Merge tag 'trace-v4.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[deliverable/linux.git] / arch / x86 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
15 * This code is released under the GNU General Public License version 2 or
16 * later.
17 *
18 * Fixes
19 * Felix Koop : NR_CPUS used properly
20 * Jose Renau : Handle single CPU case.
21 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
22 * Greg Wright : Fix for kernel stacks panic.
23 * Erich Boleyn : MP v1.4 and additional changes.
24 * Matthias Sattler : Changes for 2.1 kernel map.
25 * Michel Lespinasse : Changes for 2.1 kernel map.
26 * Michael Chastain : Change trampoline.S to gnu as.
27 * Alan Cox : Dumb bug: 'B' step PPro's are fine
28 * Ingo Molnar : Added APIC timers, based on code
29 * from Jose Renau
30 * Ingo Molnar : various cleanups and rewrites
31 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
32 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
33 * Andi Kleen : Changed for SMP boot into long mode.
34 * Martin J. Bligh : Added support for multi-quad systems
35 * Dave Jones : Report invalid combinations of Athlon CPUs.
36 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
37 * Andi Kleen : Converted to new state machine.
38 * Ashok Raj : CPU hotplug support
39 * Glauber Costa : i386 and x86_64 integration
40 */
41
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43
44 #include <linux/init.h>
45 #include <linux/smp.h>
46 #include <linux/module.h>
47 #include <linux/sched.h>
48 #include <linux/percpu.h>
49 #include <linux/bootmem.h>
50 #include <linux/err.h>
51 #include <linux/nmi.h>
52 #include <linux/tboot.h>
53 #include <linux/stackprotector.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56
57 #include <asm/acpi.h>
58 #include <asm/desc.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/idle.h>
62 #include <asm/realmode.h>
63 #include <asm/cpu.h>
64 #include <asm/numa.h>
65 #include <asm/pgtable.h>
66 #include <asm/tlbflush.h>
67 #include <asm/mtrr.h>
68 #include <asm/mwait.h>
69 #include <asm/apic.h>
70 #include <asm/io_apic.h>
71 #include <asm/fpu/internal.h>
72 #include <asm/setup.h>
73 #include <asm/uv/uv.h>
74 #include <linux/mc146818rtc.h>
75 #include <asm/i8259.h>
76 #include <asm/realmode.h>
77 #include <asm/misc.h>
78
79 /* Number of siblings per CPU package */
80 int smp_num_siblings = 1;
81 EXPORT_SYMBOL(smp_num_siblings);
82
83 /* Last level cache ID of each logical CPU */
84 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
85
86 /* representing HT siblings of each logical CPU */
87 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
89
90 /* representing HT and core siblings of each logical CPU */
91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
93
94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
95
96 /* Per CPU bogomips and other parameters */
97 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
98 EXPORT_PER_CPU_SYMBOL(cpu_info);
99
100 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
101 {
102 unsigned long flags;
103
104 spin_lock_irqsave(&rtc_lock, flags);
105 CMOS_WRITE(0xa, 0xf);
106 spin_unlock_irqrestore(&rtc_lock, flags);
107 local_flush_tlb();
108 pr_debug("1.\n");
109 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
110 start_eip >> 4;
111 pr_debug("2.\n");
112 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
113 start_eip & 0xf;
114 pr_debug("3.\n");
115 }
116
117 static inline void smpboot_restore_warm_reset_vector(void)
118 {
119 unsigned long flags;
120
121 /*
122 * Install writable page 0 entry to set BIOS data area.
123 */
124 local_flush_tlb();
125
126 /*
127 * Paranoid: Set warm reset code and vector here back
128 * to default values.
129 */
130 spin_lock_irqsave(&rtc_lock, flags);
131 CMOS_WRITE(0, 0xf);
132 spin_unlock_irqrestore(&rtc_lock, flags);
133
134 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
135 }
136
137 /*
138 * Report back to the Boot Processor during boot time or to the caller processor
139 * during CPU online.
140 */
141 static void smp_callin(void)
142 {
143 int cpuid, phys_id;
144
145 /*
146 * If waken up by an INIT in an 82489DX configuration
147 * cpu_callout_mask guarantees we don't get here before
148 * an INIT_deassert IPI reaches our local APIC, so it is
149 * now safe to touch our local APIC.
150 */
151 cpuid = smp_processor_id();
152
153 /*
154 * (This works even if the APIC is not enabled.)
155 */
156 phys_id = read_apic_id();
157
158 /*
159 * the boot CPU has finished the init stage and is spinning
160 * on callin_map until we finish. We are free to set up this
161 * CPU, first the APIC. (this is probably redundant on most
162 * boards)
163 */
164 apic_ap_setup();
165
166 /*
167 * Save our processor parameters. Note: this information
168 * is needed for clock calibration.
169 */
170 smp_store_cpu_info(cpuid);
171
172 /*
173 * Get our bogomips.
174 * Update loops_per_jiffy in cpu_data. Previous call to
175 * smp_store_cpu_info() stored a value that is close but not as
176 * accurate as the value just calculated.
177 */
178 calibrate_delay();
179 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
180 pr_debug("Stack at about %p\n", &cpuid);
181
182 /*
183 * This must be done before setting cpu_online_mask
184 * or calling notify_cpu_starting.
185 */
186 set_cpu_sibling_map(raw_smp_processor_id());
187 wmb();
188
189 notify_cpu_starting(cpuid);
190
191 /*
192 * Allow the master to continue.
193 */
194 cpumask_set_cpu(cpuid, cpu_callin_mask);
195 }
196
197 static int cpu0_logical_apicid;
198 static int enable_start_cpu0;
199 /*
200 * Activate a secondary processor.
201 */
202 static void notrace start_secondary(void *unused)
203 {
204 /*
205 * Don't put *anything* before cpu_init(), SMP booting is too
206 * fragile that we want to limit the things done here to the
207 * most necessary things.
208 */
209 cpu_init();
210 x86_cpuinit.early_percpu_clock_init();
211 preempt_disable();
212 smp_callin();
213
214 enable_start_cpu0 = 0;
215
216 #ifdef CONFIG_X86_32
217 /* switch away from the initial page table */
218 load_cr3(swapper_pg_dir);
219 __flush_tlb_all();
220 #endif
221
222 /* otherwise gcc will move up smp_processor_id before the cpu_init */
223 barrier();
224 /*
225 * Check TSC synchronization with the BP:
226 */
227 check_tsc_sync_target();
228
229 /*
230 * Lock vector_lock and initialize the vectors on this cpu
231 * before setting the cpu online. We must set it online with
232 * vector_lock held to prevent a concurrent setup/teardown
233 * from seeing a half valid vector space.
234 */
235 lock_vector_lock();
236 setup_vector_irq(smp_processor_id());
237 set_cpu_online(smp_processor_id(), true);
238 unlock_vector_lock();
239 cpu_set_state_online(smp_processor_id());
240 x86_platform.nmi_init();
241
242 /* enable local interrupts */
243 local_irq_enable();
244
245 /* to prevent fake stack check failure in clock setup */
246 boot_init_stack_canary();
247
248 x86_cpuinit.setup_percpu_clockev();
249
250 wmb();
251 cpu_startup_entry(CPUHP_ONLINE);
252 }
253
254 void __init smp_store_boot_cpu_info(void)
255 {
256 int id = 0; /* CPU 0 */
257 struct cpuinfo_x86 *c = &cpu_data(id);
258
259 *c = boot_cpu_data;
260 c->cpu_index = id;
261 }
262
263 /*
264 * The bootstrap kernel entry code has set these up. Save them for
265 * a given CPU
266 */
267 void smp_store_cpu_info(int id)
268 {
269 struct cpuinfo_x86 *c = &cpu_data(id);
270
271 *c = boot_cpu_data;
272 c->cpu_index = id;
273 /*
274 * During boot time, CPU0 has this setup already. Save the info when
275 * bringing up AP or offlined CPU0.
276 */
277 identify_secondary_cpu(c);
278 }
279
280 static bool
281 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
282 {
283 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
284
285 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
286 }
287
288 static bool
289 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
290 {
291 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
292
293 return !WARN_ONCE(!topology_same_node(c, o),
294 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
295 "[node: %d != %d]. Ignoring dependency.\n",
296 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
297 }
298
299 #define link_mask(mfunc, c1, c2) \
300 do { \
301 cpumask_set_cpu((c1), mfunc(c2)); \
302 cpumask_set_cpu((c2), mfunc(c1)); \
303 } while (0)
304
305 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
306 {
307 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
308 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
309
310 if (c->phys_proc_id == o->phys_proc_id &&
311 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) &&
312 c->compute_unit_id == o->compute_unit_id)
313 return topology_sane(c, o, "smt");
314
315 } else if (c->phys_proc_id == o->phys_proc_id &&
316 c->cpu_core_id == o->cpu_core_id) {
317 return topology_sane(c, o, "smt");
318 }
319
320 return false;
321 }
322
323 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
324 {
325 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
326
327 if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
328 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
329 return topology_sane(c, o, "llc");
330
331 return false;
332 }
333
334 /*
335 * Unlike the other levels, we do not enforce keeping a
336 * multicore group inside a NUMA node. If this happens, we will
337 * discard the MC level of the topology later.
338 */
339 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
340 {
341 if (c->phys_proc_id == o->phys_proc_id)
342 return true;
343 return false;
344 }
345
346 static struct sched_domain_topology_level numa_inside_package_topology[] = {
347 #ifdef CONFIG_SCHED_SMT
348 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
349 #endif
350 #ifdef CONFIG_SCHED_MC
351 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
352 #endif
353 { NULL, },
354 };
355 /*
356 * set_sched_topology() sets the topology internal to a CPU. The
357 * NUMA topologies are layered on top of it to build the full
358 * system topology.
359 *
360 * If NUMA nodes are observed to occur within a CPU package, this
361 * function should be called. It forces the sched domain code to
362 * only use the SMT level for the CPU portion of the topology.
363 * This essentially falls back to relying on NUMA information
364 * from the SRAT table to describe the entire system topology
365 * (except for hyperthreads).
366 */
367 static void primarily_use_numa_for_topology(void)
368 {
369 set_sched_topology(numa_inside_package_topology);
370 }
371
372 void set_cpu_sibling_map(int cpu)
373 {
374 bool has_smt = smp_num_siblings > 1;
375 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
376 struct cpuinfo_x86 *c = &cpu_data(cpu);
377 struct cpuinfo_x86 *o;
378 int i;
379
380 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
381
382 if (!has_mp) {
383 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
384 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
385 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
386 c->booted_cores = 1;
387 return;
388 }
389
390 for_each_cpu(i, cpu_sibling_setup_mask) {
391 o = &cpu_data(i);
392
393 if ((i == cpu) || (has_smt && match_smt(c, o)))
394 link_mask(topology_sibling_cpumask, cpu, i);
395
396 if ((i == cpu) || (has_mp && match_llc(c, o)))
397 link_mask(cpu_llc_shared_mask, cpu, i);
398
399 }
400
401 /*
402 * This needs a separate iteration over the cpus because we rely on all
403 * topology_sibling_cpumask links to be set-up.
404 */
405 for_each_cpu(i, cpu_sibling_setup_mask) {
406 o = &cpu_data(i);
407
408 if ((i == cpu) || (has_mp && match_die(c, o))) {
409 link_mask(topology_core_cpumask, cpu, i);
410
411 /*
412 * Does this new cpu bringup a new core?
413 */
414 if (cpumask_weight(
415 topology_sibling_cpumask(cpu)) == 1) {
416 /*
417 * for each core in package, increment
418 * the booted_cores for this new cpu
419 */
420 if (cpumask_first(
421 topology_sibling_cpumask(i)) == i)
422 c->booted_cores++;
423 /*
424 * increment the core count for all
425 * the other cpus in this package
426 */
427 if (i != cpu)
428 cpu_data(i).booted_cores++;
429 } else if (i != cpu && !c->booted_cores)
430 c->booted_cores = cpu_data(i).booted_cores;
431 }
432 if (match_die(c, o) && !topology_same_node(c, o))
433 primarily_use_numa_for_topology();
434 }
435 }
436
437 /* maps the cpu to the sched domain representing multi-core */
438 const struct cpumask *cpu_coregroup_mask(int cpu)
439 {
440 return cpu_llc_shared_mask(cpu);
441 }
442
443 static void impress_friends(void)
444 {
445 int cpu;
446 unsigned long bogosum = 0;
447 /*
448 * Allow the user to impress friends.
449 */
450 pr_debug("Before bogomips\n");
451 for_each_possible_cpu(cpu)
452 if (cpumask_test_cpu(cpu, cpu_callout_mask))
453 bogosum += cpu_data(cpu).loops_per_jiffy;
454 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
455 num_online_cpus(),
456 bogosum/(500000/HZ),
457 (bogosum/(5000/HZ))%100);
458
459 pr_debug("Before bogocount - setting activated=1\n");
460 }
461
462 void __inquire_remote_apic(int apicid)
463 {
464 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
465 const char * const names[] = { "ID", "VERSION", "SPIV" };
466 int timeout;
467 u32 status;
468
469 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
470
471 for (i = 0; i < ARRAY_SIZE(regs); i++) {
472 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
473
474 /*
475 * Wait for idle.
476 */
477 status = safe_apic_wait_icr_idle();
478 if (status)
479 pr_cont("a previous APIC delivery may have failed\n");
480
481 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
482
483 timeout = 0;
484 do {
485 udelay(100);
486 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
487 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
488
489 switch (status) {
490 case APIC_ICR_RR_VALID:
491 status = apic_read(APIC_RRR);
492 pr_cont("%08x\n", status);
493 break;
494 default:
495 pr_cont("failed\n");
496 }
497 }
498 }
499
500 /*
501 * The Multiprocessor Specification 1.4 (1997) example code suggests
502 * that there should be a 10ms delay between the BSP asserting INIT
503 * and de-asserting INIT, when starting a remote processor.
504 * But that slows boot and resume on modern processors, which include
505 * many cores and don't require that delay.
506 *
507 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
508 * Modern processor families are quirked to remove the delay entirely.
509 */
510 #define UDELAY_10MS_DEFAULT 10000
511
512 static unsigned int init_udelay = UINT_MAX;
513
514 static int __init cpu_init_udelay(char *str)
515 {
516 get_option(&str, &init_udelay);
517
518 return 0;
519 }
520 early_param("cpu_init_udelay", cpu_init_udelay);
521
522 static void __init smp_quirk_init_udelay(void)
523 {
524 /* if cmdline changed it from default, leave it alone */
525 if (init_udelay != UINT_MAX)
526 return;
527
528 /* if modern processor, use no delay */
529 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
530 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
531 init_udelay = 0;
532 return;
533 }
534 /* else, use legacy delay */
535 init_udelay = UDELAY_10MS_DEFAULT;
536 }
537
538 /*
539 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
540 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
541 * won't ... remember to clear down the APIC, etc later.
542 */
543 int
544 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
545 {
546 unsigned long send_status, accept_status = 0;
547 int maxlvt;
548
549 /* Target chip */
550 /* Boot on the stack */
551 /* Kick the second */
552 apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
553
554 pr_debug("Waiting for send to finish...\n");
555 send_status = safe_apic_wait_icr_idle();
556
557 /*
558 * Give the other CPU some time to accept the IPI.
559 */
560 udelay(200);
561 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
562 maxlvt = lapic_get_maxlvt();
563 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
564 apic_write(APIC_ESR, 0);
565 accept_status = (apic_read(APIC_ESR) & 0xEF);
566 }
567 pr_debug("NMI sent\n");
568
569 if (send_status)
570 pr_err("APIC never delivered???\n");
571 if (accept_status)
572 pr_err("APIC delivery error (%lx)\n", accept_status);
573
574 return (send_status | accept_status);
575 }
576
577 static int
578 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
579 {
580 unsigned long send_status = 0, accept_status = 0;
581 int maxlvt, num_starts, j;
582
583 maxlvt = lapic_get_maxlvt();
584
585 /*
586 * Be paranoid about clearing APIC errors.
587 */
588 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
589 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
590 apic_write(APIC_ESR, 0);
591 apic_read(APIC_ESR);
592 }
593
594 pr_debug("Asserting INIT\n");
595
596 /*
597 * Turn INIT on target chip
598 */
599 /*
600 * Send IPI
601 */
602 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
603 phys_apicid);
604
605 pr_debug("Waiting for send to finish...\n");
606 send_status = safe_apic_wait_icr_idle();
607
608 udelay(init_udelay);
609
610 pr_debug("Deasserting INIT\n");
611
612 /* Target chip */
613 /* Send IPI */
614 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
615
616 pr_debug("Waiting for send to finish...\n");
617 send_status = safe_apic_wait_icr_idle();
618
619 mb();
620
621 /*
622 * Should we send STARTUP IPIs ?
623 *
624 * Determine this based on the APIC version.
625 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
626 */
627 if (APIC_INTEGRATED(apic_version[phys_apicid]))
628 num_starts = 2;
629 else
630 num_starts = 0;
631
632 /*
633 * Run STARTUP IPI loop.
634 */
635 pr_debug("#startup loops: %d\n", num_starts);
636
637 for (j = 1; j <= num_starts; j++) {
638 pr_debug("Sending STARTUP #%d\n", j);
639 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
640 apic_write(APIC_ESR, 0);
641 apic_read(APIC_ESR);
642 pr_debug("After apic_write\n");
643
644 /*
645 * STARTUP IPI
646 */
647
648 /* Target chip */
649 /* Boot on the stack */
650 /* Kick the second */
651 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
652 phys_apicid);
653
654 /*
655 * Give the other CPU some time to accept the IPI.
656 */
657 if (init_udelay == 0)
658 udelay(10);
659 else
660 udelay(300);
661
662 pr_debug("Startup point 1\n");
663
664 pr_debug("Waiting for send to finish...\n");
665 send_status = safe_apic_wait_icr_idle();
666
667 /*
668 * Give the other CPU some time to accept the IPI.
669 */
670 if (init_udelay == 0)
671 udelay(10);
672 else
673 udelay(200);
674
675 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
676 apic_write(APIC_ESR, 0);
677 accept_status = (apic_read(APIC_ESR) & 0xEF);
678 if (send_status || accept_status)
679 break;
680 }
681 pr_debug("After Startup\n");
682
683 if (send_status)
684 pr_err("APIC never delivered???\n");
685 if (accept_status)
686 pr_err("APIC delivery error (%lx)\n", accept_status);
687
688 return (send_status | accept_status);
689 }
690
691 void smp_announce(void)
692 {
693 int num_nodes = num_online_nodes();
694
695 printk(KERN_INFO "x86: Booted up %d node%s, %d CPUs\n",
696 num_nodes, (num_nodes > 1 ? "s" : ""), num_online_cpus());
697 }
698
699 /* reduce the number of lines printed when booting a large cpu count system */
700 static void announce_cpu(int cpu, int apicid)
701 {
702 static int current_node = -1;
703 int node = early_cpu_to_node(cpu);
704 static int width, node_width;
705
706 if (!width)
707 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
708
709 if (!node_width)
710 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
711
712 if (cpu == 1)
713 printk(KERN_INFO "x86: Booting SMP configuration:\n");
714
715 if (system_state == SYSTEM_BOOTING) {
716 if (node != current_node) {
717 if (current_node > (-1))
718 pr_cont("\n");
719 current_node = node;
720
721 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
722 node_width - num_digits(node), " ", node);
723 }
724
725 /* Add padding for the BSP */
726 if (cpu == 1)
727 pr_cont("%*s", width + 1, " ");
728
729 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
730
731 } else
732 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
733 node, cpu, apicid);
734 }
735
736 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
737 {
738 int cpu;
739
740 cpu = smp_processor_id();
741 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
742 return NMI_HANDLED;
743
744 return NMI_DONE;
745 }
746
747 /*
748 * Wake up AP by INIT, INIT, STARTUP sequence.
749 *
750 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
751 * boot-strap code which is not a desired behavior for waking up BSP. To
752 * void the boot-strap code, wake up CPU0 by NMI instead.
753 *
754 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
755 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
756 * We'll change this code in the future to wake up hard offlined CPU0 if
757 * real platform and request are available.
758 */
759 static int
760 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
761 int *cpu0_nmi_registered)
762 {
763 int id;
764 int boot_error;
765
766 preempt_disable();
767
768 /*
769 * Wake up AP by INIT, INIT, STARTUP sequence.
770 */
771 if (cpu) {
772 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
773 goto out;
774 }
775
776 /*
777 * Wake up BSP by nmi.
778 *
779 * Register a NMI handler to help wake up CPU0.
780 */
781 boot_error = register_nmi_handler(NMI_LOCAL,
782 wakeup_cpu0_nmi, 0, "wake_cpu0");
783
784 if (!boot_error) {
785 enable_start_cpu0 = 1;
786 *cpu0_nmi_registered = 1;
787 if (apic->dest_logical == APIC_DEST_LOGICAL)
788 id = cpu0_logical_apicid;
789 else
790 id = apicid;
791 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
792 }
793
794 out:
795 preempt_enable();
796
797 return boot_error;
798 }
799
800 void common_cpu_up(unsigned int cpu, struct task_struct *idle)
801 {
802 /* Just in case we booted with a single CPU. */
803 alternatives_enable_smp();
804
805 per_cpu(current_task, cpu) = idle;
806
807 #ifdef CONFIG_X86_32
808 /* Stack for startup_32 can be just as for start_secondary onwards */
809 irq_ctx_init(cpu);
810 per_cpu(cpu_current_top_of_stack, cpu) =
811 (unsigned long)task_stack_page(idle) + THREAD_SIZE;
812 #else
813 clear_tsk_thread_flag(idle, TIF_FORK);
814 initial_gs = per_cpu_offset(cpu);
815 #endif
816 }
817
818 /*
819 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
820 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
821 * Returns zero if CPU booted OK, else error code from
822 * ->wakeup_secondary_cpu.
823 */
824 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
825 {
826 volatile u32 *trampoline_status =
827 (volatile u32 *) __va(real_mode_header->trampoline_status);
828 /* start_ip had better be page-aligned! */
829 unsigned long start_ip = real_mode_header->trampoline_start;
830
831 unsigned long boot_error = 0;
832 int cpu0_nmi_registered = 0;
833 unsigned long timeout;
834
835 idle->thread.sp = (unsigned long) (((struct pt_regs *)
836 (THREAD_SIZE + task_stack_page(idle))) - 1);
837
838 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
839 initial_code = (unsigned long)start_secondary;
840 stack_start = idle->thread.sp;
841
842 /*
843 * Enable the espfix hack for this CPU
844 */
845 #ifdef CONFIG_X86_ESPFIX64
846 init_espfix_ap(cpu);
847 #endif
848
849 /* So we see what's up */
850 announce_cpu(cpu, apicid);
851
852 /*
853 * This grunge runs the startup process for
854 * the targeted processor.
855 */
856
857 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
858
859 pr_debug("Setting warm reset code and vector.\n");
860
861 smpboot_setup_warm_reset_vector(start_ip);
862 /*
863 * Be paranoid about clearing APIC errors.
864 */
865 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
866 apic_write(APIC_ESR, 0);
867 apic_read(APIC_ESR);
868 }
869 }
870
871 /*
872 * AP might wait on cpu_callout_mask in cpu_init() with
873 * cpu_initialized_mask set if previous attempt to online
874 * it timed-out. Clear cpu_initialized_mask so that after
875 * INIT/SIPI it could start with a clean state.
876 */
877 cpumask_clear_cpu(cpu, cpu_initialized_mask);
878 smp_mb();
879
880 /*
881 * Wake up a CPU in difference cases:
882 * - Use the method in the APIC driver if it's defined
883 * Otherwise,
884 * - Use an INIT boot APIC message for APs or NMI for BSP.
885 */
886 if (apic->wakeup_secondary_cpu)
887 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
888 else
889 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
890 &cpu0_nmi_registered);
891
892 if (!boot_error) {
893 /*
894 * Wait 10s total for first sign of life from AP
895 */
896 boot_error = -1;
897 timeout = jiffies + 10*HZ;
898 while (time_before(jiffies, timeout)) {
899 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
900 /*
901 * Tell AP to proceed with initialization
902 */
903 cpumask_set_cpu(cpu, cpu_callout_mask);
904 boot_error = 0;
905 break;
906 }
907 schedule();
908 }
909 }
910
911 if (!boot_error) {
912 /*
913 * Wait till AP completes initial initialization
914 */
915 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
916 /*
917 * Allow other tasks to run while we wait for the
918 * AP to come online. This also gives a chance
919 * for the MTRR work(triggered by the AP coming online)
920 * to be completed in the stop machine context.
921 */
922 schedule();
923 }
924 }
925
926 /* mark "stuck" area as not stuck */
927 *trampoline_status = 0;
928
929 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
930 /*
931 * Cleanup possible dangling ends...
932 */
933 smpboot_restore_warm_reset_vector();
934 }
935 /*
936 * Clean up the nmi handler. Do this after the callin and callout sync
937 * to avoid impact of possible long unregister time.
938 */
939 if (cpu0_nmi_registered)
940 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
941
942 return boot_error;
943 }
944
945 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
946 {
947 int apicid = apic->cpu_present_to_apicid(cpu);
948 unsigned long flags;
949 int err;
950
951 WARN_ON(irqs_disabled());
952
953 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
954
955 if (apicid == BAD_APICID ||
956 !physid_isset(apicid, phys_cpu_present_map) ||
957 !apic->apic_id_valid(apicid)) {
958 pr_err("%s: bad cpu %d\n", __func__, cpu);
959 return -EINVAL;
960 }
961
962 /*
963 * Already booted CPU?
964 */
965 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
966 pr_debug("do_boot_cpu %d Already started\n", cpu);
967 return -ENOSYS;
968 }
969
970 /*
971 * Save current MTRR state in case it was changed since early boot
972 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
973 */
974 mtrr_save_state();
975
976 /* x86 CPUs take themselves offline, so delayed offline is OK. */
977 err = cpu_check_up_prepare(cpu);
978 if (err && err != -EBUSY)
979 return err;
980
981 /* the FPU context is blank, nobody can own it */
982 __cpu_disable_lazy_restore(cpu);
983
984 common_cpu_up(cpu, tidle);
985
986 /*
987 * We have to walk the irq descriptors to setup the vector
988 * space for the cpu which comes online. Prevent irq
989 * alloc/free across the bringup.
990 */
991 irq_lock_sparse();
992
993 err = do_boot_cpu(apicid, cpu, tidle);
994
995 if (err) {
996 irq_unlock_sparse();
997 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
998 return -EIO;
999 }
1000
1001 /*
1002 * Check TSC synchronization with the AP (keep irqs disabled
1003 * while doing so):
1004 */
1005 local_irq_save(flags);
1006 check_tsc_sync_source(cpu);
1007 local_irq_restore(flags);
1008
1009 while (!cpu_online(cpu)) {
1010 cpu_relax();
1011 touch_nmi_watchdog();
1012 }
1013
1014 irq_unlock_sparse();
1015
1016 return 0;
1017 }
1018
1019 /**
1020 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1021 */
1022 void arch_disable_smp_support(void)
1023 {
1024 disable_ioapic_support();
1025 }
1026
1027 /*
1028 * Fall back to non SMP mode after errors.
1029 *
1030 * RED-PEN audit/test this more. I bet there is more state messed up here.
1031 */
1032 static __init void disable_smp(void)
1033 {
1034 pr_info("SMP disabled\n");
1035
1036 disable_ioapic_support();
1037
1038 init_cpu_present(cpumask_of(0));
1039 init_cpu_possible(cpumask_of(0));
1040
1041 if (smp_found_config)
1042 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1043 else
1044 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1045 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1046 cpumask_set_cpu(0, topology_core_cpumask(0));
1047 }
1048
1049 enum {
1050 SMP_OK,
1051 SMP_NO_CONFIG,
1052 SMP_NO_APIC,
1053 SMP_FORCE_UP,
1054 };
1055
1056 /*
1057 * Various sanity checks.
1058 */
1059 static int __init smp_sanity_check(unsigned max_cpus)
1060 {
1061 preempt_disable();
1062
1063 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1064 if (def_to_bigsmp && nr_cpu_ids > 8) {
1065 unsigned int cpu;
1066 unsigned nr;
1067
1068 pr_warn("More than 8 CPUs detected - skipping them\n"
1069 "Use CONFIG_X86_BIGSMP\n");
1070
1071 nr = 0;
1072 for_each_present_cpu(cpu) {
1073 if (nr >= 8)
1074 set_cpu_present(cpu, false);
1075 nr++;
1076 }
1077
1078 nr = 0;
1079 for_each_possible_cpu(cpu) {
1080 if (nr >= 8)
1081 set_cpu_possible(cpu, false);
1082 nr++;
1083 }
1084
1085 nr_cpu_ids = 8;
1086 }
1087 #endif
1088
1089 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1090 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1091 hard_smp_processor_id());
1092
1093 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1094 }
1095
1096 /*
1097 * If we couldn't find an SMP configuration at boot time,
1098 * get out of here now!
1099 */
1100 if (!smp_found_config && !acpi_lapic) {
1101 preempt_enable();
1102 pr_notice("SMP motherboard not detected\n");
1103 return SMP_NO_CONFIG;
1104 }
1105
1106 /*
1107 * Should not be necessary because the MP table should list the boot
1108 * CPU too, but we do it for the sake of robustness anyway.
1109 */
1110 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1111 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1112 boot_cpu_physical_apicid);
1113 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1114 }
1115 preempt_enable();
1116
1117 /*
1118 * If we couldn't find a local APIC, then get out of here now!
1119 */
1120 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
1121 !cpu_has_apic) {
1122 if (!disable_apic) {
1123 pr_err("BIOS bug, local APIC #%d not detected!...\n",
1124 boot_cpu_physical_apicid);
1125 pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n");
1126 }
1127 return SMP_NO_APIC;
1128 }
1129
1130 /*
1131 * If SMP should be disabled, then really disable it!
1132 */
1133 if (!max_cpus) {
1134 pr_info("SMP mode deactivated\n");
1135 return SMP_FORCE_UP;
1136 }
1137
1138 return SMP_OK;
1139 }
1140
1141 static void __init smp_cpu_index_default(void)
1142 {
1143 int i;
1144 struct cpuinfo_x86 *c;
1145
1146 for_each_possible_cpu(i) {
1147 c = &cpu_data(i);
1148 /* mark all to hotplug */
1149 c->cpu_index = nr_cpu_ids;
1150 }
1151 }
1152
1153 /*
1154 * Prepare for SMP bootup. The MP table or ACPI has been read
1155 * earlier. Just do some sanity checking here and enable APIC mode.
1156 */
1157 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1158 {
1159 unsigned int i;
1160
1161 smp_cpu_index_default();
1162
1163 /*
1164 * Setup boot CPU information
1165 */
1166 smp_store_boot_cpu_info(); /* Final full version of the data */
1167 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1168 mb();
1169
1170 current_thread_info()->cpu = 0; /* needed? */
1171 for_each_possible_cpu(i) {
1172 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1173 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1174 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1175 }
1176 set_cpu_sibling_map(0);
1177
1178 switch (smp_sanity_check(max_cpus)) {
1179 case SMP_NO_CONFIG:
1180 disable_smp();
1181 if (APIC_init_uniprocessor())
1182 pr_notice("Local APIC not detected. Using dummy APIC emulation.\n");
1183 return;
1184 case SMP_NO_APIC:
1185 disable_smp();
1186 return;
1187 case SMP_FORCE_UP:
1188 disable_smp();
1189 apic_bsp_setup(false);
1190 return;
1191 case SMP_OK:
1192 break;
1193 }
1194
1195 default_setup_apic_routing();
1196
1197 if (read_apic_id() != boot_cpu_physical_apicid) {
1198 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1199 read_apic_id(), boot_cpu_physical_apicid);
1200 /* Or can we switch back to PIC here? */
1201 }
1202
1203 cpu0_logical_apicid = apic_bsp_setup(false);
1204
1205 pr_info("CPU%d: ", 0);
1206 print_cpu_info(&cpu_data(0));
1207
1208 if (is_uv_system())
1209 uv_system_init();
1210
1211 set_mtrr_aps_delayed_init();
1212
1213 smp_quirk_init_udelay();
1214 }
1215
1216 void arch_enable_nonboot_cpus_begin(void)
1217 {
1218 set_mtrr_aps_delayed_init();
1219 }
1220
1221 void arch_enable_nonboot_cpus_end(void)
1222 {
1223 mtrr_aps_init();
1224 }
1225
1226 /*
1227 * Early setup to make printk work.
1228 */
1229 void __init native_smp_prepare_boot_cpu(void)
1230 {
1231 int me = smp_processor_id();
1232 switch_to_new_gdt(me);
1233 /* already set me in cpu_online_mask in boot_cpu_init() */
1234 cpumask_set_cpu(me, cpu_callout_mask);
1235 cpu_set_state_online(me);
1236 }
1237
1238 void __init native_smp_cpus_done(unsigned int max_cpus)
1239 {
1240 pr_debug("Boot done\n");
1241
1242 nmi_selftest();
1243 impress_friends();
1244 setup_ioapic_dest();
1245 mtrr_aps_init();
1246 }
1247
1248 static int __initdata setup_possible_cpus = -1;
1249 static int __init _setup_possible_cpus(char *str)
1250 {
1251 get_option(&str, &setup_possible_cpus);
1252 return 0;
1253 }
1254 early_param("possible_cpus", _setup_possible_cpus);
1255
1256
1257 /*
1258 * cpu_possible_mask should be static, it cannot change as cpu's
1259 * are onlined, or offlined. The reason is per-cpu data-structures
1260 * are allocated by some modules at init time, and dont expect to
1261 * do this dynamically on cpu arrival/departure.
1262 * cpu_present_mask on the other hand can change dynamically.
1263 * In case when cpu_hotplug is not compiled, then we resort to current
1264 * behaviour, which is cpu_possible == cpu_present.
1265 * - Ashok Raj
1266 *
1267 * Three ways to find out the number of additional hotplug CPUs:
1268 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1269 * - The user can overwrite it with possible_cpus=NUM
1270 * - Otherwise don't reserve additional CPUs.
1271 * We do this because additional CPUs waste a lot of memory.
1272 * -AK
1273 */
1274 __init void prefill_possible_map(void)
1275 {
1276 int i, possible;
1277
1278 /* no processor from mptable or madt */
1279 if (!num_processors)
1280 num_processors = 1;
1281
1282 i = setup_max_cpus ?: 1;
1283 if (setup_possible_cpus == -1) {
1284 possible = num_processors;
1285 #ifdef CONFIG_HOTPLUG_CPU
1286 if (setup_max_cpus)
1287 possible += disabled_cpus;
1288 #else
1289 if (possible > i)
1290 possible = i;
1291 #endif
1292 } else
1293 possible = setup_possible_cpus;
1294
1295 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1296
1297 /* nr_cpu_ids could be reduced via nr_cpus= */
1298 if (possible > nr_cpu_ids) {
1299 pr_warn("%d Processors exceeds NR_CPUS limit of %d\n",
1300 possible, nr_cpu_ids);
1301 possible = nr_cpu_ids;
1302 }
1303
1304 #ifdef CONFIG_HOTPLUG_CPU
1305 if (!setup_max_cpus)
1306 #endif
1307 if (possible > i) {
1308 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1309 possible, setup_max_cpus);
1310 possible = i;
1311 }
1312
1313 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1314 possible, max_t(int, possible - num_processors, 0));
1315
1316 for (i = 0; i < possible; i++)
1317 set_cpu_possible(i, true);
1318 for (; i < NR_CPUS; i++)
1319 set_cpu_possible(i, false);
1320
1321 nr_cpu_ids = possible;
1322 }
1323
1324 #ifdef CONFIG_HOTPLUG_CPU
1325
1326 static void remove_siblinginfo(int cpu)
1327 {
1328 int sibling;
1329 struct cpuinfo_x86 *c = &cpu_data(cpu);
1330
1331 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1332 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1333 /*/
1334 * last thread sibling in this cpu core going down
1335 */
1336 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1337 cpu_data(sibling).booted_cores--;
1338 }
1339
1340 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1341 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1342 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1343 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1344 cpumask_clear(cpu_llc_shared_mask(cpu));
1345 cpumask_clear(topology_sibling_cpumask(cpu));
1346 cpumask_clear(topology_core_cpumask(cpu));
1347 c->phys_proc_id = 0;
1348 c->cpu_core_id = 0;
1349 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1350 }
1351
1352 static void remove_cpu_from_maps(int cpu)
1353 {
1354 set_cpu_online(cpu, false);
1355 cpumask_clear_cpu(cpu, cpu_callout_mask);
1356 cpumask_clear_cpu(cpu, cpu_callin_mask);
1357 /* was set by cpu_init() */
1358 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1359 numa_remove_cpu(cpu);
1360 }
1361
1362 void cpu_disable_common(void)
1363 {
1364 int cpu = smp_processor_id();
1365
1366 remove_siblinginfo(cpu);
1367
1368 /* It's now safe to remove this processor from the online map */
1369 lock_vector_lock();
1370 remove_cpu_from_maps(cpu);
1371 unlock_vector_lock();
1372 fixup_irqs();
1373 }
1374
1375 int native_cpu_disable(void)
1376 {
1377 int ret;
1378
1379 ret = check_irq_vectors_for_cpu_disable();
1380 if (ret)
1381 return ret;
1382
1383 clear_local_APIC();
1384 cpu_disable_common();
1385
1386 return 0;
1387 }
1388
1389 int common_cpu_die(unsigned int cpu)
1390 {
1391 int ret = 0;
1392
1393 /* We don't do anything here: idle task is faking death itself. */
1394
1395 /* They ack this in play_dead() by setting CPU_DEAD */
1396 if (cpu_wait_death(cpu, 5)) {
1397 if (system_state == SYSTEM_RUNNING)
1398 pr_info("CPU %u is now offline\n", cpu);
1399 } else {
1400 pr_err("CPU %u didn't die...\n", cpu);
1401 ret = -1;
1402 }
1403
1404 return ret;
1405 }
1406
1407 void native_cpu_die(unsigned int cpu)
1408 {
1409 common_cpu_die(cpu);
1410 }
1411
1412 void play_dead_common(void)
1413 {
1414 idle_task_exit();
1415 reset_lazy_tlbstate();
1416 amd_e400_remove_cpu(raw_smp_processor_id());
1417
1418 /* Ack it */
1419 (void)cpu_report_death();
1420
1421 /*
1422 * With physical CPU hotplug, we should halt the cpu
1423 */
1424 local_irq_disable();
1425 }
1426
1427 static bool wakeup_cpu0(void)
1428 {
1429 if (smp_processor_id() == 0 && enable_start_cpu0)
1430 return true;
1431
1432 return false;
1433 }
1434
1435 /*
1436 * We need to flush the caches before going to sleep, lest we have
1437 * dirty data in our caches when we come back up.
1438 */
1439 static inline void mwait_play_dead(void)
1440 {
1441 unsigned int eax, ebx, ecx, edx;
1442 unsigned int highest_cstate = 0;
1443 unsigned int highest_subcstate = 0;
1444 void *mwait_ptr;
1445 int i;
1446
1447 if (!this_cpu_has(X86_FEATURE_MWAIT))
1448 return;
1449 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1450 return;
1451 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1452 return;
1453
1454 eax = CPUID_MWAIT_LEAF;
1455 ecx = 0;
1456 native_cpuid(&eax, &ebx, &ecx, &edx);
1457
1458 /*
1459 * eax will be 0 if EDX enumeration is not valid.
1460 * Initialized below to cstate, sub_cstate value when EDX is valid.
1461 */
1462 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1463 eax = 0;
1464 } else {
1465 edx >>= MWAIT_SUBSTATE_SIZE;
1466 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1467 if (edx & MWAIT_SUBSTATE_MASK) {
1468 highest_cstate = i;
1469 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1470 }
1471 }
1472 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1473 (highest_subcstate - 1);
1474 }
1475
1476 /*
1477 * This should be a memory location in a cache line which is
1478 * unlikely to be touched by other processors. The actual
1479 * content is immaterial as it is not actually modified in any way.
1480 */
1481 mwait_ptr = &current_thread_info()->flags;
1482
1483 wbinvd();
1484
1485 while (1) {
1486 /*
1487 * The CLFLUSH is a workaround for erratum AAI65 for
1488 * the Xeon 7400 series. It's not clear it is actually
1489 * needed, but it should be harmless in either case.
1490 * The WBINVD is insufficient due to the spurious-wakeup
1491 * case where we return around the loop.
1492 */
1493 mb();
1494 clflush(mwait_ptr);
1495 mb();
1496 __monitor(mwait_ptr, 0, 0);
1497 mb();
1498 __mwait(eax, 0);
1499 /*
1500 * If NMI wants to wake up CPU0, start CPU0.
1501 */
1502 if (wakeup_cpu0())
1503 start_cpu0();
1504 }
1505 }
1506
1507 static inline void hlt_play_dead(void)
1508 {
1509 if (__this_cpu_read(cpu_info.x86) >= 4)
1510 wbinvd();
1511
1512 while (1) {
1513 native_halt();
1514 /*
1515 * If NMI wants to wake up CPU0, start CPU0.
1516 */
1517 if (wakeup_cpu0())
1518 start_cpu0();
1519 }
1520 }
1521
1522 void native_play_dead(void)
1523 {
1524 play_dead_common();
1525 tboot_shutdown(TB_SHUTDOWN_WFS);
1526
1527 mwait_play_dead(); /* Only returns on failure */
1528 if (cpuidle_play_dead())
1529 hlt_play_dead();
1530 }
1531
1532 #else /* ... !CONFIG_HOTPLUG_CPU */
1533 int native_cpu_disable(void)
1534 {
1535 return -ENOSYS;
1536 }
1537
1538 void native_cpu_die(unsigned int cpu)
1539 {
1540 /* We said "no" in __cpu_disable */
1541 BUG();
1542 }
1543
1544 void native_play_dead(void)
1545 {
1546 BUG();
1547 }
1548
1549 #endif
This page took 0.22027 seconds and 5 git commands to generate.