Merge branch 'acpi-ec'
[deliverable/linux.git] / arch / x86 / kernel / process.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/tick.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/fpu/internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mce.h>
33 #include <asm/vm86.h>
34
35 /*
36 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
37 * no more per-task TSS's. The TSS size is kept cacheline-aligned
38 * so they are allowed to end up in the .data..cacheline_aligned
39 * section. Since TSS's are completely CPU-local, we want them
40 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
41 */
42 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
43 .x86_tss = {
44 .sp0 = TOP_OF_INIT_STACK,
45 #ifdef CONFIG_X86_32
46 .ss0 = __KERNEL_DS,
47 .ss1 = __KERNEL_CS,
48 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
49 #endif
50 },
51 #ifdef CONFIG_X86_32
52 /*
53 * Note that the .io_bitmap member must be extra-big. This is because
54 * the CPU will access an additional byte beyond the end of the IO
55 * permission bitmap. The extra byte must be all 1 bits, and must
56 * be within the limit.
57 */
58 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
59 #endif
60 #ifdef CONFIG_X86_32
61 .SYSENTER_stack_canary = STACK_END_MAGIC,
62 #endif
63 };
64 EXPORT_PER_CPU_SYMBOL(cpu_tss);
65
66 #ifdef CONFIG_X86_64
67 static DEFINE_PER_CPU(unsigned char, is_idle);
68 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
69
70 void idle_notifier_register(struct notifier_block *n)
71 {
72 atomic_notifier_chain_register(&idle_notifier, n);
73 }
74 EXPORT_SYMBOL_GPL(idle_notifier_register);
75
76 void idle_notifier_unregister(struct notifier_block *n)
77 {
78 atomic_notifier_chain_unregister(&idle_notifier, n);
79 }
80 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
81 #endif
82
83 /*
84 * this gets called so that we can store lazy state into memory and copy the
85 * current task into the new thread.
86 */
87 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
88 {
89 memcpy(dst, src, arch_task_struct_size);
90 #ifdef CONFIG_VM86
91 dst->thread.vm86 = NULL;
92 #endif
93
94 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
95 }
96
97 /*
98 * Free current thread data structures etc..
99 */
100 void exit_thread(struct task_struct *tsk)
101 {
102 struct thread_struct *t = &tsk->thread;
103 unsigned long *bp = t->io_bitmap_ptr;
104 struct fpu *fpu = &t->fpu;
105
106 if (bp) {
107 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
108
109 t->io_bitmap_ptr = NULL;
110 clear_thread_flag(TIF_IO_BITMAP);
111 /*
112 * Careful, clear this in the TSS too:
113 */
114 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
115 t->io_bitmap_max = 0;
116 put_cpu();
117 kfree(bp);
118 }
119
120 free_vm86(t);
121
122 fpu__drop(fpu);
123 }
124
125 void flush_thread(void)
126 {
127 struct task_struct *tsk = current;
128
129 flush_ptrace_hw_breakpoint(tsk);
130 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
131
132 fpu__clear(&tsk->thread.fpu);
133 }
134
135 static void hard_disable_TSC(void)
136 {
137 cr4_set_bits(X86_CR4_TSD);
138 }
139
140 void disable_TSC(void)
141 {
142 preempt_disable();
143 if (!test_and_set_thread_flag(TIF_NOTSC))
144 /*
145 * Must flip the CPU state synchronously with
146 * TIF_NOTSC in the current running context.
147 */
148 hard_disable_TSC();
149 preempt_enable();
150 }
151
152 static void hard_enable_TSC(void)
153 {
154 cr4_clear_bits(X86_CR4_TSD);
155 }
156
157 static void enable_TSC(void)
158 {
159 preempt_disable();
160 if (test_and_clear_thread_flag(TIF_NOTSC))
161 /*
162 * Must flip the CPU state synchronously with
163 * TIF_NOTSC in the current running context.
164 */
165 hard_enable_TSC();
166 preempt_enable();
167 }
168
169 int get_tsc_mode(unsigned long adr)
170 {
171 unsigned int val;
172
173 if (test_thread_flag(TIF_NOTSC))
174 val = PR_TSC_SIGSEGV;
175 else
176 val = PR_TSC_ENABLE;
177
178 return put_user(val, (unsigned int __user *)adr);
179 }
180
181 int set_tsc_mode(unsigned int val)
182 {
183 if (val == PR_TSC_SIGSEGV)
184 disable_TSC();
185 else if (val == PR_TSC_ENABLE)
186 enable_TSC();
187 else
188 return -EINVAL;
189
190 return 0;
191 }
192
193 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
194 struct tss_struct *tss)
195 {
196 struct thread_struct *prev, *next;
197
198 prev = &prev_p->thread;
199 next = &next_p->thread;
200
201 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
202 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
203 unsigned long debugctl = get_debugctlmsr();
204
205 debugctl &= ~DEBUGCTLMSR_BTF;
206 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
207 debugctl |= DEBUGCTLMSR_BTF;
208
209 update_debugctlmsr(debugctl);
210 }
211
212 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
213 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
214 /* prev and next are different */
215 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
216 hard_disable_TSC();
217 else
218 hard_enable_TSC();
219 }
220
221 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
222 /*
223 * Copy the relevant range of the IO bitmap.
224 * Normally this is 128 bytes or less:
225 */
226 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
227 max(prev->io_bitmap_max, next->io_bitmap_max));
228 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
229 /*
230 * Clear any possible leftover bits:
231 */
232 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
233 }
234 propagate_user_return_notify(prev_p, next_p);
235 }
236
237 /*
238 * Idle related variables and functions
239 */
240 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
241 EXPORT_SYMBOL(boot_option_idle_override);
242
243 static void (*x86_idle)(void);
244
245 #ifndef CONFIG_SMP
246 static inline void play_dead(void)
247 {
248 BUG();
249 }
250 #endif
251
252 #ifdef CONFIG_X86_64
253 void enter_idle(void)
254 {
255 this_cpu_write(is_idle, 1);
256 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
257 }
258
259 static void __exit_idle(void)
260 {
261 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
262 return;
263 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
264 }
265
266 /* Called from interrupts to signify idle end */
267 void exit_idle(void)
268 {
269 /* idle loop has pid 0 */
270 if (current->pid)
271 return;
272 __exit_idle();
273 }
274 #endif
275
276 void arch_cpu_idle_enter(void)
277 {
278 local_touch_nmi();
279 enter_idle();
280 }
281
282 void arch_cpu_idle_exit(void)
283 {
284 __exit_idle();
285 }
286
287 void arch_cpu_idle_dead(void)
288 {
289 play_dead();
290 }
291
292 /*
293 * Called from the generic idle code.
294 */
295 void arch_cpu_idle(void)
296 {
297 x86_idle();
298 }
299
300 /*
301 * We use this if we don't have any better idle routine..
302 */
303 void default_idle(void)
304 {
305 trace_cpu_idle_rcuidle(1, smp_processor_id());
306 safe_halt();
307 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
308 }
309 #ifdef CONFIG_APM_MODULE
310 EXPORT_SYMBOL(default_idle);
311 #endif
312
313 #ifdef CONFIG_XEN
314 bool xen_set_default_idle(void)
315 {
316 bool ret = !!x86_idle;
317
318 x86_idle = default_idle;
319
320 return ret;
321 }
322 #endif
323 void stop_this_cpu(void *dummy)
324 {
325 local_irq_disable();
326 /*
327 * Remove this CPU:
328 */
329 set_cpu_online(smp_processor_id(), false);
330 disable_local_APIC();
331 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
332
333 for (;;)
334 halt();
335 }
336
337 bool amd_e400_c1e_detected;
338 EXPORT_SYMBOL(amd_e400_c1e_detected);
339
340 static cpumask_var_t amd_e400_c1e_mask;
341
342 void amd_e400_remove_cpu(int cpu)
343 {
344 if (amd_e400_c1e_mask != NULL)
345 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
346 }
347
348 /*
349 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
350 * pending message MSR. If we detect C1E, then we handle it the same
351 * way as C3 power states (local apic timer and TSC stop)
352 */
353 static void amd_e400_idle(void)
354 {
355 if (!amd_e400_c1e_detected) {
356 u32 lo, hi;
357
358 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
359
360 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
361 amd_e400_c1e_detected = true;
362 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
363 mark_tsc_unstable("TSC halt in AMD C1E");
364 pr_info("System has AMD C1E enabled\n");
365 }
366 }
367
368 if (amd_e400_c1e_detected) {
369 int cpu = smp_processor_id();
370
371 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
372 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
373 /* Force broadcast so ACPI can not interfere. */
374 tick_broadcast_force();
375 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
376 }
377 tick_broadcast_enter();
378
379 default_idle();
380
381 /*
382 * The switch back from broadcast mode needs to be
383 * called with interrupts disabled.
384 */
385 local_irq_disable();
386 tick_broadcast_exit();
387 local_irq_enable();
388 } else
389 default_idle();
390 }
391
392 /*
393 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
394 * We can't rely on cpuidle installing MWAIT, because it will not load
395 * on systems that support only C1 -- so the boot default must be MWAIT.
396 *
397 * Some AMD machines are the opposite, they depend on using HALT.
398 *
399 * So for default C1, which is used during boot until cpuidle loads,
400 * use MWAIT-C1 on Intel HW that has it, else use HALT.
401 */
402 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
403 {
404 if (c->x86_vendor != X86_VENDOR_INTEL)
405 return 0;
406
407 if (!cpu_has(c, X86_FEATURE_MWAIT))
408 return 0;
409
410 return 1;
411 }
412
413 /*
414 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
415 * with interrupts enabled and no flags, which is backwards compatible with the
416 * original MWAIT implementation.
417 */
418 static void mwait_idle(void)
419 {
420 if (!current_set_polling_and_test()) {
421 trace_cpu_idle_rcuidle(1, smp_processor_id());
422 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
423 mb(); /* quirk */
424 clflush((void *)&current_thread_info()->flags);
425 mb(); /* quirk */
426 }
427
428 __monitor((void *)&current_thread_info()->flags, 0, 0);
429 if (!need_resched())
430 __sti_mwait(0, 0);
431 else
432 local_irq_enable();
433 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
434 } else {
435 local_irq_enable();
436 }
437 __current_clr_polling();
438 }
439
440 void select_idle_routine(const struct cpuinfo_x86 *c)
441 {
442 #ifdef CONFIG_SMP
443 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
444 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
445 #endif
446 if (x86_idle || boot_option_idle_override == IDLE_POLL)
447 return;
448
449 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
450 /* E400: APIC timer interrupt does not wake up CPU from C1e */
451 pr_info("using AMD E400 aware idle routine\n");
452 x86_idle = amd_e400_idle;
453 } else if (prefer_mwait_c1_over_halt(c)) {
454 pr_info("using mwait in idle threads\n");
455 x86_idle = mwait_idle;
456 } else
457 x86_idle = default_idle;
458 }
459
460 void __init init_amd_e400_c1e_mask(void)
461 {
462 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
463 if (x86_idle == amd_e400_idle)
464 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
465 }
466
467 static int __init idle_setup(char *str)
468 {
469 if (!str)
470 return -EINVAL;
471
472 if (!strcmp(str, "poll")) {
473 pr_info("using polling idle threads\n");
474 boot_option_idle_override = IDLE_POLL;
475 cpu_idle_poll_ctrl(true);
476 } else if (!strcmp(str, "halt")) {
477 /*
478 * When the boot option of idle=halt is added, halt is
479 * forced to be used for CPU idle. In such case CPU C2/C3
480 * won't be used again.
481 * To continue to load the CPU idle driver, don't touch
482 * the boot_option_idle_override.
483 */
484 x86_idle = default_idle;
485 boot_option_idle_override = IDLE_HALT;
486 } else if (!strcmp(str, "nomwait")) {
487 /*
488 * If the boot option of "idle=nomwait" is added,
489 * it means that mwait will be disabled for CPU C2/C3
490 * states. In such case it won't touch the variable
491 * of boot_option_idle_override.
492 */
493 boot_option_idle_override = IDLE_NOMWAIT;
494 } else
495 return -1;
496
497 return 0;
498 }
499 early_param("idle", idle_setup);
500
501 unsigned long arch_align_stack(unsigned long sp)
502 {
503 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
504 sp -= get_random_int() % 8192;
505 return sp & ~0xf;
506 }
507
508 unsigned long arch_randomize_brk(struct mm_struct *mm)
509 {
510 unsigned long range_end = mm->brk + 0x02000000;
511 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
512 }
513
514 /*
515 * Called from fs/proc with a reference on @p to find the function
516 * which called into schedule(). This needs to be done carefully
517 * because the task might wake up and we might look at a stack
518 * changing under us.
519 */
520 unsigned long get_wchan(struct task_struct *p)
521 {
522 unsigned long start, bottom, top, sp, fp, ip;
523 int count = 0;
524
525 if (!p || p == current || p->state == TASK_RUNNING)
526 return 0;
527
528 start = (unsigned long)task_stack_page(p);
529 if (!start)
530 return 0;
531
532 /*
533 * Layout of the stack page:
534 *
535 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
536 * PADDING
537 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
538 * stack
539 * ----------- bottom = start + sizeof(thread_info)
540 * thread_info
541 * ----------- start
542 *
543 * The tasks stack pointer points at the location where the
544 * framepointer is stored. The data on the stack is:
545 * ... IP FP ... IP FP
546 *
547 * We need to read FP and IP, so we need to adjust the upper
548 * bound by another unsigned long.
549 */
550 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
551 top -= 2 * sizeof(unsigned long);
552 bottom = start + sizeof(struct thread_info);
553
554 sp = READ_ONCE(p->thread.sp);
555 if (sp < bottom || sp > top)
556 return 0;
557
558 fp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
559 do {
560 if (fp < bottom || fp > top)
561 return 0;
562 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
563 if (!in_sched_functions(ip))
564 return ip;
565 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
566 } while (count++ < 16 && p->state != TASK_RUNNING);
567 return 0;
568 }
This page took 0.045147 seconds and 6 git commands to generate.