kexec-bzImage64: support for loading bzImage using 64bit entry
[deliverable/linux.git] / arch / x86 / kernel / machine_kexec_64.c
1 /*
2 * handle transition of Linux booting another kernel
3 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
9 #define pr_fmt(fmt) "kexec: " fmt
10
11 #include <linux/mm.h>
12 #include <linux/kexec.h>
13 #include <linux/string.h>
14 #include <linux/gfp.h>
15 #include <linux/reboot.h>
16 #include <linux/numa.h>
17 #include <linux/ftrace.h>
18 #include <linux/io.h>
19 #include <linux/suspend.h>
20
21 #include <asm/init.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/debugreg.h>
26 #include <asm/kexec-bzimage64.h>
27
28 static struct kexec_file_ops *kexec_file_loaders[] = {
29 &kexec_bzImage64_ops,
30 };
31
32 static void free_transition_pgtable(struct kimage *image)
33 {
34 free_page((unsigned long)image->arch.pud);
35 free_page((unsigned long)image->arch.pmd);
36 free_page((unsigned long)image->arch.pte);
37 }
38
39 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
40 {
41 pud_t *pud;
42 pmd_t *pmd;
43 pte_t *pte;
44 unsigned long vaddr, paddr;
45 int result = -ENOMEM;
46
47 vaddr = (unsigned long)relocate_kernel;
48 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
49 pgd += pgd_index(vaddr);
50 if (!pgd_present(*pgd)) {
51 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
52 if (!pud)
53 goto err;
54 image->arch.pud = pud;
55 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
56 }
57 pud = pud_offset(pgd, vaddr);
58 if (!pud_present(*pud)) {
59 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
60 if (!pmd)
61 goto err;
62 image->arch.pmd = pmd;
63 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
64 }
65 pmd = pmd_offset(pud, vaddr);
66 if (!pmd_present(*pmd)) {
67 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
68 if (!pte)
69 goto err;
70 image->arch.pte = pte;
71 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
72 }
73 pte = pte_offset_kernel(pmd, vaddr);
74 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
75 return 0;
76 err:
77 free_transition_pgtable(image);
78 return result;
79 }
80
81 static void *alloc_pgt_page(void *data)
82 {
83 struct kimage *image = (struct kimage *)data;
84 struct page *page;
85 void *p = NULL;
86
87 page = kimage_alloc_control_pages(image, 0);
88 if (page) {
89 p = page_address(page);
90 clear_page(p);
91 }
92
93 return p;
94 }
95
96 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
97 {
98 struct x86_mapping_info info = {
99 .alloc_pgt_page = alloc_pgt_page,
100 .context = image,
101 .pmd_flag = __PAGE_KERNEL_LARGE_EXEC,
102 };
103 unsigned long mstart, mend;
104 pgd_t *level4p;
105 int result;
106 int i;
107
108 level4p = (pgd_t *)__va(start_pgtable);
109 clear_page(level4p);
110 for (i = 0; i < nr_pfn_mapped; i++) {
111 mstart = pfn_mapped[i].start << PAGE_SHIFT;
112 mend = pfn_mapped[i].end << PAGE_SHIFT;
113
114 result = kernel_ident_mapping_init(&info,
115 level4p, mstart, mend);
116 if (result)
117 return result;
118 }
119
120 /*
121 * segments's mem ranges could be outside 0 ~ max_pfn,
122 * for example when jump back to original kernel from kexeced kernel.
123 * or first kernel is booted with user mem map, and second kernel
124 * could be loaded out of that range.
125 */
126 for (i = 0; i < image->nr_segments; i++) {
127 mstart = image->segment[i].mem;
128 mend = mstart + image->segment[i].memsz;
129
130 result = kernel_ident_mapping_init(&info,
131 level4p, mstart, mend);
132
133 if (result)
134 return result;
135 }
136
137 return init_transition_pgtable(image, level4p);
138 }
139
140 static void set_idt(void *newidt, u16 limit)
141 {
142 struct desc_ptr curidt;
143
144 /* x86-64 supports unaliged loads & stores */
145 curidt.size = limit;
146 curidt.address = (unsigned long)newidt;
147
148 __asm__ __volatile__ (
149 "lidtq %0\n"
150 : : "m" (curidt)
151 );
152 };
153
154
155 static void set_gdt(void *newgdt, u16 limit)
156 {
157 struct desc_ptr curgdt;
158
159 /* x86-64 supports unaligned loads & stores */
160 curgdt.size = limit;
161 curgdt.address = (unsigned long)newgdt;
162
163 __asm__ __volatile__ (
164 "lgdtq %0\n"
165 : : "m" (curgdt)
166 );
167 };
168
169 static void load_segments(void)
170 {
171 __asm__ __volatile__ (
172 "\tmovl %0,%%ds\n"
173 "\tmovl %0,%%es\n"
174 "\tmovl %0,%%ss\n"
175 "\tmovl %0,%%fs\n"
176 "\tmovl %0,%%gs\n"
177 : : "a" (__KERNEL_DS) : "memory"
178 );
179 }
180
181 int machine_kexec_prepare(struct kimage *image)
182 {
183 unsigned long start_pgtable;
184 int result;
185
186 /* Calculate the offsets */
187 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
188
189 /* Setup the identity mapped 64bit page table */
190 result = init_pgtable(image, start_pgtable);
191 if (result)
192 return result;
193
194 return 0;
195 }
196
197 void machine_kexec_cleanup(struct kimage *image)
198 {
199 free_transition_pgtable(image);
200 }
201
202 /*
203 * Do not allocate memory (or fail in any way) in machine_kexec().
204 * We are past the point of no return, committed to rebooting now.
205 */
206 void machine_kexec(struct kimage *image)
207 {
208 unsigned long page_list[PAGES_NR];
209 void *control_page;
210 int save_ftrace_enabled;
211
212 #ifdef CONFIG_KEXEC_JUMP
213 if (image->preserve_context)
214 save_processor_state();
215 #endif
216
217 save_ftrace_enabled = __ftrace_enabled_save();
218
219 /* Interrupts aren't acceptable while we reboot */
220 local_irq_disable();
221 hw_breakpoint_disable();
222
223 if (image->preserve_context) {
224 #ifdef CONFIG_X86_IO_APIC
225 /*
226 * We need to put APICs in legacy mode so that we can
227 * get timer interrupts in second kernel. kexec/kdump
228 * paths already have calls to disable_IO_APIC() in
229 * one form or other. kexec jump path also need
230 * one.
231 */
232 disable_IO_APIC();
233 #endif
234 }
235
236 control_page = page_address(image->control_code_page) + PAGE_SIZE;
237 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
238
239 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
240 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
241 page_list[PA_TABLE_PAGE] =
242 (unsigned long)__pa(page_address(image->control_code_page));
243
244 if (image->type == KEXEC_TYPE_DEFAULT)
245 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
246 << PAGE_SHIFT);
247
248 /*
249 * The segment registers are funny things, they have both a
250 * visible and an invisible part. Whenever the visible part is
251 * set to a specific selector, the invisible part is loaded
252 * with from a table in memory. At no other time is the
253 * descriptor table in memory accessed.
254 *
255 * I take advantage of this here by force loading the
256 * segments, before I zap the gdt with an invalid value.
257 */
258 load_segments();
259 /*
260 * The gdt & idt are now invalid.
261 * If you want to load them you must set up your own idt & gdt.
262 */
263 set_gdt(phys_to_virt(0), 0);
264 set_idt(phys_to_virt(0), 0);
265
266 /* now call it */
267 image->start = relocate_kernel((unsigned long)image->head,
268 (unsigned long)page_list,
269 image->start,
270 image->preserve_context);
271
272 #ifdef CONFIG_KEXEC_JUMP
273 if (image->preserve_context)
274 restore_processor_state();
275 #endif
276
277 __ftrace_enabled_restore(save_ftrace_enabled);
278 }
279
280 void arch_crash_save_vmcoreinfo(void)
281 {
282 VMCOREINFO_SYMBOL(phys_base);
283 VMCOREINFO_SYMBOL(init_level4_pgt);
284
285 #ifdef CONFIG_NUMA
286 VMCOREINFO_SYMBOL(node_data);
287 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
288 #endif
289 vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
290 (unsigned long)&_text - __START_KERNEL);
291 }
292
293 /* arch-dependent functionality related to kexec file-based syscall */
294
295 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
296 unsigned long buf_len)
297 {
298 int i, ret = -ENOEXEC;
299 struct kexec_file_ops *fops;
300
301 for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
302 fops = kexec_file_loaders[i];
303 if (!fops || !fops->probe)
304 continue;
305
306 ret = fops->probe(buf, buf_len);
307 if (!ret) {
308 image->fops = fops;
309 return ret;
310 }
311 }
312
313 return ret;
314 }
315
316 void *arch_kexec_kernel_image_load(struct kimage *image)
317 {
318 if (!image->fops || !image->fops->load)
319 return ERR_PTR(-ENOEXEC);
320
321 return image->fops->load(image, image->kernel_buf,
322 image->kernel_buf_len, image->initrd_buf,
323 image->initrd_buf_len, image->cmdline_buf,
324 image->cmdline_buf_len);
325 }
326
327 int arch_kimage_file_post_load_cleanup(struct kimage *image)
328 {
329 if (!image->fops || !image->fops->cleanup)
330 return 0;
331
332 return image->fops->cleanup(image->image_loader_data);
333 }
334
335 /*
336 * Apply purgatory relocations.
337 *
338 * ehdr: Pointer to elf headers
339 * sechdrs: Pointer to section headers.
340 * relsec: section index of SHT_RELA section.
341 *
342 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
343 */
344 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
345 Elf64_Shdr *sechdrs, unsigned int relsec)
346 {
347 unsigned int i;
348 Elf64_Rela *rel;
349 Elf64_Sym *sym;
350 void *location;
351 Elf64_Shdr *section, *symtabsec;
352 unsigned long address, sec_base, value;
353 const char *strtab, *name, *shstrtab;
354
355 /*
356 * ->sh_offset has been modified to keep the pointer to section
357 * contents in memory
358 */
359 rel = (void *)sechdrs[relsec].sh_offset;
360
361 /* Section to which relocations apply */
362 section = &sechdrs[sechdrs[relsec].sh_info];
363
364 pr_debug("Applying relocate section %u to %u\n", relsec,
365 sechdrs[relsec].sh_info);
366
367 /* Associated symbol table */
368 symtabsec = &sechdrs[sechdrs[relsec].sh_link];
369
370 /* String table */
371 if (symtabsec->sh_link >= ehdr->e_shnum) {
372 /* Invalid strtab section number */
373 pr_err("Invalid string table section index %d\n",
374 symtabsec->sh_link);
375 return -ENOEXEC;
376 }
377
378 strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
379
380 /* section header string table */
381 shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
382
383 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
384
385 /*
386 * rel[i].r_offset contains byte offset from beginning
387 * of section to the storage unit affected.
388 *
389 * This is location to update (->sh_offset). This is temporary
390 * buffer where section is currently loaded. This will finally
391 * be loaded to a different address later, pointed to by
392 * ->sh_addr. kexec takes care of moving it
393 * (kexec_load_segment()).
394 */
395 location = (void *)(section->sh_offset + rel[i].r_offset);
396
397 /* Final address of the location */
398 address = section->sh_addr + rel[i].r_offset;
399
400 /*
401 * rel[i].r_info contains information about symbol table index
402 * w.r.t which relocation must be made and type of relocation
403 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
404 * these respectively.
405 */
406 sym = (Elf64_Sym *)symtabsec->sh_offset +
407 ELF64_R_SYM(rel[i].r_info);
408
409 if (sym->st_name)
410 name = strtab + sym->st_name;
411 else
412 name = shstrtab + sechdrs[sym->st_shndx].sh_name;
413
414 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
415 name, sym->st_info, sym->st_shndx, sym->st_value,
416 sym->st_size);
417
418 if (sym->st_shndx == SHN_UNDEF) {
419 pr_err("Undefined symbol: %s\n", name);
420 return -ENOEXEC;
421 }
422
423 if (sym->st_shndx == SHN_COMMON) {
424 pr_err("symbol '%s' in common section\n", name);
425 return -ENOEXEC;
426 }
427
428 if (sym->st_shndx == SHN_ABS)
429 sec_base = 0;
430 else if (sym->st_shndx >= ehdr->e_shnum) {
431 pr_err("Invalid section %d for symbol %s\n",
432 sym->st_shndx, name);
433 return -ENOEXEC;
434 } else
435 sec_base = sechdrs[sym->st_shndx].sh_addr;
436
437 value = sym->st_value;
438 value += sec_base;
439 value += rel[i].r_addend;
440
441 switch (ELF64_R_TYPE(rel[i].r_info)) {
442 case R_X86_64_NONE:
443 break;
444 case R_X86_64_64:
445 *(u64 *)location = value;
446 break;
447 case R_X86_64_32:
448 *(u32 *)location = value;
449 if (value != *(u32 *)location)
450 goto overflow;
451 break;
452 case R_X86_64_32S:
453 *(s32 *)location = value;
454 if ((s64)value != *(s32 *)location)
455 goto overflow;
456 break;
457 case R_X86_64_PC32:
458 value -= (u64)address;
459 *(u32 *)location = value;
460 break;
461 default:
462 pr_err("Unknown rela relocation: %llu\n",
463 ELF64_R_TYPE(rel[i].r_info));
464 return -ENOEXEC;
465 }
466 }
467 return 0;
468
469 overflow:
470 pr_err("Overflow in relocation type %d value 0x%lx\n",
471 (int)ELF64_R_TYPE(rel[i].r_info), value);
472 return -ENOEXEC;
473 }
This page took 0.039354 seconds and 5 git commands to generate.