sched: put back some stack hog changes that were undone in kernel/sched.c
[deliverable/linux.git] / arch / x86 / kernel / io_apic.c
1 /*
2 * Intel IO-APIC support for multi-Pentium hosts.
3 *
4 * Copyright (C) 1997, 1998, 1999, 2000 Ingo Molnar, Hajnalka Szabo
5 *
6 * Many thanks to Stig Venaas for trying out countless experimental
7 * patches and reporting/debugging problems patiently!
8 *
9 * (c) 1999, Multiple IO-APIC support, developed by
10 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12 * further tested and cleaned up by Zach Brown <zab@redhat.com>
13 * and Ingo Molnar <mingo@redhat.com>
14 *
15 * Fixes
16 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
17 * thanks to Eric Gilmore
18 * and Rolf G. Tews
19 * for testing these extensively
20 * Paul Diefenbaugh : Added full ACPI support
21 */
22
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h> /* time_after() */
39 #ifdef CONFIG_ACPI
40 #include <acpi/acpi_bus.h>
41 #endif
42 #include <linux/bootmem.h>
43 #include <linux/dmar.h>
44 #include <linux/hpet.h>
45
46 #include <asm/idle.h>
47 #include <asm/io.h>
48 #include <asm/smp.h>
49 #include <asm/desc.h>
50 #include <asm/proto.h>
51 #include <asm/acpi.h>
52 #include <asm/dma.h>
53 #include <asm/timer.h>
54 #include <asm/i8259.h>
55 #include <asm/nmi.h>
56 #include <asm/msidef.h>
57 #include <asm/hypertransport.h>
58 #include <asm/setup.h>
59 #include <asm/irq_remapping.h>
60 #include <asm/hpet.h>
61 #include <asm/uv/uv_hub.h>
62 #include <asm/uv/uv_irq.h>
63
64 #include <mach_ipi.h>
65 #include <mach_apic.h>
66 #include <mach_apicdef.h>
67
68 #define __apicdebuginit(type) static type __init
69
70 /*
71 * Is the SiS APIC rmw bug present ?
72 * -1 = don't know, 0 = no, 1 = yes
73 */
74 int sis_apic_bug = -1;
75
76 static DEFINE_SPINLOCK(ioapic_lock);
77 static DEFINE_SPINLOCK(vector_lock);
78
79 /*
80 * # of IRQ routing registers
81 */
82 int nr_ioapic_registers[MAX_IO_APICS];
83
84 /* I/O APIC entries */
85 struct mp_config_ioapic mp_ioapics[MAX_IO_APICS];
86 int nr_ioapics;
87
88 /* MP IRQ source entries */
89 struct mp_config_intsrc mp_irqs[MAX_IRQ_SOURCES];
90
91 /* # of MP IRQ source entries */
92 int mp_irq_entries;
93
94 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
95 int mp_bus_id_to_type[MAX_MP_BUSSES];
96 #endif
97
98 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
99
100 int skip_ioapic_setup;
101
102 static int __init parse_noapic(char *str)
103 {
104 /* disable IO-APIC */
105 disable_ioapic_setup();
106 return 0;
107 }
108 early_param("noapic", parse_noapic);
109
110 struct irq_pin_list;
111
112 /*
113 * This is performance-critical, we want to do it O(1)
114 *
115 * the indexing order of this array favors 1:1 mappings
116 * between pins and IRQs.
117 */
118
119 struct irq_pin_list {
120 int apic, pin;
121 struct irq_pin_list *next;
122 };
123
124 static struct irq_pin_list *get_one_free_irq_2_pin(int cpu)
125 {
126 struct irq_pin_list *pin;
127 int node;
128
129 node = cpu_to_node(cpu);
130
131 pin = kzalloc_node(sizeof(*pin), GFP_ATOMIC, node);
132 printk(KERN_DEBUG " alloc irq_2_pin on cpu %d node %d\n", cpu, node);
133
134 return pin;
135 }
136
137 struct irq_cfg {
138 struct irq_pin_list *irq_2_pin;
139 cpumask_var_t domain;
140 cpumask_var_t old_domain;
141 unsigned move_cleanup_count;
142 u8 vector;
143 u8 move_in_progress : 1;
144 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
145 u8 move_desc_pending : 1;
146 #endif
147 };
148
149 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
150 #ifdef CONFIG_SPARSE_IRQ
151 static struct irq_cfg irq_cfgx[] = {
152 #else
153 static struct irq_cfg irq_cfgx[NR_IRQS] = {
154 #endif
155 [0] = { .vector = IRQ0_VECTOR, },
156 [1] = { .vector = IRQ1_VECTOR, },
157 [2] = { .vector = IRQ2_VECTOR, },
158 [3] = { .vector = IRQ3_VECTOR, },
159 [4] = { .vector = IRQ4_VECTOR, },
160 [5] = { .vector = IRQ5_VECTOR, },
161 [6] = { .vector = IRQ6_VECTOR, },
162 [7] = { .vector = IRQ7_VECTOR, },
163 [8] = { .vector = IRQ8_VECTOR, },
164 [9] = { .vector = IRQ9_VECTOR, },
165 [10] = { .vector = IRQ10_VECTOR, },
166 [11] = { .vector = IRQ11_VECTOR, },
167 [12] = { .vector = IRQ12_VECTOR, },
168 [13] = { .vector = IRQ13_VECTOR, },
169 [14] = { .vector = IRQ14_VECTOR, },
170 [15] = { .vector = IRQ15_VECTOR, },
171 };
172
173 void __init arch_early_irq_init(void)
174 {
175 struct irq_cfg *cfg;
176 struct irq_desc *desc;
177 int count;
178 int i;
179
180 cfg = irq_cfgx;
181 count = ARRAY_SIZE(irq_cfgx);
182
183 for (i = 0; i < count; i++) {
184 desc = irq_to_desc(i);
185 desc->chip_data = &cfg[i];
186 alloc_bootmem_cpumask_var(&cfg[i].domain);
187 alloc_bootmem_cpumask_var(&cfg[i].old_domain);
188 if (i < NR_IRQS_LEGACY)
189 cpumask_setall(cfg[i].domain);
190 }
191 }
192
193 #ifdef CONFIG_SPARSE_IRQ
194 static struct irq_cfg *irq_cfg(unsigned int irq)
195 {
196 struct irq_cfg *cfg = NULL;
197 struct irq_desc *desc;
198
199 desc = irq_to_desc(irq);
200 if (desc)
201 cfg = desc->chip_data;
202
203 return cfg;
204 }
205
206 static struct irq_cfg *get_one_free_irq_cfg(int cpu)
207 {
208 struct irq_cfg *cfg;
209 int node;
210
211 node = cpu_to_node(cpu);
212
213 cfg = kzalloc_node(sizeof(*cfg), GFP_ATOMIC, node);
214 if (cfg) {
215 /* FIXME: needs alloc_cpumask_var_node() */
216 if (!alloc_cpumask_var(&cfg->domain, GFP_ATOMIC)) {
217 kfree(cfg);
218 cfg = NULL;
219 } else if (!alloc_cpumask_var(&cfg->old_domain, GFP_ATOMIC)) {
220 free_cpumask_var(cfg->domain);
221 kfree(cfg);
222 cfg = NULL;
223 } else {
224 cpumask_clear(cfg->domain);
225 cpumask_clear(cfg->old_domain);
226 }
227 }
228 printk(KERN_DEBUG " alloc irq_cfg on cpu %d node %d\n", cpu, node);
229
230 return cfg;
231 }
232
233 void arch_init_chip_data(struct irq_desc *desc, int cpu)
234 {
235 struct irq_cfg *cfg;
236
237 cfg = desc->chip_data;
238 if (!cfg) {
239 desc->chip_data = get_one_free_irq_cfg(cpu);
240 if (!desc->chip_data) {
241 printk(KERN_ERR "can not alloc irq_cfg\n");
242 BUG_ON(1);
243 }
244 }
245 }
246
247 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
248
249 static void
250 init_copy_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg, int cpu)
251 {
252 struct irq_pin_list *old_entry, *head, *tail, *entry;
253
254 cfg->irq_2_pin = NULL;
255 old_entry = old_cfg->irq_2_pin;
256 if (!old_entry)
257 return;
258
259 entry = get_one_free_irq_2_pin(cpu);
260 if (!entry)
261 return;
262
263 entry->apic = old_entry->apic;
264 entry->pin = old_entry->pin;
265 head = entry;
266 tail = entry;
267 old_entry = old_entry->next;
268 while (old_entry) {
269 entry = get_one_free_irq_2_pin(cpu);
270 if (!entry) {
271 entry = head;
272 while (entry) {
273 head = entry->next;
274 kfree(entry);
275 entry = head;
276 }
277 /* still use the old one */
278 return;
279 }
280 entry->apic = old_entry->apic;
281 entry->pin = old_entry->pin;
282 tail->next = entry;
283 tail = entry;
284 old_entry = old_entry->next;
285 }
286
287 tail->next = NULL;
288 cfg->irq_2_pin = head;
289 }
290
291 static void free_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg)
292 {
293 struct irq_pin_list *entry, *next;
294
295 if (old_cfg->irq_2_pin == cfg->irq_2_pin)
296 return;
297
298 entry = old_cfg->irq_2_pin;
299
300 while (entry) {
301 next = entry->next;
302 kfree(entry);
303 entry = next;
304 }
305 old_cfg->irq_2_pin = NULL;
306 }
307
308 void arch_init_copy_chip_data(struct irq_desc *old_desc,
309 struct irq_desc *desc, int cpu)
310 {
311 struct irq_cfg *cfg;
312 struct irq_cfg *old_cfg;
313
314 cfg = get_one_free_irq_cfg(cpu);
315
316 if (!cfg)
317 return;
318
319 desc->chip_data = cfg;
320
321 old_cfg = old_desc->chip_data;
322
323 memcpy(cfg, old_cfg, sizeof(struct irq_cfg));
324
325 init_copy_irq_2_pin(old_cfg, cfg, cpu);
326 }
327
328 static void free_irq_cfg(struct irq_cfg *old_cfg)
329 {
330 kfree(old_cfg);
331 }
332
333 void arch_free_chip_data(struct irq_desc *old_desc, struct irq_desc *desc)
334 {
335 struct irq_cfg *old_cfg, *cfg;
336
337 old_cfg = old_desc->chip_data;
338 cfg = desc->chip_data;
339
340 if (old_cfg == cfg)
341 return;
342
343 if (old_cfg) {
344 free_irq_2_pin(old_cfg, cfg);
345 free_irq_cfg(old_cfg);
346 old_desc->chip_data = NULL;
347 }
348 }
349
350 static void
351 set_extra_move_desc(struct irq_desc *desc, const struct cpumask *mask)
352 {
353 struct irq_cfg *cfg = desc->chip_data;
354
355 if (!cfg->move_in_progress) {
356 /* it means that domain is not changed */
357 if (!cpumask_intersects(&desc->affinity, mask))
358 cfg->move_desc_pending = 1;
359 }
360 }
361 #endif
362
363 #else
364 static struct irq_cfg *irq_cfg(unsigned int irq)
365 {
366 return irq < nr_irqs ? irq_cfgx + irq : NULL;
367 }
368
369 #endif
370
371 #ifndef CONFIG_NUMA_MIGRATE_IRQ_DESC
372 static inline void
373 set_extra_move_desc(struct irq_desc *desc, const struct cpumask *mask)
374 {
375 }
376 #endif
377
378 struct io_apic {
379 unsigned int index;
380 unsigned int unused[3];
381 unsigned int data;
382 };
383
384 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
385 {
386 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
387 + (mp_ioapics[idx].mp_apicaddr & ~PAGE_MASK);
388 }
389
390 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
391 {
392 struct io_apic __iomem *io_apic = io_apic_base(apic);
393 writel(reg, &io_apic->index);
394 return readl(&io_apic->data);
395 }
396
397 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
398 {
399 struct io_apic __iomem *io_apic = io_apic_base(apic);
400 writel(reg, &io_apic->index);
401 writel(value, &io_apic->data);
402 }
403
404 /*
405 * Re-write a value: to be used for read-modify-write
406 * cycles where the read already set up the index register.
407 *
408 * Older SiS APIC requires we rewrite the index register
409 */
410 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
411 {
412 struct io_apic __iomem *io_apic = io_apic_base(apic);
413
414 if (sis_apic_bug)
415 writel(reg, &io_apic->index);
416 writel(value, &io_apic->data);
417 }
418
419 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
420 {
421 struct irq_pin_list *entry;
422 unsigned long flags;
423
424 spin_lock_irqsave(&ioapic_lock, flags);
425 entry = cfg->irq_2_pin;
426 for (;;) {
427 unsigned int reg;
428 int pin;
429
430 if (!entry)
431 break;
432 pin = entry->pin;
433 reg = io_apic_read(entry->apic, 0x10 + pin*2);
434 /* Is the remote IRR bit set? */
435 if (reg & IO_APIC_REDIR_REMOTE_IRR) {
436 spin_unlock_irqrestore(&ioapic_lock, flags);
437 return true;
438 }
439 if (!entry->next)
440 break;
441 entry = entry->next;
442 }
443 spin_unlock_irqrestore(&ioapic_lock, flags);
444
445 return false;
446 }
447
448 union entry_union {
449 struct { u32 w1, w2; };
450 struct IO_APIC_route_entry entry;
451 };
452
453 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
454 {
455 union entry_union eu;
456 unsigned long flags;
457 spin_lock_irqsave(&ioapic_lock, flags);
458 eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
459 eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
460 spin_unlock_irqrestore(&ioapic_lock, flags);
461 return eu.entry;
462 }
463
464 /*
465 * When we write a new IO APIC routing entry, we need to write the high
466 * word first! If the mask bit in the low word is clear, we will enable
467 * the interrupt, and we need to make sure the entry is fully populated
468 * before that happens.
469 */
470 static void
471 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
472 {
473 union entry_union eu;
474 eu.entry = e;
475 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
476 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
477 }
478
479 static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
480 {
481 unsigned long flags;
482 spin_lock_irqsave(&ioapic_lock, flags);
483 __ioapic_write_entry(apic, pin, e);
484 spin_unlock_irqrestore(&ioapic_lock, flags);
485 }
486
487 /*
488 * When we mask an IO APIC routing entry, we need to write the low
489 * word first, in order to set the mask bit before we change the
490 * high bits!
491 */
492 static void ioapic_mask_entry(int apic, int pin)
493 {
494 unsigned long flags;
495 union entry_union eu = { .entry.mask = 1 };
496
497 spin_lock_irqsave(&ioapic_lock, flags);
498 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
499 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
500 spin_unlock_irqrestore(&ioapic_lock, flags);
501 }
502
503 #ifdef CONFIG_SMP
504 static void send_cleanup_vector(struct irq_cfg *cfg)
505 {
506 cpumask_var_t cleanup_mask;
507
508 if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
509 unsigned int i;
510 cfg->move_cleanup_count = 0;
511 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
512 cfg->move_cleanup_count++;
513 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
514 send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
515 } else {
516 cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
517 cfg->move_cleanup_count = cpumask_weight(cleanup_mask);
518 send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
519 free_cpumask_var(cleanup_mask);
520 }
521 cfg->move_in_progress = 0;
522 }
523
524 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
525 {
526 int apic, pin;
527 struct irq_pin_list *entry;
528 u8 vector = cfg->vector;
529
530 entry = cfg->irq_2_pin;
531 for (;;) {
532 unsigned int reg;
533
534 if (!entry)
535 break;
536
537 apic = entry->apic;
538 pin = entry->pin;
539 #ifdef CONFIG_INTR_REMAP
540 /*
541 * With interrupt-remapping, destination information comes
542 * from interrupt-remapping table entry.
543 */
544 if (!irq_remapped(irq))
545 io_apic_write(apic, 0x11 + pin*2, dest);
546 #else
547 io_apic_write(apic, 0x11 + pin*2, dest);
548 #endif
549 reg = io_apic_read(apic, 0x10 + pin*2);
550 reg &= ~IO_APIC_REDIR_VECTOR_MASK;
551 reg |= vector;
552 io_apic_modify(apic, 0x10 + pin*2, reg);
553 if (!entry->next)
554 break;
555 entry = entry->next;
556 }
557 }
558
559 static int
560 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask);
561
562 /*
563 * Either sets desc->affinity to a valid value, and returns cpu_mask_to_apicid
564 * of that, or returns BAD_APICID and leaves desc->affinity untouched.
565 */
566 static unsigned int
567 set_desc_affinity(struct irq_desc *desc, const struct cpumask *mask)
568 {
569 struct irq_cfg *cfg;
570 unsigned int irq;
571
572 if (!cpumask_intersects(mask, cpu_online_mask))
573 return BAD_APICID;
574
575 irq = desc->irq;
576 cfg = desc->chip_data;
577 if (assign_irq_vector(irq, cfg, mask))
578 return BAD_APICID;
579
580 cpumask_and(&desc->affinity, cfg->domain, mask);
581 set_extra_move_desc(desc, mask);
582 return cpu_mask_to_apicid_and(&desc->affinity, cpu_online_mask);
583 }
584
585 static void
586 set_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
587 {
588 struct irq_cfg *cfg;
589 unsigned long flags;
590 unsigned int dest;
591 unsigned int irq;
592
593 irq = desc->irq;
594 cfg = desc->chip_data;
595
596 spin_lock_irqsave(&ioapic_lock, flags);
597 dest = set_desc_affinity(desc, mask);
598 if (dest != BAD_APICID) {
599 /* Only the high 8 bits are valid. */
600 dest = SET_APIC_LOGICAL_ID(dest);
601 __target_IO_APIC_irq(irq, dest, cfg);
602 }
603 spin_unlock_irqrestore(&ioapic_lock, flags);
604 }
605
606 static void
607 set_ioapic_affinity_irq(unsigned int irq, const struct cpumask *mask)
608 {
609 struct irq_desc *desc;
610
611 desc = irq_to_desc(irq);
612
613 set_ioapic_affinity_irq_desc(desc, mask);
614 }
615 #endif /* CONFIG_SMP */
616
617 /*
618 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
619 * shared ISA-space IRQs, so we have to support them. We are super
620 * fast in the common case, and fast for shared ISA-space IRQs.
621 */
622 static void add_pin_to_irq_cpu(struct irq_cfg *cfg, int cpu, int apic, int pin)
623 {
624 struct irq_pin_list *entry;
625
626 entry = cfg->irq_2_pin;
627 if (!entry) {
628 entry = get_one_free_irq_2_pin(cpu);
629 if (!entry) {
630 printk(KERN_ERR "can not alloc irq_2_pin to add %d - %d\n",
631 apic, pin);
632 return;
633 }
634 cfg->irq_2_pin = entry;
635 entry->apic = apic;
636 entry->pin = pin;
637 return;
638 }
639
640 while (entry->next) {
641 /* not again, please */
642 if (entry->apic == apic && entry->pin == pin)
643 return;
644
645 entry = entry->next;
646 }
647
648 entry->next = get_one_free_irq_2_pin(cpu);
649 entry = entry->next;
650 entry->apic = apic;
651 entry->pin = pin;
652 }
653
654 /*
655 * Reroute an IRQ to a different pin.
656 */
657 static void __init replace_pin_at_irq_cpu(struct irq_cfg *cfg, int cpu,
658 int oldapic, int oldpin,
659 int newapic, int newpin)
660 {
661 struct irq_pin_list *entry = cfg->irq_2_pin;
662 int replaced = 0;
663
664 while (entry) {
665 if (entry->apic == oldapic && entry->pin == oldpin) {
666 entry->apic = newapic;
667 entry->pin = newpin;
668 replaced = 1;
669 /* every one is different, right? */
670 break;
671 }
672 entry = entry->next;
673 }
674
675 /* why? call replace before add? */
676 if (!replaced)
677 add_pin_to_irq_cpu(cfg, cpu, newapic, newpin);
678 }
679
680 static inline void io_apic_modify_irq(struct irq_cfg *cfg,
681 int mask_and, int mask_or,
682 void (*final)(struct irq_pin_list *entry))
683 {
684 int pin;
685 struct irq_pin_list *entry;
686
687 for (entry = cfg->irq_2_pin; entry != NULL; entry = entry->next) {
688 unsigned int reg;
689 pin = entry->pin;
690 reg = io_apic_read(entry->apic, 0x10 + pin * 2);
691 reg &= mask_and;
692 reg |= mask_or;
693 io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
694 if (final)
695 final(entry);
696 }
697 }
698
699 static void __unmask_IO_APIC_irq(struct irq_cfg *cfg)
700 {
701 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
702 }
703
704 #ifdef CONFIG_X86_64
705 void io_apic_sync(struct irq_pin_list *entry)
706 {
707 /*
708 * Synchronize the IO-APIC and the CPU by doing
709 * a dummy read from the IO-APIC
710 */
711 struct io_apic __iomem *io_apic;
712 io_apic = io_apic_base(entry->apic);
713 readl(&io_apic->data);
714 }
715
716 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
717 {
718 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
719 }
720 #else /* CONFIG_X86_32 */
721 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
722 {
723 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, NULL);
724 }
725
726 static void __mask_and_edge_IO_APIC_irq(struct irq_cfg *cfg)
727 {
728 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_LEVEL_TRIGGER,
729 IO_APIC_REDIR_MASKED, NULL);
730 }
731
732 static void __unmask_and_level_IO_APIC_irq(struct irq_cfg *cfg)
733 {
734 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED,
735 IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
736 }
737 #endif /* CONFIG_X86_32 */
738
739 static void mask_IO_APIC_irq_desc(struct irq_desc *desc)
740 {
741 struct irq_cfg *cfg = desc->chip_data;
742 unsigned long flags;
743
744 BUG_ON(!cfg);
745
746 spin_lock_irqsave(&ioapic_lock, flags);
747 __mask_IO_APIC_irq(cfg);
748 spin_unlock_irqrestore(&ioapic_lock, flags);
749 }
750
751 static void unmask_IO_APIC_irq_desc(struct irq_desc *desc)
752 {
753 struct irq_cfg *cfg = desc->chip_data;
754 unsigned long flags;
755
756 spin_lock_irqsave(&ioapic_lock, flags);
757 __unmask_IO_APIC_irq(cfg);
758 spin_unlock_irqrestore(&ioapic_lock, flags);
759 }
760
761 static void mask_IO_APIC_irq(unsigned int irq)
762 {
763 struct irq_desc *desc = irq_to_desc(irq);
764
765 mask_IO_APIC_irq_desc(desc);
766 }
767 static void unmask_IO_APIC_irq(unsigned int irq)
768 {
769 struct irq_desc *desc = irq_to_desc(irq);
770
771 unmask_IO_APIC_irq_desc(desc);
772 }
773
774 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
775 {
776 struct IO_APIC_route_entry entry;
777
778 /* Check delivery_mode to be sure we're not clearing an SMI pin */
779 entry = ioapic_read_entry(apic, pin);
780 if (entry.delivery_mode == dest_SMI)
781 return;
782 /*
783 * Disable it in the IO-APIC irq-routing table:
784 */
785 ioapic_mask_entry(apic, pin);
786 }
787
788 static void clear_IO_APIC (void)
789 {
790 int apic, pin;
791
792 for (apic = 0; apic < nr_ioapics; apic++)
793 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
794 clear_IO_APIC_pin(apic, pin);
795 }
796
797 #if !defined(CONFIG_SMP) && defined(CONFIG_X86_32)
798 void send_IPI_self(int vector)
799 {
800 unsigned int cfg;
801
802 /*
803 * Wait for idle.
804 */
805 apic_wait_icr_idle();
806 cfg = APIC_DM_FIXED | APIC_DEST_SELF | vector | APIC_DEST_LOGICAL;
807 /*
808 * Send the IPI. The write to APIC_ICR fires this off.
809 */
810 apic_write(APIC_ICR, cfg);
811 }
812 #endif /* !CONFIG_SMP && CONFIG_X86_32*/
813
814 #ifdef CONFIG_X86_32
815 /*
816 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
817 * specific CPU-side IRQs.
818 */
819
820 #define MAX_PIRQS 8
821 static int pirq_entries [MAX_PIRQS];
822 static int pirqs_enabled;
823
824 static int __init ioapic_pirq_setup(char *str)
825 {
826 int i, max;
827 int ints[MAX_PIRQS+1];
828
829 get_options(str, ARRAY_SIZE(ints), ints);
830
831 for (i = 0; i < MAX_PIRQS; i++)
832 pirq_entries[i] = -1;
833
834 pirqs_enabled = 1;
835 apic_printk(APIC_VERBOSE, KERN_INFO
836 "PIRQ redirection, working around broken MP-BIOS.\n");
837 max = MAX_PIRQS;
838 if (ints[0] < MAX_PIRQS)
839 max = ints[0];
840
841 for (i = 0; i < max; i++) {
842 apic_printk(APIC_VERBOSE, KERN_DEBUG
843 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
844 /*
845 * PIRQs are mapped upside down, usually.
846 */
847 pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
848 }
849 return 1;
850 }
851
852 __setup("pirq=", ioapic_pirq_setup);
853 #endif /* CONFIG_X86_32 */
854
855 #ifdef CONFIG_INTR_REMAP
856 /* I/O APIC RTE contents at the OS boot up */
857 static struct IO_APIC_route_entry *early_ioapic_entries[MAX_IO_APICS];
858
859 /*
860 * Saves and masks all the unmasked IO-APIC RTE's
861 */
862 int save_mask_IO_APIC_setup(void)
863 {
864 union IO_APIC_reg_01 reg_01;
865 unsigned long flags;
866 int apic, pin;
867
868 /*
869 * The number of IO-APIC IRQ registers (== #pins):
870 */
871 for (apic = 0; apic < nr_ioapics; apic++) {
872 spin_lock_irqsave(&ioapic_lock, flags);
873 reg_01.raw = io_apic_read(apic, 1);
874 spin_unlock_irqrestore(&ioapic_lock, flags);
875 nr_ioapic_registers[apic] = reg_01.bits.entries+1;
876 }
877
878 for (apic = 0; apic < nr_ioapics; apic++) {
879 early_ioapic_entries[apic] =
880 kzalloc(sizeof(struct IO_APIC_route_entry) *
881 nr_ioapic_registers[apic], GFP_KERNEL);
882 if (!early_ioapic_entries[apic])
883 goto nomem;
884 }
885
886 for (apic = 0; apic < nr_ioapics; apic++)
887 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
888 struct IO_APIC_route_entry entry;
889
890 entry = early_ioapic_entries[apic][pin] =
891 ioapic_read_entry(apic, pin);
892 if (!entry.mask) {
893 entry.mask = 1;
894 ioapic_write_entry(apic, pin, entry);
895 }
896 }
897
898 return 0;
899
900 nomem:
901 while (apic >= 0)
902 kfree(early_ioapic_entries[apic--]);
903 memset(early_ioapic_entries, 0,
904 ARRAY_SIZE(early_ioapic_entries));
905
906 return -ENOMEM;
907 }
908
909 void restore_IO_APIC_setup(void)
910 {
911 int apic, pin;
912
913 for (apic = 0; apic < nr_ioapics; apic++) {
914 if (!early_ioapic_entries[apic])
915 break;
916 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
917 ioapic_write_entry(apic, pin,
918 early_ioapic_entries[apic][pin]);
919 kfree(early_ioapic_entries[apic]);
920 early_ioapic_entries[apic] = NULL;
921 }
922 }
923
924 void reinit_intr_remapped_IO_APIC(int intr_remapping)
925 {
926 /*
927 * for now plain restore of previous settings.
928 * TBD: In the case of OS enabling interrupt-remapping,
929 * IO-APIC RTE's need to be setup to point to interrupt-remapping
930 * table entries. for now, do a plain restore, and wait for
931 * the setup_IO_APIC_irqs() to do proper initialization.
932 */
933 restore_IO_APIC_setup();
934 }
935 #endif
936
937 /*
938 * Find the IRQ entry number of a certain pin.
939 */
940 static int find_irq_entry(int apic, int pin, int type)
941 {
942 int i;
943
944 for (i = 0; i < mp_irq_entries; i++)
945 if (mp_irqs[i].mp_irqtype == type &&
946 (mp_irqs[i].mp_dstapic == mp_ioapics[apic].mp_apicid ||
947 mp_irqs[i].mp_dstapic == MP_APIC_ALL) &&
948 mp_irqs[i].mp_dstirq == pin)
949 return i;
950
951 return -1;
952 }
953
954 /*
955 * Find the pin to which IRQ[irq] (ISA) is connected
956 */
957 static int __init find_isa_irq_pin(int irq, int type)
958 {
959 int i;
960
961 for (i = 0; i < mp_irq_entries; i++) {
962 int lbus = mp_irqs[i].mp_srcbus;
963
964 if (test_bit(lbus, mp_bus_not_pci) &&
965 (mp_irqs[i].mp_irqtype == type) &&
966 (mp_irqs[i].mp_srcbusirq == irq))
967
968 return mp_irqs[i].mp_dstirq;
969 }
970 return -1;
971 }
972
973 static int __init find_isa_irq_apic(int irq, int type)
974 {
975 int i;
976
977 for (i = 0; i < mp_irq_entries; i++) {
978 int lbus = mp_irqs[i].mp_srcbus;
979
980 if (test_bit(lbus, mp_bus_not_pci) &&
981 (mp_irqs[i].mp_irqtype == type) &&
982 (mp_irqs[i].mp_srcbusirq == irq))
983 break;
984 }
985 if (i < mp_irq_entries) {
986 int apic;
987 for(apic = 0; apic < nr_ioapics; apic++) {
988 if (mp_ioapics[apic].mp_apicid == mp_irqs[i].mp_dstapic)
989 return apic;
990 }
991 }
992
993 return -1;
994 }
995
996 /*
997 * Find a specific PCI IRQ entry.
998 * Not an __init, possibly needed by modules
999 */
1000 static int pin_2_irq(int idx, int apic, int pin);
1001
1002 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin)
1003 {
1004 int apic, i, best_guess = -1;
1005
1006 apic_printk(APIC_DEBUG, "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
1007 bus, slot, pin);
1008 if (test_bit(bus, mp_bus_not_pci)) {
1009 apic_printk(APIC_VERBOSE, "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
1010 return -1;
1011 }
1012 for (i = 0; i < mp_irq_entries; i++) {
1013 int lbus = mp_irqs[i].mp_srcbus;
1014
1015 for (apic = 0; apic < nr_ioapics; apic++)
1016 if (mp_ioapics[apic].mp_apicid == mp_irqs[i].mp_dstapic ||
1017 mp_irqs[i].mp_dstapic == MP_APIC_ALL)
1018 break;
1019
1020 if (!test_bit(lbus, mp_bus_not_pci) &&
1021 !mp_irqs[i].mp_irqtype &&
1022 (bus == lbus) &&
1023 (slot == ((mp_irqs[i].mp_srcbusirq >> 2) & 0x1f))) {
1024 int irq = pin_2_irq(i,apic,mp_irqs[i].mp_dstirq);
1025
1026 if (!(apic || IO_APIC_IRQ(irq)))
1027 continue;
1028
1029 if (pin == (mp_irqs[i].mp_srcbusirq & 3))
1030 return irq;
1031 /*
1032 * Use the first all-but-pin matching entry as a
1033 * best-guess fuzzy result for broken mptables.
1034 */
1035 if (best_guess < 0)
1036 best_guess = irq;
1037 }
1038 }
1039 return best_guess;
1040 }
1041
1042 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1043
1044 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
1045 /*
1046 * EISA Edge/Level control register, ELCR
1047 */
1048 static int EISA_ELCR(unsigned int irq)
1049 {
1050 if (irq < NR_IRQS_LEGACY) {
1051 unsigned int port = 0x4d0 + (irq >> 3);
1052 return (inb(port) >> (irq & 7)) & 1;
1053 }
1054 apic_printk(APIC_VERBOSE, KERN_INFO
1055 "Broken MPtable reports ISA irq %d\n", irq);
1056 return 0;
1057 }
1058
1059 #endif
1060
1061 /* ISA interrupts are always polarity zero edge triggered,
1062 * when listed as conforming in the MP table. */
1063
1064 #define default_ISA_trigger(idx) (0)
1065 #define default_ISA_polarity(idx) (0)
1066
1067 /* EISA interrupts are always polarity zero and can be edge or level
1068 * trigger depending on the ELCR value. If an interrupt is listed as
1069 * EISA conforming in the MP table, that means its trigger type must
1070 * be read in from the ELCR */
1071
1072 #define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].mp_srcbusirq))
1073 #define default_EISA_polarity(idx) default_ISA_polarity(idx)
1074
1075 /* PCI interrupts are always polarity one level triggered,
1076 * when listed as conforming in the MP table. */
1077
1078 #define default_PCI_trigger(idx) (1)
1079 #define default_PCI_polarity(idx) (1)
1080
1081 /* MCA interrupts are always polarity zero level triggered,
1082 * when listed as conforming in the MP table. */
1083
1084 #define default_MCA_trigger(idx) (1)
1085 #define default_MCA_polarity(idx) default_ISA_polarity(idx)
1086
1087 static int MPBIOS_polarity(int idx)
1088 {
1089 int bus = mp_irqs[idx].mp_srcbus;
1090 int polarity;
1091
1092 /*
1093 * Determine IRQ line polarity (high active or low active):
1094 */
1095 switch (mp_irqs[idx].mp_irqflag & 3)
1096 {
1097 case 0: /* conforms, ie. bus-type dependent polarity */
1098 if (test_bit(bus, mp_bus_not_pci))
1099 polarity = default_ISA_polarity(idx);
1100 else
1101 polarity = default_PCI_polarity(idx);
1102 break;
1103 case 1: /* high active */
1104 {
1105 polarity = 0;
1106 break;
1107 }
1108 case 2: /* reserved */
1109 {
1110 printk(KERN_WARNING "broken BIOS!!\n");
1111 polarity = 1;
1112 break;
1113 }
1114 case 3: /* low active */
1115 {
1116 polarity = 1;
1117 break;
1118 }
1119 default: /* invalid */
1120 {
1121 printk(KERN_WARNING "broken BIOS!!\n");
1122 polarity = 1;
1123 break;
1124 }
1125 }
1126 return polarity;
1127 }
1128
1129 static int MPBIOS_trigger(int idx)
1130 {
1131 int bus = mp_irqs[idx].mp_srcbus;
1132 int trigger;
1133
1134 /*
1135 * Determine IRQ trigger mode (edge or level sensitive):
1136 */
1137 switch ((mp_irqs[idx].mp_irqflag>>2) & 3)
1138 {
1139 case 0: /* conforms, ie. bus-type dependent */
1140 if (test_bit(bus, mp_bus_not_pci))
1141 trigger = default_ISA_trigger(idx);
1142 else
1143 trigger = default_PCI_trigger(idx);
1144 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
1145 switch (mp_bus_id_to_type[bus]) {
1146 case MP_BUS_ISA: /* ISA pin */
1147 {
1148 /* set before the switch */
1149 break;
1150 }
1151 case MP_BUS_EISA: /* EISA pin */
1152 {
1153 trigger = default_EISA_trigger(idx);
1154 break;
1155 }
1156 case MP_BUS_PCI: /* PCI pin */
1157 {
1158 /* set before the switch */
1159 break;
1160 }
1161 case MP_BUS_MCA: /* MCA pin */
1162 {
1163 trigger = default_MCA_trigger(idx);
1164 break;
1165 }
1166 default:
1167 {
1168 printk(KERN_WARNING "broken BIOS!!\n");
1169 trigger = 1;
1170 break;
1171 }
1172 }
1173 #endif
1174 break;
1175 case 1: /* edge */
1176 {
1177 trigger = 0;
1178 break;
1179 }
1180 case 2: /* reserved */
1181 {
1182 printk(KERN_WARNING "broken BIOS!!\n");
1183 trigger = 1;
1184 break;
1185 }
1186 case 3: /* level */
1187 {
1188 trigger = 1;
1189 break;
1190 }
1191 default: /* invalid */
1192 {
1193 printk(KERN_WARNING "broken BIOS!!\n");
1194 trigger = 0;
1195 break;
1196 }
1197 }
1198 return trigger;
1199 }
1200
1201 static inline int irq_polarity(int idx)
1202 {
1203 return MPBIOS_polarity(idx);
1204 }
1205
1206 static inline int irq_trigger(int idx)
1207 {
1208 return MPBIOS_trigger(idx);
1209 }
1210
1211 int (*ioapic_renumber_irq)(int ioapic, int irq);
1212 static int pin_2_irq(int idx, int apic, int pin)
1213 {
1214 int irq, i;
1215 int bus = mp_irqs[idx].mp_srcbus;
1216
1217 /*
1218 * Debugging check, we are in big trouble if this message pops up!
1219 */
1220 if (mp_irqs[idx].mp_dstirq != pin)
1221 printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
1222
1223 if (test_bit(bus, mp_bus_not_pci)) {
1224 irq = mp_irqs[idx].mp_srcbusirq;
1225 } else {
1226 /*
1227 * PCI IRQs are mapped in order
1228 */
1229 i = irq = 0;
1230 while (i < apic)
1231 irq += nr_ioapic_registers[i++];
1232 irq += pin;
1233 /*
1234 * For MPS mode, so far only needed by ES7000 platform
1235 */
1236 if (ioapic_renumber_irq)
1237 irq = ioapic_renumber_irq(apic, irq);
1238 }
1239
1240 #ifdef CONFIG_X86_32
1241 /*
1242 * PCI IRQ command line redirection. Yes, limits are hardcoded.
1243 */
1244 if ((pin >= 16) && (pin <= 23)) {
1245 if (pirq_entries[pin-16] != -1) {
1246 if (!pirq_entries[pin-16]) {
1247 apic_printk(APIC_VERBOSE, KERN_DEBUG
1248 "disabling PIRQ%d\n", pin-16);
1249 } else {
1250 irq = pirq_entries[pin-16];
1251 apic_printk(APIC_VERBOSE, KERN_DEBUG
1252 "using PIRQ%d -> IRQ %d\n",
1253 pin-16, irq);
1254 }
1255 }
1256 }
1257 #endif
1258
1259 return irq;
1260 }
1261
1262 void lock_vector_lock(void)
1263 {
1264 /* Used to the online set of cpus does not change
1265 * during assign_irq_vector.
1266 */
1267 spin_lock(&vector_lock);
1268 }
1269
1270 void unlock_vector_lock(void)
1271 {
1272 spin_unlock(&vector_lock);
1273 }
1274
1275 static int
1276 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1277 {
1278 /*
1279 * NOTE! The local APIC isn't very good at handling
1280 * multiple interrupts at the same interrupt level.
1281 * As the interrupt level is determined by taking the
1282 * vector number and shifting that right by 4, we
1283 * want to spread these out a bit so that they don't
1284 * all fall in the same interrupt level.
1285 *
1286 * Also, we've got to be careful not to trash gate
1287 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1288 */
1289 static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0;
1290 unsigned int old_vector;
1291 int cpu, err;
1292 cpumask_var_t tmp_mask;
1293
1294 if ((cfg->move_in_progress) || cfg->move_cleanup_count)
1295 return -EBUSY;
1296
1297 if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1298 return -ENOMEM;
1299
1300 old_vector = cfg->vector;
1301 if (old_vector) {
1302 cpumask_and(tmp_mask, mask, cpu_online_mask);
1303 cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1304 if (!cpumask_empty(tmp_mask)) {
1305 free_cpumask_var(tmp_mask);
1306 return 0;
1307 }
1308 }
1309
1310 /* Only try and allocate irqs on cpus that are present */
1311 err = -ENOSPC;
1312 for_each_cpu_and(cpu, mask, cpu_online_mask) {
1313 int new_cpu;
1314 int vector, offset;
1315
1316 vector_allocation_domain(cpu, tmp_mask);
1317
1318 vector = current_vector;
1319 offset = current_offset;
1320 next:
1321 vector += 8;
1322 if (vector >= first_system_vector) {
1323 /* If out of vectors on large boxen, must share them. */
1324 offset = (offset + 1) % 8;
1325 vector = FIRST_DEVICE_VECTOR + offset;
1326 }
1327 if (unlikely(current_vector == vector))
1328 continue;
1329
1330 if (test_bit(vector, used_vectors))
1331 goto next;
1332
1333 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1334 if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1335 goto next;
1336 /* Found one! */
1337 current_vector = vector;
1338 current_offset = offset;
1339 if (old_vector) {
1340 cfg->move_in_progress = 1;
1341 cpumask_copy(cfg->old_domain, cfg->domain);
1342 }
1343 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1344 per_cpu(vector_irq, new_cpu)[vector] = irq;
1345 cfg->vector = vector;
1346 cpumask_copy(cfg->domain, tmp_mask);
1347 err = 0;
1348 break;
1349 }
1350 free_cpumask_var(tmp_mask);
1351 return err;
1352 }
1353
1354 static int
1355 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1356 {
1357 int err;
1358 unsigned long flags;
1359
1360 spin_lock_irqsave(&vector_lock, flags);
1361 err = __assign_irq_vector(irq, cfg, mask);
1362 spin_unlock_irqrestore(&vector_lock, flags);
1363 return err;
1364 }
1365
1366 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1367 {
1368 int cpu, vector;
1369
1370 BUG_ON(!cfg->vector);
1371
1372 vector = cfg->vector;
1373 for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1374 per_cpu(vector_irq, cpu)[vector] = -1;
1375
1376 cfg->vector = 0;
1377 cpumask_clear(cfg->domain);
1378
1379 if (likely(!cfg->move_in_progress))
1380 return;
1381 for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1382 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1383 vector++) {
1384 if (per_cpu(vector_irq, cpu)[vector] != irq)
1385 continue;
1386 per_cpu(vector_irq, cpu)[vector] = -1;
1387 break;
1388 }
1389 }
1390 cfg->move_in_progress = 0;
1391 }
1392
1393 void __setup_vector_irq(int cpu)
1394 {
1395 /* Initialize vector_irq on a new cpu */
1396 /* This function must be called with vector_lock held */
1397 int irq, vector;
1398 struct irq_cfg *cfg;
1399 struct irq_desc *desc;
1400
1401 /* Mark the inuse vectors */
1402 for_each_irq_desc(irq, desc) {
1403 if (!desc)
1404 continue;
1405 cfg = desc->chip_data;
1406 if (!cpumask_test_cpu(cpu, cfg->domain))
1407 continue;
1408 vector = cfg->vector;
1409 per_cpu(vector_irq, cpu)[vector] = irq;
1410 }
1411 /* Mark the free vectors */
1412 for (vector = 0; vector < NR_VECTORS; ++vector) {
1413 irq = per_cpu(vector_irq, cpu)[vector];
1414 if (irq < 0)
1415 continue;
1416
1417 cfg = irq_cfg(irq);
1418 if (!cpumask_test_cpu(cpu, cfg->domain))
1419 per_cpu(vector_irq, cpu)[vector] = -1;
1420 }
1421 }
1422
1423 static struct irq_chip ioapic_chip;
1424 #ifdef CONFIG_INTR_REMAP
1425 static struct irq_chip ir_ioapic_chip;
1426 #endif
1427
1428 #define IOAPIC_AUTO -1
1429 #define IOAPIC_EDGE 0
1430 #define IOAPIC_LEVEL 1
1431
1432 #ifdef CONFIG_X86_32
1433 static inline int IO_APIC_irq_trigger(int irq)
1434 {
1435 int apic, idx, pin;
1436
1437 for (apic = 0; apic < nr_ioapics; apic++) {
1438 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1439 idx = find_irq_entry(apic, pin, mp_INT);
1440 if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1441 return irq_trigger(idx);
1442 }
1443 }
1444 /*
1445 * nonexistent IRQs are edge default
1446 */
1447 return 0;
1448 }
1449 #else
1450 static inline int IO_APIC_irq_trigger(int irq)
1451 {
1452 return 1;
1453 }
1454 #endif
1455
1456 static void ioapic_register_intr(int irq, struct irq_desc *desc, unsigned long trigger)
1457 {
1458
1459 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1460 trigger == IOAPIC_LEVEL)
1461 desc->status |= IRQ_LEVEL;
1462 else
1463 desc->status &= ~IRQ_LEVEL;
1464
1465 #ifdef CONFIG_INTR_REMAP
1466 if (irq_remapped(irq)) {
1467 desc->status |= IRQ_MOVE_PCNTXT;
1468 if (trigger)
1469 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1470 handle_fasteoi_irq,
1471 "fasteoi");
1472 else
1473 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1474 handle_edge_irq, "edge");
1475 return;
1476 }
1477 #endif
1478 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1479 trigger == IOAPIC_LEVEL)
1480 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1481 handle_fasteoi_irq,
1482 "fasteoi");
1483 else
1484 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1485 handle_edge_irq, "edge");
1486 }
1487
1488 static int setup_ioapic_entry(int apic, int irq,
1489 struct IO_APIC_route_entry *entry,
1490 unsigned int destination, int trigger,
1491 int polarity, int vector)
1492 {
1493 /*
1494 * add it to the IO-APIC irq-routing table:
1495 */
1496 memset(entry,0,sizeof(*entry));
1497
1498 #ifdef CONFIG_INTR_REMAP
1499 if (intr_remapping_enabled) {
1500 struct intel_iommu *iommu = map_ioapic_to_ir(apic);
1501 struct irte irte;
1502 struct IR_IO_APIC_route_entry *ir_entry =
1503 (struct IR_IO_APIC_route_entry *) entry;
1504 int index;
1505
1506 if (!iommu)
1507 panic("No mapping iommu for ioapic %d\n", apic);
1508
1509 index = alloc_irte(iommu, irq, 1);
1510 if (index < 0)
1511 panic("Failed to allocate IRTE for ioapic %d\n", apic);
1512
1513 memset(&irte, 0, sizeof(irte));
1514
1515 irte.present = 1;
1516 irte.dst_mode = INT_DEST_MODE;
1517 irte.trigger_mode = trigger;
1518 irte.dlvry_mode = INT_DELIVERY_MODE;
1519 irte.vector = vector;
1520 irte.dest_id = IRTE_DEST(destination);
1521
1522 modify_irte(irq, &irte);
1523
1524 ir_entry->index2 = (index >> 15) & 0x1;
1525 ir_entry->zero = 0;
1526 ir_entry->format = 1;
1527 ir_entry->index = (index & 0x7fff);
1528 } else
1529 #endif
1530 {
1531 entry->delivery_mode = INT_DELIVERY_MODE;
1532 entry->dest_mode = INT_DEST_MODE;
1533 entry->dest = destination;
1534 }
1535
1536 entry->mask = 0; /* enable IRQ */
1537 entry->trigger = trigger;
1538 entry->polarity = polarity;
1539 entry->vector = vector;
1540
1541 /* Mask level triggered irqs.
1542 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1543 */
1544 if (trigger)
1545 entry->mask = 1;
1546 return 0;
1547 }
1548
1549 static void setup_IO_APIC_irq(int apic, int pin, unsigned int irq, struct irq_desc *desc,
1550 int trigger, int polarity)
1551 {
1552 struct irq_cfg *cfg;
1553 struct IO_APIC_route_entry entry;
1554 unsigned int dest;
1555
1556 if (!IO_APIC_IRQ(irq))
1557 return;
1558
1559 cfg = desc->chip_data;
1560
1561 if (assign_irq_vector(irq, cfg, TARGET_CPUS))
1562 return;
1563
1564 dest = cpu_mask_to_apicid_and(cfg->domain, TARGET_CPUS);
1565
1566 apic_printk(APIC_VERBOSE,KERN_DEBUG
1567 "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1568 "IRQ %d Mode:%i Active:%i)\n",
1569 apic, mp_ioapics[apic].mp_apicid, pin, cfg->vector,
1570 irq, trigger, polarity);
1571
1572
1573 if (setup_ioapic_entry(mp_ioapics[apic].mp_apicid, irq, &entry,
1574 dest, trigger, polarity, cfg->vector)) {
1575 printk("Failed to setup ioapic entry for ioapic %d, pin %d\n",
1576 mp_ioapics[apic].mp_apicid, pin);
1577 __clear_irq_vector(irq, cfg);
1578 return;
1579 }
1580
1581 ioapic_register_intr(irq, desc, trigger);
1582 if (irq < NR_IRQS_LEGACY)
1583 disable_8259A_irq(irq);
1584
1585 ioapic_write_entry(apic, pin, entry);
1586 }
1587
1588 static void __init setup_IO_APIC_irqs(void)
1589 {
1590 int apic, pin, idx, irq;
1591 int notcon = 0;
1592 struct irq_desc *desc;
1593 struct irq_cfg *cfg;
1594 int cpu = boot_cpu_id;
1595
1596 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1597
1598 for (apic = 0; apic < nr_ioapics; apic++) {
1599 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1600
1601 idx = find_irq_entry(apic, pin, mp_INT);
1602 if (idx == -1) {
1603 if (!notcon) {
1604 notcon = 1;
1605 apic_printk(APIC_VERBOSE,
1606 KERN_DEBUG " %d-%d",
1607 mp_ioapics[apic].mp_apicid,
1608 pin);
1609 } else
1610 apic_printk(APIC_VERBOSE, " %d-%d",
1611 mp_ioapics[apic].mp_apicid,
1612 pin);
1613 continue;
1614 }
1615 if (notcon) {
1616 apic_printk(APIC_VERBOSE,
1617 " (apicid-pin) not connected\n");
1618 notcon = 0;
1619 }
1620
1621 irq = pin_2_irq(idx, apic, pin);
1622 #ifdef CONFIG_X86_32
1623 if (multi_timer_check(apic, irq))
1624 continue;
1625 #endif
1626 desc = irq_to_desc_alloc_cpu(irq, cpu);
1627 if (!desc) {
1628 printk(KERN_INFO "can not get irq_desc for %d\n", irq);
1629 continue;
1630 }
1631 cfg = desc->chip_data;
1632 add_pin_to_irq_cpu(cfg, cpu, apic, pin);
1633
1634 setup_IO_APIC_irq(apic, pin, irq, desc,
1635 irq_trigger(idx), irq_polarity(idx));
1636 }
1637 }
1638
1639 if (notcon)
1640 apic_printk(APIC_VERBOSE,
1641 " (apicid-pin) not connected\n");
1642 }
1643
1644 /*
1645 * Set up the timer pin, possibly with the 8259A-master behind.
1646 */
1647 static void __init setup_timer_IRQ0_pin(unsigned int apic, unsigned int pin,
1648 int vector)
1649 {
1650 struct IO_APIC_route_entry entry;
1651
1652 #ifdef CONFIG_INTR_REMAP
1653 if (intr_remapping_enabled)
1654 return;
1655 #endif
1656
1657 memset(&entry, 0, sizeof(entry));
1658
1659 /*
1660 * We use logical delivery to get the timer IRQ
1661 * to the first CPU.
1662 */
1663 entry.dest_mode = INT_DEST_MODE;
1664 entry.mask = 1; /* mask IRQ now */
1665 entry.dest = cpu_mask_to_apicid(TARGET_CPUS);
1666 entry.delivery_mode = INT_DELIVERY_MODE;
1667 entry.polarity = 0;
1668 entry.trigger = 0;
1669 entry.vector = vector;
1670
1671 /*
1672 * The timer IRQ doesn't have to know that behind the
1673 * scene we may have a 8259A-master in AEOI mode ...
1674 */
1675 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1676
1677 /*
1678 * Add it to the IO-APIC irq-routing table:
1679 */
1680 ioapic_write_entry(apic, pin, entry);
1681 }
1682
1683
1684 __apicdebuginit(void) print_IO_APIC(void)
1685 {
1686 int apic, i;
1687 union IO_APIC_reg_00 reg_00;
1688 union IO_APIC_reg_01 reg_01;
1689 union IO_APIC_reg_02 reg_02;
1690 union IO_APIC_reg_03 reg_03;
1691 unsigned long flags;
1692 struct irq_cfg *cfg;
1693 struct irq_desc *desc;
1694 unsigned int irq;
1695
1696 if (apic_verbosity == APIC_QUIET)
1697 return;
1698
1699 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1700 for (i = 0; i < nr_ioapics; i++)
1701 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1702 mp_ioapics[i].mp_apicid, nr_ioapic_registers[i]);
1703
1704 /*
1705 * We are a bit conservative about what we expect. We have to
1706 * know about every hardware change ASAP.
1707 */
1708 printk(KERN_INFO "testing the IO APIC.......................\n");
1709
1710 for (apic = 0; apic < nr_ioapics; apic++) {
1711
1712 spin_lock_irqsave(&ioapic_lock, flags);
1713 reg_00.raw = io_apic_read(apic, 0);
1714 reg_01.raw = io_apic_read(apic, 1);
1715 if (reg_01.bits.version >= 0x10)
1716 reg_02.raw = io_apic_read(apic, 2);
1717 if (reg_01.bits.version >= 0x20)
1718 reg_03.raw = io_apic_read(apic, 3);
1719 spin_unlock_irqrestore(&ioapic_lock, flags);
1720
1721 printk("\n");
1722 printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].mp_apicid);
1723 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1724 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID);
1725 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type);
1726 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS);
1727
1728 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1729 printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries);
1730
1731 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ);
1732 printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version);
1733
1734 /*
1735 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1736 * but the value of reg_02 is read as the previous read register
1737 * value, so ignore it if reg_02 == reg_01.
1738 */
1739 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1740 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1741 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration);
1742 }
1743
1744 /*
1745 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1746 * or reg_03, but the value of reg_0[23] is read as the previous read
1747 * register value, so ignore it if reg_03 == reg_0[12].
1748 */
1749 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1750 reg_03.raw != reg_01.raw) {
1751 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1752 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT);
1753 }
1754
1755 printk(KERN_DEBUG ".... IRQ redirection table:\n");
1756
1757 printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1758 " Stat Dmod Deli Vect: \n");
1759
1760 for (i = 0; i <= reg_01.bits.entries; i++) {
1761 struct IO_APIC_route_entry entry;
1762
1763 entry = ioapic_read_entry(apic, i);
1764
1765 printk(KERN_DEBUG " %02x %03X ",
1766 i,
1767 entry.dest
1768 );
1769
1770 printk("%1d %1d %1d %1d %1d %1d %1d %02X\n",
1771 entry.mask,
1772 entry.trigger,
1773 entry.irr,
1774 entry.polarity,
1775 entry.delivery_status,
1776 entry.dest_mode,
1777 entry.delivery_mode,
1778 entry.vector
1779 );
1780 }
1781 }
1782 printk(KERN_DEBUG "IRQ to pin mappings:\n");
1783 for_each_irq_desc(irq, desc) {
1784 struct irq_pin_list *entry;
1785
1786 if (!desc)
1787 continue;
1788 cfg = desc->chip_data;
1789 entry = cfg->irq_2_pin;
1790 if (!entry)
1791 continue;
1792 printk(KERN_DEBUG "IRQ%d ", irq);
1793 for (;;) {
1794 printk("-> %d:%d", entry->apic, entry->pin);
1795 if (!entry->next)
1796 break;
1797 entry = entry->next;
1798 }
1799 printk("\n");
1800 }
1801
1802 printk(KERN_INFO ".................................... done.\n");
1803
1804 return;
1805 }
1806
1807 __apicdebuginit(void) print_APIC_bitfield(int base)
1808 {
1809 unsigned int v;
1810 int i, j;
1811
1812 if (apic_verbosity == APIC_QUIET)
1813 return;
1814
1815 printk(KERN_DEBUG "0123456789abcdef0123456789abcdef\n" KERN_DEBUG);
1816 for (i = 0; i < 8; i++) {
1817 v = apic_read(base + i*0x10);
1818 for (j = 0; j < 32; j++) {
1819 if (v & (1<<j))
1820 printk("1");
1821 else
1822 printk("0");
1823 }
1824 printk("\n");
1825 }
1826 }
1827
1828 __apicdebuginit(void) print_local_APIC(void *dummy)
1829 {
1830 unsigned int v, ver, maxlvt;
1831 u64 icr;
1832
1833 if (apic_verbosity == APIC_QUIET)
1834 return;
1835
1836 printk("\n" KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1837 smp_processor_id(), hard_smp_processor_id());
1838 v = apic_read(APIC_ID);
1839 printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id());
1840 v = apic_read(APIC_LVR);
1841 printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1842 ver = GET_APIC_VERSION(v);
1843 maxlvt = lapic_get_maxlvt();
1844
1845 v = apic_read(APIC_TASKPRI);
1846 printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1847
1848 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1849 if (!APIC_XAPIC(ver)) {
1850 v = apic_read(APIC_ARBPRI);
1851 printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1852 v & APIC_ARBPRI_MASK);
1853 }
1854 v = apic_read(APIC_PROCPRI);
1855 printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1856 }
1857
1858 /*
1859 * Remote read supported only in the 82489DX and local APIC for
1860 * Pentium processors.
1861 */
1862 if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1863 v = apic_read(APIC_RRR);
1864 printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1865 }
1866
1867 v = apic_read(APIC_LDR);
1868 printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1869 if (!x2apic_enabled()) {
1870 v = apic_read(APIC_DFR);
1871 printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1872 }
1873 v = apic_read(APIC_SPIV);
1874 printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1875
1876 printk(KERN_DEBUG "... APIC ISR field:\n");
1877 print_APIC_bitfield(APIC_ISR);
1878 printk(KERN_DEBUG "... APIC TMR field:\n");
1879 print_APIC_bitfield(APIC_TMR);
1880 printk(KERN_DEBUG "... APIC IRR field:\n");
1881 print_APIC_bitfield(APIC_IRR);
1882
1883 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1884 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1885 apic_write(APIC_ESR, 0);
1886
1887 v = apic_read(APIC_ESR);
1888 printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1889 }
1890
1891 icr = apic_icr_read();
1892 printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1893 printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1894
1895 v = apic_read(APIC_LVTT);
1896 printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1897
1898 if (maxlvt > 3) { /* PC is LVT#4. */
1899 v = apic_read(APIC_LVTPC);
1900 printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1901 }
1902 v = apic_read(APIC_LVT0);
1903 printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1904 v = apic_read(APIC_LVT1);
1905 printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1906
1907 if (maxlvt > 2) { /* ERR is LVT#3. */
1908 v = apic_read(APIC_LVTERR);
1909 printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1910 }
1911
1912 v = apic_read(APIC_TMICT);
1913 printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1914 v = apic_read(APIC_TMCCT);
1915 printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1916 v = apic_read(APIC_TDCR);
1917 printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1918 printk("\n");
1919 }
1920
1921 __apicdebuginit(void) print_all_local_APICs(void)
1922 {
1923 int cpu;
1924
1925 preempt_disable();
1926 for_each_online_cpu(cpu)
1927 smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1928 preempt_enable();
1929 }
1930
1931 __apicdebuginit(void) print_PIC(void)
1932 {
1933 unsigned int v;
1934 unsigned long flags;
1935
1936 if (apic_verbosity == APIC_QUIET)
1937 return;
1938
1939 printk(KERN_DEBUG "\nprinting PIC contents\n");
1940
1941 spin_lock_irqsave(&i8259A_lock, flags);
1942
1943 v = inb(0xa1) << 8 | inb(0x21);
1944 printk(KERN_DEBUG "... PIC IMR: %04x\n", v);
1945
1946 v = inb(0xa0) << 8 | inb(0x20);
1947 printk(KERN_DEBUG "... PIC IRR: %04x\n", v);
1948
1949 outb(0x0b,0xa0);
1950 outb(0x0b,0x20);
1951 v = inb(0xa0) << 8 | inb(0x20);
1952 outb(0x0a,0xa0);
1953 outb(0x0a,0x20);
1954
1955 spin_unlock_irqrestore(&i8259A_lock, flags);
1956
1957 printk(KERN_DEBUG "... PIC ISR: %04x\n", v);
1958
1959 v = inb(0x4d1) << 8 | inb(0x4d0);
1960 printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1961 }
1962
1963 __apicdebuginit(int) print_all_ICs(void)
1964 {
1965 print_PIC();
1966 print_all_local_APICs();
1967 print_IO_APIC();
1968
1969 return 0;
1970 }
1971
1972 fs_initcall(print_all_ICs);
1973
1974
1975 /* Where if anywhere is the i8259 connect in external int mode */
1976 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1977
1978 void __init enable_IO_APIC(void)
1979 {
1980 union IO_APIC_reg_01 reg_01;
1981 int i8259_apic, i8259_pin;
1982 int apic;
1983 unsigned long flags;
1984
1985 #ifdef CONFIG_X86_32
1986 int i;
1987 if (!pirqs_enabled)
1988 for (i = 0; i < MAX_PIRQS; i++)
1989 pirq_entries[i] = -1;
1990 #endif
1991
1992 /*
1993 * The number of IO-APIC IRQ registers (== #pins):
1994 */
1995 for (apic = 0; apic < nr_ioapics; apic++) {
1996 spin_lock_irqsave(&ioapic_lock, flags);
1997 reg_01.raw = io_apic_read(apic, 1);
1998 spin_unlock_irqrestore(&ioapic_lock, flags);
1999 nr_ioapic_registers[apic] = reg_01.bits.entries+1;
2000 }
2001 for(apic = 0; apic < nr_ioapics; apic++) {
2002 int pin;
2003 /* See if any of the pins is in ExtINT mode */
2004 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
2005 struct IO_APIC_route_entry entry;
2006 entry = ioapic_read_entry(apic, pin);
2007
2008 /* If the interrupt line is enabled and in ExtInt mode
2009 * I have found the pin where the i8259 is connected.
2010 */
2011 if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
2012 ioapic_i8259.apic = apic;
2013 ioapic_i8259.pin = pin;
2014 goto found_i8259;
2015 }
2016 }
2017 }
2018 found_i8259:
2019 /* Look to see what if the MP table has reported the ExtINT */
2020 /* If we could not find the appropriate pin by looking at the ioapic
2021 * the i8259 probably is not connected the ioapic but give the
2022 * mptable a chance anyway.
2023 */
2024 i8259_pin = find_isa_irq_pin(0, mp_ExtINT);
2025 i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
2026 /* Trust the MP table if nothing is setup in the hardware */
2027 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
2028 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
2029 ioapic_i8259.pin = i8259_pin;
2030 ioapic_i8259.apic = i8259_apic;
2031 }
2032 /* Complain if the MP table and the hardware disagree */
2033 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
2034 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
2035 {
2036 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
2037 }
2038
2039 /*
2040 * Do not trust the IO-APIC being empty at bootup
2041 */
2042 clear_IO_APIC();
2043 }
2044
2045 /*
2046 * Not an __init, needed by the reboot code
2047 */
2048 void disable_IO_APIC(void)
2049 {
2050 /*
2051 * Clear the IO-APIC before rebooting:
2052 */
2053 clear_IO_APIC();
2054
2055 /*
2056 * If the i8259 is routed through an IOAPIC
2057 * Put that IOAPIC in virtual wire mode
2058 * so legacy interrupts can be delivered.
2059 */
2060 if (ioapic_i8259.pin != -1) {
2061 struct IO_APIC_route_entry entry;
2062
2063 memset(&entry, 0, sizeof(entry));
2064 entry.mask = 0; /* Enabled */
2065 entry.trigger = 0; /* Edge */
2066 entry.irr = 0;
2067 entry.polarity = 0; /* High */
2068 entry.delivery_status = 0;
2069 entry.dest_mode = 0; /* Physical */
2070 entry.delivery_mode = dest_ExtINT; /* ExtInt */
2071 entry.vector = 0;
2072 entry.dest = read_apic_id();
2073
2074 /*
2075 * Add it to the IO-APIC irq-routing table:
2076 */
2077 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
2078 }
2079
2080 disconnect_bsp_APIC(ioapic_i8259.pin != -1);
2081 }
2082
2083 #ifdef CONFIG_X86_32
2084 /*
2085 * function to set the IO-APIC physical IDs based on the
2086 * values stored in the MPC table.
2087 *
2088 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999
2089 */
2090
2091 static void __init setup_ioapic_ids_from_mpc(void)
2092 {
2093 union IO_APIC_reg_00 reg_00;
2094 physid_mask_t phys_id_present_map;
2095 int apic;
2096 int i;
2097 unsigned char old_id;
2098 unsigned long flags;
2099
2100 if (x86_quirks->setup_ioapic_ids && x86_quirks->setup_ioapic_ids())
2101 return;
2102
2103 /*
2104 * Don't check I/O APIC IDs for xAPIC systems. They have
2105 * no meaning without the serial APIC bus.
2106 */
2107 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2108 || APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2109 return;
2110 /*
2111 * This is broken; anything with a real cpu count has to
2112 * circumvent this idiocy regardless.
2113 */
2114 phys_id_present_map = ioapic_phys_id_map(phys_cpu_present_map);
2115
2116 /*
2117 * Set the IOAPIC ID to the value stored in the MPC table.
2118 */
2119 for (apic = 0; apic < nr_ioapics; apic++) {
2120
2121 /* Read the register 0 value */
2122 spin_lock_irqsave(&ioapic_lock, flags);
2123 reg_00.raw = io_apic_read(apic, 0);
2124 spin_unlock_irqrestore(&ioapic_lock, flags);
2125
2126 old_id = mp_ioapics[apic].mp_apicid;
2127
2128 if (mp_ioapics[apic].mp_apicid >= get_physical_broadcast()) {
2129 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
2130 apic, mp_ioapics[apic].mp_apicid);
2131 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2132 reg_00.bits.ID);
2133 mp_ioapics[apic].mp_apicid = reg_00.bits.ID;
2134 }
2135
2136 /*
2137 * Sanity check, is the ID really free? Every APIC in a
2138 * system must have a unique ID or we get lots of nice
2139 * 'stuck on smp_invalidate_needed IPI wait' messages.
2140 */
2141 if (check_apicid_used(phys_id_present_map,
2142 mp_ioapics[apic].mp_apicid)) {
2143 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
2144 apic, mp_ioapics[apic].mp_apicid);
2145 for (i = 0; i < get_physical_broadcast(); i++)
2146 if (!physid_isset(i, phys_id_present_map))
2147 break;
2148 if (i >= get_physical_broadcast())
2149 panic("Max APIC ID exceeded!\n");
2150 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2151 i);
2152 physid_set(i, phys_id_present_map);
2153 mp_ioapics[apic].mp_apicid = i;
2154 } else {
2155 physid_mask_t tmp;
2156 tmp = apicid_to_cpu_present(mp_ioapics[apic].mp_apicid);
2157 apic_printk(APIC_VERBOSE, "Setting %d in the "
2158 "phys_id_present_map\n",
2159 mp_ioapics[apic].mp_apicid);
2160 physids_or(phys_id_present_map, phys_id_present_map, tmp);
2161 }
2162
2163
2164 /*
2165 * We need to adjust the IRQ routing table
2166 * if the ID changed.
2167 */
2168 if (old_id != mp_ioapics[apic].mp_apicid)
2169 for (i = 0; i < mp_irq_entries; i++)
2170 if (mp_irqs[i].mp_dstapic == old_id)
2171 mp_irqs[i].mp_dstapic
2172 = mp_ioapics[apic].mp_apicid;
2173
2174 /*
2175 * Read the right value from the MPC table and
2176 * write it into the ID register.
2177 */
2178 apic_printk(APIC_VERBOSE, KERN_INFO
2179 "...changing IO-APIC physical APIC ID to %d ...",
2180 mp_ioapics[apic].mp_apicid);
2181
2182 reg_00.bits.ID = mp_ioapics[apic].mp_apicid;
2183 spin_lock_irqsave(&ioapic_lock, flags);
2184 io_apic_write(apic, 0, reg_00.raw);
2185 spin_unlock_irqrestore(&ioapic_lock, flags);
2186
2187 /*
2188 * Sanity check
2189 */
2190 spin_lock_irqsave(&ioapic_lock, flags);
2191 reg_00.raw = io_apic_read(apic, 0);
2192 spin_unlock_irqrestore(&ioapic_lock, flags);
2193 if (reg_00.bits.ID != mp_ioapics[apic].mp_apicid)
2194 printk("could not set ID!\n");
2195 else
2196 apic_printk(APIC_VERBOSE, " ok.\n");
2197 }
2198 }
2199 #endif
2200
2201 int no_timer_check __initdata;
2202
2203 static int __init notimercheck(char *s)
2204 {
2205 no_timer_check = 1;
2206 return 1;
2207 }
2208 __setup("no_timer_check", notimercheck);
2209
2210 /*
2211 * There is a nasty bug in some older SMP boards, their mptable lies
2212 * about the timer IRQ. We do the following to work around the situation:
2213 *
2214 * - timer IRQ defaults to IO-APIC IRQ
2215 * - if this function detects that timer IRQs are defunct, then we fall
2216 * back to ISA timer IRQs
2217 */
2218 static int __init timer_irq_works(void)
2219 {
2220 unsigned long t1 = jiffies;
2221 unsigned long flags;
2222
2223 if (no_timer_check)
2224 return 1;
2225
2226 local_save_flags(flags);
2227 local_irq_enable();
2228 /* Let ten ticks pass... */
2229 mdelay((10 * 1000) / HZ);
2230 local_irq_restore(flags);
2231
2232 /*
2233 * Expect a few ticks at least, to be sure some possible
2234 * glue logic does not lock up after one or two first
2235 * ticks in a non-ExtINT mode. Also the local APIC
2236 * might have cached one ExtINT interrupt. Finally, at
2237 * least one tick may be lost due to delays.
2238 */
2239
2240 /* jiffies wrap? */
2241 if (time_after(jiffies, t1 + 4))
2242 return 1;
2243 return 0;
2244 }
2245
2246 /*
2247 * In the SMP+IOAPIC case it might happen that there are an unspecified
2248 * number of pending IRQ events unhandled. These cases are very rare,
2249 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2250 * better to do it this way as thus we do not have to be aware of
2251 * 'pending' interrupts in the IRQ path, except at this point.
2252 */
2253 /*
2254 * Edge triggered needs to resend any interrupt
2255 * that was delayed but this is now handled in the device
2256 * independent code.
2257 */
2258
2259 /*
2260 * Starting up a edge-triggered IO-APIC interrupt is
2261 * nasty - we need to make sure that we get the edge.
2262 * If it is already asserted for some reason, we need
2263 * return 1 to indicate that is was pending.
2264 *
2265 * This is not complete - we should be able to fake
2266 * an edge even if it isn't on the 8259A...
2267 */
2268
2269 static unsigned int startup_ioapic_irq(unsigned int irq)
2270 {
2271 int was_pending = 0;
2272 unsigned long flags;
2273 struct irq_cfg *cfg;
2274
2275 spin_lock_irqsave(&ioapic_lock, flags);
2276 if (irq < NR_IRQS_LEGACY) {
2277 disable_8259A_irq(irq);
2278 if (i8259A_irq_pending(irq))
2279 was_pending = 1;
2280 }
2281 cfg = irq_cfg(irq);
2282 __unmask_IO_APIC_irq(cfg);
2283 spin_unlock_irqrestore(&ioapic_lock, flags);
2284
2285 return was_pending;
2286 }
2287
2288 #ifdef CONFIG_X86_64
2289 static int ioapic_retrigger_irq(unsigned int irq)
2290 {
2291
2292 struct irq_cfg *cfg = irq_cfg(irq);
2293 unsigned long flags;
2294
2295 spin_lock_irqsave(&vector_lock, flags);
2296 send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2297 spin_unlock_irqrestore(&vector_lock, flags);
2298
2299 return 1;
2300 }
2301 #else
2302 static int ioapic_retrigger_irq(unsigned int irq)
2303 {
2304 send_IPI_self(irq_cfg(irq)->vector);
2305
2306 return 1;
2307 }
2308 #endif
2309
2310 /*
2311 * Level and edge triggered IO-APIC interrupts need different handling,
2312 * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2313 * handled with the level-triggered descriptor, but that one has slightly
2314 * more overhead. Level-triggered interrupts cannot be handled with the
2315 * edge-triggered handler, without risking IRQ storms and other ugly
2316 * races.
2317 */
2318
2319 #ifdef CONFIG_SMP
2320
2321 #ifdef CONFIG_INTR_REMAP
2322 static void ir_irq_migration(struct work_struct *work);
2323
2324 static DECLARE_DELAYED_WORK(ir_migration_work, ir_irq_migration);
2325
2326 /*
2327 * Migrate the IO-APIC irq in the presence of intr-remapping.
2328 *
2329 * For edge triggered, irq migration is a simple atomic update(of vector
2330 * and cpu destination) of IRTE and flush the hardware cache.
2331 *
2332 * For level triggered, we need to modify the io-apic RTE aswell with the update
2333 * vector information, along with modifying IRTE with vector and destination.
2334 * So irq migration for level triggered is little bit more complex compared to
2335 * edge triggered migration. But the good news is, we use the same algorithm
2336 * for level triggered migration as we have today, only difference being,
2337 * we now initiate the irq migration from process context instead of the
2338 * interrupt context.
2339 *
2340 * In future, when we do a directed EOI (combined with cpu EOI broadcast
2341 * suppression) to the IO-APIC, level triggered irq migration will also be
2342 * as simple as edge triggered migration and we can do the irq migration
2343 * with a simple atomic update to IO-APIC RTE.
2344 */
2345 static void
2346 migrate_ioapic_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2347 {
2348 struct irq_cfg *cfg;
2349 struct irte irte;
2350 int modify_ioapic_rte;
2351 unsigned int dest;
2352 unsigned long flags;
2353 unsigned int irq;
2354
2355 if (!cpumask_intersects(mask, cpu_online_mask))
2356 return;
2357
2358 irq = desc->irq;
2359 if (get_irte(irq, &irte))
2360 return;
2361
2362 cfg = desc->chip_data;
2363 if (assign_irq_vector(irq, cfg, mask))
2364 return;
2365
2366 set_extra_move_desc(desc, mask);
2367
2368 dest = cpu_mask_to_apicid_and(cfg->domain, mask);
2369
2370 modify_ioapic_rte = desc->status & IRQ_LEVEL;
2371 if (modify_ioapic_rte) {
2372 spin_lock_irqsave(&ioapic_lock, flags);
2373 __target_IO_APIC_irq(irq, dest, cfg);
2374 spin_unlock_irqrestore(&ioapic_lock, flags);
2375 }
2376
2377 irte.vector = cfg->vector;
2378 irte.dest_id = IRTE_DEST(dest);
2379
2380 /*
2381 * Modified the IRTE and flushes the Interrupt entry cache.
2382 */
2383 modify_irte(irq, &irte);
2384
2385 if (cfg->move_in_progress)
2386 send_cleanup_vector(cfg);
2387
2388 cpumask_copy(&desc->affinity, mask);
2389 }
2390
2391 static int migrate_irq_remapped_level_desc(struct irq_desc *desc)
2392 {
2393 int ret = -1;
2394 struct irq_cfg *cfg = desc->chip_data;
2395
2396 mask_IO_APIC_irq_desc(desc);
2397
2398 if (io_apic_level_ack_pending(cfg)) {
2399 /*
2400 * Interrupt in progress. Migrating irq now will change the
2401 * vector information in the IO-APIC RTE and that will confuse
2402 * the EOI broadcast performed by cpu.
2403 * So, delay the irq migration to the next instance.
2404 */
2405 schedule_delayed_work(&ir_migration_work, 1);
2406 goto unmask;
2407 }
2408
2409 /* everthing is clear. we have right of way */
2410 migrate_ioapic_irq_desc(desc, &desc->pending_mask);
2411
2412 ret = 0;
2413 desc->status &= ~IRQ_MOVE_PENDING;
2414 cpumask_clear(&desc->pending_mask);
2415
2416 unmask:
2417 unmask_IO_APIC_irq_desc(desc);
2418
2419 return ret;
2420 }
2421
2422 static void ir_irq_migration(struct work_struct *work)
2423 {
2424 unsigned int irq;
2425 struct irq_desc *desc;
2426
2427 for_each_irq_desc(irq, desc) {
2428 if (!desc)
2429 continue;
2430
2431 if (desc->status & IRQ_MOVE_PENDING) {
2432 unsigned long flags;
2433
2434 spin_lock_irqsave(&desc->lock, flags);
2435 if (!desc->chip->set_affinity ||
2436 !(desc->status & IRQ_MOVE_PENDING)) {
2437 desc->status &= ~IRQ_MOVE_PENDING;
2438 spin_unlock_irqrestore(&desc->lock, flags);
2439 continue;
2440 }
2441
2442 desc->chip->set_affinity(irq, &desc->pending_mask);
2443 spin_unlock_irqrestore(&desc->lock, flags);
2444 }
2445 }
2446 }
2447
2448 /*
2449 * Migrates the IRQ destination in the process context.
2450 */
2451 static void set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2452 const struct cpumask *mask)
2453 {
2454 if (desc->status & IRQ_LEVEL) {
2455 desc->status |= IRQ_MOVE_PENDING;
2456 cpumask_copy(&desc->pending_mask, mask);
2457 migrate_irq_remapped_level_desc(desc);
2458 return;
2459 }
2460
2461 migrate_ioapic_irq_desc(desc, mask);
2462 }
2463 static void set_ir_ioapic_affinity_irq(unsigned int irq,
2464 const struct cpumask *mask)
2465 {
2466 struct irq_desc *desc = irq_to_desc(irq);
2467
2468 set_ir_ioapic_affinity_irq_desc(desc, mask);
2469 }
2470 #endif
2471
2472 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2473 {
2474 unsigned vector, me;
2475
2476 ack_APIC_irq();
2477 exit_idle();
2478 irq_enter();
2479
2480 me = smp_processor_id();
2481 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2482 unsigned int irq;
2483 struct irq_desc *desc;
2484 struct irq_cfg *cfg;
2485 irq = __get_cpu_var(vector_irq)[vector];
2486
2487 if (irq == -1)
2488 continue;
2489
2490 desc = irq_to_desc(irq);
2491 if (!desc)
2492 continue;
2493
2494 cfg = irq_cfg(irq);
2495 spin_lock(&desc->lock);
2496 if (!cfg->move_cleanup_count)
2497 goto unlock;
2498
2499 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2500 goto unlock;
2501
2502 __get_cpu_var(vector_irq)[vector] = -1;
2503 cfg->move_cleanup_count--;
2504 unlock:
2505 spin_unlock(&desc->lock);
2506 }
2507
2508 irq_exit();
2509 }
2510
2511 static void irq_complete_move(struct irq_desc **descp)
2512 {
2513 struct irq_desc *desc = *descp;
2514 struct irq_cfg *cfg = desc->chip_data;
2515 unsigned vector, me;
2516
2517 if (likely(!cfg->move_in_progress)) {
2518 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
2519 if (likely(!cfg->move_desc_pending))
2520 return;
2521
2522 /* domain has not changed, but affinity did */
2523 me = smp_processor_id();
2524 if (cpu_isset(me, desc->affinity)) {
2525 *descp = desc = move_irq_desc(desc, me);
2526 /* get the new one */
2527 cfg = desc->chip_data;
2528 cfg->move_desc_pending = 0;
2529 }
2530 #endif
2531 return;
2532 }
2533
2534 vector = ~get_irq_regs()->orig_ax;
2535 me = smp_processor_id();
2536 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
2537 *descp = desc = move_irq_desc(desc, me);
2538 /* get the new one */
2539 cfg = desc->chip_data;
2540 #endif
2541
2542 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2543 send_cleanup_vector(cfg);
2544 }
2545 #else
2546 static inline void irq_complete_move(struct irq_desc **descp) {}
2547 #endif
2548
2549 #ifdef CONFIG_INTR_REMAP
2550 static void ack_x2apic_level(unsigned int irq)
2551 {
2552 ack_x2APIC_irq();
2553 }
2554
2555 static void ack_x2apic_edge(unsigned int irq)
2556 {
2557 ack_x2APIC_irq();
2558 }
2559
2560 #endif
2561
2562 static void ack_apic_edge(unsigned int irq)
2563 {
2564 struct irq_desc *desc = irq_to_desc(irq);
2565
2566 irq_complete_move(&desc);
2567 move_native_irq(irq);
2568 ack_APIC_irq();
2569 }
2570
2571 atomic_t irq_mis_count;
2572
2573 static void ack_apic_level(unsigned int irq)
2574 {
2575 struct irq_desc *desc = irq_to_desc(irq);
2576
2577 #ifdef CONFIG_X86_32
2578 unsigned long v;
2579 int i;
2580 #endif
2581 struct irq_cfg *cfg;
2582 int do_unmask_irq = 0;
2583
2584 irq_complete_move(&desc);
2585 #ifdef CONFIG_GENERIC_PENDING_IRQ
2586 /* If we are moving the irq we need to mask it */
2587 if (unlikely(desc->status & IRQ_MOVE_PENDING)) {
2588 do_unmask_irq = 1;
2589 mask_IO_APIC_irq_desc(desc);
2590 }
2591 #endif
2592
2593 #ifdef CONFIG_X86_32
2594 /*
2595 * It appears there is an erratum which affects at least version 0x11
2596 * of I/O APIC (that's the 82093AA and cores integrated into various
2597 * chipsets). Under certain conditions a level-triggered interrupt is
2598 * erroneously delivered as edge-triggered one but the respective IRR
2599 * bit gets set nevertheless. As a result the I/O unit expects an EOI
2600 * message but it will never arrive and further interrupts are blocked
2601 * from the source. The exact reason is so far unknown, but the
2602 * phenomenon was observed when two consecutive interrupt requests
2603 * from a given source get delivered to the same CPU and the source is
2604 * temporarily disabled in between.
2605 *
2606 * A workaround is to simulate an EOI message manually. We achieve it
2607 * by setting the trigger mode to edge and then to level when the edge
2608 * trigger mode gets detected in the TMR of a local APIC for a
2609 * level-triggered interrupt. We mask the source for the time of the
2610 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2611 * The idea is from Manfred Spraul. --macro
2612 */
2613 cfg = desc->chip_data;
2614 i = cfg->vector;
2615
2616 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2617 #endif
2618
2619 /*
2620 * We must acknowledge the irq before we move it or the acknowledge will
2621 * not propagate properly.
2622 */
2623 ack_APIC_irq();
2624
2625 /* Now we can move and renable the irq */
2626 if (unlikely(do_unmask_irq)) {
2627 /* Only migrate the irq if the ack has been received.
2628 *
2629 * On rare occasions the broadcast level triggered ack gets
2630 * delayed going to ioapics, and if we reprogram the
2631 * vector while Remote IRR is still set the irq will never
2632 * fire again.
2633 *
2634 * To prevent this scenario we read the Remote IRR bit
2635 * of the ioapic. This has two effects.
2636 * - On any sane system the read of the ioapic will
2637 * flush writes (and acks) going to the ioapic from
2638 * this cpu.
2639 * - We get to see if the ACK has actually been delivered.
2640 *
2641 * Based on failed experiments of reprogramming the
2642 * ioapic entry from outside of irq context starting
2643 * with masking the ioapic entry and then polling until
2644 * Remote IRR was clear before reprogramming the
2645 * ioapic I don't trust the Remote IRR bit to be
2646 * completey accurate.
2647 *
2648 * However there appears to be no other way to plug
2649 * this race, so if the Remote IRR bit is not
2650 * accurate and is causing problems then it is a hardware bug
2651 * and you can go talk to the chipset vendor about it.
2652 */
2653 cfg = desc->chip_data;
2654 if (!io_apic_level_ack_pending(cfg))
2655 move_masked_irq(irq);
2656 unmask_IO_APIC_irq_desc(desc);
2657 }
2658
2659 #ifdef CONFIG_X86_32
2660 if (!(v & (1 << (i & 0x1f)))) {
2661 atomic_inc(&irq_mis_count);
2662 spin_lock(&ioapic_lock);
2663 __mask_and_edge_IO_APIC_irq(cfg);
2664 __unmask_and_level_IO_APIC_irq(cfg);
2665 spin_unlock(&ioapic_lock);
2666 }
2667 #endif
2668 }
2669
2670 static struct irq_chip ioapic_chip __read_mostly = {
2671 .name = "IO-APIC",
2672 .startup = startup_ioapic_irq,
2673 .mask = mask_IO_APIC_irq,
2674 .unmask = unmask_IO_APIC_irq,
2675 .ack = ack_apic_edge,
2676 .eoi = ack_apic_level,
2677 #ifdef CONFIG_SMP
2678 .set_affinity = set_ioapic_affinity_irq,
2679 #endif
2680 .retrigger = ioapic_retrigger_irq,
2681 };
2682
2683 #ifdef CONFIG_INTR_REMAP
2684 static struct irq_chip ir_ioapic_chip __read_mostly = {
2685 .name = "IR-IO-APIC",
2686 .startup = startup_ioapic_irq,
2687 .mask = mask_IO_APIC_irq,
2688 .unmask = unmask_IO_APIC_irq,
2689 .ack = ack_x2apic_edge,
2690 .eoi = ack_x2apic_level,
2691 #ifdef CONFIG_SMP
2692 .set_affinity = set_ir_ioapic_affinity_irq,
2693 #endif
2694 .retrigger = ioapic_retrigger_irq,
2695 };
2696 #endif
2697
2698 static inline void init_IO_APIC_traps(void)
2699 {
2700 int irq;
2701 struct irq_desc *desc;
2702 struct irq_cfg *cfg;
2703
2704 /*
2705 * NOTE! The local APIC isn't very good at handling
2706 * multiple interrupts at the same interrupt level.
2707 * As the interrupt level is determined by taking the
2708 * vector number and shifting that right by 4, we
2709 * want to spread these out a bit so that they don't
2710 * all fall in the same interrupt level.
2711 *
2712 * Also, we've got to be careful not to trash gate
2713 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2714 */
2715 for_each_irq_desc(irq, desc) {
2716 if (!desc)
2717 continue;
2718
2719 cfg = desc->chip_data;
2720 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2721 /*
2722 * Hmm.. We don't have an entry for this,
2723 * so default to an old-fashioned 8259
2724 * interrupt if we can..
2725 */
2726 if (irq < NR_IRQS_LEGACY)
2727 make_8259A_irq(irq);
2728 else
2729 /* Strange. Oh, well.. */
2730 desc->chip = &no_irq_chip;
2731 }
2732 }
2733 }
2734
2735 /*
2736 * The local APIC irq-chip implementation:
2737 */
2738
2739 static void mask_lapic_irq(unsigned int irq)
2740 {
2741 unsigned long v;
2742
2743 v = apic_read(APIC_LVT0);
2744 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2745 }
2746
2747 static void unmask_lapic_irq(unsigned int irq)
2748 {
2749 unsigned long v;
2750
2751 v = apic_read(APIC_LVT0);
2752 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2753 }
2754
2755 static void ack_lapic_irq(unsigned int irq)
2756 {
2757 ack_APIC_irq();
2758 }
2759
2760 static struct irq_chip lapic_chip __read_mostly = {
2761 .name = "local-APIC",
2762 .mask = mask_lapic_irq,
2763 .unmask = unmask_lapic_irq,
2764 .ack = ack_lapic_irq,
2765 };
2766
2767 static void lapic_register_intr(int irq, struct irq_desc *desc)
2768 {
2769 desc->status &= ~IRQ_LEVEL;
2770 set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2771 "edge");
2772 }
2773
2774 static void __init setup_nmi(void)
2775 {
2776 /*
2777 * Dirty trick to enable the NMI watchdog ...
2778 * We put the 8259A master into AEOI mode and
2779 * unmask on all local APICs LVT0 as NMI.
2780 *
2781 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire')
2782 * is from Maciej W. Rozycki - so we do not have to EOI from
2783 * the NMI handler or the timer interrupt.
2784 */
2785 apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ...");
2786
2787 enable_NMI_through_LVT0();
2788
2789 apic_printk(APIC_VERBOSE, " done.\n");
2790 }
2791
2792 /*
2793 * This looks a bit hackish but it's about the only one way of sending
2794 * a few INTA cycles to 8259As and any associated glue logic. ICR does
2795 * not support the ExtINT mode, unfortunately. We need to send these
2796 * cycles as some i82489DX-based boards have glue logic that keeps the
2797 * 8259A interrupt line asserted until INTA. --macro
2798 */
2799 static inline void __init unlock_ExtINT_logic(void)
2800 {
2801 int apic, pin, i;
2802 struct IO_APIC_route_entry entry0, entry1;
2803 unsigned char save_control, save_freq_select;
2804
2805 pin = find_isa_irq_pin(8, mp_INT);
2806 if (pin == -1) {
2807 WARN_ON_ONCE(1);
2808 return;
2809 }
2810 apic = find_isa_irq_apic(8, mp_INT);
2811 if (apic == -1) {
2812 WARN_ON_ONCE(1);
2813 return;
2814 }
2815
2816 entry0 = ioapic_read_entry(apic, pin);
2817 clear_IO_APIC_pin(apic, pin);
2818
2819 memset(&entry1, 0, sizeof(entry1));
2820
2821 entry1.dest_mode = 0; /* physical delivery */
2822 entry1.mask = 0; /* unmask IRQ now */
2823 entry1.dest = hard_smp_processor_id();
2824 entry1.delivery_mode = dest_ExtINT;
2825 entry1.polarity = entry0.polarity;
2826 entry1.trigger = 0;
2827 entry1.vector = 0;
2828
2829 ioapic_write_entry(apic, pin, entry1);
2830
2831 save_control = CMOS_READ(RTC_CONTROL);
2832 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2833 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2834 RTC_FREQ_SELECT);
2835 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2836
2837 i = 100;
2838 while (i-- > 0) {
2839 mdelay(10);
2840 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2841 i -= 10;
2842 }
2843
2844 CMOS_WRITE(save_control, RTC_CONTROL);
2845 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2846 clear_IO_APIC_pin(apic, pin);
2847
2848 ioapic_write_entry(apic, pin, entry0);
2849 }
2850
2851 static int disable_timer_pin_1 __initdata;
2852 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2853 static int __init disable_timer_pin_setup(char *arg)
2854 {
2855 disable_timer_pin_1 = 1;
2856 return 0;
2857 }
2858 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2859
2860 int timer_through_8259 __initdata;
2861
2862 /*
2863 * This code may look a bit paranoid, but it's supposed to cooperate with
2864 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ
2865 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast
2866 * fanatically on his truly buggy board.
2867 *
2868 * FIXME: really need to revamp this for all platforms.
2869 */
2870 static inline void __init check_timer(void)
2871 {
2872 struct irq_desc *desc = irq_to_desc(0);
2873 struct irq_cfg *cfg = desc->chip_data;
2874 int cpu = boot_cpu_id;
2875 int apic1, pin1, apic2, pin2;
2876 unsigned long flags;
2877 unsigned int ver;
2878 int no_pin1 = 0;
2879
2880 local_irq_save(flags);
2881
2882 ver = apic_read(APIC_LVR);
2883 ver = GET_APIC_VERSION(ver);
2884
2885 /*
2886 * get/set the timer IRQ vector:
2887 */
2888 disable_8259A_irq(0);
2889 assign_irq_vector(0, cfg, TARGET_CPUS);
2890
2891 /*
2892 * As IRQ0 is to be enabled in the 8259A, the virtual
2893 * wire has to be disabled in the local APIC. Also
2894 * timer interrupts need to be acknowledged manually in
2895 * the 8259A for the i82489DX when using the NMI
2896 * watchdog as that APIC treats NMIs as level-triggered.
2897 * The AEOI mode will finish them in the 8259A
2898 * automatically.
2899 */
2900 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2901 init_8259A(1);
2902 #ifdef CONFIG_X86_32
2903 timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver));
2904 #endif
2905
2906 pin1 = find_isa_irq_pin(0, mp_INT);
2907 apic1 = find_isa_irq_apic(0, mp_INT);
2908 pin2 = ioapic_i8259.pin;
2909 apic2 = ioapic_i8259.apic;
2910
2911 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2912 "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2913 cfg->vector, apic1, pin1, apic2, pin2);
2914
2915 /*
2916 * Some BIOS writers are clueless and report the ExtINTA
2917 * I/O APIC input from the cascaded 8259A as the timer
2918 * interrupt input. So just in case, if only one pin
2919 * was found above, try it both directly and through the
2920 * 8259A.
2921 */
2922 if (pin1 == -1) {
2923 #ifdef CONFIG_INTR_REMAP
2924 if (intr_remapping_enabled)
2925 panic("BIOS bug: timer not connected to IO-APIC");
2926 #endif
2927 pin1 = pin2;
2928 apic1 = apic2;
2929 no_pin1 = 1;
2930 } else if (pin2 == -1) {
2931 pin2 = pin1;
2932 apic2 = apic1;
2933 }
2934
2935 if (pin1 != -1) {
2936 /*
2937 * Ok, does IRQ0 through the IOAPIC work?
2938 */
2939 if (no_pin1) {
2940 add_pin_to_irq_cpu(cfg, cpu, apic1, pin1);
2941 setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2942 }
2943 unmask_IO_APIC_irq_desc(desc);
2944 if (timer_irq_works()) {
2945 if (nmi_watchdog == NMI_IO_APIC) {
2946 setup_nmi();
2947 enable_8259A_irq(0);
2948 }
2949 if (disable_timer_pin_1 > 0)
2950 clear_IO_APIC_pin(0, pin1);
2951 goto out;
2952 }
2953 #ifdef CONFIG_INTR_REMAP
2954 if (intr_remapping_enabled)
2955 panic("timer doesn't work through Interrupt-remapped IO-APIC");
2956 #endif
2957 clear_IO_APIC_pin(apic1, pin1);
2958 if (!no_pin1)
2959 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2960 "8254 timer not connected to IO-APIC\n");
2961
2962 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2963 "(IRQ0) through the 8259A ...\n");
2964 apic_printk(APIC_QUIET, KERN_INFO
2965 "..... (found apic %d pin %d) ...\n", apic2, pin2);
2966 /*
2967 * legacy devices should be connected to IO APIC #0
2968 */
2969 replace_pin_at_irq_cpu(cfg, cpu, apic1, pin1, apic2, pin2);
2970 setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2971 unmask_IO_APIC_irq_desc(desc);
2972 enable_8259A_irq(0);
2973 if (timer_irq_works()) {
2974 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2975 timer_through_8259 = 1;
2976 if (nmi_watchdog == NMI_IO_APIC) {
2977 disable_8259A_irq(0);
2978 setup_nmi();
2979 enable_8259A_irq(0);
2980 }
2981 goto out;
2982 }
2983 /*
2984 * Cleanup, just in case ...
2985 */
2986 disable_8259A_irq(0);
2987 clear_IO_APIC_pin(apic2, pin2);
2988 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2989 }
2990
2991 if (nmi_watchdog == NMI_IO_APIC) {
2992 apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work "
2993 "through the IO-APIC - disabling NMI Watchdog!\n");
2994 nmi_watchdog = NMI_NONE;
2995 }
2996 #ifdef CONFIG_X86_32
2997 timer_ack = 0;
2998 #endif
2999
3000 apic_printk(APIC_QUIET, KERN_INFO
3001 "...trying to set up timer as Virtual Wire IRQ...\n");
3002
3003 lapic_register_intr(0, desc);
3004 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */
3005 enable_8259A_irq(0);
3006
3007 if (timer_irq_works()) {
3008 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3009 goto out;
3010 }
3011 disable_8259A_irq(0);
3012 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
3013 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
3014
3015 apic_printk(APIC_QUIET, KERN_INFO
3016 "...trying to set up timer as ExtINT IRQ...\n");
3017
3018 init_8259A(0);
3019 make_8259A_irq(0);
3020 apic_write(APIC_LVT0, APIC_DM_EXTINT);
3021
3022 unlock_ExtINT_logic();
3023
3024 if (timer_irq_works()) {
3025 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3026 goto out;
3027 }
3028 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
3029 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a "
3030 "report. Then try booting with the 'noapic' option.\n");
3031 out:
3032 local_irq_restore(flags);
3033 }
3034
3035 /*
3036 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
3037 * to devices. However there may be an I/O APIC pin available for
3038 * this interrupt regardless. The pin may be left unconnected, but
3039 * typically it will be reused as an ExtINT cascade interrupt for
3040 * the master 8259A. In the MPS case such a pin will normally be
3041 * reported as an ExtINT interrupt in the MP table. With ACPI
3042 * there is no provision for ExtINT interrupts, and in the absence
3043 * of an override it would be treated as an ordinary ISA I/O APIC
3044 * interrupt, that is edge-triggered and unmasked by default. We
3045 * used to do this, but it caused problems on some systems because
3046 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
3047 * the same ExtINT cascade interrupt to drive the local APIC of the
3048 * bootstrap processor. Therefore we refrain from routing IRQ2 to
3049 * the I/O APIC in all cases now. No actual device should request
3050 * it anyway. --macro
3051 */
3052 #define PIC_IRQS (1 << PIC_CASCADE_IR)
3053
3054 void __init setup_IO_APIC(void)
3055 {
3056
3057 #ifdef CONFIG_X86_32
3058 enable_IO_APIC();
3059 #else
3060 /*
3061 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
3062 */
3063 #endif
3064
3065 io_apic_irqs = ~PIC_IRQS;
3066
3067 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
3068 /*
3069 * Set up IO-APIC IRQ routing.
3070 */
3071 #ifdef CONFIG_X86_32
3072 if (!acpi_ioapic)
3073 setup_ioapic_ids_from_mpc();
3074 #endif
3075 sync_Arb_IDs();
3076 setup_IO_APIC_irqs();
3077 init_IO_APIC_traps();
3078 check_timer();
3079 }
3080
3081 /*
3082 * Called after all the initialization is done. If we didnt find any
3083 * APIC bugs then we can allow the modify fast path
3084 */
3085
3086 static int __init io_apic_bug_finalize(void)
3087 {
3088 if (sis_apic_bug == -1)
3089 sis_apic_bug = 0;
3090 return 0;
3091 }
3092
3093 late_initcall(io_apic_bug_finalize);
3094
3095 struct sysfs_ioapic_data {
3096 struct sys_device dev;
3097 struct IO_APIC_route_entry entry[0];
3098 };
3099 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
3100
3101 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
3102 {
3103 struct IO_APIC_route_entry *entry;
3104 struct sysfs_ioapic_data *data;
3105 int i;
3106
3107 data = container_of(dev, struct sysfs_ioapic_data, dev);
3108 entry = data->entry;
3109 for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
3110 *entry = ioapic_read_entry(dev->id, i);
3111
3112 return 0;
3113 }
3114
3115 static int ioapic_resume(struct sys_device *dev)
3116 {
3117 struct IO_APIC_route_entry *entry;
3118 struct sysfs_ioapic_data *data;
3119 unsigned long flags;
3120 union IO_APIC_reg_00 reg_00;
3121 int i;
3122
3123 data = container_of(dev, struct sysfs_ioapic_data, dev);
3124 entry = data->entry;
3125
3126 spin_lock_irqsave(&ioapic_lock, flags);
3127 reg_00.raw = io_apic_read(dev->id, 0);
3128 if (reg_00.bits.ID != mp_ioapics[dev->id].mp_apicid) {
3129 reg_00.bits.ID = mp_ioapics[dev->id].mp_apicid;
3130 io_apic_write(dev->id, 0, reg_00.raw);
3131 }
3132 spin_unlock_irqrestore(&ioapic_lock, flags);
3133 for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
3134 ioapic_write_entry(dev->id, i, entry[i]);
3135
3136 return 0;
3137 }
3138
3139 static struct sysdev_class ioapic_sysdev_class = {
3140 .name = "ioapic",
3141 .suspend = ioapic_suspend,
3142 .resume = ioapic_resume,
3143 };
3144
3145 static int __init ioapic_init_sysfs(void)
3146 {
3147 struct sys_device * dev;
3148 int i, size, error;
3149
3150 error = sysdev_class_register(&ioapic_sysdev_class);
3151 if (error)
3152 return error;
3153
3154 for (i = 0; i < nr_ioapics; i++ ) {
3155 size = sizeof(struct sys_device) + nr_ioapic_registers[i]
3156 * sizeof(struct IO_APIC_route_entry);
3157 mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
3158 if (!mp_ioapic_data[i]) {
3159 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3160 continue;
3161 }
3162 dev = &mp_ioapic_data[i]->dev;
3163 dev->id = i;
3164 dev->cls = &ioapic_sysdev_class;
3165 error = sysdev_register(dev);
3166 if (error) {
3167 kfree(mp_ioapic_data[i]);
3168 mp_ioapic_data[i] = NULL;
3169 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3170 continue;
3171 }
3172 }
3173
3174 return 0;
3175 }
3176
3177 device_initcall(ioapic_init_sysfs);
3178
3179 /*
3180 * Dynamic irq allocate and deallocation
3181 */
3182 unsigned int create_irq_nr(unsigned int irq_want)
3183 {
3184 /* Allocate an unused irq */
3185 unsigned int irq;
3186 unsigned int new;
3187 unsigned long flags;
3188 struct irq_cfg *cfg_new = NULL;
3189 int cpu = boot_cpu_id;
3190 struct irq_desc *desc_new = NULL;
3191
3192 irq = 0;
3193 spin_lock_irqsave(&vector_lock, flags);
3194 for (new = irq_want; new < NR_IRQS; new++) {
3195 if (platform_legacy_irq(new))
3196 continue;
3197
3198 desc_new = irq_to_desc_alloc_cpu(new, cpu);
3199 if (!desc_new) {
3200 printk(KERN_INFO "can not get irq_desc for %d\n", new);
3201 continue;
3202 }
3203 cfg_new = desc_new->chip_data;
3204
3205 if (cfg_new->vector != 0)
3206 continue;
3207 if (__assign_irq_vector(new, cfg_new, TARGET_CPUS) == 0)
3208 irq = new;
3209 break;
3210 }
3211 spin_unlock_irqrestore(&vector_lock, flags);
3212
3213 if (irq > 0) {
3214 dynamic_irq_init(irq);
3215 /* restore it, in case dynamic_irq_init clear it */
3216 if (desc_new)
3217 desc_new->chip_data = cfg_new;
3218 }
3219 return irq;
3220 }
3221
3222 static int nr_irqs_gsi = NR_IRQS_LEGACY;
3223 int create_irq(void)
3224 {
3225 unsigned int irq_want;
3226 int irq;
3227
3228 irq_want = nr_irqs_gsi;
3229 irq = create_irq_nr(irq_want);
3230
3231 if (irq == 0)
3232 irq = -1;
3233
3234 return irq;
3235 }
3236
3237 void destroy_irq(unsigned int irq)
3238 {
3239 unsigned long flags;
3240 struct irq_cfg *cfg;
3241 struct irq_desc *desc;
3242
3243 /* store it, in case dynamic_irq_cleanup clear it */
3244 desc = irq_to_desc(irq);
3245 cfg = desc->chip_data;
3246 dynamic_irq_cleanup(irq);
3247 /* connect back irq_cfg */
3248 if (desc)
3249 desc->chip_data = cfg;
3250
3251 #ifdef CONFIG_INTR_REMAP
3252 free_irte(irq);
3253 #endif
3254 spin_lock_irqsave(&vector_lock, flags);
3255 __clear_irq_vector(irq, cfg);
3256 spin_unlock_irqrestore(&vector_lock, flags);
3257 }
3258
3259 /*
3260 * MSI message composition
3261 */
3262 #ifdef CONFIG_PCI_MSI
3263 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg)
3264 {
3265 struct irq_cfg *cfg;
3266 int err;
3267 unsigned dest;
3268
3269 cfg = irq_cfg(irq);
3270 err = assign_irq_vector(irq, cfg, TARGET_CPUS);
3271 if (err)
3272 return err;
3273
3274 dest = cpu_mask_to_apicid_and(cfg->domain, TARGET_CPUS);
3275
3276 #ifdef CONFIG_INTR_REMAP
3277 if (irq_remapped(irq)) {
3278 struct irte irte;
3279 int ir_index;
3280 u16 sub_handle;
3281
3282 ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3283 BUG_ON(ir_index == -1);
3284
3285 memset (&irte, 0, sizeof(irte));
3286
3287 irte.present = 1;
3288 irte.dst_mode = INT_DEST_MODE;
3289 irte.trigger_mode = 0; /* edge */
3290 irte.dlvry_mode = INT_DELIVERY_MODE;
3291 irte.vector = cfg->vector;
3292 irte.dest_id = IRTE_DEST(dest);
3293
3294 modify_irte(irq, &irte);
3295
3296 msg->address_hi = MSI_ADDR_BASE_HI;
3297 msg->data = sub_handle;
3298 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3299 MSI_ADDR_IR_SHV |
3300 MSI_ADDR_IR_INDEX1(ir_index) |
3301 MSI_ADDR_IR_INDEX2(ir_index);
3302 } else
3303 #endif
3304 {
3305 msg->address_hi = MSI_ADDR_BASE_HI;
3306 msg->address_lo =
3307 MSI_ADDR_BASE_LO |
3308 ((INT_DEST_MODE == 0) ?
3309 MSI_ADDR_DEST_MODE_PHYSICAL:
3310 MSI_ADDR_DEST_MODE_LOGICAL) |
3311 ((INT_DELIVERY_MODE != dest_LowestPrio) ?
3312 MSI_ADDR_REDIRECTION_CPU:
3313 MSI_ADDR_REDIRECTION_LOWPRI) |
3314 MSI_ADDR_DEST_ID(dest);
3315
3316 msg->data =
3317 MSI_DATA_TRIGGER_EDGE |
3318 MSI_DATA_LEVEL_ASSERT |
3319 ((INT_DELIVERY_MODE != dest_LowestPrio) ?
3320 MSI_DATA_DELIVERY_FIXED:
3321 MSI_DATA_DELIVERY_LOWPRI) |
3322 MSI_DATA_VECTOR(cfg->vector);
3323 }
3324 return err;
3325 }
3326
3327 #ifdef CONFIG_SMP
3328 static void set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3329 {
3330 struct irq_desc *desc = irq_to_desc(irq);
3331 struct irq_cfg *cfg;
3332 struct msi_msg msg;
3333 unsigned int dest;
3334
3335 dest = set_desc_affinity(desc, mask);
3336 if (dest == BAD_APICID)
3337 return;
3338
3339 cfg = desc->chip_data;
3340
3341 read_msi_msg_desc(desc, &msg);
3342
3343 msg.data &= ~MSI_DATA_VECTOR_MASK;
3344 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3345 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3346 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3347
3348 write_msi_msg_desc(desc, &msg);
3349 }
3350 #ifdef CONFIG_INTR_REMAP
3351 /*
3352 * Migrate the MSI irq to another cpumask. This migration is
3353 * done in the process context using interrupt-remapping hardware.
3354 */
3355 static void
3356 ir_set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3357 {
3358 struct irq_desc *desc = irq_to_desc(irq);
3359 struct irq_cfg *cfg = desc->chip_data;
3360 unsigned int dest;
3361 struct irte irte;
3362
3363 if (get_irte(irq, &irte))
3364 return;
3365
3366 dest = set_desc_affinity(desc, mask);
3367 if (dest == BAD_APICID)
3368 return;
3369
3370 irte.vector = cfg->vector;
3371 irte.dest_id = IRTE_DEST(dest);
3372
3373 /*
3374 * atomically update the IRTE with the new destination and vector.
3375 */
3376 modify_irte(irq, &irte);
3377
3378 /*
3379 * After this point, all the interrupts will start arriving
3380 * at the new destination. So, time to cleanup the previous
3381 * vector allocation.
3382 */
3383 if (cfg->move_in_progress)
3384 send_cleanup_vector(cfg);
3385 }
3386
3387 #endif
3388 #endif /* CONFIG_SMP */
3389
3390 /*
3391 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3392 * which implement the MSI or MSI-X Capability Structure.
3393 */
3394 static struct irq_chip msi_chip = {
3395 .name = "PCI-MSI",
3396 .unmask = unmask_msi_irq,
3397 .mask = mask_msi_irq,
3398 .ack = ack_apic_edge,
3399 #ifdef CONFIG_SMP
3400 .set_affinity = set_msi_irq_affinity,
3401 #endif
3402 .retrigger = ioapic_retrigger_irq,
3403 };
3404
3405 #ifdef CONFIG_INTR_REMAP
3406 static struct irq_chip msi_ir_chip = {
3407 .name = "IR-PCI-MSI",
3408 .unmask = unmask_msi_irq,
3409 .mask = mask_msi_irq,
3410 .ack = ack_x2apic_edge,
3411 #ifdef CONFIG_SMP
3412 .set_affinity = ir_set_msi_irq_affinity,
3413 #endif
3414 .retrigger = ioapic_retrigger_irq,
3415 };
3416
3417 /*
3418 * Map the PCI dev to the corresponding remapping hardware unit
3419 * and allocate 'nvec' consecutive interrupt-remapping table entries
3420 * in it.
3421 */
3422 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3423 {
3424 struct intel_iommu *iommu;
3425 int index;
3426
3427 iommu = map_dev_to_ir(dev);
3428 if (!iommu) {
3429 printk(KERN_ERR
3430 "Unable to map PCI %s to iommu\n", pci_name(dev));
3431 return -ENOENT;
3432 }
3433
3434 index = alloc_irte(iommu, irq, nvec);
3435 if (index < 0) {
3436 printk(KERN_ERR
3437 "Unable to allocate %d IRTE for PCI %s\n", nvec,
3438 pci_name(dev));
3439 return -ENOSPC;
3440 }
3441 return index;
3442 }
3443 #endif
3444
3445 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3446 {
3447 int ret;
3448 struct msi_msg msg;
3449
3450 ret = msi_compose_msg(dev, irq, &msg);
3451 if (ret < 0)
3452 return ret;
3453
3454 set_irq_msi(irq, msidesc);
3455 write_msi_msg(irq, &msg);
3456
3457 #ifdef CONFIG_INTR_REMAP
3458 if (irq_remapped(irq)) {
3459 struct irq_desc *desc = irq_to_desc(irq);
3460 /*
3461 * irq migration in process context
3462 */
3463 desc->status |= IRQ_MOVE_PCNTXT;
3464 set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3465 } else
3466 #endif
3467 set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3468
3469 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3470
3471 return 0;
3472 }
3473
3474 int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc)
3475 {
3476 unsigned int irq;
3477 int ret;
3478 unsigned int irq_want;
3479
3480 irq_want = nr_irqs_gsi;
3481 irq = create_irq_nr(irq_want);
3482 if (irq == 0)
3483 return -1;
3484
3485 #ifdef CONFIG_INTR_REMAP
3486 if (!intr_remapping_enabled)
3487 goto no_ir;
3488
3489 ret = msi_alloc_irte(dev, irq, 1);
3490 if (ret < 0)
3491 goto error;
3492 no_ir:
3493 #endif
3494 ret = setup_msi_irq(dev, msidesc, irq);
3495 if (ret < 0) {
3496 destroy_irq(irq);
3497 return ret;
3498 }
3499 return 0;
3500
3501 #ifdef CONFIG_INTR_REMAP
3502 error:
3503 destroy_irq(irq);
3504 return ret;
3505 #endif
3506 }
3507
3508 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3509 {
3510 unsigned int irq;
3511 int ret, sub_handle;
3512 struct msi_desc *msidesc;
3513 unsigned int irq_want;
3514
3515 #ifdef CONFIG_INTR_REMAP
3516 struct intel_iommu *iommu = 0;
3517 int index = 0;
3518 #endif
3519
3520 irq_want = nr_irqs_gsi;
3521 sub_handle = 0;
3522 list_for_each_entry(msidesc, &dev->msi_list, list) {
3523 irq = create_irq_nr(irq_want);
3524 irq_want++;
3525 if (irq == 0)
3526 return -1;
3527 #ifdef CONFIG_INTR_REMAP
3528 if (!intr_remapping_enabled)
3529 goto no_ir;
3530
3531 if (!sub_handle) {
3532 /*
3533 * allocate the consecutive block of IRTE's
3534 * for 'nvec'
3535 */
3536 index = msi_alloc_irte(dev, irq, nvec);
3537 if (index < 0) {
3538 ret = index;
3539 goto error;
3540 }
3541 } else {
3542 iommu = map_dev_to_ir(dev);
3543 if (!iommu) {
3544 ret = -ENOENT;
3545 goto error;
3546 }
3547 /*
3548 * setup the mapping between the irq and the IRTE
3549 * base index, the sub_handle pointing to the
3550 * appropriate interrupt remap table entry.
3551 */
3552 set_irte_irq(irq, iommu, index, sub_handle);
3553 }
3554 no_ir:
3555 #endif
3556 ret = setup_msi_irq(dev, msidesc, irq);
3557 if (ret < 0)
3558 goto error;
3559 sub_handle++;
3560 }
3561 return 0;
3562
3563 error:
3564 destroy_irq(irq);
3565 return ret;
3566 }
3567
3568 void arch_teardown_msi_irq(unsigned int irq)
3569 {
3570 destroy_irq(irq);
3571 }
3572
3573 #ifdef CONFIG_DMAR
3574 #ifdef CONFIG_SMP
3575 static void dmar_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3576 {
3577 struct irq_desc *desc = irq_to_desc(irq);
3578 struct irq_cfg *cfg;
3579 struct msi_msg msg;
3580 unsigned int dest;
3581
3582 dest = set_desc_affinity(desc, mask);
3583 if (dest == BAD_APICID)
3584 return;
3585
3586 cfg = desc->chip_data;
3587
3588 dmar_msi_read(irq, &msg);
3589
3590 msg.data &= ~MSI_DATA_VECTOR_MASK;
3591 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3592 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3593 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3594
3595 dmar_msi_write(irq, &msg);
3596 }
3597
3598 #endif /* CONFIG_SMP */
3599
3600 struct irq_chip dmar_msi_type = {
3601 .name = "DMAR_MSI",
3602 .unmask = dmar_msi_unmask,
3603 .mask = dmar_msi_mask,
3604 .ack = ack_apic_edge,
3605 #ifdef CONFIG_SMP
3606 .set_affinity = dmar_msi_set_affinity,
3607 #endif
3608 .retrigger = ioapic_retrigger_irq,
3609 };
3610
3611 int arch_setup_dmar_msi(unsigned int irq)
3612 {
3613 int ret;
3614 struct msi_msg msg;
3615
3616 ret = msi_compose_msg(NULL, irq, &msg);
3617 if (ret < 0)
3618 return ret;
3619 dmar_msi_write(irq, &msg);
3620 set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3621 "edge");
3622 return 0;
3623 }
3624 #endif
3625
3626 #ifdef CONFIG_HPET_TIMER
3627
3628 #ifdef CONFIG_SMP
3629 static void hpet_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3630 {
3631 struct irq_desc *desc = irq_to_desc(irq);
3632 struct irq_cfg *cfg;
3633 struct msi_msg msg;
3634 unsigned int dest;
3635
3636 dest = set_desc_affinity(desc, mask);
3637 if (dest == BAD_APICID)
3638 return;
3639
3640 cfg = desc->chip_data;
3641
3642 hpet_msi_read(irq, &msg);
3643
3644 msg.data &= ~MSI_DATA_VECTOR_MASK;
3645 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3646 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3647 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3648
3649 hpet_msi_write(irq, &msg);
3650 }
3651
3652 #endif /* CONFIG_SMP */
3653
3654 struct irq_chip hpet_msi_type = {
3655 .name = "HPET_MSI",
3656 .unmask = hpet_msi_unmask,
3657 .mask = hpet_msi_mask,
3658 .ack = ack_apic_edge,
3659 #ifdef CONFIG_SMP
3660 .set_affinity = hpet_msi_set_affinity,
3661 #endif
3662 .retrigger = ioapic_retrigger_irq,
3663 };
3664
3665 int arch_setup_hpet_msi(unsigned int irq)
3666 {
3667 int ret;
3668 struct msi_msg msg;
3669
3670 ret = msi_compose_msg(NULL, irq, &msg);
3671 if (ret < 0)
3672 return ret;
3673
3674 hpet_msi_write(irq, &msg);
3675 set_irq_chip_and_handler_name(irq, &hpet_msi_type, handle_edge_irq,
3676 "edge");
3677
3678 return 0;
3679 }
3680 #endif
3681
3682 #endif /* CONFIG_PCI_MSI */
3683 /*
3684 * Hypertransport interrupt support
3685 */
3686 #ifdef CONFIG_HT_IRQ
3687
3688 #ifdef CONFIG_SMP
3689
3690 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3691 {
3692 struct ht_irq_msg msg;
3693 fetch_ht_irq_msg(irq, &msg);
3694
3695 msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3696 msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3697
3698 msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3699 msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3700
3701 write_ht_irq_msg(irq, &msg);
3702 }
3703
3704 static void set_ht_irq_affinity(unsigned int irq, const struct cpumask *mask)
3705 {
3706 struct irq_desc *desc = irq_to_desc(irq);
3707 struct irq_cfg *cfg;
3708 unsigned int dest;
3709
3710 dest = set_desc_affinity(desc, mask);
3711 if (dest == BAD_APICID)
3712 return;
3713
3714 cfg = desc->chip_data;
3715
3716 target_ht_irq(irq, dest, cfg->vector);
3717 }
3718
3719 #endif
3720
3721 static struct irq_chip ht_irq_chip = {
3722 .name = "PCI-HT",
3723 .mask = mask_ht_irq,
3724 .unmask = unmask_ht_irq,
3725 .ack = ack_apic_edge,
3726 #ifdef CONFIG_SMP
3727 .set_affinity = set_ht_irq_affinity,
3728 #endif
3729 .retrigger = ioapic_retrigger_irq,
3730 };
3731
3732 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3733 {
3734 struct irq_cfg *cfg;
3735 int err;
3736
3737 cfg = irq_cfg(irq);
3738 err = assign_irq_vector(irq, cfg, TARGET_CPUS);
3739 if (!err) {
3740 struct ht_irq_msg msg;
3741 unsigned dest;
3742
3743 dest = cpu_mask_to_apicid_and(cfg->domain, TARGET_CPUS);
3744
3745 msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3746
3747 msg.address_lo =
3748 HT_IRQ_LOW_BASE |
3749 HT_IRQ_LOW_DEST_ID(dest) |
3750 HT_IRQ_LOW_VECTOR(cfg->vector) |
3751 ((INT_DEST_MODE == 0) ?
3752 HT_IRQ_LOW_DM_PHYSICAL :
3753 HT_IRQ_LOW_DM_LOGICAL) |
3754 HT_IRQ_LOW_RQEOI_EDGE |
3755 ((INT_DELIVERY_MODE != dest_LowestPrio) ?
3756 HT_IRQ_LOW_MT_FIXED :
3757 HT_IRQ_LOW_MT_ARBITRATED) |
3758 HT_IRQ_LOW_IRQ_MASKED;
3759
3760 write_ht_irq_msg(irq, &msg);
3761
3762 set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3763 handle_edge_irq, "edge");
3764
3765 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3766 }
3767 return err;
3768 }
3769 #endif /* CONFIG_HT_IRQ */
3770
3771 #ifdef CONFIG_X86_64
3772 /*
3773 * Re-target the irq to the specified CPU and enable the specified MMR located
3774 * on the specified blade to allow the sending of MSIs to the specified CPU.
3775 */
3776 int arch_enable_uv_irq(char *irq_name, unsigned int irq, int cpu, int mmr_blade,
3777 unsigned long mmr_offset)
3778 {
3779 const struct cpumask *eligible_cpu = cpumask_of(cpu);
3780 struct irq_cfg *cfg;
3781 int mmr_pnode;
3782 unsigned long mmr_value;
3783 struct uv_IO_APIC_route_entry *entry;
3784 unsigned long flags;
3785 int err;
3786
3787 cfg = irq_cfg(irq);
3788
3789 err = assign_irq_vector(irq, cfg, eligible_cpu);
3790 if (err != 0)
3791 return err;
3792
3793 spin_lock_irqsave(&vector_lock, flags);
3794 set_irq_chip_and_handler_name(irq, &uv_irq_chip, handle_percpu_irq,
3795 irq_name);
3796 spin_unlock_irqrestore(&vector_lock, flags);
3797
3798 mmr_value = 0;
3799 entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3800 BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3801
3802 entry->vector = cfg->vector;
3803 entry->delivery_mode = INT_DELIVERY_MODE;
3804 entry->dest_mode = INT_DEST_MODE;
3805 entry->polarity = 0;
3806 entry->trigger = 0;
3807 entry->mask = 0;
3808 entry->dest = cpu_mask_to_apicid(eligible_cpu);
3809
3810 mmr_pnode = uv_blade_to_pnode(mmr_blade);
3811 uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3812
3813 return irq;
3814 }
3815
3816 /*
3817 * Disable the specified MMR located on the specified blade so that MSIs are
3818 * longer allowed to be sent.
3819 */
3820 void arch_disable_uv_irq(int mmr_blade, unsigned long mmr_offset)
3821 {
3822 unsigned long mmr_value;
3823 struct uv_IO_APIC_route_entry *entry;
3824 int mmr_pnode;
3825
3826 mmr_value = 0;
3827 entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3828 BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3829
3830 entry->mask = 1;
3831
3832 mmr_pnode = uv_blade_to_pnode(mmr_blade);
3833 uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3834 }
3835 #endif /* CONFIG_X86_64 */
3836
3837 int __init io_apic_get_redir_entries (int ioapic)
3838 {
3839 union IO_APIC_reg_01 reg_01;
3840 unsigned long flags;
3841
3842 spin_lock_irqsave(&ioapic_lock, flags);
3843 reg_01.raw = io_apic_read(ioapic, 1);
3844 spin_unlock_irqrestore(&ioapic_lock, flags);
3845
3846 return reg_01.bits.entries;
3847 }
3848
3849 void __init probe_nr_irqs_gsi(void)
3850 {
3851 int idx;
3852 int nr = 0;
3853
3854 for (idx = 0; idx < nr_ioapics; idx++)
3855 nr += io_apic_get_redir_entries(idx) + 1;
3856
3857 if (nr > nr_irqs_gsi)
3858 nr_irqs_gsi = nr;
3859 }
3860
3861 /* --------------------------------------------------------------------------
3862 ACPI-based IOAPIC Configuration
3863 -------------------------------------------------------------------------- */
3864
3865 #ifdef CONFIG_ACPI
3866
3867 #ifdef CONFIG_X86_32
3868 int __init io_apic_get_unique_id(int ioapic, int apic_id)
3869 {
3870 union IO_APIC_reg_00 reg_00;
3871 static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3872 physid_mask_t tmp;
3873 unsigned long flags;
3874 int i = 0;
3875
3876 /*
3877 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3878 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3879 * supports up to 16 on one shared APIC bus.
3880 *
3881 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3882 * advantage of new APIC bus architecture.
3883 */
3884
3885 if (physids_empty(apic_id_map))
3886 apic_id_map = ioapic_phys_id_map(phys_cpu_present_map);
3887
3888 spin_lock_irqsave(&ioapic_lock, flags);
3889 reg_00.raw = io_apic_read(ioapic, 0);
3890 spin_unlock_irqrestore(&ioapic_lock, flags);
3891
3892 if (apic_id >= get_physical_broadcast()) {
3893 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3894 "%d\n", ioapic, apic_id, reg_00.bits.ID);
3895 apic_id = reg_00.bits.ID;
3896 }
3897
3898 /*
3899 * Every APIC in a system must have a unique ID or we get lots of nice
3900 * 'stuck on smp_invalidate_needed IPI wait' messages.
3901 */
3902 if (check_apicid_used(apic_id_map, apic_id)) {
3903
3904 for (i = 0; i < get_physical_broadcast(); i++) {
3905 if (!check_apicid_used(apic_id_map, i))
3906 break;
3907 }
3908
3909 if (i == get_physical_broadcast())
3910 panic("Max apic_id exceeded!\n");
3911
3912 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3913 "trying %d\n", ioapic, apic_id, i);
3914
3915 apic_id = i;
3916 }
3917
3918 tmp = apicid_to_cpu_present(apic_id);
3919 physids_or(apic_id_map, apic_id_map, tmp);
3920
3921 if (reg_00.bits.ID != apic_id) {
3922 reg_00.bits.ID = apic_id;
3923
3924 spin_lock_irqsave(&ioapic_lock, flags);
3925 io_apic_write(ioapic, 0, reg_00.raw);
3926 reg_00.raw = io_apic_read(ioapic, 0);
3927 spin_unlock_irqrestore(&ioapic_lock, flags);
3928
3929 /* Sanity check */
3930 if (reg_00.bits.ID != apic_id) {
3931 printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3932 return -1;
3933 }
3934 }
3935
3936 apic_printk(APIC_VERBOSE, KERN_INFO
3937 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3938
3939 return apic_id;
3940 }
3941
3942 int __init io_apic_get_version(int ioapic)
3943 {
3944 union IO_APIC_reg_01 reg_01;
3945 unsigned long flags;
3946
3947 spin_lock_irqsave(&ioapic_lock, flags);
3948 reg_01.raw = io_apic_read(ioapic, 1);
3949 spin_unlock_irqrestore(&ioapic_lock, flags);
3950
3951 return reg_01.bits.version;
3952 }
3953 #endif
3954
3955 int io_apic_set_pci_routing (int ioapic, int pin, int irq, int triggering, int polarity)
3956 {
3957 struct irq_desc *desc;
3958 struct irq_cfg *cfg;
3959 int cpu = boot_cpu_id;
3960
3961 if (!IO_APIC_IRQ(irq)) {
3962 apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3963 ioapic);
3964 return -EINVAL;
3965 }
3966
3967 desc = irq_to_desc_alloc_cpu(irq, cpu);
3968 if (!desc) {
3969 printk(KERN_INFO "can not get irq_desc %d\n", irq);
3970 return 0;
3971 }
3972
3973 /*
3974 * IRQs < 16 are already in the irq_2_pin[] map
3975 */
3976 if (irq >= NR_IRQS_LEGACY) {
3977 cfg = desc->chip_data;
3978 add_pin_to_irq_cpu(cfg, cpu, ioapic, pin);
3979 }
3980
3981 setup_IO_APIC_irq(ioapic, pin, irq, desc, triggering, polarity);
3982
3983 return 0;
3984 }
3985
3986
3987 int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity)
3988 {
3989 int i;
3990
3991 if (skip_ioapic_setup)
3992 return -1;
3993
3994 for (i = 0; i < mp_irq_entries; i++)
3995 if (mp_irqs[i].mp_irqtype == mp_INT &&
3996 mp_irqs[i].mp_srcbusirq == bus_irq)
3997 break;
3998 if (i >= mp_irq_entries)
3999 return -1;
4000
4001 *trigger = irq_trigger(i);
4002 *polarity = irq_polarity(i);
4003 return 0;
4004 }
4005
4006 #endif /* CONFIG_ACPI */
4007
4008 /*
4009 * This function currently is only a helper for the i386 smp boot process where
4010 * we need to reprogram the ioredtbls to cater for the cpus which have come online
4011 * so mask in all cases should simply be TARGET_CPUS
4012 */
4013 #ifdef CONFIG_SMP
4014 void __init setup_ioapic_dest(void)
4015 {
4016 int pin, ioapic, irq, irq_entry;
4017 struct irq_desc *desc;
4018 struct irq_cfg *cfg;
4019 const struct cpumask *mask;
4020
4021 if (skip_ioapic_setup == 1)
4022 return;
4023
4024 for (ioapic = 0; ioapic < nr_ioapics; ioapic++) {
4025 for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
4026 irq_entry = find_irq_entry(ioapic, pin, mp_INT);
4027 if (irq_entry == -1)
4028 continue;
4029 irq = pin_2_irq(irq_entry, ioapic, pin);
4030
4031 /* setup_IO_APIC_irqs could fail to get vector for some device
4032 * when you have too many devices, because at that time only boot
4033 * cpu is online.
4034 */
4035 desc = irq_to_desc(irq);
4036 cfg = desc->chip_data;
4037 if (!cfg->vector) {
4038 setup_IO_APIC_irq(ioapic, pin, irq, desc,
4039 irq_trigger(irq_entry),
4040 irq_polarity(irq_entry));
4041 continue;
4042
4043 }
4044
4045 /*
4046 * Honour affinities which have been set in early boot
4047 */
4048 if (desc->status &
4049 (IRQ_NO_BALANCING | IRQ_AFFINITY_SET))
4050 mask = &desc->affinity;
4051 else
4052 mask = TARGET_CPUS;
4053
4054 #ifdef CONFIG_INTR_REMAP
4055 if (intr_remapping_enabled)
4056 set_ir_ioapic_affinity_irq_desc(desc, mask);
4057 else
4058 #endif
4059 set_ioapic_affinity_irq_desc(desc, mask);
4060 }
4061
4062 }
4063 }
4064 #endif
4065
4066 #define IOAPIC_RESOURCE_NAME_SIZE 11
4067
4068 static struct resource *ioapic_resources;
4069
4070 static struct resource * __init ioapic_setup_resources(void)
4071 {
4072 unsigned long n;
4073 struct resource *res;
4074 char *mem;
4075 int i;
4076
4077 if (nr_ioapics <= 0)
4078 return NULL;
4079
4080 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
4081 n *= nr_ioapics;
4082
4083 mem = alloc_bootmem(n);
4084 res = (void *)mem;
4085
4086 if (mem != NULL) {
4087 mem += sizeof(struct resource) * nr_ioapics;
4088
4089 for (i = 0; i < nr_ioapics; i++) {
4090 res[i].name = mem;
4091 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
4092 sprintf(mem, "IOAPIC %u", i);
4093 mem += IOAPIC_RESOURCE_NAME_SIZE;
4094 }
4095 }
4096
4097 ioapic_resources = res;
4098
4099 return res;
4100 }
4101
4102 void __init ioapic_init_mappings(void)
4103 {
4104 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
4105 struct resource *ioapic_res;
4106 int i;
4107
4108 ioapic_res = ioapic_setup_resources();
4109 for (i = 0; i < nr_ioapics; i++) {
4110 if (smp_found_config) {
4111 ioapic_phys = mp_ioapics[i].mp_apicaddr;
4112 #ifdef CONFIG_X86_32
4113 if (!ioapic_phys) {
4114 printk(KERN_ERR
4115 "WARNING: bogus zero IO-APIC "
4116 "address found in MPTABLE, "
4117 "disabling IO/APIC support!\n");
4118 smp_found_config = 0;
4119 skip_ioapic_setup = 1;
4120 goto fake_ioapic_page;
4121 }
4122 #endif
4123 } else {
4124 #ifdef CONFIG_X86_32
4125 fake_ioapic_page:
4126 #endif
4127 ioapic_phys = (unsigned long)
4128 alloc_bootmem_pages(PAGE_SIZE);
4129 ioapic_phys = __pa(ioapic_phys);
4130 }
4131 set_fixmap_nocache(idx, ioapic_phys);
4132 apic_printk(APIC_VERBOSE,
4133 "mapped IOAPIC to %08lx (%08lx)\n",
4134 __fix_to_virt(idx), ioapic_phys);
4135 idx++;
4136
4137 if (ioapic_res != NULL) {
4138 ioapic_res->start = ioapic_phys;
4139 ioapic_res->end = ioapic_phys + (4 * 1024) - 1;
4140 ioapic_res++;
4141 }
4142 }
4143 }
4144
4145 static int __init ioapic_insert_resources(void)
4146 {
4147 int i;
4148 struct resource *r = ioapic_resources;
4149
4150 if (!r) {
4151 printk(KERN_ERR
4152 "IO APIC resources could be not be allocated.\n");
4153 return -1;
4154 }
4155
4156 for (i = 0; i < nr_ioapics; i++) {
4157 insert_resource(&iomem_resource, r);
4158 r++;
4159 }
4160
4161 return 0;
4162 }
4163
4164 /* Insert the IO APIC resources after PCI initialization has occured to handle
4165 * IO APICS that are mapped in on a BAR in PCI space. */
4166 late_initcall(ioapic_insert_resources);
This page took 0.196322 seconds and 5 git commands to generate.