 if (pos > 0 || count < sizeof(env))
573 convert_from_fxsr(&env, target);
574
575 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
576 if (!ret)
577 convert_to_fxsr(target, &env);
578
579 /*
580 * update the header bit in the xsave header, indicating the
581 * presence of FP.
582 */
583 if (cpu_has_xsave)
584 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
585 return ret;
586 }
587
588 /*
589 * FPU state for core dumps.
590 * This is only used for a.out dumps now.
591 * It is declared generically using elf_fpregset_t (which is
592 * struct user_i387_struct) but is in fact only used for 32-bit
593 * dumps, so on 64-bit it is really struct user_i387_ia32_struct.
594 */
595 int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
596 {
597 struct task_struct *tsk = current;
598 int fpvalid;
599
600 fpvalid = !!used_math();
601 if (fpvalid)
602 fpvalid = !fpregs_get(tsk, NULL,
603 0, sizeof(struct user_i387_ia32_struct),
604 fpu, NULL);
605
606 return fpvalid;
607 }
608 EXPORT_SYMBOL(dump_fpu);
609
610 #endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
611
612 static int __init no_387(char *s)
613 {
614 setup_clear_cpu_cap(X86_FEATURE_FPU);
615 return 1;
616 }
617
618 __setup("no387", no_387);
619
620 void fpu_detect(struct cpuinfo_x86 *c)
621 {
622 unsigned long cr0;
623 u16 fsw, fcw;
624
625 fsw = fcw = 0xffff;
626
627 cr0 = read_cr0();
628 cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
629 write_cr0(cr0);
630
631 asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
632 : "+m" (fsw), "+m" (fcw));
633
634 if (fsw == 0 && (fcw & 0x103f) == 0x003f)
635 set_cpu_cap(c, X86_FEATURE_FPU);
636 else
637 clear_cpu_cap(c, X86_FEATURE_FPU);
638
639 /* The final cr0 value is set in fpu_init() */
640 }
This page took 0.046187 seconds and 5 git commands to generate.