Merge branch 'locks' of git://linux-nfs.org/~bfields/linux
[deliverable/linux.git] / arch / x86 / kernel / kprobes_32.c
1 /*
2 * Kernel Probes (KProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
26 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
27 * <prasanna@in.ibm.com> added function-return probes.
28 */
29
30 #include <linux/kprobes.h>
31 #include <linux/ptrace.h>
32 #include <linux/preempt.h>
33 #include <linux/kdebug.h>
34 #include <asm/cacheflush.h>
35 #include <asm/desc.h>
36 #include <asm/uaccess.h>
37 #include <asm/alternative.h>
38
39 void jprobe_return_end(void);
40
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43
44 /* insert a jmp code */
45 static __always_inline void set_jmp_op(void *from, void *to)
46 {
47 struct __arch_jmp_op {
48 char op;
49 long raddr;
50 } __attribute__((packed)) *jop;
51 jop = (struct __arch_jmp_op *)from;
52 jop->raddr = (long)(to) - ((long)(from) + 5);
53 jop->op = RELATIVEJUMP_INSTRUCTION;
54 }
55
56 /*
57 * returns non-zero if opcodes can be boosted.
58 */
59 static __always_inline int can_boost(kprobe_opcode_t *opcodes)
60 {
61 #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
62 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
63 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
64 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
65 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
66 << (row % 32))
67 /*
68 * Undefined/reserved opcodes, conditional jump, Opcode Extension
69 * Groups, and some special opcodes can not be boost.
70 */
71 static const unsigned long twobyte_is_boostable[256 / 32] = {
72 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
73 /* ------------------------------- */
74 W(0x00, 0,0,1,1,0,0,1,0,1,1,0,0,0,0,0,0)| /* 00 */
75 W(0x10, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 10 */
76 W(0x20, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)| /* 20 */
77 W(0x30, 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 30 */
78 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 40 */
79 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 50 */
80 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1)| /* 60 */
81 W(0x70, 0,0,0,0,1,1,1,1,0,0,0,0,0,0,1,1), /* 70 */
82 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 80 */
83 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), /* 90 */
84 W(0xa0, 1,1,0,1,1,1,0,0,1,1,0,1,1,1,0,1)| /* a0 */
85 W(0xb0, 1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1), /* b0 */
86 W(0xc0, 1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1)| /* c0 */
87 W(0xd0, 0,1,1,1,0,1,0,0,1,1,0,1,1,1,0,1), /* d0 */
88 W(0xe0, 0,1,1,0,0,1,0,0,1,1,0,1,1,1,0,1)| /* e0 */
89 W(0xf0, 0,1,1,1,0,1,0,0,1,1,1,0,1,1,1,0) /* f0 */
90 /* ------------------------------- */
91 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
92 };
93 #undef W
94 kprobe_opcode_t opcode;
95 kprobe_opcode_t *orig_opcodes = opcodes;
96 retry:
97 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
98 return 0;
99 opcode = *(opcodes++);
100
101 /* 2nd-byte opcode */
102 if (opcode == 0x0f) {
103 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
104 return 0;
105 return test_bit(*opcodes, twobyte_is_boostable);
106 }
107
108 switch (opcode & 0xf0) {
109 case 0x60:
110 if (0x63 < opcode && opcode < 0x67)
111 goto retry; /* prefixes */
112 /* can't boost Address-size override and bound */
113 return (opcode != 0x62 && opcode != 0x67);
114 case 0x70:
115 return 0; /* can't boost conditional jump */
116 case 0xc0:
117 /* can't boost software-interruptions */
118 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
119 case 0xd0:
120 /* can boost AA* and XLAT */
121 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
122 case 0xe0:
123 /* can boost in/out and absolute jmps */
124 return ((opcode & 0x04) || opcode == 0xea);
125 case 0xf0:
126 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
127 goto retry; /* lock/rep(ne) prefix */
128 /* clear and set flags can be boost */
129 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
130 default:
131 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
132 goto retry; /* prefixes */
133 /* can't boost CS override and call */
134 return (opcode != 0x2e && opcode != 0x9a);
135 }
136 }
137
138 /*
139 * returns non-zero if opcode modifies the interrupt flag.
140 */
141 static int __kprobes is_IF_modifier(kprobe_opcode_t opcode)
142 {
143 switch (opcode) {
144 case 0xfa: /* cli */
145 case 0xfb: /* sti */
146 case 0xcf: /* iret/iretd */
147 case 0x9d: /* popf/popfd */
148 return 1;
149 }
150 return 0;
151 }
152
153 int __kprobes arch_prepare_kprobe(struct kprobe *p)
154 {
155 /* insn: must be on special executable page on i386. */
156 p->ainsn.insn = get_insn_slot();
157 if (!p->ainsn.insn)
158 return -ENOMEM;
159
160 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
161 p->opcode = *p->addr;
162 if (can_boost(p->addr)) {
163 p->ainsn.boostable = 0;
164 } else {
165 p->ainsn.boostable = -1;
166 }
167 return 0;
168 }
169
170 void __kprobes arch_arm_kprobe(struct kprobe *p)
171 {
172 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
173 }
174
175 void __kprobes arch_disarm_kprobe(struct kprobe *p)
176 {
177 text_poke(p->addr, &p->opcode, 1);
178 }
179
180 void __kprobes arch_remove_kprobe(struct kprobe *p)
181 {
182 mutex_lock(&kprobe_mutex);
183 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
184 mutex_unlock(&kprobe_mutex);
185 }
186
187 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
188 {
189 kcb->prev_kprobe.kp = kprobe_running();
190 kcb->prev_kprobe.status = kcb->kprobe_status;
191 kcb->prev_kprobe.old_eflags = kcb->kprobe_old_eflags;
192 kcb->prev_kprobe.saved_eflags = kcb->kprobe_saved_eflags;
193 }
194
195 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
196 {
197 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
198 kcb->kprobe_status = kcb->prev_kprobe.status;
199 kcb->kprobe_old_eflags = kcb->prev_kprobe.old_eflags;
200 kcb->kprobe_saved_eflags = kcb->prev_kprobe.saved_eflags;
201 }
202
203 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
204 struct kprobe_ctlblk *kcb)
205 {
206 __get_cpu_var(current_kprobe) = p;
207 kcb->kprobe_saved_eflags = kcb->kprobe_old_eflags
208 = (regs->eflags & (TF_MASK | IF_MASK));
209 if (is_IF_modifier(p->opcode))
210 kcb->kprobe_saved_eflags &= ~IF_MASK;
211 }
212
213 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
214 {
215 regs->eflags |= TF_MASK;
216 regs->eflags &= ~IF_MASK;
217 /*single step inline if the instruction is an int3*/
218 if (p->opcode == BREAKPOINT_INSTRUCTION)
219 regs->eip = (unsigned long)p->addr;
220 else
221 regs->eip = (unsigned long)p->ainsn.insn;
222 }
223
224 /* Called with kretprobe_lock held */
225 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
226 struct pt_regs *regs)
227 {
228 unsigned long *sara = (unsigned long *)&regs->esp;
229
230 ri->ret_addr = (kprobe_opcode_t *) *sara;
231
232 /* Replace the return addr with trampoline addr */
233 *sara = (unsigned long) &kretprobe_trampoline;
234 }
235
236 /*
237 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
238 * remain disabled thorough out this function.
239 */
240 static int __kprobes kprobe_handler(struct pt_regs *regs)
241 {
242 struct kprobe *p;
243 int ret = 0;
244 kprobe_opcode_t *addr;
245 struct kprobe_ctlblk *kcb;
246
247 addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t));
248
249 /*
250 * We don't want to be preempted for the entire
251 * duration of kprobe processing
252 */
253 preempt_disable();
254 kcb = get_kprobe_ctlblk();
255
256 /* Check we're not actually recursing */
257 if (kprobe_running()) {
258 p = get_kprobe(addr);
259 if (p) {
260 if (kcb->kprobe_status == KPROBE_HIT_SS &&
261 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
262 regs->eflags &= ~TF_MASK;
263 regs->eflags |= kcb->kprobe_saved_eflags;
264 goto no_kprobe;
265 }
266 /* We have reentered the kprobe_handler(), since
267 * another probe was hit while within the handler.
268 * We here save the original kprobes variables and
269 * just single step on the instruction of the new probe
270 * without calling any user handlers.
271 */
272 save_previous_kprobe(kcb);
273 set_current_kprobe(p, regs, kcb);
274 kprobes_inc_nmissed_count(p);
275 prepare_singlestep(p, regs);
276 kcb->kprobe_status = KPROBE_REENTER;
277 return 1;
278 } else {
279 if (*addr != BREAKPOINT_INSTRUCTION) {
280 /* The breakpoint instruction was removed by
281 * another cpu right after we hit, no further
282 * handling of this interrupt is appropriate
283 */
284 regs->eip -= sizeof(kprobe_opcode_t);
285 ret = 1;
286 goto no_kprobe;
287 }
288 p = __get_cpu_var(current_kprobe);
289 if (p->break_handler && p->break_handler(p, regs)) {
290 goto ss_probe;
291 }
292 }
293 goto no_kprobe;
294 }
295
296 p = get_kprobe(addr);
297 if (!p) {
298 if (*addr != BREAKPOINT_INSTRUCTION) {
299 /*
300 * The breakpoint instruction was removed right
301 * after we hit it. Another cpu has removed
302 * either a probepoint or a debugger breakpoint
303 * at this address. In either case, no further
304 * handling of this interrupt is appropriate.
305 * Back up over the (now missing) int3 and run
306 * the original instruction.
307 */
308 regs->eip -= sizeof(kprobe_opcode_t);
309 ret = 1;
310 }
311 /* Not one of ours: let kernel handle it */
312 goto no_kprobe;
313 }
314
315 set_current_kprobe(p, regs, kcb);
316 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
317
318 if (p->pre_handler && p->pre_handler(p, regs))
319 /* handler has already set things up, so skip ss setup */
320 return 1;
321
322 ss_probe:
323 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PM)
324 if (p->ainsn.boostable == 1 && !p->post_handler){
325 /* Boost up -- we can execute copied instructions directly */
326 reset_current_kprobe();
327 regs->eip = (unsigned long)p->ainsn.insn;
328 preempt_enable_no_resched();
329 return 1;
330 }
331 #endif
332 prepare_singlestep(p, regs);
333 kcb->kprobe_status = KPROBE_HIT_SS;
334 return 1;
335
336 no_kprobe:
337 preempt_enable_no_resched();
338 return ret;
339 }
340
341 /*
342 * For function-return probes, init_kprobes() establishes a probepoint
343 * here. When a retprobed function returns, this probe is hit and
344 * trampoline_probe_handler() runs, calling the kretprobe's handler.
345 */
346 void __kprobes kretprobe_trampoline_holder(void)
347 {
348 asm volatile ( ".global kretprobe_trampoline\n"
349 "kretprobe_trampoline: \n"
350 " pushf\n"
351 /* skip cs, eip, orig_eax */
352 " subl $12, %esp\n"
353 " pushl %fs\n"
354 " pushl %ds\n"
355 " pushl %es\n"
356 " pushl %eax\n"
357 " pushl %ebp\n"
358 " pushl %edi\n"
359 " pushl %esi\n"
360 " pushl %edx\n"
361 " pushl %ecx\n"
362 " pushl %ebx\n"
363 " movl %esp, %eax\n"
364 " call trampoline_handler\n"
365 /* move eflags to cs */
366 " movl 52(%esp), %edx\n"
367 " movl %edx, 48(%esp)\n"
368 /* save true return address on eflags */
369 " movl %eax, 52(%esp)\n"
370 " popl %ebx\n"
371 " popl %ecx\n"
372 " popl %edx\n"
373 " popl %esi\n"
374 " popl %edi\n"
375 " popl %ebp\n"
376 " popl %eax\n"
377 /* skip eip, orig_eax, es, ds, fs */
378 " addl $20, %esp\n"
379 " popf\n"
380 " ret\n");
381 }
382
383 /*
384 * Called from kretprobe_trampoline
385 */
386 fastcall void *__kprobes trampoline_handler(struct pt_regs *regs)
387 {
388 struct kretprobe_instance *ri = NULL;
389 struct hlist_head *head, empty_rp;
390 struct hlist_node *node, *tmp;
391 unsigned long flags, orig_ret_address = 0;
392 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
393
394 INIT_HLIST_HEAD(&empty_rp);
395 spin_lock_irqsave(&kretprobe_lock, flags);
396 head = kretprobe_inst_table_head(current);
397 /* fixup registers */
398 regs->xcs = __KERNEL_CS | get_kernel_rpl();
399 regs->eip = trampoline_address;
400 regs->orig_eax = 0xffffffff;
401
402 /*
403 * It is possible to have multiple instances associated with a given
404 * task either because an multiple functions in the call path
405 * have a return probe installed on them, and/or more then one return
406 * return probe was registered for a target function.
407 *
408 * We can handle this because:
409 * - instances are always inserted at the head of the list
410 * - when multiple return probes are registered for the same
411 * function, the first instance's ret_addr will point to the
412 * real return address, and all the rest will point to
413 * kretprobe_trampoline
414 */
415 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
416 if (ri->task != current)
417 /* another task is sharing our hash bucket */
418 continue;
419
420 if (ri->rp && ri->rp->handler){
421 __get_cpu_var(current_kprobe) = &ri->rp->kp;
422 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
423 ri->rp->handler(ri, regs);
424 __get_cpu_var(current_kprobe) = NULL;
425 }
426
427 orig_ret_address = (unsigned long)ri->ret_addr;
428 recycle_rp_inst(ri, &empty_rp);
429
430 if (orig_ret_address != trampoline_address)
431 /*
432 * This is the real return address. Any other
433 * instances associated with this task are for
434 * other calls deeper on the call stack
435 */
436 break;
437 }
438
439 kretprobe_assert(ri, orig_ret_address, trampoline_address);
440 spin_unlock_irqrestore(&kretprobe_lock, flags);
441
442 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
443 hlist_del(&ri->hlist);
444 kfree(ri);
445 }
446 return (void*)orig_ret_address;
447 }
448
449 /*
450 * Called after single-stepping. p->addr is the address of the
451 * instruction whose first byte has been replaced by the "int 3"
452 * instruction. To avoid the SMP problems that can occur when we
453 * temporarily put back the original opcode to single-step, we
454 * single-stepped a copy of the instruction. The address of this
455 * copy is p->ainsn.insn.
456 *
457 * This function prepares to return from the post-single-step
458 * interrupt. We have to fix up the stack as follows:
459 *
460 * 0) Except in the case of absolute or indirect jump or call instructions,
461 * the new eip is relative to the copied instruction. We need to make
462 * it relative to the original instruction.
463 *
464 * 1) If the single-stepped instruction was pushfl, then the TF and IF
465 * flags are set in the just-pushed eflags, and may need to be cleared.
466 *
467 * 2) If the single-stepped instruction was a call, the return address
468 * that is atop the stack is the address following the copied instruction.
469 * We need to make it the address following the original instruction.
470 *
471 * This function also checks instruction size for preparing direct execution.
472 */
473 static void __kprobes resume_execution(struct kprobe *p,
474 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
475 {
476 unsigned long *tos = (unsigned long *)&regs->esp;
477 unsigned long copy_eip = (unsigned long)p->ainsn.insn;
478 unsigned long orig_eip = (unsigned long)p->addr;
479
480 regs->eflags &= ~TF_MASK;
481 switch (p->ainsn.insn[0]) {
482 case 0x9c: /* pushfl */
483 *tos &= ~(TF_MASK | IF_MASK);
484 *tos |= kcb->kprobe_old_eflags;
485 break;
486 case 0xc2: /* iret/ret/lret */
487 case 0xc3:
488 case 0xca:
489 case 0xcb:
490 case 0xcf:
491 case 0xea: /* jmp absolute -- eip is correct */
492 /* eip is already adjusted, no more changes required */
493 p->ainsn.boostable = 1;
494 goto no_change;
495 case 0xe8: /* call relative - Fix return addr */
496 *tos = orig_eip + (*tos - copy_eip);
497 break;
498 case 0x9a: /* call absolute -- same as call absolute, indirect */
499 *tos = orig_eip + (*tos - copy_eip);
500 goto no_change;
501 case 0xff:
502 if ((p->ainsn.insn[1] & 0x30) == 0x10) {
503 /*
504 * call absolute, indirect
505 * Fix return addr; eip is correct.
506 * But this is not boostable
507 */
508 *tos = orig_eip + (*tos - copy_eip);
509 goto no_change;
510 } else if (((p->ainsn.insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
511 ((p->ainsn.insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
512 /* eip is correct. And this is boostable */
513 p->ainsn.boostable = 1;
514 goto no_change;
515 }
516 default:
517 break;
518 }
519
520 if (p->ainsn.boostable == 0) {
521 if ((regs->eip > copy_eip) &&
522 (regs->eip - copy_eip) + 5 < MAX_INSN_SIZE) {
523 /*
524 * These instructions can be executed directly if it
525 * jumps back to correct address.
526 */
527 set_jmp_op((void *)regs->eip,
528 (void *)orig_eip + (regs->eip - copy_eip));
529 p->ainsn.boostable = 1;
530 } else {
531 p->ainsn.boostable = -1;
532 }
533 }
534
535 regs->eip = orig_eip + (regs->eip - copy_eip);
536
537 no_change:
538 return;
539 }
540
541 /*
542 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
543 * remain disabled thoroughout this function.
544 */
545 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
546 {
547 struct kprobe *cur = kprobe_running();
548 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
549
550 if (!cur)
551 return 0;
552
553 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
554 kcb->kprobe_status = KPROBE_HIT_SSDONE;
555 cur->post_handler(cur, regs, 0);
556 }
557
558 resume_execution(cur, regs, kcb);
559 regs->eflags |= kcb->kprobe_saved_eflags;
560 #ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT
561 if (raw_irqs_disabled_flags(regs->eflags))
562 trace_hardirqs_off();
563 else
564 trace_hardirqs_on();
565 #endif
566
567 /*Restore back the original saved kprobes variables and continue. */
568 if (kcb->kprobe_status == KPROBE_REENTER) {
569 restore_previous_kprobe(kcb);
570 goto out;
571 }
572 reset_current_kprobe();
573 out:
574 preempt_enable_no_resched();
575
576 /*
577 * if somebody else is singlestepping across a probe point, eflags
578 * will have TF set, in which case, continue the remaining processing
579 * of do_debug, as if this is not a probe hit.
580 */
581 if (regs->eflags & TF_MASK)
582 return 0;
583
584 return 1;
585 }
586
587 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
588 {
589 struct kprobe *cur = kprobe_running();
590 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
591
592 switch(kcb->kprobe_status) {
593 case KPROBE_HIT_SS:
594 case KPROBE_REENTER:
595 /*
596 * We are here because the instruction being single
597 * stepped caused a page fault. We reset the current
598 * kprobe and the eip points back to the probe address
599 * and allow the page fault handler to continue as a
600 * normal page fault.
601 */
602 regs->eip = (unsigned long)cur->addr;
603 regs->eflags |= kcb->kprobe_old_eflags;
604 if (kcb->kprobe_status == KPROBE_REENTER)
605 restore_previous_kprobe(kcb);
606 else
607 reset_current_kprobe();
608 preempt_enable_no_resched();
609 break;
610 case KPROBE_HIT_ACTIVE:
611 case KPROBE_HIT_SSDONE:
612 /*
613 * We increment the nmissed count for accounting,
614 * we can also use npre/npostfault count for accouting
615 * these specific fault cases.
616 */
617 kprobes_inc_nmissed_count(cur);
618
619 /*
620 * We come here because instructions in the pre/post
621 * handler caused the page_fault, this could happen
622 * if handler tries to access user space by
623 * copy_from_user(), get_user() etc. Let the
624 * user-specified handler try to fix it first.
625 */
626 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
627 return 1;
628
629 /*
630 * In case the user-specified fault handler returned
631 * zero, try to fix up.
632 */
633 if (fixup_exception(regs))
634 return 1;
635
636 /*
637 * fixup_exception() could not handle it,
638 * Let do_page_fault() fix it.
639 */
640 break;
641 default:
642 break;
643 }
644 return 0;
645 }
646
647 /*
648 * Wrapper routine to for handling exceptions.
649 */
650 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
651 unsigned long val, void *data)
652 {
653 struct die_args *args = (struct die_args *)data;
654 int ret = NOTIFY_DONE;
655
656 if (args->regs && user_mode_vm(args->regs))
657 return ret;
658
659 switch (val) {
660 case DIE_INT3:
661 if (kprobe_handler(args->regs))
662 ret = NOTIFY_STOP;
663 break;
664 case DIE_DEBUG:
665 if (post_kprobe_handler(args->regs))
666 ret = NOTIFY_STOP;
667 break;
668 case DIE_GPF:
669 case DIE_PAGE_FAULT:
670 /* kprobe_running() needs smp_processor_id() */
671 preempt_disable();
672 if (kprobe_running() &&
673 kprobe_fault_handler(args->regs, args->trapnr))
674 ret = NOTIFY_STOP;
675 preempt_enable();
676 break;
677 default:
678 break;
679 }
680 return ret;
681 }
682
683 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
684 {
685 struct jprobe *jp = container_of(p, struct jprobe, kp);
686 unsigned long addr;
687 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
688
689 kcb->jprobe_saved_regs = *regs;
690 kcb->jprobe_saved_esp = &regs->esp;
691 addr = (unsigned long)(kcb->jprobe_saved_esp);
692
693 /*
694 * TBD: As Linus pointed out, gcc assumes that the callee
695 * owns the argument space and could overwrite it, e.g.
696 * tailcall optimization. So, to be absolutely safe
697 * we also save and restore enough stack bytes to cover
698 * the argument area.
699 */
700 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
701 MIN_STACK_SIZE(addr));
702 regs->eflags &= ~IF_MASK;
703 trace_hardirqs_off();
704 regs->eip = (unsigned long)(jp->entry);
705 return 1;
706 }
707
708 void __kprobes jprobe_return(void)
709 {
710 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
711
712 asm volatile (" xchgl %%ebx,%%esp \n"
713 " int3 \n"
714 " .globl jprobe_return_end \n"
715 " jprobe_return_end: \n"
716 " nop \n"::"b"
717 (kcb->jprobe_saved_esp):"memory");
718 }
719
720 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
721 {
722 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
723 u8 *addr = (u8 *) (regs->eip - 1);
724 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_esp);
725 struct jprobe *jp = container_of(p, struct jprobe, kp);
726
727 if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
728 if (&regs->esp != kcb->jprobe_saved_esp) {
729 struct pt_regs *saved_regs =
730 container_of(kcb->jprobe_saved_esp,
731 struct pt_regs, esp);
732 printk("current esp %p does not match saved esp %p\n",
733 &regs->esp, kcb->jprobe_saved_esp);
734 printk("Saved registers for jprobe %p\n", jp);
735 show_registers(saved_regs);
736 printk("Current registers\n");
737 show_registers(regs);
738 BUG();
739 }
740 *regs = kcb->jprobe_saved_regs;
741 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
742 MIN_STACK_SIZE(stack_addr));
743 preempt_enable_no_resched();
744 return 1;
745 }
746 return 0;
747 }
748
749 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
750 {
751 return 0;
752 }
753
754 int __init arch_init_kprobes(void)
755 {
756 return 0;
757 }
This page took 0.255546 seconds and 5 git commands to generate.