hw-breakpoints: Rewrite the hw-breakpoints layer on top of perf events
[deliverable/linux.git] / arch / x86 / kernel / process.c
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <trace/events/power.h>
13 #include <linux/hw_breakpoint.h>
14 #include <asm/system.h>
15 #include <asm/apic.h>
16 #include <asm/syscalls.h>
17 #include <asm/idle.h>
18 #include <asm/uaccess.h>
19 #include <asm/i387.h>
20 #include <asm/ds.h>
21 #include <asm/debugreg.h>
22
23 unsigned long idle_halt;
24 EXPORT_SYMBOL(idle_halt);
25 unsigned long idle_nomwait;
26 EXPORT_SYMBOL(idle_nomwait);
27
28 struct kmem_cache *task_xstate_cachep;
29
30 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
31 {
32 *dst = *src;
33 if (src->thread.xstate) {
34 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
35 GFP_KERNEL);
36 if (!dst->thread.xstate)
37 return -ENOMEM;
38 WARN_ON((unsigned long)dst->thread.xstate & 15);
39 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
40 }
41 return 0;
42 }
43
44 void free_thread_xstate(struct task_struct *tsk)
45 {
46 if (tsk->thread.xstate) {
47 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
48 tsk->thread.xstate = NULL;
49 }
50
51 WARN(tsk->thread.ds_ctx, "leaking DS context\n");
52 }
53
54 void free_thread_info(struct thread_info *ti)
55 {
56 free_thread_xstate(ti->task);
57 free_pages((unsigned long)ti, get_order(THREAD_SIZE));
58 }
59
60 void arch_task_cache_init(void)
61 {
62 task_xstate_cachep =
63 kmem_cache_create("task_xstate", xstate_size,
64 __alignof__(union thread_xstate),
65 SLAB_PANIC | SLAB_NOTRACK, NULL);
66 }
67
68 /*
69 * Free current thread data structures etc..
70 */
71 void exit_thread(void)
72 {
73 struct task_struct *me = current;
74 struct thread_struct *t = &me->thread;
75 unsigned long *bp = t->io_bitmap_ptr;
76
77 if (bp) {
78 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
79
80 t->io_bitmap_ptr = NULL;
81 clear_thread_flag(TIF_IO_BITMAP);
82 /*
83 * Careful, clear this in the TSS too:
84 */
85 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
86 t->io_bitmap_max = 0;
87 put_cpu();
88 kfree(bp);
89 }
90 }
91
92 void flush_thread(void)
93 {
94 struct task_struct *tsk = current;
95
96 #ifdef CONFIG_X86_64
97 if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
98 clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
99 if (test_tsk_thread_flag(tsk, TIF_IA32)) {
100 clear_tsk_thread_flag(tsk, TIF_IA32);
101 } else {
102 set_tsk_thread_flag(tsk, TIF_IA32);
103 current_thread_info()->status |= TS_COMPAT;
104 }
105 }
106 #endif
107
108 flush_ptrace_hw_breakpoint(tsk);
109 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
110 /*
111 * Forget coprocessor state..
112 */
113 tsk->fpu_counter = 0;
114 clear_fpu(tsk);
115 clear_used_math();
116 }
117
118 static void hard_disable_TSC(void)
119 {
120 write_cr4(read_cr4() | X86_CR4_TSD);
121 }
122
123 void disable_TSC(void)
124 {
125 preempt_disable();
126 if (!test_and_set_thread_flag(TIF_NOTSC))
127 /*
128 * Must flip the CPU state synchronously with
129 * TIF_NOTSC in the current running context.
130 */
131 hard_disable_TSC();
132 preempt_enable();
133 }
134
135 static void hard_enable_TSC(void)
136 {
137 write_cr4(read_cr4() & ~X86_CR4_TSD);
138 }
139
140 static void enable_TSC(void)
141 {
142 preempt_disable();
143 if (test_and_clear_thread_flag(TIF_NOTSC))
144 /*
145 * Must flip the CPU state synchronously with
146 * TIF_NOTSC in the current running context.
147 */
148 hard_enable_TSC();
149 preempt_enable();
150 }
151
152 int get_tsc_mode(unsigned long adr)
153 {
154 unsigned int val;
155
156 if (test_thread_flag(TIF_NOTSC))
157 val = PR_TSC_SIGSEGV;
158 else
159 val = PR_TSC_ENABLE;
160
161 return put_user(val, (unsigned int __user *)adr);
162 }
163
164 int set_tsc_mode(unsigned int val)
165 {
166 if (val == PR_TSC_SIGSEGV)
167 disable_TSC();
168 else if (val == PR_TSC_ENABLE)
169 enable_TSC();
170 else
171 return -EINVAL;
172
173 return 0;
174 }
175
176 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
177 struct tss_struct *tss)
178 {
179 struct thread_struct *prev, *next;
180
181 prev = &prev_p->thread;
182 next = &next_p->thread;
183
184 if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
185 test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
186 ds_switch_to(prev_p, next_p);
187 else if (next->debugctlmsr != prev->debugctlmsr)
188 update_debugctlmsr(next->debugctlmsr);
189
190 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
191 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
192 /* prev and next are different */
193 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
194 hard_disable_TSC();
195 else
196 hard_enable_TSC();
197 }
198
199 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
200 /*
201 * Copy the relevant range of the IO bitmap.
202 * Normally this is 128 bytes or less:
203 */
204 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
205 max(prev->io_bitmap_max, next->io_bitmap_max));
206 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
207 /*
208 * Clear any possible leftover bits:
209 */
210 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
211 }
212 }
213
214 int sys_fork(struct pt_regs *regs)
215 {
216 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
217 }
218
219 /*
220 * This is trivial, and on the face of it looks like it
221 * could equally well be done in user mode.
222 *
223 * Not so, for quite unobvious reasons - register pressure.
224 * In user mode vfork() cannot have a stack frame, and if
225 * done by calling the "clone()" system call directly, you
226 * do not have enough call-clobbered registers to hold all
227 * the information you need.
228 */
229 int sys_vfork(struct pt_regs *regs)
230 {
231 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
232 NULL, NULL);
233 }
234
235
236 /*
237 * Idle related variables and functions
238 */
239 unsigned long boot_option_idle_override = 0;
240 EXPORT_SYMBOL(boot_option_idle_override);
241
242 /*
243 * Powermanagement idle function, if any..
244 */
245 void (*pm_idle)(void);
246 EXPORT_SYMBOL(pm_idle);
247
248 #ifdef CONFIG_X86_32
249 /*
250 * This halt magic was a workaround for ancient floppy DMA
251 * wreckage. It should be safe to remove.
252 */
253 static int hlt_counter;
254 void disable_hlt(void)
255 {
256 hlt_counter++;
257 }
258 EXPORT_SYMBOL(disable_hlt);
259
260 void enable_hlt(void)
261 {
262 hlt_counter--;
263 }
264 EXPORT_SYMBOL(enable_hlt);
265
266 static inline int hlt_use_halt(void)
267 {
268 return (!hlt_counter && boot_cpu_data.hlt_works_ok);
269 }
270 #else
271 static inline int hlt_use_halt(void)
272 {
273 return 1;
274 }
275 #endif
276
277 /*
278 * We use this if we don't have any better
279 * idle routine..
280 */
281 void default_idle(void)
282 {
283 if (hlt_use_halt()) {
284 trace_power_start(POWER_CSTATE, 1);
285 current_thread_info()->status &= ~TS_POLLING;
286 /*
287 * TS_POLLING-cleared state must be visible before we
288 * test NEED_RESCHED:
289 */
290 smp_mb();
291
292 if (!need_resched())
293 safe_halt(); /* enables interrupts racelessly */
294 else
295 local_irq_enable();
296 current_thread_info()->status |= TS_POLLING;
297 } else {
298 local_irq_enable();
299 /* loop is done by the caller */
300 cpu_relax();
301 }
302 }
303 #ifdef CONFIG_APM_MODULE
304 EXPORT_SYMBOL(default_idle);
305 #endif
306
307 void stop_this_cpu(void *dummy)
308 {
309 local_irq_disable();
310 /*
311 * Remove this CPU:
312 */
313 set_cpu_online(smp_processor_id(), false);
314 disable_local_APIC();
315
316 for (;;) {
317 if (hlt_works(smp_processor_id()))
318 halt();
319 }
320 }
321
322 static void do_nothing(void *unused)
323 {
324 }
325
326 /*
327 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
328 * pm_idle and update to new pm_idle value. Required while changing pm_idle
329 * handler on SMP systems.
330 *
331 * Caller must have changed pm_idle to the new value before the call. Old
332 * pm_idle value will not be used by any CPU after the return of this function.
333 */
334 void cpu_idle_wait(void)
335 {
336 smp_mb();
337 /* kick all the CPUs so that they exit out of pm_idle */
338 smp_call_function(do_nothing, NULL, 1);
339 }
340 EXPORT_SYMBOL_GPL(cpu_idle_wait);
341
342 /*
343 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
344 * which can obviate IPI to trigger checking of need_resched.
345 * We execute MONITOR against need_resched and enter optimized wait state
346 * through MWAIT. Whenever someone changes need_resched, we would be woken
347 * up from MWAIT (without an IPI).
348 *
349 * New with Core Duo processors, MWAIT can take some hints based on CPU
350 * capability.
351 */
352 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
353 {
354 trace_power_start(POWER_CSTATE, (ax>>4)+1);
355 if (!need_resched()) {
356 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
357 clflush((void *)&current_thread_info()->flags);
358
359 __monitor((void *)&current_thread_info()->flags, 0, 0);
360 smp_mb();
361 if (!need_resched())
362 __mwait(ax, cx);
363 }
364 }
365
366 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
367 static void mwait_idle(void)
368 {
369 if (!need_resched()) {
370 trace_power_start(POWER_CSTATE, 1);
371 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
372 clflush((void *)&current_thread_info()->flags);
373
374 __monitor((void *)&current_thread_info()->flags, 0, 0);
375 smp_mb();
376 if (!need_resched())
377 __sti_mwait(0, 0);
378 else
379 local_irq_enable();
380 } else
381 local_irq_enable();
382 }
383
384 /*
385 * On SMP it's slightly faster (but much more power-consuming!)
386 * to poll the ->work.need_resched flag instead of waiting for the
387 * cross-CPU IPI to arrive. Use this option with caution.
388 */
389 static void poll_idle(void)
390 {
391 trace_power_start(POWER_CSTATE, 0);
392 local_irq_enable();
393 while (!need_resched())
394 cpu_relax();
395 trace_power_end(0);
396 }
397
398 /*
399 * mwait selection logic:
400 *
401 * It depends on the CPU. For AMD CPUs that support MWAIT this is
402 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
403 * then depend on a clock divisor and current Pstate of the core. If
404 * all cores of a processor are in halt state (C1) the processor can
405 * enter the C1E (C1 enhanced) state. If mwait is used this will never
406 * happen.
407 *
408 * idle=mwait overrides this decision and forces the usage of mwait.
409 */
410 static int __cpuinitdata force_mwait;
411
412 #define MWAIT_INFO 0x05
413 #define MWAIT_ECX_EXTENDED_INFO 0x01
414 #define MWAIT_EDX_C1 0xf0
415
416 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
417 {
418 u32 eax, ebx, ecx, edx;
419
420 if (force_mwait)
421 return 1;
422
423 if (c->cpuid_level < MWAIT_INFO)
424 return 0;
425
426 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
427 /* Check, whether EDX has extended info about MWAIT */
428 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
429 return 1;
430
431 /*
432 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
433 * C1 supports MWAIT
434 */
435 return (edx & MWAIT_EDX_C1);
436 }
437
438 /*
439 * Check for AMD CPUs, which have potentially C1E support
440 */
441 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
442 {
443 if (c->x86_vendor != X86_VENDOR_AMD)
444 return 0;
445
446 if (c->x86 < 0x0F)
447 return 0;
448
449 /* Family 0x0f models < rev F do not have C1E */
450 if (c->x86 == 0x0f && c->x86_model < 0x40)
451 return 0;
452
453 return 1;
454 }
455
456 static cpumask_var_t c1e_mask;
457 static int c1e_detected;
458
459 void c1e_remove_cpu(int cpu)
460 {
461 if (c1e_mask != NULL)
462 cpumask_clear_cpu(cpu, c1e_mask);
463 }
464
465 /*
466 * C1E aware idle routine. We check for C1E active in the interrupt
467 * pending message MSR. If we detect C1E, then we handle it the same
468 * way as C3 power states (local apic timer and TSC stop)
469 */
470 static void c1e_idle(void)
471 {
472 if (need_resched())
473 return;
474
475 if (!c1e_detected) {
476 u32 lo, hi;
477
478 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
479 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
480 c1e_detected = 1;
481 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
482 mark_tsc_unstable("TSC halt in AMD C1E");
483 printk(KERN_INFO "System has AMD C1E enabled\n");
484 set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
485 }
486 }
487
488 if (c1e_detected) {
489 int cpu = smp_processor_id();
490
491 if (!cpumask_test_cpu(cpu, c1e_mask)) {
492 cpumask_set_cpu(cpu, c1e_mask);
493 /*
494 * Force broadcast so ACPI can not interfere.
495 */
496 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
497 &cpu);
498 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
499 cpu);
500 }
501 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
502
503 default_idle();
504
505 /*
506 * The switch back from broadcast mode needs to be
507 * called with interrupts disabled.
508 */
509 local_irq_disable();
510 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
511 local_irq_enable();
512 } else
513 default_idle();
514 }
515
516 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
517 {
518 #ifdef CONFIG_SMP
519 if (pm_idle == poll_idle && smp_num_siblings > 1) {
520 printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
521 " performance may degrade.\n");
522 }
523 #endif
524 if (pm_idle)
525 return;
526
527 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
528 /*
529 * One CPU supports mwait => All CPUs supports mwait
530 */
531 printk(KERN_INFO "using mwait in idle threads.\n");
532 pm_idle = mwait_idle;
533 } else if (check_c1e_idle(c)) {
534 printk(KERN_INFO "using C1E aware idle routine\n");
535 pm_idle = c1e_idle;
536 } else
537 pm_idle = default_idle;
538 }
539
540 void __init init_c1e_mask(void)
541 {
542 /* If we're using c1e_idle, we need to allocate c1e_mask. */
543 if (pm_idle == c1e_idle)
544 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
545 }
546
547 static int __init idle_setup(char *str)
548 {
549 if (!str)
550 return -EINVAL;
551
552 if (!strcmp(str, "poll")) {
553 printk("using polling idle threads.\n");
554 pm_idle = poll_idle;
555 } else if (!strcmp(str, "mwait"))
556 force_mwait = 1;
557 else if (!strcmp(str, "halt")) {
558 /*
559 * When the boot option of idle=halt is added, halt is
560 * forced to be used for CPU idle. In such case CPU C2/C3
561 * won't be used again.
562 * To continue to load the CPU idle driver, don't touch
563 * the boot_option_idle_override.
564 */
565 pm_idle = default_idle;
566 idle_halt = 1;
567 return 0;
568 } else if (!strcmp(str, "nomwait")) {
569 /*
570 * If the boot option of "idle=nomwait" is added,
571 * it means that mwait will be disabled for CPU C2/C3
572 * states. In such case it won't touch the variable
573 * of boot_option_idle_override.
574 */
575 idle_nomwait = 1;
576 return 0;
577 } else
578 return -1;
579
580 boot_option_idle_override = 1;
581 return 0;
582 }
583 early_param("idle", idle_setup);
584
585 unsigned long arch_align_stack(unsigned long sp)
586 {
587 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
588 sp -= get_random_int() % 8192;
589 return sp & ~0xf;
590 }
591
592 unsigned long arch_randomize_brk(struct mm_struct *mm)
593 {
594 unsigned long range_end = mm->brk + 0x02000000;
595 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
596 }
597
This page took 0.072535 seconds and 5 git commands to generate.