Merge tag 'usb-3.11-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[deliverable/linux.git] / arch / x86 / kernel / nmi.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10 /*
11 * Handle hardware traps and faults.
12 */
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/nmi.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/slab.h>
21 #include <linux/export.h>
22
23 #if defined(CONFIG_EDAC)
24 #include <linux/edac.h>
25 #endif
26
27 #include <linux/atomic.h>
28 #include <asm/traps.h>
29 #include <asm/mach_traps.h>
30 #include <asm/nmi.h>
31 #include <asm/x86_init.h>
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/nmi.h>
35
36 struct nmi_desc {
37 spinlock_t lock;
38 struct list_head head;
39 };
40
41 static struct nmi_desc nmi_desc[NMI_MAX] =
42 {
43 {
44 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
45 .head = LIST_HEAD_INIT(nmi_desc[0].head),
46 },
47 {
48 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
49 .head = LIST_HEAD_INIT(nmi_desc[1].head),
50 },
51 {
52 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
53 .head = LIST_HEAD_INIT(nmi_desc[2].head),
54 },
55 {
56 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
57 .head = LIST_HEAD_INIT(nmi_desc[3].head),
58 },
59
60 };
61
62 struct nmi_stats {
63 unsigned int normal;
64 unsigned int unknown;
65 unsigned int external;
66 unsigned int swallow;
67 };
68
69 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
70
71 static int ignore_nmis;
72
73 int unknown_nmi_panic;
74 /*
75 * Prevent NMI reason port (0x61) being accessed simultaneously, can
76 * only be used in NMI handler.
77 */
78 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
79
80 static int __init setup_unknown_nmi_panic(char *str)
81 {
82 unknown_nmi_panic = 1;
83 return 1;
84 }
85 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
86
87 #define nmi_to_desc(type) (&nmi_desc[type])
88
89 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
90 static int __init nmi_warning_debugfs(void)
91 {
92 debugfs_create_u64("nmi_longest_ns", 0644,
93 arch_debugfs_dir, &nmi_longest_ns);
94 return 0;
95 }
96 fs_initcall(nmi_warning_debugfs);
97
98 static int __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
99 {
100 struct nmi_desc *desc = nmi_to_desc(type);
101 struct nmiaction *a;
102 int handled=0;
103
104 rcu_read_lock();
105
106 /*
107 * NMIs are edge-triggered, which means if you have enough
108 * of them concurrently, you can lose some because only one
109 * can be latched at any given time. Walk the whole list
110 * to handle those situations.
111 */
112 list_for_each_entry_rcu(a, &desc->head, list) {
113 u64 before, delta, whole_msecs;
114 int remainder_ns, decimal_msecs, thishandled;
115
116 before = local_clock();
117 thishandled = a->handler(type, regs);
118 handled += thishandled;
119 delta = local_clock() - before;
120 trace_nmi_handler(a->handler, (int)delta, thishandled);
121
122 if (delta < nmi_longest_ns)
123 continue;
124
125 nmi_longest_ns = delta;
126 whole_msecs = delta;
127 remainder_ns = do_div(whole_msecs, (1000 * 1000));
128 decimal_msecs = remainder_ns / 1000;
129 printk_ratelimited(KERN_INFO
130 "INFO: NMI handler (%ps) took too long to run: "
131 "%lld.%03d msecs\n", a->handler, whole_msecs,
132 decimal_msecs);
133 }
134
135 rcu_read_unlock();
136
137 /* return total number of NMI events handled */
138 return handled;
139 }
140
141 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
142 {
143 struct nmi_desc *desc = nmi_to_desc(type);
144 unsigned long flags;
145
146 if (!action->handler)
147 return -EINVAL;
148
149 spin_lock_irqsave(&desc->lock, flags);
150
151 /*
152 * most handlers of type NMI_UNKNOWN never return because
153 * they just assume the NMI is theirs. Just a sanity check
154 * to manage expectations
155 */
156 WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
157 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
158 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
159
160 /*
161 * some handlers need to be executed first otherwise a fake
162 * event confuses some handlers (kdump uses this flag)
163 */
164 if (action->flags & NMI_FLAG_FIRST)
165 list_add_rcu(&action->list, &desc->head);
166 else
167 list_add_tail_rcu(&action->list, &desc->head);
168
169 spin_unlock_irqrestore(&desc->lock, flags);
170 return 0;
171 }
172 EXPORT_SYMBOL(__register_nmi_handler);
173
174 void unregister_nmi_handler(unsigned int type, const char *name)
175 {
176 struct nmi_desc *desc = nmi_to_desc(type);
177 struct nmiaction *n;
178 unsigned long flags;
179
180 spin_lock_irqsave(&desc->lock, flags);
181
182 list_for_each_entry_rcu(n, &desc->head, list) {
183 /*
184 * the name passed in to describe the nmi handler
185 * is used as the lookup key
186 */
187 if (!strcmp(n->name, name)) {
188 WARN(in_nmi(),
189 "Trying to free NMI (%s) from NMI context!\n", n->name);
190 list_del_rcu(&n->list);
191 break;
192 }
193 }
194
195 spin_unlock_irqrestore(&desc->lock, flags);
196 synchronize_rcu();
197 }
198 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
199
200 static __kprobes void
201 pci_serr_error(unsigned char reason, struct pt_regs *regs)
202 {
203 /* check to see if anyone registered against these types of errors */
204 if (nmi_handle(NMI_SERR, regs, false))
205 return;
206
207 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
208 reason, smp_processor_id());
209
210 /*
211 * On some machines, PCI SERR line is used to report memory
212 * errors. EDAC makes use of it.
213 */
214 #if defined(CONFIG_EDAC)
215 if (edac_handler_set()) {
216 edac_atomic_assert_error();
217 return;
218 }
219 #endif
220
221 if (panic_on_unrecovered_nmi)
222 panic("NMI: Not continuing");
223
224 pr_emerg("Dazed and confused, but trying to continue\n");
225
226 /* Clear and disable the PCI SERR error line. */
227 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
228 outb(reason, NMI_REASON_PORT);
229 }
230
231 static __kprobes void
232 io_check_error(unsigned char reason, struct pt_regs *regs)
233 {
234 unsigned long i;
235
236 /* check to see if anyone registered against these types of errors */
237 if (nmi_handle(NMI_IO_CHECK, regs, false))
238 return;
239
240 pr_emerg(
241 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
242 reason, smp_processor_id());
243 show_regs(regs);
244
245 if (panic_on_io_nmi)
246 panic("NMI IOCK error: Not continuing");
247
248 /* Re-enable the IOCK line, wait for a few seconds */
249 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
250 outb(reason, NMI_REASON_PORT);
251
252 i = 20000;
253 while (--i) {
254 touch_nmi_watchdog();
255 udelay(100);
256 }
257
258 reason &= ~NMI_REASON_CLEAR_IOCHK;
259 outb(reason, NMI_REASON_PORT);
260 }
261
262 static __kprobes void
263 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
264 {
265 int handled;
266
267 /*
268 * Use 'false' as back-to-back NMIs are dealt with one level up.
269 * Of course this makes having multiple 'unknown' handlers useless
270 * as only the first one is ever run (unless it can actually determine
271 * if it caused the NMI)
272 */
273 handled = nmi_handle(NMI_UNKNOWN, regs, false);
274 if (handled) {
275 __this_cpu_add(nmi_stats.unknown, handled);
276 return;
277 }
278
279 __this_cpu_add(nmi_stats.unknown, 1);
280
281 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
282 reason, smp_processor_id());
283
284 pr_emerg("Do you have a strange power saving mode enabled?\n");
285 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
286 panic("NMI: Not continuing");
287
288 pr_emerg("Dazed and confused, but trying to continue\n");
289 }
290
291 static DEFINE_PER_CPU(bool, swallow_nmi);
292 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
293
294 static __kprobes void default_do_nmi(struct pt_regs *regs)
295 {
296 unsigned char reason = 0;
297 int handled;
298 bool b2b = false;
299
300 /*
301 * CPU-specific NMI must be processed before non-CPU-specific
302 * NMI, otherwise we may lose it, because the CPU-specific
303 * NMI can not be detected/processed on other CPUs.
304 */
305
306 /*
307 * Back-to-back NMIs are interesting because they can either
308 * be two NMI or more than two NMIs (any thing over two is dropped
309 * due to NMI being edge-triggered). If this is the second half
310 * of the back-to-back NMI, assume we dropped things and process
311 * more handlers. Otherwise reset the 'swallow' NMI behaviour
312 */
313 if (regs->ip == __this_cpu_read(last_nmi_rip))
314 b2b = true;
315 else
316 __this_cpu_write(swallow_nmi, false);
317
318 __this_cpu_write(last_nmi_rip, regs->ip);
319
320 handled = nmi_handle(NMI_LOCAL, regs, b2b);
321 __this_cpu_add(nmi_stats.normal, handled);
322 if (handled) {
323 /*
324 * There are cases when a NMI handler handles multiple
325 * events in the current NMI. One of these events may
326 * be queued for in the next NMI. Because the event is
327 * already handled, the next NMI will result in an unknown
328 * NMI. Instead lets flag this for a potential NMI to
329 * swallow.
330 */
331 if (handled > 1)
332 __this_cpu_write(swallow_nmi, true);
333 return;
334 }
335
336 /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
337 raw_spin_lock(&nmi_reason_lock);
338 reason = x86_platform.get_nmi_reason();
339
340 if (reason & NMI_REASON_MASK) {
341 if (reason & NMI_REASON_SERR)
342 pci_serr_error(reason, regs);
343 else if (reason & NMI_REASON_IOCHK)
344 io_check_error(reason, regs);
345 #ifdef CONFIG_X86_32
346 /*
347 * Reassert NMI in case it became active
348 * meanwhile as it's edge-triggered:
349 */
350 reassert_nmi();
351 #endif
352 __this_cpu_add(nmi_stats.external, 1);
353 raw_spin_unlock(&nmi_reason_lock);
354 return;
355 }
356 raw_spin_unlock(&nmi_reason_lock);
357
358 /*
359 * Only one NMI can be latched at a time. To handle
360 * this we may process multiple nmi handlers at once to
361 * cover the case where an NMI is dropped. The downside
362 * to this approach is we may process an NMI prematurely,
363 * while its real NMI is sitting latched. This will cause
364 * an unknown NMI on the next run of the NMI processing.
365 *
366 * We tried to flag that condition above, by setting the
367 * swallow_nmi flag when we process more than one event.
368 * This condition is also only present on the second half
369 * of a back-to-back NMI, so we flag that condition too.
370 *
371 * If both are true, we assume we already processed this
372 * NMI previously and we swallow it. Otherwise we reset
373 * the logic.
374 *
375 * There are scenarios where we may accidentally swallow
376 * a 'real' unknown NMI. For example, while processing
377 * a perf NMI another perf NMI comes in along with a
378 * 'real' unknown NMI. These two NMIs get combined into
379 * one (as descibed above). When the next NMI gets
380 * processed, it will be flagged by perf as handled, but
381 * noone will know that there was a 'real' unknown NMI sent
382 * also. As a result it gets swallowed. Or if the first
383 * perf NMI returns two events handled then the second
384 * NMI will get eaten by the logic below, again losing a
385 * 'real' unknown NMI. But this is the best we can do
386 * for now.
387 */
388 if (b2b && __this_cpu_read(swallow_nmi))
389 __this_cpu_add(nmi_stats.swallow, 1);
390 else
391 unknown_nmi_error(reason, regs);
392 }
393
394 /*
395 * NMIs can hit breakpoints which will cause it to lose its
396 * NMI context with the CPU when the breakpoint does an iret.
397 */
398 #ifdef CONFIG_X86_32
399 /*
400 * For i386, NMIs use the same stack as the kernel, and we can
401 * add a workaround to the iret problem in C (preventing nested
402 * NMIs if an NMI takes a trap). Simply have 3 states the NMI
403 * can be in:
404 *
405 * 1) not running
406 * 2) executing
407 * 3) latched
408 *
409 * When no NMI is in progress, it is in the "not running" state.
410 * When an NMI comes in, it goes into the "executing" state.
411 * Normally, if another NMI is triggered, it does not interrupt
412 * the running NMI and the HW will simply latch it so that when
413 * the first NMI finishes, it will restart the second NMI.
414 * (Note, the latch is binary, thus multiple NMIs triggering,
415 * when one is running, are ignored. Only one NMI is restarted.)
416 *
417 * If an NMI hits a breakpoint that executes an iret, another
418 * NMI can preempt it. We do not want to allow this new NMI
419 * to run, but we want to execute it when the first one finishes.
420 * We set the state to "latched", and the exit of the first NMI will
421 * perform a dec_return, if the result is zero (NOT_RUNNING), then
422 * it will simply exit the NMI handler. If not, the dec_return
423 * would have set the state to NMI_EXECUTING (what we want it to
424 * be when we are running). In this case, we simply jump back
425 * to rerun the NMI handler again, and restart the 'latched' NMI.
426 *
427 * No trap (breakpoint or page fault) should be hit before nmi_restart,
428 * thus there is no race between the first check of state for NOT_RUNNING
429 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
430 * at this point.
431 *
432 * In case the NMI takes a page fault, we need to save off the CR2
433 * because the NMI could have preempted another page fault and corrupt
434 * the CR2 that is about to be read. As nested NMIs must be restarted
435 * and they can not take breakpoints or page faults, the update of the
436 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
437 * Otherwise, there would be a race of another nested NMI coming in
438 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
439 */
440 enum nmi_states {
441 NMI_NOT_RUNNING = 0,
442 NMI_EXECUTING,
443 NMI_LATCHED,
444 };
445 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
446 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
447
448 #define nmi_nesting_preprocess(regs) \
449 do { \
450 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { \
451 this_cpu_write(nmi_state, NMI_LATCHED); \
452 return; \
453 } \
454 this_cpu_write(nmi_state, NMI_EXECUTING); \
455 this_cpu_write(nmi_cr2, read_cr2()); \
456 } while (0); \
457 nmi_restart:
458
459 #define nmi_nesting_postprocess() \
460 do { \
461 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) \
462 write_cr2(this_cpu_read(nmi_cr2)); \
463 if (this_cpu_dec_return(nmi_state)) \
464 goto nmi_restart; \
465 } while (0)
466 #else /* x86_64 */
467 /*
468 * In x86_64 things are a bit more difficult. This has the same problem
469 * where an NMI hitting a breakpoint that calls iret will remove the
470 * NMI context, allowing a nested NMI to enter. What makes this more
471 * difficult is that both NMIs and breakpoints have their own stack.
472 * When a new NMI or breakpoint is executed, the stack is set to a fixed
473 * point. If an NMI is nested, it will have its stack set at that same
474 * fixed address that the first NMI had, and will start corrupting the
475 * stack. This is handled in entry_64.S, but the same problem exists with
476 * the breakpoint stack.
477 *
478 * If a breakpoint is being processed, and the debug stack is being used,
479 * if an NMI comes in and also hits a breakpoint, the stack pointer
480 * will be set to the same fixed address as the breakpoint that was
481 * interrupted, causing that stack to be corrupted. To handle this case,
482 * check if the stack that was interrupted is the debug stack, and if
483 * so, change the IDT so that new breakpoints will use the current stack
484 * and not switch to the fixed address. On return of the NMI, switch back
485 * to the original IDT.
486 */
487 static DEFINE_PER_CPU(int, update_debug_stack);
488
489 static inline void nmi_nesting_preprocess(struct pt_regs *regs)
490 {
491 /*
492 * If we interrupted a breakpoint, it is possible that
493 * the nmi handler will have breakpoints too. We need to
494 * change the IDT such that breakpoints that happen here
495 * continue to use the NMI stack.
496 */
497 if (unlikely(is_debug_stack(regs->sp))) {
498 debug_stack_set_zero();
499 this_cpu_write(update_debug_stack, 1);
500 }
501 }
502
503 static inline void nmi_nesting_postprocess(void)
504 {
505 if (unlikely(this_cpu_read(update_debug_stack))) {
506 debug_stack_reset();
507 this_cpu_write(update_debug_stack, 0);
508 }
509 }
510 #endif
511
512 dotraplinkage notrace __kprobes void
513 do_nmi(struct pt_regs *regs, long error_code)
514 {
515 nmi_nesting_preprocess(regs);
516
517 nmi_enter();
518
519 inc_irq_stat(__nmi_count);
520
521 if (!ignore_nmis)
522 default_do_nmi(regs);
523
524 nmi_exit();
525
526 /* On i386, may loop back to preprocess */
527 nmi_nesting_postprocess();
528 }
529
530 void stop_nmi(void)
531 {
532 ignore_nmis++;
533 }
534
535 void restart_nmi(void)
536 {
537 ignore_nmis--;
538 }
539
540 /* reset the back-to-back NMI logic */
541 void local_touch_nmi(void)
542 {
543 __this_cpu_write(last_nmi_rip, 0);
544 }
545 EXPORT_SYMBOL_GPL(local_touch_nmi);
This page took 0.050104 seconds and 5 git commands to generate.