Merge branch 'for-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[deliverable/linux.git] / arch / x86 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
15 * This code is released under the GNU General Public License version 2 or
16 * later.
17 *
18 * Fixes
19 * Felix Koop : NR_CPUS used properly
20 * Jose Renau : Handle single CPU case.
21 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
22 * Greg Wright : Fix for kernel stacks panic.
23 * Erich Boleyn : MP v1.4 and additional changes.
24 * Matthias Sattler : Changes for 2.1 kernel map.
25 * Michel Lespinasse : Changes for 2.1 kernel map.
26 * Michael Chastain : Change trampoline.S to gnu as.
27 * Alan Cox : Dumb bug: 'B' step PPro's are fine
28 * Ingo Molnar : Added APIC timers, based on code
29 * from Jose Renau
30 * Ingo Molnar : various cleanups and rewrites
31 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
32 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
33 * Andi Kleen : Changed for SMP boot into long mode.
34 * Martin J. Bligh : Added support for multi-quad systems
35 * Dave Jones : Report invalid combinations of Athlon CPUs.
36 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
37 * Andi Kleen : Converted to new state machine.
38 * Ashok Raj : CPU hotplug support
39 * Glauber Costa : i386 and x86_64 integration
40 */
41
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43
44 #include <linux/init.h>
45 #include <linux/smp.h>
46 #include <linux/module.h>
47 #include <linux/sched.h>
48 #include <linux/percpu.h>
49 #include <linux/bootmem.h>
50 #include <linux/err.h>
51 #include <linux/nmi.h>
52 #include <linux/tboot.h>
53 #include <linux/stackprotector.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56
57 #include <asm/acpi.h>
58 #include <asm/desc.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/idle.h>
62 #include <asm/realmode.h>
63 #include <asm/cpu.h>
64 #include <asm/numa.h>
65 #include <asm/pgtable.h>
66 #include <asm/tlbflush.h>
67 #include <asm/mtrr.h>
68 #include <asm/mwait.h>
69 #include <asm/apic.h>
70 #include <asm/io_apic.h>
71 #include <asm/fpu/internal.h>
72 #include <asm/setup.h>
73 #include <asm/uv/uv.h>
74 #include <linux/mc146818rtc.h>
75 #include <asm/i8259.h>
76 #include <asm/realmode.h>
77 #include <asm/misc.h>
78
79 /* Number of siblings per CPU package */
80 int smp_num_siblings = 1;
81 EXPORT_SYMBOL(smp_num_siblings);
82
83 /* Last level cache ID of each logical CPU */
84 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
85
86 /* representing HT siblings of each logical CPU */
87 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
89
90 /* representing HT and core siblings of each logical CPU */
91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
93
94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
95
96 /* Per CPU bogomips and other parameters */
97 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
98 EXPORT_PER_CPU_SYMBOL(cpu_info);
99
100 /* Logical package management. We might want to allocate that dynamically */
101 static int *physical_to_logical_pkg __read_mostly;
102 static unsigned long *physical_package_map __read_mostly;;
103 static unsigned long *logical_package_map __read_mostly;
104 static unsigned int max_physical_pkg_id __read_mostly;
105 unsigned int __max_logical_packages __read_mostly;
106 EXPORT_SYMBOL(__max_logical_packages);
107
108 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
109 {
110 unsigned long flags;
111
112 spin_lock_irqsave(&rtc_lock, flags);
113 CMOS_WRITE(0xa, 0xf);
114 spin_unlock_irqrestore(&rtc_lock, flags);
115 local_flush_tlb();
116 pr_debug("1.\n");
117 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
118 start_eip >> 4;
119 pr_debug("2.\n");
120 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
121 start_eip & 0xf;
122 pr_debug("3.\n");
123 }
124
125 static inline void smpboot_restore_warm_reset_vector(void)
126 {
127 unsigned long flags;
128
129 /*
130 * Install writable page 0 entry to set BIOS data area.
131 */
132 local_flush_tlb();
133
134 /*
135 * Paranoid: Set warm reset code and vector here back
136 * to default values.
137 */
138 spin_lock_irqsave(&rtc_lock, flags);
139 CMOS_WRITE(0, 0xf);
140 spin_unlock_irqrestore(&rtc_lock, flags);
141
142 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
143 }
144
145 /*
146 * Report back to the Boot Processor during boot time or to the caller processor
147 * during CPU online.
148 */
149 static void smp_callin(void)
150 {
151 int cpuid, phys_id;
152
153 /*
154 * If waken up by an INIT in an 82489DX configuration
155 * cpu_callout_mask guarantees we don't get here before
156 * an INIT_deassert IPI reaches our local APIC, so it is
157 * now safe to touch our local APIC.
158 */
159 cpuid = smp_processor_id();
160
161 /*
162 * (This works even if the APIC is not enabled.)
163 */
164 phys_id = read_apic_id();
165
166 /*
167 * the boot CPU has finished the init stage and is spinning
168 * on callin_map until we finish. We are free to set up this
169 * CPU, first the APIC. (this is probably redundant on most
170 * boards)
171 */
172 apic_ap_setup();
173
174 /*
175 * Save our processor parameters. Note: this information
176 * is needed for clock calibration.
177 */
178 smp_store_cpu_info(cpuid);
179
180 /*
181 * Get our bogomips.
182 * Update loops_per_jiffy in cpu_data. Previous call to
183 * smp_store_cpu_info() stored a value that is close but not as
184 * accurate as the value just calculated.
185 */
186 calibrate_delay();
187 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
188 pr_debug("Stack at about %p\n", &cpuid);
189
190 /*
191 * This must be done before setting cpu_online_mask
192 * or calling notify_cpu_starting.
193 */
194 set_cpu_sibling_map(raw_smp_processor_id());
195 wmb();
196
197 notify_cpu_starting(cpuid);
198
199 /*
200 * Allow the master to continue.
201 */
202 cpumask_set_cpu(cpuid, cpu_callin_mask);
203 }
204
205 static int cpu0_logical_apicid;
206 static int enable_start_cpu0;
207 /*
208 * Activate a secondary processor.
209 */
210 static void notrace start_secondary(void *unused)
211 {
212 /*
213 * Don't put *anything* before cpu_init(), SMP booting is too
214 * fragile that we want to limit the things done here to the
215 * most necessary things.
216 */
217 cpu_init();
218 x86_cpuinit.early_percpu_clock_init();
219 preempt_disable();
220 smp_callin();
221
222 enable_start_cpu0 = 0;
223
224 #ifdef CONFIG_X86_32
225 /* switch away from the initial page table */
226 load_cr3(swapper_pg_dir);
227 __flush_tlb_all();
228 #endif
229
230 /* otherwise gcc will move up smp_processor_id before the cpu_init */
231 barrier();
232 /*
233 * Check TSC synchronization with the BP:
234 */
235 check_tsc_sync_target();
236
237 /*
238 * Lock vector_lock and initialize the vectors on this cpu
239 * before setting the cpu online. We must set it online with
240 * vector_lock held to prevent a concurrent setup/teardown
241 * from seeing a half valid vector space.
242 */
243 lock_vector_lock();
244 setup_vector_irq(smp_processor_id());
245 set_cpu_online(smp_processor_id(), true);
246 unlock_vector_lock();
247 cpu_set_state_online(smp_processor_id());
248 x86_platform.nmi_init();
249
250 /* enable local interrupts */
251 local_irq_enable();
252
253 /* to prevent fake stack check failure in clock setup */
254 boot_init_stack_canary();
255
256 x86_cpuinit.setup_percpu_clockev();
257
258 wmb();
259 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
260 }
261
262 int topology_update_package_map(unsigned int apicid, unsigned int cpu)
263 {
264 unsigned int new, pkg = apicid >> boot_cpu_data.x86_coreid_bits;
265
266 /* Called from early boot ? */
267 if (!physical_package_map)
268 return 0;
269
270 if (pkg >= max_physical_pkg_id)
271 return -EINVAL;
272
273 /* Set the logical package id */
274 if (test_and_set_bit(pkg, physical_package_map))
275 goto found;
276
277 if (pkg < __max_logical_packages) {
278 set_bit(pkg, logical_package_map);
279 physical_to_logical_pkg[pkg] = pkg;
280 goto found;
281 }
282 new = find_first_zero_bit(logical_package_map, __max_logical_packages);
283 if (new >= __max_logical_packages) {
284 physical_to_logical_pkg[pkg] = -1;
285 pr_warn("APIC(%x) Package %u exceeds logical package map\n",
286 apicid, pkg);
287 return -ENOSPC;
288 }
289 set_bit(new, logical_package_map);
290 pr_info("APIC(%x) Converting physical %u to logical package %u\n",
291 apicid, pkg, new);
292 physical_to_logical_pkg[pkg] = new;
293
294 found:
295 cpu_data(cpu).logical_proc_id = physical_to_logical_pkg[pkg];
296 return 0;
297 }
298
299 /**
300 * topology_phys_to_logical_pkg - Map a physical package id to a logical
301 *
302 * Returns logical package id or -1 if not found
303 */
304 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
305 {
306 if (phys_pkg >= max_physical_pkg_id)
307 return -1;
308 return physical_to_logical_pkg[phys_pkg];
309 }
310 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
311
312 static void __init smp_init_package_map(void)
313 {
314 unsigned int ncpus, cpu;
315 size_t size;
316
317 /*
318 * Today neither Intel nor AMD support heterogenous systems. That
319 * might change in the future....
320 */
321 ncpus = boot_cpu_data.x86_max_cores * smp_num_siblings;
322 __max_logical_packages = DIV_ROUND_UP(nr_cpu_ids, ncpus);
323
324 /*
325 * Possibly larger than what we need as the number of apic ids per
326 * package can be smaller than the actual used apic ids.
327 */
328 max_physical_pkg_id = DIV_ROUND_UP(MAX_LOCAL_APIC, ncpus);
329 size = max_physical_pkg_id * sizeof(unsigned int);
330 physical_to_logical_pkg = kmalloc(size, GFP_KERNEL);
331 memset(physical_to_logical_pkg, 0xff, size);
332 size = BITS_TO_LONGS(max_physical_pkg_id) * sizeof(unsigned long);
333 physical_package_map = kzalloc(size, GFP_KERNEL);
334 size = BITS_TO_LONGS(__max_logical_packages) * sizeof(unsigned long);
335 logical_package_map = kzalloc(size, GFP_KERNEL);
336
337 pr_info("Max logical packages: %u\n", __max_logical_packages);
338
339 for_each_present_cpu(cpu) {
340 unsigned int apicid = apic->cpu_present_to_apicid(cpu);
341
342 if (apicid == BAD_APICID || !apic->apic_id_valid(apicid))
343 continue;
344 if (!topology_update_package_map(apicid, cpu))
345 continue;
346 pr_warn("CPU %u APICId %x disabled\n", cpu, apicid);
347 per_cpu(x86_bios_cpu_apicid, cpu) = BAD_APICID;
348 set_cpu_possible(cpu, false);
349 set_cpu_present(cpu, false);
350 }
351 }
352
353 void __init smp_store_boot_cpu_info(void)
354 {
355 int id = 0; /* CPU 0 */
356 struct cpuinfo_x86 *c = &cpu_data(id);
357
358 *c = boot_cpu_data;
359 c->cpu_index = id;
360 smp_init_package_map();
361 }
362
363 /*
364 * The bootstrap kernel entry code has set these up. Save them for
365 * a given CPU
366 */
367 void smp_store_cpu_info(int id)
368 {
369 struct cpuinfo_x86 *c = &cpu_data(id);
370
371 *c = boot_cpu_data;
372 c->cpu_index = id;
373 /*
374 * During boot time, CPU0 has this setup already. Save the info when
375 * bringing up AP or offlined CPU0.
376 */
377 identify_secondary_cpu(c);
378 }
379
380 static bool
381 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
382 {
383 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
384
385 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
386 }
387
388 static bool
389 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
390 {
391 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
392
393 return !WARN_ONCE(!topology_same_node(c, o),
394 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
395 "[node: %d != %d]. Ignoring dependency.\n",
396 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
397 }
398
399 #define link_mask(mfunc, c1, c2) \
400 do { \
401 cpumask_set_cpu((c1), mfunc(c2)); \
402 cpumask_set_cpu((c2), mfunc(c1)); \
403 } while (0)
404
405 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
406 {
407 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
408 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
409
410 if (c->phys_proc_id == o->phys_proc_id &&
411 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) &&
412 c->compute_unit_id == o->compute_unit_id)
413 return topology_sane(c, o, "smt");
414
415 } else if (c->phys_proc_id == o->phys_proc_id &&
416 c->cpu_core_id == o->cpu_core_id) {
417 return topology_sane(c, o, "smt");
418 }
419
420 return false;
421 }
422
423 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
424 {
425 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
426
427 if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
428 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
429 return topology_sane(c, o, "llc");
430
431 return false;
432 }
433
434 /*
435 * Unlike the other levels, we do not enforce keeping a
436 * multicore group inside a NUMA node. If this happens, we will
437 * discard the MC level of the topology later.
438 */
439 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
440 {
441 if (c->phys_proc_id == o->phys_proc_id)
442 return true;
443 return false;
444 }
445
446 static struct sched_domain_topology_level numa_inside_package_topology[] = {
447 #ifdef CONFIG_SCHED_SMT
448 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
449 #endif
450 #ifdef CONFIG_SCHED_MC
451 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
452 #endif
453 { NULL, },
454 };
455 /*
456 * set_sched_topology() sets the topology internal to a CPU. The
457 * NUMA topologies are layered on top of it to build the full
458 * system topology.
459 *
460 * If NUMA nodes are observed to occur within a CPU package, this
461 * function should be called. It forces the sched domain code to
462 * only use the SMT level for the CPU portion of the topology.
463 * This essentially falls back to relying on NUMA information
464 * from the SRAT table to describe the entire system topology
465 * (except for hyperthreads).
466 */
467 static void primarily_use_numa_for_topology(void)
468 {
469 set_sched_topology(numa_inside_package_topology);
470 }
471
472 void set_cpu_sibling_map(int cpu)
473 {
474 bool has_smt = smp_num_siblings > 1;
475 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
476 struct cpuinfo_x86 *c = &cpu_data(cpu);
477 struct cpuinfo_x86 *o;
478 int i;
479
480 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
481
482 if (!has_mp) {
483 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
484 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
485 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
486 c->booted_cores = 1;
487 return;
488 }
489
490 for_each_cpu(i, cpu_sibling_setup_mask) {
491 o = &cpu_data(i);
492
493 if ((i == cpu) || (has_smt && match_smt(c, o)))
494 link_mask(topology_sibling_cpumask, cpu, i);
495
496 if ((i == cpu) || (has_mp && match_llc(c, o)))
497 link_mask(cpu_llc_shared_mask, cpu, i);
498
499 }
500
501 /*
502 * This needs a separate iteration over the cpus because we rely on all
503 * topology_sibling_cpumask links to be set-up.
504 */
505 for_each_cpu(i, cpu_sibling_setup_mask) {
506 o = &cpu_data(i);
507
508 if ((i == cpu) || (has_mp && match_die(c, o))) {
509 link_mask(topology_core_cpumask, cpu, i);
510
511 /*
512 * Does this new cpu bringup a new core?
513 */
514 if (cpumask_weight(
515 topology_sibling_cpumask(cpu)) == 1) {
516 /*
517 * for each core in package, increment
518 * the booted_cores for this new cpu
519 */
520 if (cpumask_first(
521 topology_sibling_cpumask(i)) == i)
522 c->booted_cores++;
523 /*
524 * increment the core count for all
525 * the other cpus in this package
526 */
527 if (i != cpu)
528 cpu_data(i).booted_cores++;
529 } else if (i != cpu && !c->booted_cores)
530 c->booted_cores = cpu_data(i).booted_cores;
531 }
532 if (match_die(c, o) && !topology_same_node(c, o))
533 primarily_use_numa_for_topology();
534 }
535 }
536
537 /* maps the cpu to the sched domain representing multi-core */
538 const struct cpumask *cpu_coregroup_mask(int cpu)
539 {
540 return cpu_llc_shared_mask(cpu);
541 }
542
543 static void impress_friends(void)
544 {
545 int cpu;
546 unsigned long bogosum = 0;
547 /*
548 * Allow the user to impress friends.
549 */
550 pr_debug("Before bogomips\n");
551 for_each_possible_cpu(cpu)
552 if (cpumask_test_cpu(cpu, cpu_callout_mask))
553 bogosum += cpu_data(cpu).loops_per_jiffy;
554 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
555 num_online_cpus(),
556 bogosum/(500000/HZ),
557 (bogosum/(5000/HZ))%100);
558
559 pr_debug("Before bogocount - setting activated=1\n");
560 }
561
562 void __inquire_remote_apic(int apicid)
563 {
564 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
565 const char * const names[] = { "ID", "VERSION", "SPIV" };
566 int timeout;
567 u32 status;
568
569 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
570
571 for (i = 0; i < ARRAY_SIZE(regs); i++) {
572 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
573
574 /*
575 * Wait for idle.
576 */
577 status = safe_apic_wait_icr_idle();
578 if (status)
579 pr_cont("a previous APIC delivery may have failed\n");
580
581 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
582
583 timeout = 0;
584 do {
585 udelay(100);
586 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
587 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
588
589 switch (status) {
590 case APIC_ICR_RR_VALID:
591 status = apic_read(APIC_RRR);
592 pr_cont("%08x\n", status);
593 break;
594 default:
595 pr_cont("failed\n");
596 }
597 }
598 }
599
600 /*
601 * The Multiprocessor Specification 1.4 (1997) example code suggests
602 * that there should be a 10ms delay between the BSP asserting INIT
603 * and de-asserting INIT, when starting a remote processor.
604 * But that slows boot and resume on modern processors, which include
605 * many cores and don't require that delay.
606 *
607 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
608 * Modern processor families are quirked to remove the delay entirely.
609 */
610 #define UDELAY_10MS_DEFAULT 10000
611
612 static unsigned int init_udelay = UINT_MAX;
613
614 static int __init cpu_init_udelay(char *str)
615 {
616 get_option(&str, &init_udelay);
617
618 return 0;
619 }
620 early_param("cpu_init_udelay", cpu_init_udelay);
621
622 static void __init smp_quirk_init_udelay(void)
623 {
624 /* if cmdline changed it from default, leave it alone */
625 if (init_udelay != UINT_MAX)
626 return;
627
628 /* if modern processor, use no delay */
629 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
630 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
631 init_udelay = 0;
632 return;
633 }
634 /* else, use legacy delay */
635 init_udelay = UDELAY_10MS_DEFAULT;
636 }
637
638 /*
639 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
640 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
641 * won't ... remember to clear down the APIC, etc later.
642 */
643 int
644 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
645 {
646 unsigned long send_status, accept_status = 0;
647 int maxlvt;
648
649 /* Target chip */
650 /* Boot on the stack */
651 /* Kick the second */
652 apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
653
654 pr_debug("Waiting for send to finish...\n");
655 send_status = safe_apic_wait_icr_idle();
656
657 /*
658 * Give the other CPU some time to accept the IPI.
659 */
660 udelay(200);
661 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
662 maxlvt = lapic_get_maxlvt();
663 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
664 apic_write(APIC_ESR, 0);
665 accept_status = (apic_read(APIC_ESR) & 0xEF);
666 }
667 pr_debug("NMI sent\n");
668
669 if (send_status)
670 pr_err("APIC never delivered???\n");
671 if (accept_status)
672 pr_err("APIC delivery error (%lx)\n", accept_status);
673
674 return (send_status | accept_status);
675 }
676
677 static int
678 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
679 {
680 unsigned long send_status = 0, accept_status = 0;
681 int maxlvt, num_starts, j;
682
683 maxlvt = lapic_get_maxlvt();
684
685 /*
686 * Be paranoid about clearing APIC errors.
687 */
688 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
689 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
690 apic_write(APIC_ESR, 0);
691 apic_read(APIC_ESR);
692 }
693
694 pr_debug("Asserting INIT\n");
695
696 /*
697 * Turn INIT on target chip
698 */
699 /*
700 * Send IPI
701 */
702 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
703 phys_apicid);
704
705 pr_debug("Waiting for send to finish...\n");
706 send_status = safe_apic_wait_icr_idle();
707
708 udelay(init_udelay);
709
710 pr_debug("Deasserting INIT\n");
711
712 /* Target chip */
713 /* Send IPI */
714 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
715
716 pr_debug("Waiting for send to finish...\n");
717 send_status = safe_apic_wait_icr_idle();
718
719 mb();
720
721 /*
722 * Should we send STARTUP IPIs ?
723 *
724 * Determine this based on the APIC version.
725 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
726 */
727 if (APIC_INTEGRATED(apic_version[phys_apicid]))
728 num_starts = 2;
729 else
730 num_starts = 0;
731
732 /*
733 * Run STARTUP IPI loop.
734 */
735 pr_debug("#startup loops: %d\n", num_starts);
736
737 for (j = 1; j <= num_starts; j++) {
738 pr_debug("Sending STARTUP #%d\n", j);
739 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
740 apic_write(APIC_ESR, 0);
741 apic_read(APIC_ESR);
742 pr_debug("After apic_write\n");
743
744 /*
745 * STARTUP IPI
746 */
747
748 /* Target chip */
749 /* Boot on the stack */
750 /* Kick the second */
751 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
752 phys_apicid);
753
754 /*
755 * Give the other CPU some time to accept the IPI.
756 */
757 if (init_udelay == 0)
758 udelay(10);
759 else
760 udelay(300);
761
762 pr_debug("Startup point 1\n");
763
764 pr_debug("Waiting for send to finish...\n");
765 send_status = safe_apic_wait_icr_idle();
766
767 /*
768 * Give the other CPU some time to accept the IPI.
769 */
770 if (init_udelay == 0)
771 udelay(10);
772 else
773 udelay(200);
774
775 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
776 apic_write(APIC_ESR, 0);
777 accept_status = (apic_read(APIC_ESR) & 0xEF);
778 if (send_status || accept_status)
779 break;
780 }
781 pr_debug("After Startup\n");
782
783 if (send_status)
784 pr_err("APIC never delivered???\n");
785 if (accept_status)
786 pr_err("APIC delivery error (%lx)\n", accept_status);
787
788 return (send_status | accept_status);
789 }
790
791 void smp_announce(void)
792 {
793 int num_nodes = num_online_nodes();
794
795 printk(KERN_INFO "x86: Booted up %d node%s, %d CPUs\n",
796 num_nodes, (num_nodes > 1 ? "s" : ""), num_online_cpus());
797 }
798
799 /* reduce the number of lines printed when booting a large cpu count system */
800 static void announce_cpu(int cpu, int apicid)
801 {
802 static int current_node = -1;
803 int node = early_cpu_to_node(cpu);
804 static int width, node_width;
805
806 if (!width)
807 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
808
809 if (!node_width)
810 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
811
812 if (cpu == 1)
813 printk(KERN_INFO "x86: Booting SMP configuration:\n");
814
815 if (system_state == SYSTEM_BOOTING) {
816 if (node != current_node) {
817 if (current_node > (-1))
818 pr_cont("\n");
819 current_node = node;
820
821 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
822 node_width - num_digits(node), " ", node);
823 }
824
825 /* Add padding for the BSP */
826 if (cpu == 1)
827 pr_cont("%*s", width + 1, " ");
828
829 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
830
831 } else
832 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
833 node, cpu, apicid);
834 }
835
836 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
837 {
838 int cpu;
839
840 cpu = smp_processor_id();
841 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
842 return NMI_HANDLED;
843
844 return NMI_DONE;
845 }
846
847 /*
848 * Wake up AP by INIT, INIT, STARTUP sequence.
849 *
850 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
851 * boot-strap code which is not a desired behavior for waking up BSP. To
852 * void the boot-strap code, wake up CPU0 by NMI instead.
853 *
854 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
855 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
856 * We'll change this code in the future to wake up hard offlined CPU0 if
857 * real platform and request are available.
858 */
859 static int
860 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
861 int *cpu0_nmi_registered)
862 {
863 int id;
864 int boot_error;
865
866 preempt_disable();
867
868 /*
869 * Wake up AP by INIT, INIT, STARTUP sequence.
870 */
871 if (cpu) {
872 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
873 goto out;
874 }
875
876 /*
877 * Wake up BSP by nmi.
878 *
879 * Register a NMI handler to help wake up CPU0.
880 */
881 boot_error = register_nmi_handler(NMI_LOCAL,
882 wakeup_cpu0_nmi, 0, "wake_cpu0");
883
884 if (!boot_error) {
885 enable_start_cpu0 = 1;
886 *cpu0_nmi_registered = 1;
887 if (apic->dest_logical == APIC_DEST_LOGICAL)
888 id = cpu0_logical_apicid;
889 else
890 id = apicid;
891 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
892 }
893
894 out:
895 preempt_enable();
896
897 return boot_error;
898 }
899
900 void common_cpu_up(unsigned int cpu, struct task_struct *idle)
901 {
902 /* Just in case we booted with a single CPU. */
903 alternatives_enable_smp();
904
905 per_cpu(current_task, cpu) = idle;
906
907 #ifdef CONFIG_X86_32
908 /* Stack for startup_32 can be just as for start_secondary onwards */
909 irq_ctx_init(cpu);
910 per_cpu(cpu_current_top_of_stack, cpu) =
911 (unsigned long)task_stack_page(idle) + THREAD_SIZE;
912 #else
913 clear_tsk_thread_flag(idle, TIF_FORK);
914 initial_gs = per_cpu_offset(cpu);
915 #endif
916 }
917
918 /*
919 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
920 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
921 * Returns zero if CPU booted OK, else error code from
922 * ->wakeup_secondary_cpu.
923 */
924 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
925 {
926 volatile u32 *trampoline_status =
927 (volatile u32 *) __va(real_mode_header->trampoline_status);
928 /* start_ip had better be page-aligned! */
929 unsigned long start_ip = real_mode_header->trampoline_start;
930
931 unsigned long boot_error = 0;
932 int cpu0_nmi_registered = 0;
933 unsigned long timeout;
934
935 idle->thread.sp = (unsigned long) (((struct pt_regs *)
936 (THREAD_SIZE + task_stack_page(idle))) - 1);
937
938 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
939 initial_code = (unsigned long)start_secondary;
940 stack_start = idle->thread.sp;
941
942 /*
943 * Enable the espfix hack for this CPU
944 */
945 #ifdef CONFIG_X86_ESPFIX64
946 init_espfix_ap(cpu);
947 #endif
948
949 /* So we see what's up */
950 announce_cpu(cpu, apicid);
951
952 /*
953 * This grunge runs the startup process for
954 * the targeted processor.
955 */
956
957 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
958
959 pr_debug("Setting warm reset code and vector.\n");
960
961 smpboot_setup_warm_reset_vector(start_ip);
962 /*
963 * Be paranoid about clearing APIC errors.
964 */
965 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
966 apic_write(APIC_ESR, 0);
967 apic_read(APIC_ESR);
968 }
969 }
970
971 /*
972 * AP might wait on cpu_callout_mask in cpu_init() with
973 * cpu_initialized_mask set if previous attempt to online
974 * it timed-out. Clear cpu_initialized_mask so that after
975 * INIT/SIPI it could start with a clean state.
976 */
977 cpumask_clear_cpu(cpu, cpu_initialized_mask);
978 smp_mb();
979
980 /*
981 * Wake up a CPU in difference cases:
982 * - Use the method in the APIC driver if it's defined
983 * Otherwise,
984 * - Use an INIT boot APIC message for APs or NMI for BSP.
985 */
986 if (apic->wakeup_secondary_cpu)
987 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
988 else
989 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
990 &cpu0_nmi_registered);
991
992 if (!boot_error) {
993 /*
994 * Wait 10s total for first sign of life from AP
995 */
996 boot_error = -1;
997 timeout = jiffies + 10*HZ;
998 while (time_before(jiffies, timeout)) {
999 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1000 /*
1001 * Tell AP to proceed with initialization
1002 */
1003 cpumask_set_cpu(cpu, cpu_callout_mask);
1004 boot_error = 0;
1005 break;
1006 }
1007 schedule();
1008 }
1009 }
1010
1011 if (!boot_error) {
1012 /*
1013 * Wait till AP completes initial initialization
1014 */
1015 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1016 /*
1017 * Allow other tasks to run while we wait for the
1018 * AP to come online. This also gives a chance
1019 * for the MTRR work(triggered by the AP coming online)
1020 * to be completed in the stop machine context.
1021 */
1022 schedule();
1023 }
1024 }
1025
1026 /* mark "stuck" area as not stuck */
1027 *trampoline_status = 0;
1028
1029 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
1030 /*
1031 * Cleanup possible dangling ends...
1032 */
1033 smpboot_restore_warm_reset_vector();
1034 }
1035 /*
1036 * Clean up the nmi handler. Do this after the callin and callout sync
1037 * to avoid impact of possible long unregister time.
1038 */
1039 if (cpu0_nmi_registered)
1040 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1041
1042 return boot_error;
1043 }
1044
1045 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1046 {
1047 int apicid = apic->cpu_present_to_apicid(cpu);
1048 unsigned long flags;
1049 int err;
1050
1051 WARN_ON(irqs_disabled());
1052
1053 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1054
1055 if (apicid == BAD_APICID ||
1056 !physid_isset(apicid, phys_cpu_present_map) ||
1057 !apic->apic_id_valid(apicid)) {
1058 pr_err("%s: bad cpu %d\n", __func__, cpu);
1059 return -EINVAL;
1060 }
1061
1062 /*
1063 * Already booted CPU?
1064 */
1065 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1066 pr_debug("do_boot_cpu %d Already started\n", cpu);
1067 return -ENOSYS;
1068 }
1069
1070 /*
1071 * Save current MTRR state in case it was changed since early boot
1072 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1073 */
1074 mtrr_save_state();
1075
1076 /* x86 CPUs take themselves offline, so delayed offline is OK. */
1077 err = cpu_check_up_prepare(cpu);
1078 if (err && err != -EBUSY)
1079 return err;
1080
1081 /* the FPU context is blank, nobody can own it */
1082 __cpu_disable_lazy_restore(cpu);
1083
1084 common_cpu_up(cpu, tidle);
1085
1086 /*
1087 * We have to walk the irq descriptors to setup the vector
1088 * space for the cpu which comes online. Prevent irq
1089 * alloc/free across the bringup.
1090 */
1091 irq_lock_sparse();
1092
1093 err = do_boot_cpu(apicid, cpu, tidle);
1094
1095 if (err) {
1096 irq_unlock_sparse();
1097 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1098 return -EIO;
1099 }
1100
1101 /*
1102 * Check TSC synchronization with the AP (keep irqs disabled
1103 * while doing so):
1104 */
1105 local_irq_save(flags);
1106 check_tsc_sync_source(cpu);
1107 local_irq_restore(flags);
1108
1109 while (!cpu_online(cpu)) {
1110 cpu_relax();
1111 touch_nmi_watchdog();
1112 }
1113
1114 irq_unlock_sparse();
1115
1116 return 0;
1117 }
1118
1119 /**
1120 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1121 */
1122 void arch_disable_smp_support(void)
1123 {
1124 disable_ioapic_support();
1125 }
1126
1127 /*
1128 * Fall back to non SMP mode after errors.
1129 *
1130 * RED-PEN audit/test this more. I bet there is more state messed up here.
1131 */
1132 static __init void disable_smp(void)
1133 {
1134 pr_info("SMP disabled\n");
1135
1136 disable_ioapic_support();
1137
1138 init_cpu_present(cpumask_of(0));
1139 init_cpu_possible(cpumask_of(0));
1140
1141 if (smp_found_config)
1142 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1143 else
1144 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1145 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1146 cpumask_set_cpu(0, topology_core_cpumask(0));
1147 }
1148
1149 enum {
1150 SMP_OK,
1151 SMP_NO_CONFIG,
1152 SMP_NO_APIC,
1153 SMP_FORCE_UP,
1154 };
1155
1156 /*
1157 * Various sanity checks.
1158 */
1159 static int __init smp_sanity_check(unsigned max_cpus)
1160 {
1161 preempt_disable();
1162
1163 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1164 if (def_to_bigsmp && nr_cpu_ids > 8) {
1165 unsigned int cpu;
1166 unsigned nr;
1167
1168 pr_warn("More than 8 CPUs detected - skipping them\n"
1169 "Use CONFIG_X86_BIGSMP\n");
1170
1171 nr = 0;
1172 for_each_present_cpu(cpu) {
1173 if (nr >= 8)
1174 set_cpu_present(cpu, false);
1175 nr++;
1176 }
1177
1178 nr = 0;
1179 for_each_possible_cpu(cpu) {
1180 if (nr >= 8)
1181 set_cpu_possible(cpu, false);
1182 nr++;
1183 }
1184
1185 nr_cpu_ids = 8;
1186 }
1187 #endif
1188
1189 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1190 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1191 hard_smp_processor_id());
1192
1193 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1194 }
1195
1196 /*
1197 * If we couldn't find an SMP configuration at boot time,
1198 * get out of here now!
1199 */
1200 if (!smp_found_config && !acpi_lapic) {
1201 preempt_enable();
1202 pr_notice("SMP motherboard not detected\n");
1203 return SMP_NO_CONFIG;
1204 }
1205
1206 /*
1207 * Should not be necessary because the MP table should list the boot
1208 * CPU too, but we do it for the sake of robustness anyway.
1209 */
1210 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1211 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1212 boot_cpu_physical_apicid);
1213 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1214 }
1215 preempt_enable();
1216
1217 /*
1218 * If we couldn't find a local APIC, then get out of here now!
1219 */
1220 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
1221 !cpu_has_apic) {
1222 if (!disable_apic) {
1223 pr_err("BIOS bug, local APIC #%d not detected!...\n",
1224 boot_cpu_physical_apicid);
1225 pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n");
1226 }
1227 return SMP_NO_APIC;
1228 }
1229
1230 /*
1231 * If SMP should be disabled, then really disable it!
1232 */
1233 if (!max_cpus) {
1234 pr_info("SMP mode deactivated\n");
1235 return SMP_FORCE_UP;
1236 }
1237
1238 return SMP_OK;
1239 }
1240
1241 static void __init smp_cpu_index_default(void)
1242 {
1243 int i;
1244 struct cpuinfo_x86 *c;
1245
1246 for_each_possible_cpu(i) {
1247 c = &cpu_data(i);
1248 /* mark all to hotplug */
1249 c->cpu_index = nr_cpu_ids;
1250 }
1251 }
1252
1253 /*
1254 * Prepare for SMP bootup. The MP table or ACPI has been read
1255 * earlier. Just do some sanity checking here and enable APIC mode.
1256 */
1257 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1258 {
1259 unsigned int i;
1260
1261 smp_cpu_index_default();
1262
1263 /*
1264 * Setup boot CPU information
1265 */
1266 smp_store_boot_cpu_info(); /* Final full version of the data */
1267 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1268 mb();
1269
1270 current_thread_info()->cpu = 0; /* needed? */
1271 for_each_possible_cpu(i) {
1272 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1273 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1274 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1275 }
1276 set_cpu_sibling_map(0);
1277
1278 switch (smp_sanity_check(max_cpus)) {
1279 case SMP_NO_CONFIG:
1280 disable_smp();
1281 if (APIC_init_uniprocessor())
1282 pr_notice("Local APIC not detected. Using dummy APIC emulation.\n");
1283 return;
1284 case SMP_NO_APIC:
1285 disable_smp();
1286 return;
1287 case SMP_FORCE_UP:
1288 disable_smp();
1289 apic_bsp_setup(false);
1290 return;
1291 case SMP_OK:
1292 break;
1293 }
1294
1295 default_setup_apic_routing();
1296
1297 if (read_apic_id() != boot_cpu_physical_apicid) {
1298 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1299 read_apic_id(), boot_cpu_physical_apicid);
1300 /* Or can we switch back to PIC here? */
1301 }
1302
1303 cpu0_logical_apicid = apic_bsp_setup(false);
1304
1305 pr_info("CPU%d: ", 0);
1306 print_cpu_info(&cpu_data(0));
1307
1308 if (is_uv_system())
1309 uv_system_init();
1310
1311 set_mtrr_aps_delayed_init();
1312
1313 smp_quirk_init_udelay();
1314 }
1315
1316 void arch_enable_nonboot_cpus_begin(void)
1317 {
1318 set_mtrr_aps_delayed_init();
1319 }
1320
1321 void arch_enable_nonboot_cpus_end(void)
1322 {
1323 mtrr_aps_init();
1324 }
1325
1326 /*
1327 * Early setup to make printk work.
1328 */
1329 void __init native_smp_prepare_boot_cpu(void)
1330 {
1331 int me = smp_processor_id();
1332 switch_to_new_gdt(me);
1333 /* already set me in cpu_online_mask in boot_cpu_init() */
1334 cpumask_set_cpu(me, cpu_callout_mask);
1335 cpu_set_state_online(me);
1336 }
1337
1338 void __init native_smp_cpus_done(unsigned int max_cpus)
1339 {
1340 pr_debug("Boot done\n");
1341
1342 nmi_selftest();
1343 impress_friends();
1344 setup_ioapic_dest();
1345 mtrr_aps_init();
1346 }
1347
1348 static int __initdata setup_possible_cpus = -1;
1349 static int __init _setup_possible_cpus(char *str)
1350 {
1351 get_option(&str, &setup_possible_cpus);
1352 return 0;
1353 }
1354 early_param("possible_cpus", _setup_possible_cpus);
1355
1356
1357 /*
1358 * cpu_possible_mask should be static, it cannot change as cpu's
1359 * are onlined, or offlined. The reason is per-cpu data-structures
1360 * are allocated by some modules at init time, and dont expect to
1361 * do this dynamically on cpu arrival/departure.
1362 * cpu_present_mask on the other hand can change dynamically.
1363 * In case when cpu_hotplug is not compiled, then we resort to current
1364 * behaviour, which is cpu_possible == cpu_present.
1365 * - Ashok Raj
1366 *
1367 * Three ways to find out the number of additional hotplug CPUs:
1368 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1369 * - The user can overwrite it with possible_cpus=NUM
1370 * - Otherwise don't reserve additional CPUs.
1371 * We do this because additional CPUs waste a lot of memory.
1372 * -AK
1373 */
1374 __init void prefill_possible_map(void)
1375 {
1376 int i, possible;
1377
1378 /* no processor from mptable or madt */
1379 if (!num_processors)
1380 num_processors = 1;
1381
1382 i = setup_max_cpus ?: 1;
1383 if (setup_possible_cpus == -1) {
1384 possible = num_processors;
1385 #ifdef CONFIG_HOTPLUG_CPU
1386 if (setup_max_cpus)
1387 possible += disabled_cpus;
1388 #else
1389 if (possible > i)
1390 possible = i;
1391 #endif
1392 } else
1393 possible = setup_possible_cpus;
1394
1395 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1396
1397 /* nr_cpu_ids could be reduced via nr_cpus= */
1398 if (possible > nr_cpu_ids) {
1399 pr_warn("%d Processors exceeds NR_CPUS limit of %d\n",
1400 possible, nr_cpu_ids);
1401 possible = nr_cpu_ids;
1402 }
1403
1404 #ifdef CONFIG_HOTPLUG_CPU
1405 if (!setup_max_cpus)
1406 #endif
1407 if (possible > i) {
1408 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1409 possible, setup_max_cpus);
1410 possible = i;
1411 }
1412
1413 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1414 possible, max_t(int, possible - num_processors, 0));
1415
1416 for (i = 0; i < possible; i++)
1417 set_cpu_possible(i, true);
1418 for (; i < NR_CPUS; i++)
1419 set_cpu_possible(i, false);
1420
1421 nr_cpu_ids = possible;
1422 }
1423
1424 #ifdef CONFIG_HOTPLUG_CPU
1425
1426 static void remove_siblinginfo(int cpu)
1427 {
1428 int sibling;
1429 struct cpuinfo_x86 *c = &cpu_data(cpu);
1430
1431 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1432 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1433 /*/
1434 * last thread sibling in this cpu core going down
1435 */
1436 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1437 cpu_data(sibling).booted_cores--;
1438 }
1439
1440 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1441 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1442 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1443 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1444 cpumask_clear(cpu_llc_shared_mask(cpu));
1445 cpumask_clear(topology_sibling_cpumask(cpu));
1446 cpumask_clear(topology_core_cpumask(cpu));
1447 c->phys_proc_id = 0;
1448 c->cpu_core_id = 0;
1449 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1450 }
1451
1452 static void remove_cpu_from_maps(int cpu)
1453 {
1454 set_cpu_online(cpu, false);
1455 cpumask_clear_cpu(cpu, cpu_callout_mask);
1456 cpumask_clear_cpu(cpu, cpu_callin_mask);
1457 /* was set by cpu_init() */
1458 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1459 numa_remove_cpu(cpu);
1460 }
1461
1462 void cpu_disable_common(void)
1463 {
1464 int cpu = smp_processor_id();
1465
1466 remove_siblinginfo(cpu);
1467
1468 /* It's now safe to remove this processor from the online map */
1469 lock_vector_lock();
1470 remove_cpu_from_maps(cpu);
1471 unlock_vector_lock();
1472 fixup_irqs();
1473 }
1474
1475 int native_cpu_disable(void)
1476 {
1477 int ret;
1478
1479 ret = check_irq_vectors_for_cpu_disable();
1480 if (ret)
1481 return ret;
1482
1483 clear_local_APIC();
1484 cpu_disable_common();
1485
1486 return 0;
1487 }
1488
1489 int common_cpu_die(unsigned int cpu)
1490 {
1491 int ret = 0;
1492
1493 /* We don't do anything here: idle task is faking death itself. */
1494
1495 /* They ack this in play_dead() by setting CPU_DEAD */
1496 if (cpu_wait_death(cpu, 5)) {
1497 if (system_state == SYSTEM_RUNNING)
1498 pr_info("CPU %u is now offline\n", cpu);
1499 } else {
1500 pr_err("CPU %u didn't die...\n", cpu);
1501 ret = -1;
1502 }
1503
1504 return ret;
1505 }
1506
1507 void native_cpu_die(unsigned int cpu)
1508 {
1509 common_cpu_die(cpu);
1510 }
1511
1512 void play_dead_common(void)
1513 {
1514 idle_task_exit();
1515 reset_lazy_tlbstate();
1516 amd_e400_remove_cpu(raw_smp_processor_id());
1517
1518 /* Ack it */
1519 (void)cpu_report_death();
1520
1521 /*
1522 * With physical CPU hotplug, we should halt the cpu
1523 */
1524 local_irq_disable();
1525 }
1526
1527 static bool wakeup_cpu0(void)
1528 {
1529 if (smp_processor_id() == 0 && enable_start_cpu0)
1530 return true;
1531
1532 return false;
1533 }
1534
1535 /*
1536 * We need to flush the caches before going to sleep, lest we have
1537 * dirty data in our caches when we come back up.
1538 */
1539 static inline void mwait_play_dead(void)
1540 {
1541 unsigned int eax, ebx, ecx, edx;
1542 unsigned int highest_cstate = 0;
1543 unsigned int highest_subcstate = 0;
1544 void *mwait_ptr;
1545 int i;
1546
1547 if (!this_cpu_has(X86_FEATURE_MWAIT))
1548 return;
1549 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1550 return;
1551 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1552 return;
1553
1554 eax = CPUID_MWAIT_LEAF;
1555 ecx = 0;
1556 native_cpuid(&eax, &ebx, &ecx, &edx);
1557
1558 /*
1559 * eax will be 0 if EDX enumeration is not valid.
1560 * Initialized below to cstate, sub_cstate value when EDX is valid.
1561 */
1562 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1563 eax = 0;
1564 } else {
1565 edx >>= MWAIT_SUBSTATE_SIZE;
1566 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1567 if (edx & MWAIT_SUBSTATE_MASK) {
1568 highest_cstate = i;
1569 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1570 }
1571 }
1572 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1573 (highest_subcstate - 1);
1574 }
1575
1576 /*
1577 * This should be a memory location in a cache line which is
1578 * unlikely to be touched by other processors. The actual
1579 * content is immaterial as it is not actually modified in any way.
1580 */
1581 mwait_ptr = &current_thread_info()->flags;
1582
1583 wbinvd();
1584
1585 while (1) {
1586 /*
1587 * The CLFLUSH is a workaround for erratum AAI65 for
1588 * the Xeon 7400 series. It's not clear it is actually
1589 * needed, but it should be harmless in either case.
1590 * The WBINVD is insufficient due to the spurious-wakeup
1591 * case where we return around the loop.
1592 */
1593 mb();
1594 clflush(mwait_ptr);
1595 mb();
1596 __monitor(mwait_ptr, 0, 0);
1597 mb();
1598 __mwait(eax, 0);
1599 /*
1600 * If NMI wants to wake up CPU0, start CPU0.
1601 */
1602 if (wakeup_cpu0())
1603 start_cpu0();
1604 }
1605 }
1606
1607 static inline void hlt_play_dead(void)
1608 {
1609 if (__this_cpu_read(cpu_info.x86) >= 4)
1610 wbinvd();
1611
1612 while (1) {
1613 native_halt();
1614 /*
1615 * If NMI wants to wake up CPU0, start CPU0.
1616 */
1617 if (wakeup_cpu0())
1618 start_cpu0();
1619 }
1620 }
1621
1622 void native_play_dead(void)
1623 {
1624 play_dead_common();
1625 tboot_shutdown(TB_SHUTDOWN_WFS);
1626
1627 mwait_play_dead(); /* Only returns on failure */
1628 if (cpuidle_play_dead())
1629 hlt_play_dead();
1630 }
1631
1632 #else /* ... !CONFIG_HOTPLUG_CPU */
1633 int native_cpu_disable(void)
1634 {
1635 return -ENOSYS;
1636 }
1637
1638 void native_cpu_die(unsigned int cpu)
1639 {
1640 /* We said "no" in __cpu_disable */
1641 BUG();
1642 }
1643
1644 void native_play_dead(void)
1645 {
1646 BUG();
1647 }
1648
1649 #endif
This page took 0.0913310000000001 seconds and 5 git commands to generate.