Merge branches 'x86/alternatives', 'x86/cleanups', 'x86/commandline', 'x86/crashdump...
[deliverable/linux.git] / arch / x86 / kernel / kgdb.c
1 /*
2 * This program is free software; you can redistribute it and/or modify it
3 * under the terms of the GNU General Public License as published by the
4 * Free Software Foundation; either version 2, or (at your option) any
5 * later version.
6 *
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * General Public License for more details.
11 *
12 */
13
14 /*
15 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16 * Copyright (C) 2000-2001 VERITAS Software Corporation.
17 * Copyright (C) 2002 Andi Kleen, SuSE Labs
18 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19 * Copyright (C) 2007 MontaVista Software, Inc.
20 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21 */
22 /****************************************************************************
23 * Contributor: Lake Stevens Instrument Division$
24 * Written by: Glenn Engel $
25 * Updated by: Amit Kale<akale@veritas.com>
26 * Updated by: Tom Rini <trini@kernel.crashing.org>
27 * Updated by: Jason Wessel <jason.wessel@windriver.com>
28 * Modified for 386 by Jim Kingdon, Cygnus Support.
29 * Origianl kgdb, compatibility with 2.1.xx kernel by
30 * David Grothe <dave@gcom.com>
31 * Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32 * X86_64 changes from Andi Kleen's patch merged by Jim Houston
33 */
34 #include <linux/spinlock.h>
35 #include <linux/kdebug.h>
36 #include <linux/string.h>
37 #include <linux/kernel.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/delay.h>
41 #include <linux/kgdb.h>
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/nmi.h>
45
46 #include <asm/apicdef.h>
47 #include <asm/system.h>
48
49 #include <mach_ipi.h>
50
51 /*
52 * Put the error code here just in case the user cares:
53 */
54 static int gdb_x86errcode;
55
56 /*
57 * Likewise, the vector number here (since GDB only gets the signal
58 * number through the usual means, and that's not very specific):
59 */
60 static int gdb_x86vector = -1;
61
62 /**
63 * pt_regs_to_gdb_regs - Convert ptrace regs to GDB regs
64 * @gdb_regs: A pointer to hold the registers in the order GDB wants.
65 * @regs: The &struct pt_regs of the current process.
66 *
67 * Convert the pt_regs in @regs into the format for registers that
68 * GDB expects, stored in @gdb_regs.
69 */
70 void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
71 {
72 #ifndef CONFIG_X86_32
73 u32 *gdb_regs32 = (u32 *)gdb_regs;
74 #endif
75 gdb_regs[GDB_AX] = regs->ax;
76 gdb_regs[GDB_BX] = regs->bx;
77 gdb_regs[GDB_CX] = regs->cx;
78 gdb_regs[GDB_DX] = regs->dx;
79 gdb_regs[GDB_SI] = regs->si;
80 gdb_regs[GDB_DI] = regs->di;
81 gdb_regs[GDB_BP] = regs->bp;
82 gdb_regs[GDB_PC] = regs->ip;
83 #ifdef CONFIG_X86_32
84 gdb_regs[GDB_PS] = regs->flags;
85 gdb_regs[GDB_DS] = regs->ds;
86 gdb_regs[GDB_ES] = regs->es;
87 gdb_regs[GDB_CS] = regs->cs;
88 gdb_regs[GDB_SS] = __KERNEL_DS;
89 gdb_regs[GDB_FS] = 0xFFFF;
90 gdb_regs[GDB_GS] = 0xFFFF;
91 #else
92 gdb_regs[GDB_R8] = regs->r8;
93 gdb_regs[GDB_R9] = regs->r9;
94 gdb_regs[GDB_R10] = regs->r10;
95 gdb_regs[GDB_R11] = regs->r11;
96 gdb_regs[GDB_R12] = regs->r12;
97 gdb_regs[GDB_R13] = regs->r13;
98 gdb_regs[GDB_R14] = regs->r14;
99 gdb_regs[GDB_R15] = regs->r15;
100 gdb_regs32[GDB_PS] = regs->flags;
101 gdb_regs32[GDB_CS] = regs->cs;
102 gdb_regs32[GDB_SS] = regs->ss;
103 #endif
104 gdb_regs[GDB_SP] = regs->sp;
105 }
106
107 /**
108 * sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
109 * @gdb_regs: A pointer to hold the registers in the order GDB wants.
110 * @p: The &struct task_struct of the desired process.
111 *
112 * Convert the register values of the sleeping process in @p to
113 * the format that GDB expects.
114 * This function is called when kgdb does not have access to the
115 * &struct pt_regs and therefore it should fill the gdb registers
116 * @gdb_regs with what has been saved in &struct thread_struct
117 * thread field during switch_to.
118 */
119 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
120 {
121 #ifndef CONFIG_X86_32
122 u32 *gdb_regs32 = (u32 *)gdb_regs;
123 #endif
124 gdb_regs[GDB_AX] = 0;
125 gdb_regs[GDB_BX] = 0;
126 gdb_regs[GDB_CX] = 0;
127 gdb_regs[GDB_DX] = 0;
128 gdb_regs[GDB_SI] = 0;
129 gdb_regs[GDB_DI] = 0;
130 gdb_regs[GDB_BP] = *(unsigned long *)p->thread.sp;
131 #ifdef CONFIG_X86_32
132 gdb_regs[GDB_DS] = __KERNEL_DS;
133 gdb_regs[GDB_ES] = __KERNEL_DS;
134 gdb_regs[GDB_PS] = 0;
135 gdb_regs[GDB_CS] = __KERNEL_CS;
136 gdb_regs[GDB_PC] = p->thread.ip;
137 gdb_regs[GDB_SS] = __KERNEL_DS;
138 gdb_regs[GDB_FS] = 0xFFFF;
139 gdb_regs[GDB_GS] = 0xFFFF;
140 #else
141 gdb_regs32[GDB_PS] = *(unsigned long *)(p->thread.sp + 8);
142 gdb_regs32[GDB_CS] = __KERNEL_CS;
143 gdb_regs32[GDB_SS] = __KERNEL_DS;
144 gdb_regs[GDB_PC] = p->thread.ip;
145 gdb_regs[GDB_R8] = 0;
146 gdb_regs[GDB_R9] = 0;
147 gdb_regs[GDB_R10] = 0;
148 gdb_regs[GDB_R11] = 0;
149 gdb_regs[GDB_R12] = 0;
150 gdb_regs[GDB_R13] = 0;
151 gdb_regs[GDB_R14] = 0;
152 gdb_regs[GDB_R15] = 0;
153 #endif
154 gdb_regs[GDB_SP] = p->thread.sp;
155 }
156
157 /**
158 * gdb_regs_to_pt_regs - Convert GDB regs to ptrace regs.
159 * @gdb_regs: A pointer to hold the registers we've received from GDB.
160 * @regs: A pointer to a &struct pt_regs to hold these values in.
161 *
162 * Convert the GDB regs in @gdb_regs into the pt_regs, and store them
163 * in @regs.
164 */
165 void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
166 {
167 #ifndef CONFIG_X86_32
168 u32 *gdb_regs32 = (u32 *)gdb_regs;
169 #endif
170 regs->ax = gdb_regs[GDB_AX];
171 regs->bx = gdb_regs[GDB_BX];
172 regs->cx = gdb_regs[GDB_CX];
173 regs->dx = gdb_regs[GDB_DX];
174 regs->si = gdb_regs[GDB_SI];
175 regs->di = gdb_regs[GDB_DI];
176 regs->bp = gdb_regs[GDB_BP];
177 regs->ip = gdb_regs[GDB_PC];
178 #ifdef CONFIG_X86_32
179 regs->flags = gdb_regs[GDB_PS];
180 regs->ds = gdb_regs[GDB_DS];
181 regs->es = gdb_regs[GDB_ES];
182 regs->cs = gdb_regs[GDB_CS];
183 #else
184 regs->r8 = gdb_regs[GDB_R8];
185 regs->r9 = gdb_regs[GDB_R9];
186 regs->r10 = gdb_regs[GDB_R10];
187 regs->r11 = gdb_regs[GDB_R11];
188 regs->r12 = gdb_regs[GDB_R12];
189 regs->r13 = gdb_regs[GDB_R13];
190 regs->r14 = gdb_regs[GDB_R14];
191 regs->r15 = gdb_regs[GDB_R15];
192 regs->flags = gdb_regs32[GDB_PS];
193 regs->cs = gdb_regs32[GDB_CS];
194 regs->ss = gdb_regs32[GDB_SS];
195 #endif
196 }
197
198 static struct hw_breakpoint {
199 unsigned enabled;
200 unsigned type;
201 unsigned len;
202 unsigned long addr;
203 } breakinfo[4];
204
205 static void kgdb_correct_hw_break(void)
206 {
207 unsigned long dr7;
208 int correctit = 0;
209 int breakbit;
210 int breakno;
211
212 get_debugreg(dr7, 7);
213 for (breakno = 0; breakno < 4; breakno++) {
214 breakbit = 2 << (breakno << 1);
215 if (!(dr7 & breakbit) && breakinfo[breakno].enabled) {
216 correctit = 1;
217 dr7 |= breakbit;
218 dr7 &= ~(0xf0000 << (breakno << 2));
219 dr7 |= ((breakinfo[breakno].len << 2) |
220 breakinfo[breakno].type) <<
221 ((breakno << 2) + 16);
222 if (breakno >= 0 && breakno <= 3)
223 set_debugreg(breakinfo[breakno].addr, breakno);
224
225 } else {
226 if ((dr7 & breakbit) && !breakinfo[breakno].enabled) {
227 correctit = 1;
228 dr7 &= ~breakbit;
229 dr7 &= ~(0xf0000 << (breakno << 2));
230 }
231 }
232 }
233 if (correctit)
234 set_debugreg(dr7, 7);
235 }
236
237 static int
238 kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
239 {
240 int i;
241
242 for (i = 0; i < 4; i++)
243 if (breakinfo[i].addr == addr && breakinfo[i].enabled)
244 break;
245 if (i == 4)
246 return -1;
247
248 breakinfo[i].enabled = 0;
249
250 return 0;
251 }
252
253 static void kgdb_remove_all_hw_break(void)
254 {
255 int i;
256
257 for (i = 0; i < 4; i++)
258 memset(&breakinfo[i], 0, sizeof(struct hw_breakpoint));
259 }
260
261 static int
262 kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
263 {
264 unsigned type;
265 int i;
266
267 for (i = 0; i < 4; i++)
268 if (!breakinfo[i].enabled)
269 break;
270 if (i == 4)
271 return -1;
272
273 switch (bptype) {
274 case BP_HARDWARE_BREAKPOINT:
275 type = 0;
276 len = 1;
277 break;
278 case BP_WRITE_WATCHPOINT:
279 type = 1;
280 break;
281 case BP_ACCESS_WATCHPOINT:
282 type = 3;
283 break;
284 default:
285 return -1;
286 }
287
288 if (len == 1 || len == 2 || len == 4)
289 breakinfo[i].len = len - 1;
290 else
291 return -1;
292
293 breakinfo[i].enabled = 1;
294 breakinfo[i].addr = addr;
295 breakinfo[i].type = type;
296
297 return 0;
298 }
299
300 /**
301 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
302 * @regs: Current &struct pt_regs.
303 *
304 * This function will be called if the particular architecture must
305 * disable hardware debugging while it is processing gdb packets or
306 * handling exception.
307 */
308 void kgdb_disable_hw_debug(struct pt_regs *regs)
309 {
310 /* Disable hardware debugging while we are in kgdb: */
311 set_debugreg(0UL, 7);
312 }
313
314 /**
315 * kgdb_post_primary_code - Save error vector/code numbers.
316 * @regs: Original pt_regs.
317 * @e_vector: Original error vector.
318 * @err_code: Original error code.
319 *
320 * This is needed on architectures which support SMP and KGDB.
321 * This function is called after all the slave cpus have been put
322 * to a know spin state and the primary CPU has control over KGDB.
323 */
324 void kgdb_post_primary_code(struct pt_regs *regs, int e_vector, int err_code)
325 {
326 /* primary processor is completely in the debugger */
327 gdb_x86vector = e_vector;
328 gdb_x86errcode = err_code;
329 }
330
331 #ifdef CONFIG_SMP
332 /**
333 * kgdb_roundup_cpus - Get other CPUs into a holding pattern
334 * @flags: Current IRQ state
335 *
336 * On SMP systems, we need to get the attention of the other CPUs
337 * and get them be in a known state. This should do what is needed
338 * to get the other CPUs to call kgdb_wait(). Note that on some arches,
339 * the NMI approach is not used for rounding up all the CPUs. For example,
340 * in case of MIPS, smp_call_function() is used to roundup CPUs. In
341 * this case, we have to make sure that interrupts are enabled before
342 * calling smp_call_function(). The argument to this function is
343 * the flags that will be used when restoring the interrupts. There is
344 * local_irq_save() call before kgdb_roundup_cpus().
345 *
346 * On non-SMP systems, this is not called.
347 */
348 void kgdb_roundup_cpus(unsigned long flags)
349 {
350 send_IPI_allbutself(APIC_DM_NMI);
351 }
352 #endif
353
354 /**
355 * kgdb_arch_handle_exception - Handle architecture specific GDB packets.
356 * @vector: The error vector of the exception that happened.
357 * @signo: The signal number of the exception that happened.
358 * @err_code: The error code of the exception that happened.
359 * @remcom_in_buffer: The buffer of the packet we have read.
360 * @remcom_out_buffer: The buffer of %BUFMAX bytes to write a packet into.
361 * @regs: The &struct pt_regs of the current process.
362 *
363 * This function MUST handle the 'c' and 's' command packets,
364 * as well packets to set / remove a hardware breakpoint, if used.
365 * If there are additional packets which the hardware needs to handle,
366 * they are handled here. The code should return -1 if it wants to
367 * process more packets, and a %0 or %1 if it wants to exit from the
368 * kgdb callback.
369 */
370 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
371 char *remcomInBuffer, char *remcomOutBuffer,
372 struct pt_regs *linux_regs)
373 {
374 unsigned long addr;
375 unsigned long dr6;
376 char *ptr;
377 int newPC;
378
379 switch (remcomInBuffer[0]) {
380 case 'c':
381 case 's':
382 /* try to read optional parameter, pc unchanged if no parm */
383 ptr = &remcomInBuffer[1];
384 if (kgdb_hex2long(&ptr, &addr))
385 linux_regs->ip = addr;
386 case 'D':
387 case 'k':
388 newPC = linux_regs->ip;
389
390 /* clear the trace bit */
391 linux_regs->flags &= ~X86_EFLAGS_TF;
392 atomic_set(&kgdb_cpu_doing_single_step, -1);
393
394 /* set the trace bit if we're stepping */
395 if (remcomInBuffer[0] == 's') {
396 linux_regs->flags |= X86_EFLAGS_TF;
397 kgdb_single_step = 1;
398 atomic_set(&kgdb_cpu_doing_single_step,
399 raw_smp_processor_id());
400 }
401
402 get_debugreg(dr6, 6);
403 if (!(dr6 & 0x4000)) {
404 int breakno;
405
406 for (breakno = 0; breakno < 4; breakno++) {
407 if (dr6 & (1 << breakno) &&
408 breakinfo[breakno].type == 0) {
409 /* Set restore flag: */
410 linux_regs->flags |= X86_EFLAGS_RF;
411 break;
412 }
413 }
414 }
415 set_debugreg(0UL, 6);
416 kgdb_correct_hw_break();
417
418 return 0;
419 }
420
421 /* this means that we do not want to exit from the handler: */
422 return -1;
423 }
424
425 static inline int
426 single_step_cont(struct pt_regs *regs, struct die_args *args)
427 {
428 /*
429 * Single step exception from kernel space to user space so
430 * eat the exception and continue the process:
431 */
432 printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
433 "resuming...\n");
434 kgdb_arch_handle_exception(args->trapnr, args->signr,
435 args->err, "c", "", regs);
436
437 return NOTIFY_STOP;
438 }
439
440 static int was_in_debug_nmi[NR_CPUS];
441
442 static int __kgdb_notify(struct die_args *args, unsigned long cmd)
443 {
444 struct pt_regs *regs = args->regs;
445
446 switch (cmd) {
447 case DIE_NMI:
448 if (atomic_read(&kgdb_active) != -1) {
449 /* KGDB CPU roundup */
450 kgdb_nmicallback(raw_smp_processor_id(), regs);
451 was_in_debug_nmi[raw_smp_processor_id()] = 1;
452 touch_nmi_watchdog();
453 return NOTIFY_STOP;
454 }
455 return NOTIFY_DONE;
456
457 case DIE_NMI_IPI:
458 if (atomic_read(&kgdb_active) != -1) {
459 /* KGDB CPU roundup */
460 kgdb_nmicallback(raw_smp_processor_id(), regs);
461 was_in_debug_nmi[raw_smp_processor_id()] = 1;
462 touch_nmi_watchdog();
463 }
464 return NOTIFY_DONE;
465
466 case DIE_NMIUNKNOWN:
467 if (was_in_debug_nmi[raw_smp_processor_id()]) {
468 was_in_debug_nmi[raw_smp_processor_id()] = 0;
469 return NOTIFY_STOP;
470 }
471 return NOTIFY_DONE;
472
473 case DIE_NMIWATCHDOG:
474 if (atomic_read(&kgdb_active) != -1) {
475 /* KGDB CPU roundup: */
476 kgdb_nmicallback(raw_smp_processor_id(), regs);
477 return NOTIFY_STOP;
478 }
479 /* Enter debugger: */
480 break;
481
482 case DIE_DEBUG:
483 if (atomic_read(&kgdb_cpu_doing_single_step) ==
484 raw_smp_processor_id()) {
485 if (user_mode(regs))
486 return single_step_cont(regs, args);
487 break;
488 } else if (test_thread_flag(TIF_SINGLESTEP))
489 /* This means a user thread is single stepping
490 * a system call which should be ignored
491 */
492 return NOTIFY_DONE;
493 /* fall through */
494 default:
495 if (user_mode(regs))
496 return NOTIFY_DONE;
497 }
498
499 if (kgdb_handle_exception(args->trapnr, args->signr, args->err, regs))
500 return NOTIFY_DONE;
501
502 /* Must touch watchdog before return to normal operation */
503 touch_nmi_watchdog();
504 return NOTIFY_STOP;
505 }
506
507 static int
508 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
509 {
510 unsigned long flags;
511 int ret;
512
513 local_irq_save(flags);
514 ret = __kgdb_notify(ptr, cmd);
515 local_irq_restore(flags);
516
517 return ret;
518 }
519
520 static struct notifier_block kgdb_notifier = {
521 .notifier_call = kgdb_notify,
522
523 /*
524 * Lowest-prio notifier priority, we want to be notified last:
525 */
526 .priority = -INT_MAX,
527 };
528
529 /**
530 * kgdb_arch_init - Perform any architecture specific initalization.
531 *
532 * This function will handle the initalization of any architecture
533 * specific callbacks.
534 */
535 int kgdb_arch_init(void)
536 {
537 return register_die_notifier(&kgdb_notifier);
538 }
539
540 /**
541 * kgdb_arch_exit - Perform any architecture specific uninitalization.
542 *
543 * This function will handle the uninitalization of any architecture
544 * specific callbacks, for dynamic registration and unregistration.
545 */
546 void kgdb_arch_exit(void)
547 {
548 unregister_die_notifier(&kgdb_notifier);
549 }
550
551 /**
552 *
553 * kgdb_skipexception - Bail out of KGDB when we've been triggered.
554 * @exception: Exception vector number
555 * @regs: Current &struct pt_regs.
556 *
557 * On some architectures we need to skip a breakpoint exception when
558 * it occurs after a breakpoint has been removed.
559 *
560 * Skip an int3 exception when it occurs after a breakpoint has been
561 * removed. Backtrack eip by 1 since the int3 would have caused it to
562 * increment by 1.
563 */
564 int kgdb_skipexception(int exception, struct pt_regs *regs)
565 {
566 if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
567 regs->ip -= 1;
568 return 1;
569 }
570 return 0;
571 }
572
573 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
574 {
575 if (exception == 3)
576 return instruction_pointer(regs) - 1;
577 return instruction_pointer(regs);
578 }
579
580 struct kgdb_arch arch_kgdb_ops = {
581 /* Breakpoint instruction: */
582 .gdb_bpt_instr = { 0xcc },
583 .flags = KGDB_HW_BREAKPOINT,
584 .set_hw_breakpoint = kgdb_set_hw_break,
585 .remove_hw_breakpoint = kgdb_remove_hw_break,
586 .remove_all_hw_break = kgdb_remove_all_hw_break,
587 .correct_hw_break = kgdb_correct_hw_break,
588 };
This page took 0.107673 seconds and 6 git commands to generate.