x86: Merge sys_execve
[deliverable/linux.git] / arch / x86 / kernel / process.c
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <trace/events/power.h>
14 #include <linux/hw_breakpoint.h>
15 #include <asm/system.h>
16 #include <asm/apic.h>
17 #include <asm/syscalls.h>
18 #include <asm/idle.h>
19 #include <asm/uaccess.h>
20 #include <asm/i387.h>
21 #include <asm/ds.h>
22 #include <asm/debugreg.h>
23
24 unsigned long idle_halt;
25 EXPORT_SYMBOL(idle_halt);
26 unsigned long idle_nomwait;
27 EXPORT_SYMBOL(idle_nomwait);
28
29 struct kmem_cache *task_xstate_cachep;
30
31 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
32 {
33 *dst = *src;
34 if (src->thread.xstate) {
35 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
36 GFP_KERNEL);
37 if (!dst->thread.xstate)
38 return -ENOMEM;
39 WARN_ON((unsigned long)dst->thread.xstate & 15);
40 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
41 }
42 return 0;
43 }
44
45 void free_thread_xstate(struct task_struct *tsk)
46 {
47 if (tsk->thread.xstate) {
48 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
49 tsk->thread.xstate = NULL;
50 }
51
52 WARN(tsk->thread.ds_ctx, "leaking DS context\n");
53 }
54
55 void free_thread_info(struct thread_info *ti)
56 {
57 free_thread_xstate(ti->task);
58 free_pages((unsigned long)ti, get_order(THREAD_SIZE));
59 }
60
61 void arch_task_cache_init(void)
62 {
63 task_xstate_cachep =
64 kmem_cache_create("task_xstate", xstate_size,
65 __alignof__(union thread_xstate),
66 SLAB_PANIC | SLAB_NOTRACK, NULL);
67 }
68
69 /*
70 * Free current thread data structures etc..
71 */
72 void exit_thread(void)
73 {
74 struct task_struct *me = current;
75 struct thread_struct *t = &me->thread;
76 unsigned long *bp = t->io_bitmap_ptr;
77
78 if (bp) {
79 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
80
81 t->io_bitmap_ptr = NULL;
82 clear_thread_flag(TIF_IO_BITMAP);
83 /*
84 * Careful, clear this in the TSS too:
85 */
86 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
87 t->io_bitmap_max = 0;
88 put_cpu();
89 kfree(bp);
90 }
91 }
92
93 void flush_thread(void)
94 {
95 struct task_struct *tsk = current;
96
97 #ifdef CONFIG_X86_64
98 if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
99 clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
100 if (test_tsk_thread_flag(tsk, TIF_IA32)) {
101 clear_tsk_thread_flag(tsk, TIF_IA32);
102 } else {
103 set_tsk_thread_flag(tsk, TIF_IA32);
104 current_thread_info()->status |= TS_COMPAT;
105 }
106 }
107 #endif
108
109 flush_ptrace_hw_breakpoint(tsk);
110 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
111 /*
112 * Forget coprocessor state..
113 */
114 tsk->fpu_counter = 0;
115 clear_fpu(tsk);
116 clear_used_math();
117 }
118
119 static void hard_disable_TSC(void)
120 {
121 write_cr4(read_cr4() | X86_CR4_TSD);
122 }
123
124 void disable_TSC(void)
125 {
126 preempt_disable();
127 if (!test_and_set_thread_flag(TIF_NOTSC))
128 /*
129 * Must flip the CPU state synchronously with
130 * TIF_NOTSC in the current running context.
131 */
132 hard_disable_TSC();
133 preempt_enable();
134 }
135
136 static void hard_enable_TSC(void)
137 {
138 write_cr4(read_cr4() & ~X86_CR4_TSD);
139 }
140
141 static void enable_TSC(void)
142 {
143 preempt_disable();
144 if (test_and_clear_thread_flag(TIF_NOTSC))
145 /*
146 * Must flip the CPU state synchronously with
147 * TIF_NOTSC in the current running context.
148 */
149 hard_enable_TSC();
150 preempt_enable();
151 }
152
153 int get_tsc_mode(unsigned long adr)
154 {
155 unsigned int val;
156
157 if (test_thread_flag(TIF_NOTSC))
158 val = PR_TSC_SIGSEGV;
159 else
160 val = PR_TSC_ENABLE;
161
162 return put_user(val, (unsigned int __user *)adr);
163 }
164
165 int set_tsc_mode(unsigned int val)
166 {
167 if (val == PR_TSC_SIGSEGV)
168 disable_TSC();
169 else if (val == PR_TSC_ENABLE)
170 enable_TSC();
171 else
172 return -EINVAL;
173
174 return 0;
175 }
176
177 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
178 struct tss_struct *tss)
179 {
180 struct thread_struct *prev, *next;
181
182 prev = &prev_p->thread;
183 next = &next_p->thread;
184
185 if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
186 test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
187 ds_switch_to(prev_p, next_p);
188 else if (next->debugctlmsr != prev->debugctlmsr)
189 update_debugctlmsr(next->debugctlmsr);
190
191 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
192 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
193 /* prev and next are different */
194 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
195 hard_disable_TSC();
196 else
197 hard_enable_TSC();
198 }
199
200 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
201 /*
202 * Copy the relevant range of the IO bitmap.
203 * Normally this is 128 bytes or less:
204 */
205 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
206 max(prev->io_bitmap_max, next->io_bitmap_max));
207 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
208 /*
209 * Clear any possible leftover bits:
210 */
211 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
212 }
213 propagate_user_return_notify(prev_p, next_p);
214 }
215
216 int sys_fork(struct pt_regs *regs)
217 {
218 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
219 }
220
221 /*
222 * This is trivial, and on the face of it looks like it
223 * could equally well be done in user mode.
224 *
225 * Not so, for quite unobvious reasons - register pressure.
226 * In user mode vfork() cannot have a stack frame, and if
227 * done by calling the "clone()" system call directly, you
228 * do not have enough call-clobbered registers to hold all
229 * the information you need.
230 */
231 int sys_vfork(struct pt_regs *regs)
232 {
233 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
234 NULL, NULL);
235 }
236
237
238 /*
239 * sys_execve() executes a new program.
240 */
241 long sys_execve(char __user *name, char __user * __user *argv,
242 char __user * __user *envp, struct pt_regs *regs)
243 {
244 long error;
245 char *filename;
246
247 filename = getname(name);
248 error = PTR_ERR(filename);
249 if (IS_ERR(filename))
250 return error;
251 error = do_execve(filename, argv, envp, regs);
252
253 #ifdef CONFIG_X86_32
254 if (error == 0) {
255 /* Make sure we don't return using sysenter.. */
256 set_thread_flag(TIF_IRET);
257 }
258 #endif
259
260 putname(filename);
261 return error;
262 }
263
264 /*
265 * Idle related variables and functions
266 */
267 unsigned long boot_option_idle_override = 0;
268 EXPORT_SYMBOL(boot_option_idle_override);
269
270 /*
271 * Powermanagement idle function, if any..
272 */
273 void (*pm_idle)(void);
274 EXPORT_SYMBOL(pm_idle);
275
276 #ifdef CONFIG_X86_32
277 /*
278 * This halt magic was a workaround for ancient floppy DMA
279 * wreckage. It should be safe to remove.
280 */
281 static int hlt_counter;
282 void disable_hlt(void)
283 {
284 hlt_counter++;
285 }
286 EXPORT_SYMBOL(disable_hlt);
287
288 void enable_hlt(void)
289 {
290 hlt_counter--;
291 }
292 EXPORT_SYMBOL(enable_hlt);
293
294 static inline int hlt_use_halt(void)
295 {
296 return (!hlt_counter && boot_cpu_data.hlt_works_ok);
297 }
298 #else
299 static inline int hlt_use_halt(void)
300 {
301 return 1;
302 }
303 #endif
304
305 /*
306 * We use this if we don't have any better
307 * idle routine..
308 */
309 void default_idle(void)
310 {
311 if (hlt_use_halt()) {
312 trace_power_start(POWER_CSTATE, 1);
313 current_thread_info()->status &= ~TS_POLLING;
314 /*
315 * TS_POLLING-cleared state must be visible before we
316 * test NEED_RESCHED:
317 */
318 smp_mb();
319
320 if (!need_resched())
321 safe_halt(); /* enables interrupts racelessly */
322 else
323 local_irq_enable();
324 current_thread_info()->status |= TS_POLLING;
325 } else {
326 local_irq_enable();
327 /* loop is done by the caller */
328 cpu_relax();
329 }
330 }
331 #ifdef CONFIG_APM_MODULE
332 EXPORT_SYMBOL(default_idle);
333 #endif
334
335 void stop_this_cpu(void *dummy)
336 {
337 local_irq_disable();
338 /*
339 * Remove this CPU:
340 */
341 set_cpu_online(smp_processor_id(), false);
342 disable_local_APIC();
343
344 for (;;) {
345 if (hlt_works(smp_processor_id()))
346 halt();
347 }
348 }
349
350 static void do_nothing(void *unused)
351 {
352 }
353
354 /*
355 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
356 * pm_idle and update to new pm_idle value. Required while changing pm_idle
357 * handler on SMP systems.
358 *
359 * Caller must have changed pm_idle to the new value before the call. Old
360 * pm_idle value will not be used by any CPU after the return of this function.
361 */
362 void cpu_idle_wait(void)
363 {
364 smp_mb();
365 /* kick all the CPUs so that they exit out of pm_idle */
366 smp_call_function(do_nothing, NULL, 1);
367 }
368 EXPORT_SYMBOL_GPL(cpu_idle_wait);
369
370 /*
371 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
372 * which can obviate IPI to trigger checking of need_resched.
373 * We execute MONITOR against need_resched and enter optimized wait state
374 * through MWAIT. Whenever someone changes need_resched, we would be woken
375 * up from MWAIT (without an IPI).
376 *
377 * New with Core Duo processors, MWAIT can take some hints based on CPU
378 * capability.
379 */
380 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
381 {
382 trace_power_start(POWER_CSTATE, (ax>>4)+1);
383 if (!need_resched()) {
384 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
385 clflush((void *)&current_thread_info()->flags);
386
387 __monitor((void *)&current_thread_info()->flags, 0, 0);
388 smp_mb();
389 if (!need_resched())
390 __mwait(ax, cx);
391 }
392 }
393
394 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
395 static void mwait_idle(void)
396 {
397 if (!need_resched()) {
398 trace_power_start(POWER_CSTATE, 1);
399 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
400 clflush((void *)&current_thread_info()->flags);
401
402 __monitor((void *)&current_thread_info()->flags, 0, 0);
403 smp_mb();
404 if (!need_resched())
405 __sti_mwait(0, 0);
406 else
407 local_irq_enable();
408 } else
409 local_irq_enable();
410 }
411
412 /*
413 * On SMP it's slightly faster (but much more power-consuming!)
414 * to poll the ->work.need_resched flag instead of waiting for the
415 * cross-CPU IPI to arrive. Use this option with caution.
416 */
417 static void poll_idle(void)
418 {
419 trace_power_start(POWER_CSTATE, 0);
420 local_irq_enable();
421 while (!need_resched())
422 cpu_relax();
423 trace_power_end(0);
424 }
425
426 /*
427 * mwait selection logic:
428 *
429 * It depends on the CPU. For AMD CPUs that support MWAIT this is
430 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
431 * then depend on a clock divisor and current Pstate of the core. If
432 * all cores of a processor are in halt state (C1) the processor can
433 * enter the C1E (C1 enhanced) state. If mwait is used this will never
434 * happen.
435 *
436 * idle=mwait overrides this decision and forces the usage of mwait.
437 */
438 static int __cpuinitdata force_mwait;
439
440 #define MWAIT_INFO 0x05
441 #define MWAIT_ECX_EXTENDED_INFO 0x01
442 #define MWAIT_EDX_C1 0xf0
443
444 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
445 {
446 u32 eax, ebx, ecx, edx;
447
448 if (force_mwait)
449 return 1;
450
451 if (c->cpuid_level < MWAIT_INFO)
452 return 0;
453
454 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
455 /* Check, whether EDX has extended info about MWAIT */
456 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
457 return 1;
458
459 /*
460 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
461 * C1 supports MWAIT
462 */
463 return (edx & MWAIT_EDX_C1);
464 }
465
466 /*
467 * Check for AMD CPUs, which have potentially C1E support
468 */
469 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
470 {
471 if (c->x86_vendor != X86_VENDOR_AMD)
472 return 0;
473
474 if (c->x86 < 0x0F)
475 return 0;
476
477 /* Family 0x0f models < rev F do not have C1E */
478 if (c->x86 == 0x0f && c->x86_model < 0x40)
479 return 0;
480
481 return 1;
482 }
483
484 static cpumask_var_t c1e_mask;
485 static int c1e_detected;
486
487 void c1e_remove_cpu(int cpu)
488 {
489 if (c1e_mask != NULL)
490 cpumask_clear_cpu(cpu, c1e_mask);
491 }
492
493 /*
494 * C1E aware idle routine. We check for C1E active in the interrupt
495 * pending message MSR. If we detect C1E, then we handle it the same
496 * way as C3 power states (local apic timer and TSC stop)
497 */
498 static void c1e_idle(void)
499 {
500 if (need_resched())
501 return;
502
503 if (!c1e_detected) {
504 u32 lo, hi;
505
506 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
507 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
508 c1e_detected = 1;
509 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
510 mark_tsc_unstable("TSC halt in AMD C1E");
511 printk(KERN_INFO "System has AMD C1E enabled\n");
512 set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
513 }
514 }
515
516 if (c1e_detected) {
517 int cpu = smp_processor_id();
518
519 if (!cpumask_test_cpu(cpu, c1e_mask)) {
520 cpumask_set_cpu(cpu, c1e_mask);
521 /*
522 * Force broadcast so ACPI can not interfere.
523 */
524 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
525 &cpu);
526 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
527 cpu);
528 }
529 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
530
531 default_idle();
532
533 /*
534 * The switch back from broadcast mode needs to be
535 * called with interrupts disabled.
536 */
537 local_irq_disable();
538 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
539 local_irq_enable();
540 } else
541 default_idle();
542 }
543
544 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
545 {
546 #ifdef CONFIG_SMP
547 if (pm_idle == poll_idle && smp_num_siblings > 1) {
548 printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
549 " performance may degrade.\n");
550 }
551 #endif
552 if (pm_idle)
553 return;
554
555 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
556 /*
557 * One CPU supports mwait => All CPUs supports mwait
558 */
559 printk(KERN_INFO "using mwait in idle threads.\n");
560 pm_idle = mwait_idle;
561 } else if (check_c1e_idle(c)) {
562 printk(KERN_INFO "using C1E aware idle routine\n");
563 pm_idle = c1e_idle;
564 } else
565 pm_idle = default_idle;
566 }
567
568 void __init init_c1e_mask(void)
569 {
570 /* If we're using c1e_idle, we need to allocate c1e_mask. */
571 if (pm_idle == c1e_idle)
572 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
573 }
574
575 static int __init idle_setup(char *str)
576 {
577 if (!str)
578 return -EINVAL;
579
580 if (!strcmp(str, "poll")) {
581 printk("using polling idle threads.\n");
582 pm_idle = poll_idle;
583 } else if (!strcmp(str, "mwait"))
584 force_mwait = 1;
585 else if (!strcmp(str, "halt")) {
586 /*
587 * When the boot option of idle=halt is added, halt is
588 * forced to be used for CPU idle. In such case CPU C2/C3
589 * won't be used again.
590 * To continue to load the CPU idle driver, don't touch
591 * the boot_option_idle_override.
592 */
593 pm_idle = default_idle;
594 idle_halt = 1;
595 return 0;
596 } else if (!strcmp(str, "nomwait")) {
597 /*
598 * If the boot option of "idle=nomwait" is added,
599 * it means that mwait will be disabled for CPU C2/C3
600 * states. In such case it won't touch the variable
601 * of boot_option_idle_override.
602 */
603 idle_nomwait = 1;
604 return 0;
605 } else
606 return -1;
607
608 boot_option_idle_override = 1;
609 return 0;
610 }
611 early_param("idle", idle_setup);
612
613 unsigned long arch_align_stack(unsigned long sp)
614 {
615 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
616 sp -= get_random_int() % 8192;
617 return sp & ~0xf;
618 }
619
620 unsigned long arch_randomize_brk(struct mm_struct *mm)
621 {
622 unsigned long range_end = mm->brk + 0x02000000;
623 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
624 }
625
This page took 0.043588 seconds and 5 git commands to generate.