Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes...
[deliverable/linux.git] / arch / x86 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
15 * This code is released under the GNU General Public License version 2 or
16 * later.
17 *
18 * Fixes
19 * Felix Koop : NR_CPUS used properly
20 * Jose Renau : Handle single CPU case.
21 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
22 * Greg Wright : Fix for kernel stacks panic.
23 * Erich Boleyn : MP v1.4 and additional changes.
24 * Matthias Sattler : Changes for 2.1 kernel map.
25 * Michel Lespinasse : Changes for 2.1 kernel map.
26 * Michael Chastain : Change trampoline.S to gnu as.
27 * Alan Cox : Dumb bug: 'B' step PPro's are fine
28 * Ingo Molnar : Added APIC timers, based on code
29 * from Jose Renau
30 * Ingo Molnar : various cleanups and rewrites
31 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
32 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
33 * Andi Kleen : Changed for SMP boot into long mode.
34 * Martin J. Bligh : Added support for multi-quad systems
35 * Dave Jones : Report invalid combinations of Athlon CPUs.
36 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
37 * Andi Kleen : Converted to new state machine.
38 * Ashok Raj : CPU hotplug support
39 * Glauber Costa : i386 and x86_64 integration
40 */
41
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/module.h>
45 #include <linux/sched.h>
46 #include <linux/percpu.h>
47 #include <linux/bootmem.h>
48 #include <linux/err.h>
49 #include <linux/nmi.h>
50
51 #include <asm/acpi.h>
52 #include <asm/desc.h>
53 #include <asm/nmi.h>
54 #include <asm/irq.h>
55 #include <asm/smp.h>
56 #include <asm/trampoline.h>
57 #include <asm/cpu.h>
58 #include <asm/numa.h>
59 #include <asm/pgtable.h>
60 #include <asm/tlbflush.h>
61 #include <asm/mtrr.h>
62 #include <asm/nmi.h>
63 #include <asm/vmi.h>
64 #include <asm/genapic.h>
65 #include <linux/mc146818rtc.h>
66
67 #include <mach_apic.h>
68 #include <mach_wakecpu.h>
69 #include <smpboot_hooks.h>
70
71 /*
72 * FIXME: For x86_64, those are defined in other files. But moving them here,
73 * would make the setup areas dependent on smp, which is a loss. When we
74 * integrate apic between arches, we can probably do a better job, but
75 * right now, they'll stay here -- glommer
76 */
77
78 /* which logical CPU number maps to which CPU (physical APIC ID) */
79 u16 x86_cpu_to_apicid_init[NR_CPUS] __initdata =
80 { [0 ... NR_CPUS-1] = BAD_APICID };
81 void *x86_cpu_to_apicid_early_ptr;
82
83 u16 x86_bios_cpu_apicid_init[NR_CPUS] __initdata
84 = { [0 ... NR_CPUS-1] = BAD_APICID };
85 void *x86_bios_cpu_apicid_early_ptr;
86
87 #ifdef CONFIG_X86_32
88 u8 apicid_2_node[MAX_APICID];
89 #endif
90
91 /* State of each CPU */
92 DEFINE_PER_CPU(int, cpu_state) = { 0 };
93
94 /* Store all idle threads, this can be reused instead of creating
95 * a new thread. Also avoids complicated thread destroy functionality
96 * for idle threads.
97 */
98 #ifdef CONFIG_HOTPLUG_CPU
99 /*
100 * Needed only for CONFIG_HOTPLUG_CPU because __cpuinitdata is
101 * removed after init for !CONFIG_HOTPLUG_CPU.
102 */
103 static DEFINE_PER_CPU(struct task_struct *, idle_thread_array);
104 #define get_idle_for_cpu(x) (per_cpu(idle_thread_array, x))
105 #define set_idle_for_cpu(x, p) (per_cpu(idle_thread_array, x) = (p))
106 #else
107 struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
108 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
109 #define set_idle_for_cpu(x, p) (idle_thread_array[(x)] = (p))
110 #endif
111
112 /* Number of siblings per CPU package */
113 int smp_num_siblings = 1;
114 EXPORT_SYMBOL(smp_num_siblings);
115
116 /* Last level cache ID of each logical CPU */
117 DEFINE_PER_CPU(u16, cpu_llc_id) = BAD_APICID;
118
119 /* bitmap of online cpus */
120 cpumask_t cpu_online_map __read_mostly;
121 EXPORT_SYMBOL(cpu_online_map);
122
123 cpumask_t cpu_callin_map;
124 cpumask_t cpu_callout_map;
125 cpumask_t cpu_possible_map;
126 EXPORT_SYMBOL(cpu_possible_map);
127
128 /* representing HT siblings of each logical CPU */
129 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map);
130 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
131
132 /* representing HT and core siblings of each logical CPU */
133 DEFINE_PER_CPU(cpumask_t, cpu_core_map);
134 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
135
136 /* Per CPU bogomips and other parameters */
137 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
138 EXPORT_PER_CPU_SYMBOL(cpu_info);
139
140 static atomic_t init_deasserted;
141
142 static int boot_cpu_logical_apicid;
143
144 /* representing cpus for which sibling maps can be computed */
145 static cpumask_t cpu_sibling_setup_map;
146
147 /* Set if we find a B stepping CPU */
148 int __cpuinitdata smp_b_stepping;
149
150 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_32)
151
152 /* which logical CPUs are on which nodes */
153 cpumask_t node_to_cpumask_map[MAX_NUMNODES] __read_mostly =
154 { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE };
155 EXPORT_SYMBOL(node_to_cpumask_map);
156 /* which node each logical CPU is on */
157 int cpu_to_node_map[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 };
158 EXPORT_SYMBOL(cpu_to_node_map);
159
160 /* set up a mapping between cpu and node. */
161 static void map_cpu_to_node(int cpu, int node)
162 {
163 printk(KERN_INFO "Mapping cpu %d to node %d\n", cpu, node);
164 cpu_set(cpu, node_to_cpumask_map[node]);
165 cpu_to_node_map[cpu] = node;
166 }
167
168 /* undo a mapping between cpu and node. */
169 static void unmap_cpu_to_node(int cpu)
170 {
171 int node;
172
173 printk(KERN_INFO "Unmapping cpu %d from all nodes\n", cpu);
174 for (node = 0; node < MAX_NUMNODES; node++)
175 cpu_clear(cpu, node_to_cpumask_map[node]);
176 cpu_to_node_map[cpu] = 0;
177 }
178 #else /* !(CONFIG_NUMA && CONFIG_X86_32) */
179 #define map_cpu_to_node(cpu, node) ({})
180 #define unmap_cpu_to_node(cpu) ({})
181 #endif
182
183 #ifdef CONFIG_X86_32
184 u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly =
185 { [0 ... NR_CPUS-1] = BAD_APICID };
186
187 static void map_cpu_to_logical_apicid(void)
188 {
189 int cpu = smp_processor_id();
190 int apicid = logical_smp_processor_id();
191 int node = apicid_to_node(apicid);
192
193 if (!node_online(node))
194 node = first_online_node;
195
196 cpu_2_logical_apicid[cpu] = apicid;
197 map_cpu_to_node(cpu, node);
198 }
199
200 static void unmap_cpu_to_logical_apicid(int cpu)
201 {
202 cpu_2_logical_apicid[cpu] = BAD_APICID;
203 unmap_cpu_to_node(cpu);
204 }
205 #else
206 #define unmap_cpu_to_logical_apicid(cpu) do {} while (0)
207 #define map_cpu_to_logical_apicid() do {} while (0)
208 #endif
209
210 /*
211 * Report back to the Boot Processor.
212 * Running on AP.
213 */
214 static void __cpuinit smp_callin(void)
215 {
216 int cpuid, phys_id;
217 unsigned long timeout;
218
219 /*
220 * If waken up by an INIT in an 82489DX configuration
221 * we may get here before an INIT-deassert IPI reaches
222 * our local APIC. We have to wait for the IPI or we'll
223 * lock up on an APIC access.
224 */
225 wait_for_init_deassert(&init_deasserted);
226
227 /*
228 * (This works even if the APIC is not enabled.)
229 */
230 phys_id = GET_APIC_ID(read_apic_id());
231 cpuid = smp_processor_id();
232 if (cpu_isset(cpuid, cpu_callin_map)) {
233 panic("%s: phys CPU#%d, CPU#%d already present??\n", __func__,
234 phys_id, cpuid);
235 }
236 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
237
238 /*
239 * STARTUP IPIs are fragile beasts as they might sometimes
240 * trigger some glue motherboard logic. Complete APIC bus
241 * silence for 1 second, this overestimates the time the
242 * boot CPU is spending to send the up to 2 STARTUP IPIs
243 * by a factor of two. This should be enough.
244 */
245
246 /*
247 * Waiting 2s total for startup (udelay is not yet working)
248 */
249 timeout = jiffies + 2*HZ;
250 while (time_before(jiffies, timeout)) {
251 /*
252 * Has the boot CPU finished it's STARTUP sequence?
253 */
254 if (cpu_isset(cpuid, cpu_callout_map))
255 break;
256 cpu_relax();
257 }
258
259 if (!time_before(jiffies, timeout)) {
260 panic("%s: CPU%d started up but did not get a callout!\n",
261 __func__, cpuid);
262 }
263
264 /*
265 * the boot CPU has finished the init stage and is spinning
266 * on callin_map until we finish. We are free to set up this
267 * CPU, first the APIC. (this is probably redundant on most
268 * boards)
269 */
270
271 Dprintk("CALLIN, before setup_local_APIC().\n");
272 smp_callin_clear_local_apic();
273 setup_local_APIC();
274 end_local_APIC_setup();
275 map_cpu_to_logical_apicid();
276
277 /*
278 * Get our bogomips.
279 *
280 * Need to enable IRQs because it can take longer and then
281 * the NMI watchdog might kill us.
282 */
283 local_irq_enable();
284 calibrate_delay();
285 local_irq_disable();
286 Dprintk("Stack at about %p\n", &cpuid);
287
288 /*
289 * Save our processor parameters
290 */
291 smp_store_cpu_info(cpuid);
292
293 /*
294 * Allow the master to continue.
295 */
296 cpu_set(cpuid, cpu_callin_map);
297 }
298
299 /*
300 * Activate a secondary processor.
301 */
302 static void __cpuinit start_secondary(void *unused)
303 {
304 /*
305 * Don't put *anything* before cpu_init(), SMP booting is too
306 * fragile that we want to limit the things done here to the
307 * most necessary things.
308 */
309 #ifdef CONFIG_VMI
310 vmi_bringup();
311 #endif
312 cpu_init();
313 preempt_disable();
314 smp_callin();
315
316 /* otherwise gcc will move up smp_processor_id before the cpu_init */
317 barrier();
318 /*
319 * Check TSC synchronization with the BP:
320 */
321 check_tsc_sync_target();
322
323 if (nmi_watchdog == NMI_IO_APIC) {
324 disable_8259A_irq(0);
325 enable_NMI_through_LVT0();
326 enable_8259A_irq(0);
327 }
328
329 /* This must be done before setting cpu_online_map */
330 set_cpu_sibling_map(raw_smp_processor_id());
331 wmb();
332
333 /*
334 * We need to hold call_lock, so there is no inconsistency
335 * between the time smp_call_function() determines number of
336 * IPI recipients, and the time when the determination is made
337 * for which cpus receive the IPI. Holding this
338 * lock helps us to not include this cpu in a currently in progress
339 * smp_call_function().
340 */
341 lock_ipi_call_lock();
342 #ifdef CONFIG_X86_64
343 spin_lock(&vector_lock);
344
345 /* Setup the per cpu irq handling data structures */
346 __setup_vector_irq(smp_processor_id());
347 /*
348 * Allow the master to continue.
349 */
350 spin_unlock(&vector_lock);
351 #endif
352 cpu_set(smp_processor_id(), cpu_online_map);
353 unlock_ipi_call_lock();
354 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
355
356 setup_secondary_clock();
357
358 wmb();
359 cpu_idle();
360 }
361
362 #ifdef CONFIG_X86_32
363 /*
364 * Everything has been set up for the secondary
365 * CPUs - they just need to reload everything
366 * from the task structure
367 * This function must not return.
368 */
369 void __devinit initialize_secondary(void)
370 {
371 /*
372 * We don't actually need to load the full TSS,
373 * basically just the stack pointer and the ip.
374 */
375
376 asm volatile(
377 "movl %0,%%esp\n\t"
378 "jmp *%1"
379 :
380 :"m" (current->thread.sp), "m" (current->thread.ip));
381 }
382 #endif
383
384 static void __cpuinit smp_apply_quirks(struct cpuinfo_x86 *c)
385 {
386 #ifdef CONFIG_X86_32
387 /*
388 * Mask B, Pentium, but not Pentium MMX
389 */
390 if (c->x86_vendor == X86_VENDOR_INTEL &&
391 c->x86 == 5 &&
392 c->x86_mask >= 1 && c->x86_mask <= 4 &&
393 c->x86_model <= 3)
394 /*
395 * Remember we have B step Pentia with bugs
396 */
397 smp_b_stepping = 1;
398
399 /*
400 * Certain Athlons might work (for various values of 'work') in SMP
401 * but they are not certified as MP capable.
402 */
403 if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
404
405 if (num_possible_cpus() == 1)
406 goto valid_k7;
407
408 /* Athlon 660/661 is valid. */
409 if ((c->x86_model == 6) && ((c->x86_mask == 0) ||
410 (c->x86_mask == 1)))
411 goto valid_k7;
412
413 /* Duron 670 is valid */
414 if ((c->x86_model == 7) && (c->x86_mask == 0))
415 goto valid_k7;
416
417 /*
418 * Athlon 662, Duron 671, and Athlon >model 7 have capability
419 * bit. It's worth noting that the A5 stepping (662) of some
420 * Athlon XP's have the MP bit set.
421 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
422 * more.
423 */
424 if (((c->x86_model == 6) && (c->x86_mask >= 2)) ||
425 ((c->x86_model == 7) && (c->x86_mask >= 1)) ||
426 (c->x86_model > 7))
427 if (cpu_has_mp)
428 goto valid_k7;
429
430 /* If we get here, not a certified SMP capable AMD system. */
431 add_taint(TAINT_UNSAFE_SMP);
432 }
433
434 valid_k7:
435 ;
436 #endif
437 }
438
439 static void __cpuinit smp_checks(void)
440 {
441 if (smp_b_stepping)
442 printk(KERN_WARNING "WARNING: SMP operation may be unreliable"
443 "with B stepping processors.\n");
444
445 /*
446 * Don't taint if we are running SMP kernel on a single non-MP
447 * approved Athlon
448 */
449 if (tainted & TAINT_UNSAFE_SMP) {
450 if (num_online_cpus())
451 printk(KERN_INFO "WARNING: This combination of AMD"
452 "processors is not suitable for SMP.\n");
453 else
454 tainted &= ~TAINT_UNSAFE_SMP;
455 }
456 }
457
458 /*
459 * The bootstrap kernel entry code has set these up. Save them for
460 * a given CPU
461 */
462
463 void __cpuinit smp_store_cpu_info(int id)
464 {
465 struct cpuinfo_x86 *c = &cpu_data(id);
466
467 *c = boot_cpu_data;
468 c->cpu_index = id;
469 if (id != 0)
470 identify_secondary_cpu(c);
471 smp_apply_quirks(c);
472 }
473
474
475 void __cpuinit set_cpu_sibling_map(int cpu)
476 {
477 int i;
478 struct cpuinfo_x86 *c = &cpu_data(cpu);
479
480 cpu_set(cpu, cpu_sibling_setup_map);
481
482 if (smp_num_siblings > 1) {
483 for_each_cpu_mask(i, cpu_sibling_setup_map) {
484 if (c->phys_proc_id == cpu_data(i).phys_proc_id &&
485 c->cpu_core_id == cpu_data(i).cpu_core_id) {
486 cpu_set(i, per_cpu(cpu_sibling_map, cpu));
487 cpu_set(cpu, per_cpu(cpu_sibling_map, i));
488 cpu_set(i, per_cpu(cpu_core_map, cpu));
489 cpu_set(cpu, per_cpu(cpu_core_map, i));
490 cpu_set(i, c->llc_shared_map);
491 cpu_set(cpu, cpu_data(i).llc_shared_map);
492 }
493 }
494 } else {
495 cpu_set(cpu, per_cpu(cpu_sibling_map, cpu));
496 }
497
498 cpu_set(cpu, c->llc_shared_map);
499
500 if (current_cpu_data.x86_max_cores == 1) {
501 per_cpu(cpu_core_map, cpu) = per_cpu(cpu_sibling_map, cpu);
502 c->booted_cores = 1;
503 return;
504 }
505
506 for_each_cpu_mask(i, cpu_sibling_setup_map) {
507 if (per_cpu(cpu_llc_id, cpu) != BAD_APICID &&
508 per_cpu(cpu_llc_id, cpu) == per_cpu(cpu_llc_id, i)) {
509 cpu_set(i, c->llc_shared_map);
510 cpu_set(cpu, cpu_data(i).llc_shared_map);
511 }
512 if (c->phys_proc_id == cpu_data(i).phys_proc_id) {
513 cpu_set(i, per_cpu(cpu_core_map, cpu));
514 cpu_set(cpu, per_cpu(cpu_core_map, i));
515 /*
516 * Does this new cpu bringup a new core?
517 */
518 if (cpus_weight(per_cpu(cpu_sibling_map, cpu)) == 1) {
519 /*
520 * for each core in package, increment
521 * the booted_cores for this new cpu
522 */
523 if (first_cpu(per_cpu(cpu_sibling_map, i)) == i)
524 c->booted_cores++;
525 /*
526 * increment the core count for all
527 * the other cpus in this package
528 */
529 if (i != cpu)
530 cpu_data(i).booted_cores++;
531 } else if (i != cpu && !c->booted_cores)
532 c->booted_cores = cpu_data(i).booted_cores;
533 }
534 }
535 }
536
537 /* maps the cpu to the sched domain representing multi-core */
538 cpumask_t cpu_coregroup_map(int cpu)
539 {
540 struct cpuinfo_x86 *c = &cpu_data(cpu);
541 /*
542 * For perf, we return last level cache shared map.
543 * And for power savings, we return cpu_core_map
544 */
545 if (sched_mc_power_savings || sched_smt_power_savings)
546 return per_cpu(cpu_core_map, cpu);
547 else
548 return c->llc_shared_map;
549 }
550
551 #ifdef CONFIG_X86_32
552 /*
553 * We are called very early to get the low memory for the
554 * SMP bootup trampoline page.
555 */
556 void __init smp_alloc_memory(void)
557 {
558 trampoline_base = alloc_bootmem_low_pages(PAGE_SIZE);
559 /*
560 * Has to be in very low memory so we can execute
561 * real-mode AP code.
562 */
563 if (__pa(trampoline_base) >= 0x9F000)
564 BUG();
565 }
566 #endif
567
568 static void impress_friends(void)
569 {
570 int cpu;
571 unsigned long bogosum = 0;
572 /*
573 * Allow the user to impress friends.
574 */
575 Dprintk("Before bogomips.\n");
576 for_each_possible_cpu(cpu)
577 if (cpu_isset(cpu, cpu_callout_map))
578 bogosum += cpu_data(cpu).loops_per_jiffy;
579 printk(KERN_INFO
580 "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
581 num_online_cpus(),
582 bogosum/(500000/HZ),
583 (bogosum/(5000/HZ))%100);
584
585 Dprintk("Before bogocount - setting activated=1.\n");
586 }
587
588 static inline void __inquire_remote_apic(int apicid)
589 {
590 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
591 char *names[] = { "ID", "VERSION", "SPIV" };
592 int timeout;
593 u32 status;
594
595 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
596
597 for (i = 0; i < ARRAY_SIZE(regs); i++) {
598 printk(KERN_INFO "... APIC #%d %s: ", apicid, names[i]);
599
600 /*
601 * Wait for idle.
602 */
603 status = safe_apic_wait_icr_idle();
604 if (status)
605 printk(KERN_CONT
606 "a previous APIC delivery may have failed\n");
607
608 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
609 apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
610
611 timeout = 0;
612 do {
613 udelay(100);
614 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
615 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
616
617 switch (status) {
618 case APIC_ICR_RR_VALID:
619 status = apic_read(APIC_RRR);
620 printk(KERN_CONT "%08x\n", status);
621 break;
622 default:
623 printk(KERN_CONT "failed\n");
624 }
625 }
626 }
627
628 #ifdef WAKE_SECONDARY_VIA_NMI
629 /*
630 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
631 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
632 * won't ... remember to clear down the APIC, etc later.
633 */
634 static int __devinit
635 wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip)
636 {
637 unsigned long send_status, accept_status = 0;
638 int maxlvt;
639
640 /* Target chip */
641 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid));
642
643 /* Boot on the stack */
644 /* Kick the second */
645 apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL);
646
647 Dprintk("Waiting for send to finish...\n");
648 send_status = safe_apic_wait_icr_idle();
649
650 /*
651 * Give the other CPU some time to accept the IPI.
652 */
653 udelay(200);
654 /*
655 * Due to the Pentium erratum 3AP.
656 */
657 maxlvt = lapic_get_maxlvt();
658 if (maxlvt > 3) {
659 apic_read_around(APIC_SPIV);
660 apic_write(APIC_ESR, 0);
661 }
662 accept_status = (apic_read(APIC_ESR) & 0xEF);
663 Dprintk("NMI sent.\n");
664
665 if (send_status)
666 printk(KERN_ERR "APIC never delivered???\n");
667 if (accept_status)
668 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
669
670 return (send_status | accept_status);
671 }
672 #endif /* WAKE_SECONDARY_VIA_NMI */
673
674 #ifdef WAKE_SECONDARY_VIA_INIT
675 static int __devinit
676 wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip)
677 {
678 unsigned long send_status, accept_status = 0;
679 int maxlvt, num_starts, j;
680
681 if (get_uv_system_type() == UV_NON_UNIQUE_APIC) {
682 send_status = uv_wakeup_secondary(phys_apicid, start_eip);
683 atomic_set(&init_deasserted, 1);
684 return send_status;
685 }
686
687 /*
688 * Be paranoid about clearing APIC errors.
689 */
690 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
691 apic_read_around(APIC_SPIV);
692 apic_write(APIC_ESR, 0);
693 apic_read(APIC_ESR);
694 }
695
696 Dprintk("Asserting INIT.\n");
697
698 /*
699 * Turn INIT on target chip
700 */
701 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
702
703 /*
704 * Send IPI
705 */
706 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
707 | APIC_DM_INIT);
708
709 Dprintk("Waiting for send to finish...\n");
710 send_status = safe_apic_wait_icr_idle();
711
712 mdelay(10);
713
714 Dprintk("Deasserting INIT.\n");
715
716 /* Target chip */
717 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
718
719 /* Send IPI */
720 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
721
722 Dprintk("Waiting for send to finish...\n");
723 send_status = safe_apic_wait_icr_idle();
724
725 mb();
726 atomic_set(&init_deasserted, 1);
727
728 /*
729 * Should we send STARTUP IPIs ?
730 *
731 * Determine this based on the APIC version.
732 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
733 */
734 if (APIC_INTEGRATED(apic_version[phys_apicid]))
735 num_starts = 2;
736 else
737 num_starts = 0;
738
739 /*
740 * Paravirt / VMI wants a startup IPI hook here to set up the
741 * target processor state.
742 */
743 startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
744 #ifdef CONFIG_X86_64
745 (unsigned long)init_rsp);
746 #else
747 (unsigned long)stack_start.sp);
748 #endif
749
750 /*
751 * Run STARTUP IPI loop.
752 */
753 Dprintk("#startup loops: %d.\n", num_starts);
754
755 maxlvt = lapic_get_maxlvt();
756
757 for (j = 1; j <= num_starts; j++) {
758 Dprintk("Sending STARTUP #%d.\n", j);
759 apic_read_around(APIC_SPIV);
760 apic_write(APIC_ESR, 0);
761 apic_read(APIC_ESR);
762 Dprintk("After apic_write.\n");
763
764 /*
765 * STARTUP IPI
766 */
767
768 /* Target chip */
769 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
770
771 /* Boot on the stack */
772 /* Kick the second */
773 apic_write_around(APIC_ICR, APIC_DM_STARTUP
774 | (start_eip >> 12));
775
776 /*
777 * Give the other CPU some time to accept the IPI.
778 */
779 udelay(300);
780
781 Dprintk("Startup point 1.\n");
782
783 Dprintk("Waiting for send to finish...\n");
784 send_status = safe_apic_wait_icr_idle();
785
786 /*
787 * Give the other CPU some time to accept the IPI.
788 */
789 udelay(200);
790 /*
791 * Due to the Pentium erratum 3AP.
792 */
793 if (maxlvt > 3) {
794 apic_read_around(APIC_SPIV);
795 apic_write(APIC_ESR, 0);
796 }
797 accept_status = (apic_read(APIC_ESR) & 0xEF);
798 if (send_status || accept_status)
799 break;
800 }
801 Dprintk("After Startup.\n");
802
803 if (send_status)
804 printk(KERN_ERR "APIC never delivered???\n");
805 if (accept_status)
806 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
807
808 return (send_status | accept_status);
809 }
810 #endif /* WAKE_SECONDARY_VIA_INIT */
811
812 struct create_idle {
813 struct work_struct work;
814 struct task_struct *idle;
815 struct completion done;
816 int cpu;
817 };
818
819 static void __cpuinit do_fork_idle(struct work_struct *work)
820 {
821 struct create_idle *c_idle =
822 container_of(work, struct create_idle, work);
823
824 c_idle->idle = fork_idle(c_idle->cpu);
825 complete(&c_idle->done);
826 }
827
828 static int __cpuinit do_boot_cpu(int apicid, int cpu)
829 /*
830 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
831 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
832 * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu.
833 */
834 {
835 unsigned long boot_error = 0;
836 int timeout;
837 unsigned long start_ip;
838 unsigned short nmi_high = 0, nmi_low = 0;
839 struct create_idle c_idle = {
840 .cpu = cpu,
841 .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
842 };
843 INIT_WORK(&c_idle.work, do_fork_idle);
844 #ifdef CONFIG_X86_64
845 /* allocate memory for gdts of secondary cpus. Hotplug is considered */
846 if (!cpu_gdt_descr[cpu].address &&
847 !(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) {
848 printk(KERN_ERR "Failed to allocate GDT for CPU %d\n", cpu);
849 return -1;
850 }
851
852 /* Allocate node local memory for AP pdas */
853 if (cpu_pda(cpu) == &boot_cpu_pda[cpu]) {
854 struct x8664_pda *newpda, *pda;
855 int node = cpu_to_node(cpu);
856 pda = cpu_pda(cpu);
857 newpda = kmalloc_node(sizeof(struct x8664_pda), GFP_ATOMIC,
858 node);
859 if (newpda) {
860 memcpy(newpda, pda, sizeof(struct x8664_pda));
861 cpu_pda(cpu) = newpda;
862 } else
863 printk(KERN_ERR
864 "Could not allocate node local PDA for CPU %d on node %d\n",
865 cpu, node);
866 }
867 #endif
868
869 alternatives_smp_switch(1);
870
871 c_idle.idle = get_idle_for_cpu(cpu);
872
873 /*
874 * We can't use kernel_thread since we must avoid to
875 * reschedule the child.
876 */
877 if (c_idle.idle) {
878 c_idle.idle->thread.sp = (unsigned long) (((struct pt_regs *)
879 (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1);
880 init_idle(c_idle.idle, cpu);
881 goto do_rest;
882 }
883
884 if (!keventd_up() || current_is_keventd())
885 c_idle.work.func(&c_idle.work);
886 else {
887 schedule_work(&c_idle.work);
888 wait_for_completion(&c_idle.done);
889 }
890
891 if (IS_ERR(c_idle.idle)) {
892 printk("failed fork for CPU %d\n", cpu);
893 return PTR_ERR(c_idle.idle);
894 }
895
896 set_idle_for_cpu(cpu, c_idle.idle);
897 do_rest:
898 #ifdef CONFIG_X86_32
899 per_cpu(current_task, cpu) = c_idle.idle;
900 init_gdt(cpu);
901 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
902 c_idle.idle->thread.ip = (unsigned long) start_secondary;
903 /* Stack for startup_32 can be just as for start_secondary onwards */
904 stack_start.sp = (void *) c_idle.idle->thread.sp;
905 irq_ctx_init(cpu);
906 #else
907 cpu_pda(cpu)->pcurrent = c_idle.idle;
908 init_rsp = c_idle.idle->thread.sp;
909 load_sp0(&per_cpu(init_tss, cpu), &c_idle.idle->thread);
910 initial_code = (unsigned long)start_secondary;
911 clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
912 #endif
913
914 /* start_ip had better be page-aligned! */
915 start_ip = setup_trampoline();
916
917 /* So we see what's up */
918 printk(KERN_INFO "Booting processor %d/%d ip %lx\n",
919 cpu, apicid, start_ip);
920
921 /*
922 * This grunge runs the startup process for
923 * the targeted processor.
924 */
925
926 atomic_set(&init_deasserted, 0);
927
928 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
929
930 Dprintk("Setting warm reset code and vector.\n");
931
932 store_NMI_vector(&nmi_high, &nmi_low);
933
934 smpboot_setup_warm_reset_vector(start_ip);
935 /*
936 * Be paranoid about clearing APIC errors.
937 */
938 apic_write(APIC_ESR, 0);
939 apic_read(APIC_ESR);
940 }
941
942 /*
943 * Starting actual IPI sequence...
944 */
945 boot_error = wakeup_secondary_cpu(apicid, start_ip);
946
947 if (!boot_error) {
948 /*
949 * allow APs to start initializing.
950 */
951 Dprintk("Before Callout %d.\n", cpu);
952 cpu_set(cpu, cpu_callout_map);
953 Dprintk("After Callout %d.\n", cpu);
954
955 /*
956 * Wait 5s total for a response
957 */
958 for (timeout = 0; timeout < 50000; timeout++) {
959 if (cpu_isset(cpu, cpu_callin_map))
960 break; /* It has booted */
961 udelay(100);
962 }
963
964 if (cpu_isset(cpu, cpu_callin_map)) {
965 /* number CPUs logically, starting from 1 (BSP is 0) */
966 Dprintk("OK.\n");
967 printk(KERN_INFO "CPU%d: ", cpu);
968 print_cpu_info(&cpu_data(cpu));
969 Dprintk("CPU has booted.\n");
970 } else {
971 boot_error = 1;
972 if (*((volatile unsigned char *)trampoline_base)
973 == 0xA5)
974 /* trampoline started but...? */
975 printk(KERN_ERR "Stuck ??\n");
976 else
977 /* trampoline code not run */
978 printk(KERN_ERR "Not responding.\n");
979 if (get_uv_system_type() != UV_NON_UNIQUE_APIC)
980 inquire_remote_apic(apicid);
981 }
982 }
983
984 if (boot_error) {
985 /* Try to put things back the way they were before ... */
986 unmap_cpu_to_logical_apicid(cpu);
987 #ifdef CONFIG_X86_64
988 clear_node_cpumask(cpu); /* was set by numa_add_cpu */
989 #endif
990 cpu_clear(cpu, cpu_callout_map); /* was set by do_boot_cpu() */
991 cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */
992 cpu_clear(cpu, cpu_possible_map);
993 cpu_clear(cpu, cpu_present_map);
994 per_cpu(x86_cpu_to_apicid, cpu) = BAD_APICID;
995 }
996
997 /* mark "stuck" area as not stuck */
998 *((volatile unsigned long *)trampoline_base) = 0;
999
1000 /*
1001 * Cleanup possible dangling ends...
1002 */
1003 smpboot_restore_warm_reset_vector();
1004
1005 return boot_error;
1006 }
1007
1008 int __cpuinit native_cpu_up(unsigned int cpu)
1009 {
1010 int apicid = cpu_present_to_apicid(cpu);
1011 unsigned long flags;
1012 int err;
1013
1014 WARN_ON(irqs_disabled());
1015
1016 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1017
1018 if (apicid == BAD_APICID || apicid == boot_cpu_physical_apicid ||
1019 !physid_isset(apicid, phys_cpu_present_map)) {
1020 printk(KERN_ERR "%s: bad cpu %d\n", __func__, cpu);
1021 return -EINVAL;
1022 }
1023
1024 /*
1025 * Already booted CPU?
1026 */
1027 if (cpu_isset(cpu, cpu_callin_map)) {
1028 Dprintk("do_boot_cpu %d Already started\n", cpu);
1029 return -ENOSYS;
1030 }
1031
1032 /*
1033 * Save current MTRR state in case it was changed since early boot
1034 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1035 */
1036 mtrr_save_state();
1037
1038 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1039
1040 #ifdef CONFIG_X86_32
1041 /* init low mem mapping */
1042 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + KERNEL_PGD_BOUNDARY,
1043 min_t(unsigned long, KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
1044 flush_tlb_all();
1045 #endif
1046
1047 err = do_boot_cpu(apicid, cpu);
1048 if (err < 0) {
1049 Dprintk("do_boot_cpu failed %d\n", err);
1050 return err;
1051 }
1052
1053 /*
1054 * Check TSC synchronization with the AP (keep irqs disabled
1055 * while doing so):
1056 */
1057 local_irq_save(flags);
1058 check_tsc_sync_source(cpu);
1059 local_irq_restore(flags);
1060
1061 while (!cpu_online(cpu)) {
1062 cpu_relax();
1063 touch_nmi_watchdog();
1064 }
1065
1066 return 0;
1067 }
1068
1069 /*
1070 * Fall back to non SMP mode after errors.
1071 *
1072 * RED-PEN audit/test this more. I bet there is more state messed up here.
1073 */
1074 static __init void disable_smp(void)
1075 {
1076 cpu_present_map = cpumask_of_cpu(0);
1077 cpu_possible_map = cpumask_of_cpu(0);
1078 #ifdef CONFIG_X86_32
1079 smpboot_clear_io_apic_irqs();
1080 #endif
1081 if (smp_found_config)
1082 phys_cpu_present_map =
1083 physid_mask_of_physid(boot_cpu_physical_apicid);
1084 else
1085 phys_cpu_present_map = physid_mask_of_physid(0);
1086 map_cpu_to_logical_apicid();
1087 cpu_set(0, per_cpu(cpu_sibling_map, 0));
1088 cpu_set(0, per_cpu(cpu_core_map, 0));
1089 }
1090
1091 /*
1092 * Various sanity checks.
1093 */
1094 static int __init smp_sanity_check(unsigned max_cpus)
1095 {
1096 preempt_disable();
1097 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1098 printk(KERN_WARNING "weird, boot CPU (#%d) not listed"
1099 "by the BIOS.\n", hard_smp_processor_id());
1100 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1101 }
1102
1103 /*
1104 * If we couldn't find an SMP configuration at boot time,
1105 * get out of here now!
1106 */
1107 if (!smp_found_config && !acpi_lapic) {
1108 preempt_enable();
1109 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1110 disable_smp();
1111 if (APIC_init_uniprocessor())
1112 printk(KERN_NOTICE "Local APIC not detected."
1113 " Using dummy APIC emulation.\n");
1114 return -1;
1115 }
1116
1117 /*
1118 * Should not be necessary because the MP table should list the boot
1119 * CPU too, but we do it for the sake of robustness anyway.
1120 */
1121 if (!check_phys_apicid_present(boot_cpu_physical_apicid)) {
1122 printk(KERN_NOTICE
1123 "weird, boot CPU (#%d) not listed by the BIOS.\n",
1124 boot_cpu_physical_apicid);
1125 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1126 }
1127 preempt_enable();
1128
1129 /*
1130 * If we couldn't find a local APIC, then get out of here now!
1131 */
1132 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
1133 !cpu_has_apic) {
1134 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1135 boot_cpu_physical_apicid);
1136 printk(KERN_ERR "... forcing use of dummy APIC emulation."
1137 "(tell your hw vendor)\n");
1138 smpboot_clear_io_apic();
1139 return -1;
1140 }
1141
1142 verify_local_APIC();
1143
1144 /*
1145 * If SMP should be disabled, then really disable it!
1146 */
1147 if (!max_cpus) {
1148 printk(KERN_INFO "SMP mode deactivated,"
1149 "forcing use of dummy APIC emulation.\n");
1150 smpboot_clear_io_apic();
1151 #ifdef CONFIG_X86_32
1152 connect_bsp_APIC();
1153 #endif
1154 setup_local_APIC();
1155 end_local_APIC_setup();
1156 return -1;
1157 }
1158
1159 return 0;
1160 }
1161
1162 static void __init smp_cpu_index_default(void)
1163 {
1164 int i;
1165 struct cpuinfo_x86 *c;
1166
1167 for_each_possible_cpu(i) {
1168 c = &cpu_data(i);
1169 /* mark all to hotplug */
1170 c->cpu_index = NR_CPUS;
1171 }
1172 }
1173
1174 /*
1175 * Prepare for SMP bootup. The MP table or ACPI has been read
1176 * earlier. Just do some sanity checking here and enable APIC mode.
1177 */
1178 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1179 {
1180 nmi_watchdog_default();
1181 smp_cpu_index_default();
1182 current_cpu_data = boot_cpu_data;
1183 cpu_callin_map = cpumask_of_cpu(0);
1184 mb();
1185 /*
1186 * Setup boot CPU information
1187 */
1188 smp_store_cpu_info(0); /* Final full version of the data */
1189 boot_cpu_logical_apicid = logical_smp_processor_id();
1190 current_thread_info()->cpu = 0; /* needed? */
1191 set_cpu_sibling_map(0);
1192
1193 if (smp_sanity_check(max_cpus) < 0) {
1194 printk(KERN_INFO "SMP disabled\n");
1195 disable_smp();
1196 return;
1197 }
1198
1199 preempt_disable();
1200 if (GET_APIC_ID(read_apic_id()) != boot_cpu_physical_apicid) {
1201 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1202 GET_APIC_ID(read_apic_id()), boot_cpu_physical_apicid);
1203 /* Or can we switch back to PIC here? */
1204 }
1205 preempt_enable();
1206
1207 #ifdef CONFIG_X86_32
1208 connect_bsp_APIC();
1209 #endif
1210 /*
1211 * Switch from PIC to APIC mode.
1212 */
1213 setup_local_APIC();
1214
1215 #ifdef CONFIG_X86_64
1216 /*
1217 * Enable IO APIC before setting up error vector
1218 */
1219 if (!skip_ioapic_setup && nr_ioapics)
1220 enable_IO_APIC();
1221 #endif
1222 end_local_APIC_setup();
1223
1224 map_cpu_to_logical_apicid();
1225
1226 setup_portio_remap();
1227
1228 smpboot_setup_io_apic();
1229 /*
1230 * Set up local APIC timer on boot CPU.
1231 */
1232
1233 printk(KERN_INFO "CPU%d: ", 0);
1234 print_cpu_info(&cpu_data(0));
1235 setup_boot_clock();
1236 }
1237 /*
1238 * Early setup to make printk work.
1239 */
1240 void __init native_smp_prepare_boot_cpu(void)
1241 {
1242 int me = smp_processor_id();
1243 #ifdef CONFIG_X86_32
1244 init_gdt(me);
1245 switch_to_new_gdt();
1246 #endif
1247 /* already set me in cpu_online_map in boot_cpu_init() */
1248 cpu_set(me, cpu_callout_map);
1249 per_cpu(cpu_state, me) = CPU_ONLINE;
1250 }
1251
1252 void __init native_smp_cpus_done(unsigned int max_cpus)
1253 {
1254 Dprintk("Boot done.\n");
1255
1256 impress_friends();
1257 smp_checks();
1258 #ifdef CONFIG_X86_IO_APIC
1259 setup_ioapic_dest();
1260 #endif
1261 check_nmi_watchdog();
1262 #ifdef CONFIG_X86_32
1263 zap_low_mappings();
1264 #endif
1265 }
1266
1267 #ifdef CONFIG_HOTPLUG_CPU
1268
1269 # ifdef CONFIG_X86_32
1270 void cpu_exit_clear(void)
1271 {
1272 int cpu = raw_smp_processor_id();
1273
1274 idle_task_exit();
1275
1276 cpu_uninit();
1277 irq_ctx_exit(cpu);
1278
1279 cpu_clear(cpu, cpu_callout_map);
1280 cpu_clear(cpu, cpu_callin_map);
1281
1282 unmap_cpu_to_logical_apicid(cpu);
1283 }
1284 # endif /* CONFIG_X86_32 */
1285
1286 static void remove_siblinginfo(int cpu)
1287 {
1288 int sibling;
1289 struct cpuinfo_x86 *c = &cpu_data(cpu);
1290
1291 for_each_cpu_mask(sibling, per_cpu(cpu_core_map, cpu)) {
1292 cpu_clear(cpu, per_cpu(cpu_core_map, sibling));
1293 /*/
1294 * last thread sibling in this cpu core going down
1295 */
1296 if (cpus_weight(per_cpu(cpu_sibling_map, cpu)) == 1)
1297 cpu_data(sibling).booted_cores--;
1298 }
1299
1300 for_each_cpu_mask(sibling, per_cpu(cpu_sibling_map, cpu))
1301 cpu_clear(cpu, per_cpu(cpu_sibling_map, sibling));
1302 cpus_clear(per_cpu(cpu_sibling_map, cpu));
1303 cpus_clear(per_cpu(cpu_core_map, cpu));
1304 c->phys_proc_id = 0;
1305 c->cpu_core_id = 0;
1306 cpu_clear(cpu, cpu_sibling_setup_map);
1307 }
1308
1309 static int additional_cpus __initdata = -1;
1310
1311 static __init int setup_additional_cpus(char *s)
1312 {
1313 return s && get_option(&s, &additional_cpus) ? 0 : -EINVAL;
1314 }
1315 early_param("additional_cpus", setup_additional_cpus);
1316
1317 /*
1318 * cpu_possible_map should be static, it cannot change as cpu's
1319 * are onlined, or offlined. The reason is per-cpu data-structures
1320 * are allocated by some modules at init time, and dont expect to
1321 * do this dynamically on cpu arrival/departure.
1322 * cpu_present_map on the other hand can change dynamically.
1323 * In case when cpu_hotplug is not compiled, then we resort to current
1324 * behaviour, which is cpu_possible == cpu_present.
1325 * - Ashok Raj
1326 *
1327 * Three ways to find out the number of additional hotplug CPUs:
1328 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1329 * - The user can overwrite it with additional_cpus=NUM
1330 * - Otherwise don't reserve additional CPUs.
1331 * We do this because additional CPUs waste a lot of memory.
1332 * -AK
1333 */
1334 __init void prefill_possible_map(void)
1335 {
1336 int i;
1337 int possible;
1338
1339 if (additional_cpus == -1) {
1340 if (disabled_cpus > 0)
1341 additional_cpus = disabled_cpus;
1342 else
1343 additional_cpus = 0;
1344 }
1345 possible = num_processors + additional_cpus;
1346 if (possible > NR_CPUS)
1347 possible = NR_CPUS;
1348
1349 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
1350 possible, max_t(int, possible - num_processors, 0));
1351
1352 for (i = 0; i < possible; i++)
1353 cpu_set(i, cpu_possible_map);
1354 }
1355
1356 static void __ref remove_cpu_from_maps(int cpu)
1357 {
1358 cpu_clear(cpu, cpu_online_map);
1359 #ifdef CONFIG_X86_64
1360 cpu_clear(cpu, cpu_callout_map);
1361 cpu_clear(cpu, cpu_callin_map);
1362 /* was set by cpu_init() */
1363 clear_bit(cpu, (unsigned long *)&cpu_initialized);
1364 clear_node_cpumask(cpu);
1365 #endif
1366 }
1367
1368 int __cpu_disable(void)
1369 {
1370 int cpu = smp_processor_id();
1371
1372 /*
1373 * Perhaps use cpufreq to drop frequency, but that could go
1374 * into generic code.
1375 *
1376 * We won't take down the boot processor on i386 due to some
1377 * interrupts only being able to be serviced by the BSP.
1378 * Especially so if we're not using an IOAPIC -zwane
1379 */
1380 if (cpu == 0)
1381 return -EBUSY;
1382
1383 if (nmi_watchdog == NMI_LOCAL_APIC)
1384 stop_apic_nmi_watchdog(NULL);
1385 clear_local_APIC();
1386
1387 /*
1388 * HACK:
1389 * Allow any queued timer interrupts to get serviced
1390 * This is only a temporary solution until we cleanup
1391 * fixup_irqs as we do for IA64.
1392 */
1393 local_irq_enable();
1394 mdelay(1);
1395
1396 local_irq_disable();
1397 remove_siblinginfo(cpu);
1398
1399 /* It's now safe to remove this processor from the online map */
1400 remove_cpu_from_maps(cpu);
1401 fixup_irqs(cpu_online_map);
1402 return 0;
1403 }
1404
1405 void __cpu_die(unsigned int cpu)
1406 {
1407 /* We don't do anything here: idle task is faking death itself. */
1408 unsigned int i;
1409
1410 for (i = 0; i < 10; i++) {
1411 /* They ack this in play_dead by setting CPU_DEAD */
1412 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1413 printk(KERN_INFO "CPU %d is now offline\n", cpu);
1414 if (1 == num_online_cpus())
1415 alternatives_smp_switch(0);
1416 return;
1417 }
1418 msleep(100);
1419 }
1420 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1421 }
1422 #else /* ... !CONFIG_HOTPLUG_CPU */
1423 int __cpu_disable(void)
1424 {
1425 return -ENOSYS;
1426 }
1427
1428 void __cpu_die(unsigned int cpu)
1429 {
1430 /* We said "no" in __cpu_disable */
1431 BUG();
1432 }
1433 #endif
1434
1435 /*
1436 * If the BIOS enumerates physical processors before logical,
1437 * maxcpus=N at enumeration-time can be used to disable HT.
1438 */
1439 static int __init parse_maxcpus(char *arg)
1440 {
1441 extern unsigned int maxcpus;
1442
1443 maxcpus = simple_strtoul(arg, NULL, 0);
1444 return 0;
1445 }
1446 early_param("maxcpus", parse_maxcpus);
This page took 0.063446 seconds and 6 git commands to generate.