x86: de-macro start_thread()
[deliverable/linux.git] / arch / x86 / kernel / process_32.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8 /*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12 #include <stdarg.h>
13
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/utsname.h>
28 #include <linux/delay.h>
29 #include <linux/reboot.h>
30 #include <linux/init.h>
31 #include <linux/mc146818rtc.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/ptrace.h>
35 #include <linux/random.h>
36 #include <linux/personality.h>
37 #include <linux/tick.h>
38 #include <linux/percpu.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/pgtable.h>
42 #include <asm/system.h>
43 #include <asm/io.h>
44 #include <asm/ldt.h>
45 #include <asm/processor.h>
46 #include <asm/i387.h>
47 #include <asm/desc.h>
48 #include <asm/vm86.h>
49 #ifdef CONFIG_MATH_EMULATION
50 #include <asm/math_emu.h>
51 #endif
52
53 #include <linux/err.h>
54
55 #include <asm/tlbflush.h>
56 #include <asm/cpu.h>
57 #include <asm/kdebug.h>
58
59 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
60
61 static int hlt_counter;
62
63 unsigned long boot_option_idle_override = 0;
64 EXPORT_SYMBOL(boot_option_idle_override);
65
66 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
67 EXPORT_PER_CPU_SYMBOL(current_task);
68
69 DEFINE_PER_CPU(int, cpu_number);
70 EXPORT_PER_CPU_SYMBOL(cpu_number);
71
72 /*
73 * Return saved PC of a blocked thread.
74 */
75 unsigned long thread_saved_pc(struct task_struct *tsk)
76 {
77 return ((unsigned long *)tsk->thread.sp)[3];
78 }
79
80 /*
81 * Powermanagement idle function, if any..
82 */
83 void (*pm_idle)(void);
84 EXPORT_SYMBOL(pm_idle);
85
86 void disable_hlt(void)
87 {
88 hlt_counter++;
89 }
90
91 EXPORT_SYMBOL(disable_hlt);
92
93 void enable_hlt(void)
94 {
95 hlt_counter--;
96 }
97
98 EXPORT_SYMBOL(enable_hlt);
99
100 /*
101 * We use this if we don't have any better
102 * idle routine..
103 */
104 void default_idle(void)
105 {
106 if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
107 current_thread_info()->status &= ~TS_POLLING;
108 /*
109 * TS_POLLING-cleared state must be visible before we
110 * test NEED_RESCHED:
111 */
112 smp_mb();
113
114 local_irq_disable();
115 if (!need_resched()) {
116 ktime_t t0, t1;
117 u64 t0n, t1n;
118
119 t0 = ktime_get();
120 t0n = ktime_to_ns(t0);
121 safe_halt(); /* enables interrupts racelessly */
122 local_irq_disable();
123 t1 = ktime_get();
124 t1n = ktime_to_ns(t1);
125 sched_clock_idle_wakeup_event(t1n - t0n);
126 }
127 local_irq_enable();
128 current_thread_info()->status |= TS_POLLING;
129 } else {
130 /* loop is done by the caller */
131 cpu_relax();
132 }
133 }
134 #ifdef CONFIG_APM_MODULE
135 EXPORT_SYMBOL(default_idle);
136 #endif
137
138 /*
139 * On SMP it's slightly faster (but much more power-consuming!)
140 * to poll the ->work.need_resched flag instead of waiting for the
141 * cross-CPU IPI to arrive. Use this option with caution.
142 */
143 static void poll_idle(void)
144 {
145 cpu_relax();
146 }
147
148 #ifdef CONFIG_HOTPLUG_CPU
149 #include <asm/nmi.h>
150 /* We don't actually take CPU down, just spin without interrupts. */
151 static inline void play_dead(void)
152 {
153 /* This must be done before dead CPU ack */
154 cpu_exit_clear();
155 wbinvd();
156 mb();
157 /* Ack it */
158 __get_cpu_var(cpu_state) = CPU_DEAD;
159
160 /*
161 * With physical CPU hotplug, we should halt the cpu
162 */
163 local_irq_disable();
164 while (1)
165 halt();
166 }
167 #else
168 static inline void play_dead(void)
169 {
170 BUG();
171 }
172 #endif /* CONFIG_HOTPLUG_CPU */
173
174 /*
175 * The idle thread. There's no useful work to be
176 * done, so just try to conserve power and have a
177 * low exit latency (ie sit in a loop waiting for
178 * somebody to say that they'd like to reschedule)
179 */
180 void cpu_idle(void)
181 {
182 int cpu = smp_processor_id();
183
184 current_thread_info()->status |= TS_POLLING;
185
186 /* endless idle loop with no priority at all */
187 while (1) {
188 tick_nohz_stop_sched_tick();
189 while (!need_resched()) {
190 void (*idle)(void);
191
192 check_pgt_cache();
193 rmb();
194 idle = pm_idle;
195
196 if (rcu_pending(cpu))
197 rcu_check_callbacks(cpu, 0);
198
199 if (!idle)
200 idle = default_idle;
201
202 if (cpu_is_offline(cpu))
203 play_dead();
204
205 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
206 idle();
207 }
208 tick_nohz_restart_sched_tick();
209 preempt_enable_no_resched();
210 schedule();
211 preempt_disable();
212 }
213 }
214
215 static void do_nothing(void *unused)
216 {
217 }
218
219 /*
220 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
221 * pm_idle and update to new pm_idle value. Required while changing pm_idle
222 * handler on SMP systems.
223 *
224 * Caller must have changed pm_idle to the new value before the call. Old
225 * pm_idle value will not be used by any CPU after the return of this function.
226 */
227 void cpu_idle_wait(void)
228 {
229 smp_mb();
230 /* kick all the CPUs so that they exit out of pm_idle */
231 smp_call_function(do_nothing, NULL, 0, 1);
232 }
233 EXPORT_SYMBOL_GPL(cpu_idle_wait);
234
235 /*
236 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
237 * which can obviate IPI to trigger checking of need_resched.
238 * We execute MONITOR against need_resched and enter optimized wait state
239 * through MWAIT. Whenever someone changes need_resched, we would be woken
240 * up from MWAIT (without an IPI).
241 *
242 * New with Core Duo processors, MWAIT can take some hints based on CPU
243 * capability.
244 */
245 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
246 {
247 if (!need_resched()) {
248 __monitor((void *)&current_thread_info()->flags, 0, 0);
249 smp_mb();
250 if (!need_resched())
251 __mwait(ax, cx);
252 }
253 }
254
255 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
256 static void mwait_idle(void)
257 {
258 local_irq_enable();
259 mwait_idle_with_hints(0, 0);
260 }
261
262 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
263 {
264 if (force_mwait)
265 return 1;
266 /* Any C1 states supported? */
267 return c->cpuid_level >= 5 && ((cpuid_edx(5) >> 4) & 0xf) > 0;
268 }
269
270 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
271 {
272 static int selected;
273
274 if (selected)
275 return;
276 #ifdef CONFIG_X86_SMP
277 if (pm_idle == poll_idle && smp_num_siblings > 1) {
278 printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
279 " performance may degrade.\n");
280 }
281 #endif
282 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
283 /*
284 * Skip, if setup has overridden idle.
285 * One CPU supports mwait => All CPUs supports mwait
286 */
287 if (!pm_idle) {
288 printk(KERN_INFO "using mwait in idle threads.\n");
289 pm_idle = mwait_idle;
290 }
291 }
292 selected = 1;
293 }
294
295 static int __init idle_setup(char *str)
296 {
297 if (!strcmp(str, "poll")) {
298 printk("using polling idle threads.\n");
299 pm_idle = poll_idle;
300 } else if (!strcmp(str, "mwait"))
301 force_mwait = 1;
302 else
303 return -1;
304
305 boot_option_idle_override = 1;
306 return 0;
307 }
308 early_param("idle", idle_setup);
309
310 void __show_registers(struct pt_regs *regs, int all)
311 {
312 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
313 unsigned long d0, d1, d2, d3, d6, d7;
314 unsigned long sp;
315 unsigned short ss, gs;
316
317 if (user_mode_vm(regs)) {
318 sp = regs->sp;
319 ss = regs->ss & 0xffff;
320 savesegment(gs, gs);
321 } else {
322 sp = (unsigned long) (&regs->sp);
323 savesegment(ss, ss);
324 savesegment(gs, gs);
325 }
326
327 printk("\n");
328 printk("Pid: %d, comm: %s %s (%s %.*s)\n",
329 task_pid_nr(current), current->comm,
330 print_tainted(), init_utsname()->release,
331 (int)strcspn(init_utsname()->version, " "),
332 init_utsname()->version);
333
334 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
335 (u16)regs->cs, regs->ip, regs->flags,
336 smp_processor_id());
337 print_symbol("EIP is at %s\n", regs->ip);
338
339 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
340 regs->ax, regs->bx, regs->cx, regs->dx);
341 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
342 regs->si, regs->di, regs->bp, sp);
343 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
344 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
345
346 if (!all)
347 return;
348
349 cr0 = read_cr0();
350 cr2 = read_cr2();
351 cr3 = read_cr3();
352 cr4 = read_cr4_safe();
353 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
354 cr0, cr2, cr3, cr4);
355
356 get_debugreg(d0, 0);
357 get_debugreg(d1, 1);
358 get_debugreg(d2, 2);
359 get_debugreg(d3, 3);
360 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
361 d0, d1, d2, d3);
362
363 get_debugreg(d6, 6);
364 get_debugreg(d7, 7);
365 printk("DR6: %08lx DR7: %08lx\n",
366 d6, d7);
367 }
368
369 void show_regs(struct pt_regs *regs)
370 {
371 __show_registers(regs, 1);
372 show_trace(NULL, regs, &regs->sp, regs->bp);
373 }
374
375 /*
376 * This gets run with %bx containing the
377 * function to call, and %dx containing
378 * the "args".
379 */
380 extern void kernel_thread_helper(void);
381
382 /*
383 * Create a kernel thread
384 */
385 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
386 {
387 struct pt_regs regs;
388
389 memset(&regs, 0, sizeof(regs));
390
391 regs.bx = (unsigned long) fn;
392 regs.dx = (unsigned long) arg;
393
394 regs.ds = __USER_DS;
395 regs.es = __USER_DS;
396 regs.fs = __KERNEL_PERCPU;
397 regs.orig_ax = -1;
398 regs.ip = (unsigned long) kernel_thread_helper;
399 regs.cs = __KERNEL_CS | get_kernel_rpl();
400 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
401
402 /* Ok, create the new process.. */
403 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
404 }
405 EXPORT_SYMBOL(kernel_thread);
406
407 /*
408 * Free current thread data structures etc..
409 */
410 void exit_thread(void)
411 {
412 /* The process may have allocated an io port bitmap... nuke it. */
413 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
414 struct task_struct *tsk = current;
415 struct thread_struct *t = &tsk->thread;
416 int cpu = get_cpu();
417 struct tss_struct *tss = &per_cpu(init_tss, cpu);
418
419 kfree(t->io_bitmap_ptr);
420 t->io_bitmap_ptr = NULL;
421 clear_thread_flag(TIF_IO_BITMAP);
422 /*
423 * Careful, clear this in the TSS too:
424 */
425 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
426 t->io_bitmap_max = 0;
427 tss->io_bitmap_owner = NULL;
428 tss->io_bitmap_max = 0;
429 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
430 put_cpu();
431 }
432 }
433
434 void flush_thread(void)
435 {
436 struct task_struct *tsk = current;
437
438 tsk->thread.debugreg0 = 0;
439 tsk->thread.debugreg1 = 0;
440 tsk->thread.debugreg2 = 0;
441 tsk->thread.debugreg3 = 0;
442 tsk->thread.debugreg6 = 0;
443 tsk->thread.debugreg7 = 0;
444 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
445 clear_tsk_thread_flag(tsk, TIF_DEBUG);
446 /*
447 * Forget coprocessor state..
448 */
449 clear_fpu(tsk);
450 clear_used_math();
451 }
452
453 void release_thread(struct task_struct *dead_task)
454 {
455 BUG_ON(dead_task->mm);
456 release_vm86_irqs(dead_task);
457 }
458
459 /*
460 * This gets called before we allocate a new thread and copy
461 * the current task into it.
462 */
463 void prepare_to_copy(struct task_struct *tsk)
464 {
465 unlazy_fpu(tsk);
466 }
467
468 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
469 unsigned long unused,
470 struct task_struct * p, struct pt_regs * regs)
471 {
472 struct pt_regs * childregs;
473 struct task_struct *tsk;
474 int err;
475
476 childregs = task_pt_regs(p);
477 *childregs = *regs;
478 childregs->ax = 0;
479 childregs->sp = sp;
480
481 p->thread.sp = (unsigned long) childregs;
482 p->thread.sp0 = (unsigned long) (childregs+1);
483
484 p->thread.ip = (unsigned long) ret_from_fork;
485
486 savesegment(gs, p->thread.gs);
487
488 tsk = current;
489 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
490 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
491 IO_BITMAP_BYTES, GFP_KERNEL);
492 if (!p->thread.io_bitmap_ptr) {
493 p->thread.io_bitmap_max = 0;
494 return -ENOMEM;
495 }
496 set_tsk_thread_flag(p, TIF_IO_BITMAP);
497 }
498
499 err = 0;
500
501 /*
502 * Set a new TLS for the child thread?
503 */
504 if (clone_flags & CLONE_SETTLS)
505 err = do_set_thread_area(p, -1,
506 (struct user_desc __user *)childregs->si, 0);
507
508 if (err && p->thread.io_bitmap_ptr) {
509 kfree(p->thread.io_bitmap_ptr);
510 p->thread.io_bitmap_max = 0;
511 }
512 return err;
513 }
514
515 void
516 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
517 {
518 __asm__("movl %0, %%gs" :: "r"(0));
519 regs->fs = 0;
520 set_fs(USER_DS);
521 regs->ds = __USER_DS;
522 regs->es = __USER_DS;
523 regs->ss = __USER_DS;
524 regs->cs = __USER_CS;
525 regs->ip = new_ip;
526 regs->sp = new_sp;
527 }
528 EXPORT_SYMBOL_GPL(start_thread);
529
530 #ifdef CONFIG_SECCOMP
531 static void hard_disable_TSC(void)
532 {
533 write_cr4(read_cr4() | X86_CR4_TSD);
534 }
535 void disable_TSC(void)
536 {
537 preempt_disable();
538 if (!test_and_set_thread_flag(TIF_NOTSC))
539 /*
540 * Must flip the CPU state synchronously with
541 * TIF_NOTSC in the current running context.
542 */
543 hard_disable_TSC();
544 preempt_enable();
545 }
546 static void hard_enable_TSC(void)
547 {
548 write_cr4(read_cr4() & ~X86_CR4_TSD);
549 }
550 #endif /* CONFIG_SECCOMP */
551
552 static noinline void
553 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
554 struct tss_struct *tss)
555 {
556 struct thread_struct *prev, *next;
557 unsigned long debugctl;
558
559 prev = &prev_p->thread;
560 next = &next_p->thread;
561
562 debugctl = prev->debugctlmsr;
563 if (next->ds_area_msr != prev->ds_area_msr) {
564 /* we clear debugctl to make sure DS
565 * is not in use when we change it */
566 debugctl = 0;
567 wrmsrl(MSR_IA32_DEBUGCTLMSR, 0);
568 wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
569 }
570
571 if (next->debugctlmsr != debugctl)
572 wrmsr(MSR_IA32_DEBUGCTLMSR, next->debugctlmsr, 0);
573
574 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
575 set_debugreg(next->debugreg0, 0);
576 set_debugreg(next->debugreg1, 1);
577 set_debugreg(next->debugreg2, 2);
578 set_debugreg(next->debugreg3, 3);
579 /* no 4 and 5 */
580 set_debugreg(next->debugreg6, 6);
581 set_debugreg(next->debugreg7, 7);
582 }
583
584 #ifdef CONFIG_SECCOMP
585 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
586 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
587 /* prev and next are different */
588 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
589 hard_disable_TSC();
590 else
591 hard_enable_TSC();
592 }
593 #endif
594
595 #ifdef X86_BTS
596 if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
597 ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
598
599 if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
600 ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
601 #endif
602
603
604 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
605 /*
606 * Disable the bitmap via an invalid offset. We still cache
607 * the previous bitmap owner and the IO bitmap contents:
608 */
609 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
610 return;
611 }
612
613 if (likely(next == tss->io_bitmap_owner)) {
614 /*
615 * Previous owner of the bitmap (hence the bitmap content)
616 * matches the next task, we dont have to do anything but
617 * to set a valid offset in the TSS:
618 */
619 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
620 return;
621 }
622 /*
623 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
624 * and we let the task to get a GPF in case an I/O instruction
625 * is performed. The handler of the GPF will verify that the
626 * faulting task has a valid I/O bitmap and, it true, does the
627 * real copy and restart the instruction. This will save us
628 * redundant copies when the currently switched task does not
629 * perform any I/O during its timeslice.
630 */
631 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
632 }
633
634 /*
635 * switch_to(x,yn) should switch tasks from x to y.
636 *
637 * We fsave/fwait so that an exception goes off at the right time
638 * (as a call from the fsave or fwait in effect) rather than to
639 * the wrong process. Lazy FP saving no longer makes any sense
640 * with modern CPU's, and this simplifies a lot of things (SMP
641 * and UP become the same).
642 *
643 * NOTE! We used to use the x86 hardware context switching. The
644 * reason for not using it any more becomes apparent when you
645 * try to recover gracefully from saved state that is no longer
646 * valid (stale segment register values in particular). With the
647 * hardware task-switch, there is no way to fix up bad state in
648 * a reasonable manner.
649 *
650 * The fact that Intel documents the hardware task-switching to
651 * be slow is a fairly red herring - this code is not noticeably
652 * faster. However, there _is_ some room for improvement here,
653 * so the performance issues may eventually be a valid point.
654 * More important, however, is the fact that this allows us much
655 * more flexibility.
656 *
657 * The return value (in %ax) will be the "prev" task after
658 * the task-switch, and shows up in ret_from_fork in entry.S,
659 * for example.
660 */
661 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
662 {
663 struct thread_struct *prev = &prev_p->thread,
664 *next = &next_p->thread;
665 int cpu = smp_processor_id();
666 struct tss_struct *tss = &per_cpu(init_tss, cpu);
667
668 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
669
670 __unlazy_fpu(prev_p);
671
672
673 /* we're going to use this soon, after a few expensive things */
674 if (next_p->fpu_counter > 5)
675 prefetch(&next->i387.fxsave);
676
677 /*
678 * Reload esp0.
679 */
680 load_sp0(tss, next);
681
682 /*
683 * Save away %gs. No need to save %fs, as it was saved on the
684 * stack on entry. No need to save %es and %ds, as those are
685 * always kernel segments while inside the kernel. Doing this
686 * before setting the new TLS descriptors avoids the situation
687 * where we temporarily have non-reloadable segments in %fs
688 * and %gs. This could be an issue if the NMI handler ever
689 * used %fs or %gs (it does not today), or if the kernel is
690 * running inside of a hypervisor layer.
691 */
692 savesegment(gs, prev->gs);
693
694 /*
695 * Load the per-thread Thread-Local Storage descriptor.
696 */
697 load_TLS(next, cpu);
698
699 /*
700 * Restore IOPL if needed. In normal use, the flags restore
701 * in the switch assembly will handle this. But if the kernel
702 * is running virtualized at a non-zero CPL, the popf will
703 * not restore flags, so it must be done in a separate step.
704 */
705 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
706 set_iopl_mask(next->iopl);
707
708 /*
709 * Now maybe handle debug registers and/or IO bitmaps
710 */
711 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
712 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
713 __switch_to_xtra(prev_p, next_p, tss);
714
715 /*
716 * Leave lazy mode, flushing any hypercalls made here.
717 * This must be done before restoring TLS segments so
718 * the GDT and LDT are properly updated, and must be
719 * done before math_state_restore, so the TS bit is up
720 * to date.
721 */
722 arch_leave_lazy_cpu_mode();
723
724 /* If the task has used fpu the last 5 timeslices, just do a full
725 * restore of the math state immediately to avoid the trap; the
726 * chances of needing FPU soon are obviously high now
727 */
728 if (next_p->fpu_counter > 5)
729 math_state_restore();
730
731 /*
732 * Restore %gs if needed (which is common)
733 */
734 if (prev->gs | next->gs)
735 loadsegment(gs, next->gs);
736
737 x86_write_percpu(current_task, next_p);
738
739 return prev_p;
740 }
741
742 asmlinkage int sys_fork(struct pt_regs regs)
743 {
744 return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
745 }
746
747 asmlinkage int sys_clone(struct pt_regs regs)
748 {
749 unsigned long clone_flags;
750 unsigned long newsp;
751 int __user *parent_tidptr, *child_tidptr;
752
753 clone_flags = regs.bx;
754 newsp = regs.cx;
755 parent_tidptr = (int __user *)regs.dx;
756 child_tidptr = (int __user *)regs.di;
757 if (!newsp)
758 newsp = regs.sp;
759 return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
760 }
761
762 /*
763 * This is trivial, and on the face of it looks like it
764 * could equally well be done in user mode.
765 *
766 * Not so, for quite unobvious reasons - register pressure.
767 * In user mode vfork() cannot have a stack frame, and if
768 * done by calling the "clone()" system call directly, you
769 * do not have enough call-clobbered registers to hold all
770 * the information you need.
771 */
772 asmlinkage int sys_vfork(struct pt_regs regs)
773 {
774 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
775 }
776
777 /*
778 * sys_execve() executes a new program.
779 */
780 asmlinkage int sys_execve(struct pt_regs regs)
781 {
782 int error;
783 char * filename;
784
785 filename = getname((char __user *) regs.bx);
786 error = PTR_ERR(filename);
787 if (IS_ERR(filename))
788 goto out;
789 error = do_execve(filename,
790 (char __user * __user *) regs.cx,
791 (char __user * __user *) regs.dx,
792 &regs);
793 if (error == 0) {
794 /* Make sure we don't return using sysenter.. */
795 set_thread_flag(TIF_IRET);
796 }
797 putname(filename);
798 out:
799 return error;
800 }
801
802 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
803 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
804
805 unsigned long get_wchan(struct task_struct *p)
806 {
807 unsigned long bp, sp, ip;
808 unsigned long stack_page;
809 int count = 0;
810 if (!p || p == current || p->state == TASK_RUNNING)
811 return 0;
812 stack_page = (unsigned long)task_stack_page(p);
813 sp = p->thread.sp;
814 if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
815 return 0;
816 /* include/asm-i386/system.h:switch_to() pushes bp last. */
817 bp = *(unsigned long *) sp;
818 do {
819 if (bp < stack_page || bp > top_ebp+stack_page)
820 return 0;
821 ip = *(unsigned long *) (bp+4);
822 if (!in_sched_functions(ip))
823 return ip;
824 bp = *(unsigned long *) bp;
825 } while (count++ < 16);
826 return 0;
827 }
828
829 unsigned long arch_align_stack(unsigned long sp)
830 {
831 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
832 sp -= get_random_int() % 8192;
833 return sp & ~0xf;
834 }
835
836 unsigned long arch_randomize_brk(struct mm_struct *mm)
837 {
838 unsigned long range_end = mm->brk + 0x02000000;
839 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
840 }
This page took 0.075484 seconds and 5 git commands to generate.