Merge branch 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[deliverable/linux.git] / arch / x86 / kernel / kprobes / core.c
1 /*
2 * Kernel Probes (KProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
41 */
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/module.h>
49 #include <linux/kdebug.h>
50 #include <linux/kallsyms.h>
51 #include <linux/ftrace.h>
52 #include <linux/frame.h>
53
54 #include <asm/text-patching.h>
55 #include <asm/cacheflush.h>
56 #include <asm/desc.h>
57 #include <asm/pgtable.h>
58 #include <asm/uaccess.h>
59 #include <asm/alternative.h>
60 #include <asm/insn.h>
61 #include <asm/debugreg.h>
62
63 #include "common.h"
64
65 void jprobe_return_end(void);
66
67 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
68 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
69
70 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
71
72 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
73 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
74 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
75 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
76 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
77 << (row % 32))
78 /*
79 * Undefined/reserved opcodes, conditional jump, Opcode Extension
80 * Groups, and some special opcodes can not boost.
81 * This is non-const and volatile to keep gcc from statically
82 * optimizing it out, as variable_test_bit makes gcc think only
83 * *(unsigned long*) is used.
84 */
85 static volatile u32 twobyte_is_boostable[256 / 32] = {
86 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
87 /* ---------------------------------------------- */
88 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
89 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
90 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
91 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
92 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
93 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
94 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
95 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
96 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
97 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
98 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
99 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
100 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
101 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
102 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
103 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
104 /* ----------------------------------------------- */
105 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
106 };
107 #undef W
108
109 struct kretprobe_blackpoint kretprobe_blacklist[] = {
110 {"__switch_to", }, /* This function switches only current task, but
111 doesn't switch kernel stack.*/
112 {NULL, NULL} /* Terminator */
113 };
114
115 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
116
117 static nokprobe_inline void
118 __synthesize_relative_insn(void *from, void *to, u8 op)
119 {
120 struct __arch_relative_insn {
121 u8 op;
122 s32 raddr;
123 } __packed *insn;
124
125 insn = (struct __arch_relative_insn *)from;
126 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
127 insn->op = op;
128 }
129
130 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
131 void synthesize_reljump(void *from, void *to)
132 {
133 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
134 }
135 NOKPROBE_SYMBOL(synthesize_reljump);
136
137 /* Insert a call instruction at address 'from', which calls address 'to'.*/
138 void synthesize_relcall(void *from, void *to)
139 {
140 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
141 }
142 NOKPROBE_SYMBOL(synthesize_relcall);
143
144 /*
145 * Skip the prefixes of the instruction.
146 */
147 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
148 {
149 insn_attr_t attr;
150
151 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
152 while (inat_is_legacy_prefix(attr)) {
153 insn++;
154 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
155 }
156 #ifdef CONFIG_X86_64
157 if (inat_is_rex_prefix(attr))
158 insn++;
159 #endif
160 return insn;
161 }
162 NOKPROBE_SYMBOL(skip_prefixes);
163
164 /*
165 * Returns non-zero if opcode is boostable.
166 * RIP relative instructions are adjusted at copying time in 64 bits mode
167 */
168 int can_boost(kprobe_opcode_t *opcodes)
169 {
170 kprobe_opcode_t opcode;
171 kprobe_opcode_t *orig_opcodes = opcodes;
172
173 if (search_exception_tables((unsigned long)opcodes))
174 return 0; /* Page fault may occur on this address. */
175
176 retry:
177 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
178 return 0;
179 opcode = *(opcodes++);
180
181 /* 2nd-byte opcode */
182 if (opcode == 0x0f) {
183 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
184 return 0;
185 return test_bit(*opcodes,
186 (unsigned long *)twobyte_is_boostable);
187 }
188
189 switch (opcode & 0xf0) {
190 #ifdef CONFIG_X86_64
191 case 0x40:
192 goto retry; /* REX prefix is boostable */
193 #endif
194 case 0x60:
195 if (0x63 < opcode && opcode < 0x67)
196 goto retry; /* prefixes */
197 /* can't boost Address-size override and bound */
198 return (opcode != 0x62 && opcode != 0x67);
199 case 0x70:
200 return 0; /* can't boost conditional jump */
201 case 0xc0:
202 /* can't boost software-interruptions */
203 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
204 case 0xd0:
205 /* can boost AA* and XLAT */
206 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
207 case 0xe0:
208 /* can boost in/out and absolute jmps */
209 return ((opcode & 0x04) || opcode == 0xea);
210 case 0xf0:
211 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
212 goto retry; /* lock/rep(ne) prefix */
213 /* clear and set flags are boostable */
214 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
215 default:
216 /* segment override prefixes are boostable */
217 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
218 goto retry; /* prefixes */
219 /* CS override prefix and call are not boostable */
220 return (opcode != 0x2e && opcode != 0x9a);
221 }
222 }
223
224 static unsigned long
225 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
226 {
227 struct kprobe *kp;
228 unsigned long faddr;
229
230 kp = get_kprobe((void *)addr);
231 faddr = ftrace_location(addr);
232 /*
233 * Addresses inside the ftrace location are refused by
234 * arch_check_ftrace_location(). Something went terribly wrong
235 * if such an address is checked here.
236 */
237 if (WARN_ON(faddr && faddr != addr))
238 return 0UL;
239 /*
240 * Use the current code if it is not modified by Kprobe
241 * and it cannot be modified by ftrace.
242 */
243 if (!kp && !faddr)
244 return addr;
245
246 /*
247 * Basically, kp->ainsn.insn has an original instruction.
248 * However, RIP-relative instruction can not do single-stepping
249 * at different place, __copy_instruction() tweaks the displacement of
250 * that instruction. In that case, we can't recover the instruction
251 * from the kp->ainsn.insn.
252 *
253 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
254 * of the first byte of the probed instruction, which is overwritten
255 * by int3. And the instruction at kp->addr is not modified by kprobes
256 * except for the first byte, we can recover the original instruction
257 * from it and kp->opcode.
258 *
259 * In case of Kprobes using ftrace, we do not have a copy of
260 * the original instruction. In fact, the ftrace location might
261 * be modified at anytime and even could be in an inconsistent state.
262 * Fortunately, we know that the original code is the ideal 5-byte
263 * long NOP.
264 */
265 memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
266 if (faddr)
267 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
268 else
269 buf[0] = kp->opcode;
270 return (unsigned long)buf;
271 }
272
273 /*
274 * Recover the probed instruction at addr for further analysis.
275 * Caller must lock kprobes by kprobe_mutex, or disable preemption
276 * for preventing to release referencing kprobes.
277 * Returns zero if the instruction can not get recovered.
278 */
279 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
280 {
281 unsigned long __addr;
282
283 __addr = __recover_optprobed_insn(buf, addr);
284 if (__addr != addr)
285 return __addr;
286
287 return __recover_probed_insn(buf, addr);
288 }
289
290 /* Check if paddr is at an instruction boundary */
291 static int can_probe(unsigned long paddr)
292 {
293 unsigned long addr, __addr, offset = 0;
294 struct insn insn;
295 kprobe_opcode_t buf[MAX_INSN_SIZE];
296
297 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
298 return 0;
299
300 /* Decode instructions */
301 addr = paddr - offset;
302 while (addr < paddr) {
303 /*
304 * Check if the instruction has been modified by another
305 * kprobe, in which case we replace the breakpoint by the
306 * original instruction in our buffer.
307 * Also, jump optimization will change the breakpoint to
308 * relative-jump. Since the relative-jump itself is
309 * normally used, we just go through if there is no kprobe.
310 */
311 __addr = recover_probed_instruction(buf, addr);
312 if (!__addr)
313 return 0;
314 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
315 insn_get_length(&insn);
316
317 /*
318 * Another debugging subsystem might insert this breakpoint.
319 * In that case, we can't recover it.
320 */
321 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
322 return 0;
323 addr += insn.length;
324 }
325
326 return (addr == paddr);
327 }
328
329 /*
330 * Returns non-zero if opcode modifies the interrupt flag.
331 */
332 static int is_IF_modifier(kprobe_opcode_t *insn)
333 {
334 /* Skip prefixes */
335 insn = skip_prefixes(insn);
336
337 switch (*insn) {
338 case 0xfa: /* cli */
339 case 0xfb: /* sti */
340 case 0xcf: /* iret/iretd */
341 case 0x9d: /* popf/popfd */
342 return 1;
343 }
344
345 return 0;
346 }
347
348 /*
349 * Copy an instruction and adjust the displacement if the instruction
350 * uses the %rip-relative addressing mode.
351 * If it does, Return the address of the 32-bit displacement word.
352 * If not, return null.
353 * Only applicable to 64-bit x86.
354 */
355 int __copy_instruction(u8 *dest, u8 *src)
356 {
357 struct insn insn;
358 kprobe_opcode_t buf[MAX_INSN_SIZE];
359 int length;
360 unsigned long recovered_insn =
361 recover_probed_instruction(buf, (unsigned long)src);
362
363 if (!recovered_insn)
364 return 0;
365 kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE);
366 insn_get_length(&insn);
367 length = insn.length;
368
369 /* Another subsystem puts a breakpoint, failed to recover */
370 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
371 return 0;
372 memcpy(dest, insn.kaddr, length);
373
374 #ifdef CONFIG_X86_64
375 if (insn_rip_relative(&insn)) {
376 s64 newdisp;
377 u8 *disp;
378 kernel_insn_init(&insn, dest, length);
379 insn_get_displacement(&insn);
380 /*
381 * The copied instruction uses the %rip-relative addressing
382 * mode. Adjust the displacement for the difference between
383 * the original location of this instruction and the location
384 * of the copy that will actually be run. The tricky bit here
385 * is making sure that the sign extension happens correctly in
386 * this calculation, since we need a signed 32-bit result to
387 * be sign-extended to 64 bits when it's added to the %rip
388 * value and yield the same 64-bit result that the sign-
389 * extension of the original signed 32-bit displacement would
390 * have given.
391 */
392 newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
393 if ((s64) (s32) newdisp != newdisp) {
394 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
395 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value);
396 return 0;
397 }
398 disp = (u8 *) dest + insn_offset_displacement(&insn);
399 *(s32 *) disp = (s32) newdisp;
400 }
401 #endif
402 return length;
403 }
404
405 static int arch_copy_kprobe(struct kprobe *p)
406 {
407 int ret;
408
409 /* Copy an instruction with recovering if other optprobe modifies it.*/
410 ret = __copy_instruction(p->ainsn.insn, p->addr);
411 if (!ret)
412 return -EINVAL;
413
414 /*
415 * __copy_instruction can modify the displacement of the instruction,
416 * but it doesn't affect boostable check.
417 */
418 if (can_boost(p->ainsn.insn))
419 p->ainsn.boostable = 0;
420 else
421 p->ainsn.boostable = -1;
422
423 /* Check whether the instruction modifies Interrupt Flag or not */
424 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
425
426 /* Also, displacement change doesn't affect the first byte */
427 p->opcode = p->ainsn.insn[0];
428
429 return 0;
430 }
431
432 int arch_prepare_kprobe(struct kprobe *p)
433 {
434 if (alternatives_text_reserved(p->addr, p->addr))
435 return -EINVAL;
436
437 if (!can_probe((unsigned long)p->addr))
438 return -EILSEQ;
439 /* insn: must be on special executable page on x86. */
440 p->ainsn.insn = get_insn_slot();
441 if (!p->ainsn.insn)
442 return -ENOMEM;
443
444 return arch_copy_kprobe(p);
445 }
446
447 void arch_arm_kprobe(struct kprobe *p)
448 {
449 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
450 }
451
452 void arch_disarm_kprobe(struct kprobe *p)
453 {
454 text_poke(p->addr, &p->opcode, 1);
455 }
456
457 void arch_remove_kprobe(struct kprobe *p)
458 {
459 if (p->ainsn.insn) {
460 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
461 p->ainsn.insn = NULL;
462 }
463 }
464
465 static nokprobe_inline void
466 save_previous_kprobe(struct kprobe_ctlblk *kcb)
467 {
468 kcb->prev_kprobe.kp = kprobe_running();
469 kcb->prev_kprobe.status = kcb->kprobe_status;
470 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
471 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
472 }
473
474 static nokprobe_inline void
475 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
476 {
477 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
478 kcb->kprobe_status = kcb->prev_kprobe.status;
479 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
480 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
481 }
482
483 static nokprobe_inline void
484 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
485 struct kprobe_ctlblk *kcb)
486 {
487 __this_cpu_write(current_kprobe, p);
488 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
489 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
490 if (p->ainsn.if_modifier)
491 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
492 }
493
494 static nokprobe_inline void clear_btf(void)
495 {
496 if (test_thread_flag(TIF_BLOCKSTEP)) {
497 unsigned long debugctl = get_debugctlmsr();
498
499 debugctl &= ~DEBUGCTLMSR_BTF;
500 update_debugctlmsr(debugctl);
501 }
502 }
503
504 static nokprobe_inline void restore_btf(void)
505 {
506 if (test_thread_flag(TIF_BLOCKSTEP)) {
507 unsigned long debugctl = get_debugctlmsr();
508
509 debugctl |= DEBUGCTLMSR_BTF;
510 update_debugctlmsr(debugctl);
511 }
512 }
513
514 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
515 {
516 unsigned long *sara = stack_addr(regs);
517
518 ri->ret_addr = (kprobe_opcode_t *) *sara;
519
520 /* Replace the return addr with trampoline addr */
521 *sara = (unsigned long) &kretprobe_trampoline;
522 }
523 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
524
525 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
526 struct kprobe_ctlblk *kcb, int reenter)
527 {
528 if (setup_detour_execution(p, regs, reenter))
529 return;
530
531 #if !defined(CONFIG_PREEMPT)
532 if (p->ainsn.boostable == 1 && !p->post_handler) {
533 /* Boost up -- we can execute copied instructions directly */
534 if (!reenter)
535 reset_current_kprobe();
536 /*
537 * Reentering boosted probe doesn't reset current_kprobe,
538 * nor set current_kprobe, because it doesn't use single
539 * stepping.
540 */
541 regs->ip = (unsigned long)p->ainsn.insn;
542 preempt_enable_no_resched();
543 return;
544 }
545 #endif
546 if (reenter) {
547 save_previous_kprobe(kcb);
548 set_current_kprobe(p, regs, kcb);
549 kcb->kprobe_status = KPROBE_REENTER;
550 } else
551 kcb->kprobe_status = KPROBE_HIT_SS;
552 /* Prepare real single stepping */
553 clear_btf();
554 regs->flags |= X86_EFLAGS_TF;
555 regs->flags &= ~X86_EFLAGS_IF;
556 /* single step inline if the instruction is an int3 */
557 if (p->opcode == BREAKPOINT_INSTRUCTION)
558 regs->ip = (unsigned long)p->addr;
559 else
560 regs->ip = (unsigned long)p->ainsn.insn;
561 }
562 NOKPROBE_SYMBOL(setup_singlestep);
563
564 /*
565 * We have reentered the kprobe_handler(), since another probe was hit while
566 * within the handler. We save the original kprobes variables and just single
567 * step on the instruction of the new probe without calling any user handlers.
568 */
569 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
570 struct kprobe_ctlblk *kcb)
571 {
572 switch (kcb->kprobe_status) {
573 case KPROBE_HIT_SSDONE:
574 case KPROBE_HIT_ACTIVE:
575 case KPROBE_HIT_SS:
576 kprobes_inc_nmissed_count(p);
577 setup_singlestep(p, regs, kcb, 1);
578 break;
579 case KPROBE_REENTER:
580 /* A probe has been hit in the codepath leading up to, or just
581 * after, single-stepping of a probed instruction. This entire
582 * codepath should strictly reside in .kprobes.text section.
583 * Raise a BUG or we'll continue in an endless reentering loop
584 * and eventually a stack overflow.
585 */
586 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
587 p->addr);
588 dump_kprobe(p);
589 BUG();
590 default:
591 /* impossible cases */
592 WARN_ON(1);
593 return 0;
594 }
595
596 return 1;
597 }
598 NOKPROBE_SYMBOL(reenter_kprobe);
599
600 /*
601 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
602 * remain disabled throughout this function.
603 */
604 int kprobe_int3_handler(struct pt_regs *regs)
605 {
606 kprobe_opcode_t *addr;
607 struct kprobe *p;
608 struct kprobe_ctlblk *kcb;
609
610 if (user_mode(regs))
611 return 0;
612
613 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
614 /*
615 * We don't want to be preempted for the entire
616 * duration of kprobe processing. We conditionally
617 * re-enable preemption at the end of this function,
618 * and also in reenter_kprobe() and setup_singlestep().
619 */
620 preempt_disable();
621
622 kcb = get_kprobe_ctlblk();
623 p = get_kprobe(addr);
624
625 if (p) {
626 if (kprobe_running()) {
627 if (reenter_kprobe(p, regs, kcb))
628 return 1;
629 } else {
630 set_current_kprobe(p, regs, kcb);
631 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
632
633 /*
634 * If we have no pre-handler or it returned 0, we
635 * continue with normal processing. If we have a
636 * pre-handler and it returned non-zero, it prepped
637 * for calling the break_handler below on re-entry
638 * for jprobe processing, so get out doing nothing
639 * more here.
640 */
641 if (!p->pre_handler || !p->pre_handler(p, regs))
642 setup_singlestep(p, regs, kcb, 0);
643 return 1;
644 }
645 } else if (*addr != BREAKPOINT_INSTRUCTION) {
646 /*
647 * The breakpoint instruction was removed right
648 * after we hit it. Another cpu has removed
649 * either a probepoint or a debugger breakpoint
650 * at this address. In either case, no further
651 * handling of this interrupt is appropriate.
652 * Back up over the (now missing) int3 and run
653 * the original instruction.
654 */
655 regs->ip = (unsigned long)addr;
656 preempt_enable_no_resched();
657 return 1;
658 } else if (kprobe_running()) {
659 p = __this_cpu_read(current_kprobe);
660 if (p->break_handler && p->break_handler(p, regs)) {
661 if (!skip_singlestep(p, regs, kcb))
662 setup_singlestep(p, regs, kcb, 0);
663 return 1;
664 }
665 } /* else: not a kprobe fault; let the kernel handle it */
666
667 preempt_enable_no_resched();
668 return 0;
669 }
670 NOKPROBE_SYMBOL(kprobe_int3_handler);
671
672 /*
673 * When a retprobed function returns, this code saves registers and
674 * calls trampoline_handler() runs, which calls the kretprobe's handler.
675 */
676 asm(
677 ".global kretprobe_trampoline\n"
678 ".type kretprobe_trampoline, @function\n"
679 "kretprobe_trampoline:\n"
680 #ifdef CONFIG_X86_64
681 /* We don't bother saving the ss register */
682 " pushq %rsp\n"
683 " pushfq\n"
684 SAVE_REGS_STRING
685 " movq %rsp, %rdi\n"
686 " call trampoline_handler\n"
687 /* Replace saved sp with true return address. */
688 " movq %rax, 152(%rsp)\n"
689 RESTORE_REGS_STRING
690 " popfq\n"
691 #else
692 " pushf\n"
693 SAVE_REGS_STRING
694 " movl %esp, %eax\n"
695 " call trampoline_handler\n"
696 /* Move flags to cs */
697 " movl 56(%esp), %edx\n"
698 " movl %edx, 52(%esp)\n"
699 /* Replace saved flags with true return address. */
700 " movl %eax, 56(%esp)\n"
701 RESTORE_REGS_STRING
702 " popf\n"
703 #endif
704 " ret\n"
705 ".size kretprobe_trampoline, .-kretprobe_trampoline\n"
706 );
707 NOKPROBE_SYMBOL(kretprobe_trampoline);
708 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
709
710 /*
711 * Called from kretprobe_trampoline
712 */
713 __visible __used void *trampoline_handler(struct pt_regs *regs)
714 {
715 struct kretprobe_instance *ri = NULL;
716 struct hlist_head *head, empty_rp;
717 struct hlist_node *tmp;
718 unsigned long flags, orig_ret_address = 0;
719 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
720 kprobe_opcode_t *correct_ret_addr = NULL;
721
722 INIT_HLIST_HEAD(&empty_rp);
723 kretprobe_hash_lock(current, &head, &flags);
724 /* fixup registers */
725 #ifdef CONFIG_X86_64
726 regs->cs = __KERNEL_CS;
727 #else
728 regs->cs = __KERNEL_CS | get_kernel_rpl();
729 regs->gs = 0;
730 #endif
731 regs->ip = trampoline_address;
732 regs->orig_ax = ~0UL;
733
734 /*
735 * It is possible to have multiple instances associated with a given
736 * task either because multiple functions in the call path have
737 * return probes installed on them, and/or more than one
738 * return probe was registered for a target function.
739 *
740 * We can handle this because:
741 * - instances are always pushed into the head of the list
742 * - when multiple return probes are registered for the same
743 * function, the (chronologically) first instance's ret_addr
744 * will be the real return address, and all the rest will
745 * point to kretprobe_trampoline.
746 */
747 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
748 if (ri->task != current)
749 /* another task is sharing our hash bucket */
750 continue;
751
752 orig_ret_address = (unsigned long)ri->ret_addr;
753
754 if (orig_ret_address != trampoline_address)
755 /*
756 * This is the real return address. Any other
757 * instances associated with this task are for
758 * other calls deeper on the call stack
759 */
760 break;
761 }
762
763 kretprobe_assert(ri, orig_ret_address, trampoline_address);
764
765 correct_ret_addr = ri->ret_addr;
766 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
767 if (ri->task != current)
768 /* another task is sharing our hash bucket */
769 continue;
770
771 orig_ret_address = (unsigned long)ri->ret_addr;
772 if (ri->rp && ri->rp->handler) {
773 __this_cpu_write(current_kprobe, &ri->rp->kp);
774 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
775 ri->ret_addr = correct_ret_addr;
776 ri->rp->handler(ri, regs);
777 __this_cpu_write(current_kprobe, NULL);
778 }
779
780 recycle_rp_inst(ri, &empty_rp);
781
782 if (orig_ret_address != trampoline_address)
783 /*
784 * This is the real return address. Any other
785 * instances associated with this task are for
786 * other calls deeper on the call stack
787 */
788 break;
789 }
790
791 kretprobe_hash_unlock(current, &flags);
792
793 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
794 hlist_del(&ri->hlist);
795 kfree(ri);
796 }
797 return (void *)orig_ret_address;
798 }
799 NOKPROBE_SYMBOL(trampoline_handler);
800
801 /*
802 * Called after single-stepping. p->addr is the address of the
803 * instruction whose first byte has been replaced by the "int 3"
804 * instruction. To avoid the SMP problems that can occur when we
805 * temporarily put back the original opcode to single-step, we
806 * single-stepped a copy of the instruction. The address of this
807 * copy is p->ainsn.insn.
808 *
809 * This function prepares to return from the post-single-step
810 * interrupt. We have to fix up the stack as follows:
811 *
812 * 0) Except in the case of absolute or indirect jump or call instructions,
813 * the new ip is relative to the copied instruction. We need to make
814 * it relative to the original instruction.
815 *
816 * 1) If the single-stepped instruction was pushfl, then the TF and IF
817 * flags are set in the just-pushed flags, and may need to be cleared.
818 *
819 * 2) If the single-stepped instruction was a call, the return address
820 * that is atop the stack is the address following the copied instruction.
821 * We need to make it the address following the original instruction.
822 *
823 * If this is the first time we've single-stepped the instruction at
824 * this probepoint, and the instruction is boostable, boost it: add a
825 * jump instruction after the copied instruction, that jumps to the next
826 * instruction after the probepoint.
827 */
828 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
829 struct kprobe_ctlblk *kcb)
830 {
831 unsigned long *tos = stack_addr(regs);
832 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
833 unsigned long orig_ip = (unsigned long)p->addr;
834 kprobe_opcode_t *insn = p->ainsn.insn;
835
836 /* Skip prefixes */
837 insn = skip_prefixes(insn);
838
839 regs->flags &= ~X86_EFLAGS_TF;
840 switch (*insn) {
841 case 0x9c: /* pushfl */
842 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
843 *tos |= kcb->kprobe_old_flags;
844 break;
845 case 0xc2: /* iret/ret/lret */
846 case 0xc3:
847 case 0xca:
848 case 0xcb:
849 case 0xcf:
850 case 0xea: /* jmp absolute -- ip is correct */
851 /* ip is already adjusted, no more changes required */
852 p->ainsn.boostable = 1;
853 goto no_change;
854 case 0xe8: /* call relative - Fix return addr */
855 *tos = orig_ip + (*tos - copy_ip);
856 break;
857 #ifdef CONFIG_X86_32
858 case 0x9a: /* call absolute -- same as call absolute, indirect */
859 *tos = orig_ip + (*tos - copy_ip);
860 goto no_change;
861 #endif
862 case 0xff:
863 if ((insn[1] & 0x30) == 0x10) {
864 /*
865 * call absolute, indirect
866 * Fix return addr; ip is correct.
867 * But this is not boostable
868 */
869 *tos = orig_ip + (*tos - copy_ip);
870 goto no_change;
871 } else if (((insn[1] & 0x31) == 0x20) ||
872 ((insn[1] & 0x31) == 0x21)) {
873 /*
874 * jmp near and far, absolute indirect
875 * ip is correct. And this is boostable
876 */
877 p->ainsn.boostable = 1;
878 goto no_change;
879 }
880 default:
881 break;
882 }
883
884 if (p->ainsn.boostable == 0) {
885 if ((regs->ip > copy_ip) &&
886 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
887 /*
888 * These instructions can be executed directly if it
889 * jumps back to correct address.
890 */
891 synthesize_reljump((void *)regs->ip,
892 (void *)orig_ip + (regs->ip - copy_ip));
893 p->ainsn.boostable = 1;
894 } else {
895 p->ainsn.boostable = -1;
896 }
897 }
898
899 regs->ip += orig_ip - copy_ip;
900
901 no_change:
902 restore_btf();
903 }
904 NOKPROBE_SYMBOL(resume_execution);
905
906 /*
907 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
908 * remain disabled throughout this function.
909 */
910 int kprobe_debug_handler(struct pt_regs *regs)
911 {
912 struct kprobe *cur = kprobe_running();
913 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
914
915 if (!cur)
916 return 0;
917
918 resume_execution(cur, regs, kcb);
919 regs->flags |= kcb->kprobe_saved_flags;
920
921 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
922 kcb->kprobe_status = KPROBE_HIT_SSDONE;
923 cur->post_handler(cur, regs, 0);
924 }
925
926 /* Restore back the original saved kprobes variables and continue. */
927 if (kcb->kprobe_status == KPROBE_REENTER) {
928 restore_previous_kprobe(kcb);
929 goto out;
930 }
931 reset_current_kprobe();
932 out:
933 preempt_enable_no_resched();
934
935 /*
936 * if somebody else is singlestepping across a probe point, flags
937 * will have TF set, in which case, continue the remaining processing
938 * of do_debug, as if this is not a probe hit.
939 */
940 if (regs->flags & X86_EFLAGS_TF)
941 return 0;
942
943 return 1;
944 }
945 NOKPROBE_SYMBOL(kprobe_debug_handler);
946
947 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
948 {
949 struct kprobe *cur = kprobe_running();
950 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
951
952 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
953 /* This must happen on single-stepping */
954 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
955 kcb->kprobe_status != KPROBE_REENTER);
956 /*
957 * We are here because the instruction being single
958 * stepped caused a page fault. We reset the current
959 * kprobe and the ip points back to the probe address
960 * and allow the page fault handler to continue as a
961 * normal page fault.
962 */
963 regs->ip = (unsigned long)cur->addr;
964 /*
965 * Trap flag (TF) has been set here because this fault
966 * happened where the single stepping will be done.
967 * So clear it by resetting the current kprobe:
968 */
969 regs->flags &= ~X86_EFLAGS_TF;
970
971 /*
972 * If the TF flag was set before the kprobe hit,
973 * don't touch it:
974 */
975 regs->flags |= kcb->kprobe_old_flags;
976
977 if (kcb->kprobe_status == KPROBE_REENTER)
978 restore_previous_kprobe(kcb);
979 else
980 reset_current_kprobe();
981 preempt_enable_no_resched();
982 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
983 kcb->kprobe_status == KPROBE_HIT_SSDONE) {
984 /*
985 * We increment the nmissed count for accounting,
986 * we can also use npre/npostfault count for accounting
987 * these specific fault cases.
988 */
989 kprobes_inc_nmissed_count(cur);
990
991 /*
992 * We come here because instructions in the pre/post
993 * handler caused the page_fault, this could happen
994 * if handler tries to access user space by
995 * copy_from_user(), get_user() etc. Let the
996 * user-specified handler try to fix it first.
997 */
998 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
999 return 1;
1000
1001 /*
1002 * In case the user-specified fault handler returned
1003 * zero, try to fix up.
1004 */
1005 if (fixup_exception(regs, trapnr))
1006 return 1;
1007
1008 /*
1009 * fixup routine could not handle it,
1010 * Let do_page_fault() fix it.
1011 */
1012 }
1013
1014 return 0;
1015 }
1016 NOKPROBE_SYMBOL(kprobe_fault_handler);
1017
1018 /*
1019 * Wrapper routine for handling exceptions.
1020 */
1021 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1022 void *data)
1023 {
1024 struct die_args *args = data;
1025 int ret = NOTIFY_DONE;
1026
1027 if (args->regs && user_mode(args->regs))
1028 return ret;
1029
1030 if (val == DIE_GPF) {
1031 /*
1032 * To be potentially processing a kprobe fault and to
1033 * trust the result from kprobe_running(), we have
1034 * be non-preemptible.
1035 */
1036 if (!preemptible() && kprobe_running() &&
1037 kprobe_fault_handler(args->regs, args->trapnr))
1038 ret = NOTIFY_STOP;
1039 }
1040 return ret;
1041 }
1042 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1043
1044 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1045 {
1046 struct jprobe *jp = container_of(p, struct jprobe, kp);
1047 unsigned long addr;
1048 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1049
1050 kcb->jprobe_saved_regs = *regs;
1051 kcb->jprobe_saved_sp = stack_addr(regs);
1052 addr = (unsigned long)(kcb->jprobe_saved_sp);
1053
1054 /*
1055 * As Linus pointed out, gcc assumes that the callee
1056 * owns the argument space and could overwrite it, e.g.
1057 * tailcall optimization. So, to be absolutely safe
1058 * we also save and restore enough stack bytes to cover
1059 * the argument area.
1060 */
1061 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
1062 MIN_STACK_SIZE(addr));
1063 regs->flags &= ~X86_EFLAGS_IF;
1064 trace_hardirqs_off();
1065 regs->ip = (unsigned long)(jp->entry);
1066
1067 /*
1068 * jprobes use jprobe_return() which skips the normal return
1069 * path of the function, and this messes up the accounting of the
1070 * function graph tracer to get messed up.
1071 *
1072 * Pause function graph tracing while performing the jprobe function.
1073 */
1074 pause_graph_tracing();
1075 return 1;
1076 }
1077 NOKPROBE_SYMBOL(setjmp_pre_handler);
1078
1079 void jprobe_return(void)
1080 {
1081 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1082
1083 asm volatile (
1084 #ifdef CONFIG_X86_64
1085 " xchg %%rbx,%%rsp \n"
1086 #else
1087 " xchgl %%ebx,%%esp \n"
1088 #endif
1089 " int3 \n"
1090 " .globl jprobe_return_end\n"
1091 " jprobe_return_end: \n"
1092 " nop \n"::"b"
1093 (kcb->jprobe_saved_sp):"memory");
1094 }
1095 NOKPROBE_SYMBOL(jprobe_return);
1096 NOKPROBE_SYMBOL(jprobe_return_end);
1097
1098 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1099 {
1100 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1101 u8 *addr = (u8 *) (regs->ip - 1);
1102 struct jprobe *jp = container_of(p, struct jprobe, kp);
1103 void *saved_sp = kcb->jprobe_saved_sp;
1104
1105 if ((addr > (u8 *) jprobe_return) &&
1106 (addr < (u8 *) jprobe_return_end)) {
1107 if (stack_addr(regs) != saved_sp) {
1108 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1109 printk(KERN_ERR
1110 "current sp %p does not match saved sp %p\n",
1111 stack_addr(regs), saved_sp);
1112 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1113 show_regs(saved_regs);
1114 printk(KERN_ERR "Current registers\n");
1115 show_regs(regs);
1116 BUG();
1117 }
1118 /* It's OK to start function graph tracing again */
1119 unpause_graph_tracing();
1120 *regs = kcb->jprobe_saved_regs;
1121 memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
1122 preempt_enable_no_resched();
1123 return 1;
1124 }
1125 return 0;
1126 }
1127 NOKPROBE_SYMBOL(longjmp_break_handler);
1128
1129 bool arch_within_kprobe_blacklist(unsigned long addr)
1130 {
1131 return (addr >= (unsigned long)__kprobes_text_start &&
1132 addr < (unsigned long)__kprobes_text_end) ||
1133 (addr >= (unsigned long)__entry_text_start &&
1134 addr < (unsigned long)__entry_text_end);
1135 }
1136
1137 int __init arch_init_kprobes(void)
1138 {
1139 return 0;
1140 }
1141
1142 int arch_trampoline_kprobe(struct kprobe *p)
1143 {
1144 return 0;
1145 }
This page took 0.05601 seconds and 5 git commands to generate.