x86: merge smp_prepare_boot_cpu
[deliverable/linux.git] / arch / x86 / kernel / smpboot.c
1 #include <linux/init.h>
2 #include <linux/smp.h>
3 #include <linux/module.h>
4 #include <linux/sched.h>
5 #include <linux/percpu.h>
6 #include <linux/bootmem.h>
7 #include <linux/err.h>
8 #include <linux/nmi.h>
9
10 #include <asm/desc.h>
11 #include <asm/nmi.h>
12 #include <asm/irq.h>
13 #include <asm/smp.h>
14 #include <asm/cpu.h>
15 #include <asm/numa.h>
16 #include <asm/pgtable.h>
17 #include <asm/tlbflush.h>
18 #include <asm/mtrr.h>
19 #include <asm/nmi.h>
20 #include <asm/vmi.h>
21 #include <linux/mc146818rtc.h>
22
23 #include <mach_apic.h>
24 #include <mach_wakecpu.h>
25 #include <smpboot_hooks.h>
26
27 /* State of each CPU */
28 DEFINE_PER_CPU(int, cpu_state) = { 0 };
29
30 /* Store all idle threads, this can be reused instead of creating
31 * a new thread. Also avoids complicated thread destroy functionality
32 * for idle threads.
33 */
34 #ifdef CONFIG_HOTPLUG_CPU
35 /*
36 * Needed only for CONFIG_HOTPLUG_CPU because __cpuinitdata is
37 * removed after init for !CONFIG_HOTPLUG_CPU.
38 */
39 static DEFINE_PER_CPU(struct task_struct *, idle_thread_array);
40 #define get_idle_for_cpu(x) (per_cpu(idle_thread_array, x))
41 #define set_idle_for_cpu(x, p) (per_cpu(idle_thread_array, x) = (p))
42 #else
43 struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
44 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
45 #define set_idle_for_cpu(x, p) (idle_thread_array[(x)] = (p))
46 #endif
47
48 /* Number of siblings per CPU package */
49 int smp_num_siblings = 1;
50 EXPORT_SYMBOL(smp_num_siblings);
51
52 /* Last level cache ID of each logical CPU */
53 DEFINE_PER_CPU(u16, cpu_llc_id) = BAD_APICID;
54
55 /* bitmap of online cpus */
56 cpumask_t cpu_online_map __read_mostly;
57 EXPORT_SYMBOL(cpu_online_map);
58
59 cpumask_t cpu_callin_map;
60 cpumask_t cpu_callout_map;
61 cpumask_t cpu_possible_map;
62 EXPORT_SYMBOL(cpu_possible_map);
63
64 /* representing HT siblings of each logical CPU */
65 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map);
66 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
67
68 /* representing HT and core siblings of each logical CPU */
69 DEFINE_PER_CPU(cpumask_t, cpu_core_map);
70 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
71
72 /* Per CPU bogomips and other parameters */
73 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
74 EXPORT_PER_CPU_SYMBOL(cpu_info);
75
76 static atomic_t init_deasserted;
77
78 /* ready for x86_64, no harm for x86, since it will overwrite after alloc */
79 unsigned char *trampoline_base = __va(SMP_TRAMPOLINE_BASE);
80
81 /* representing cpus for which sibling maps can be computed */
82 static cpumask_t cpu_sibling_setup_map;
83
84 /* Set if we find a B stepping CPU */
85 int __cpuinitdata smp_b_stepping;
86
87 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_32)
88
89 /* which logical CPUs are on which nodes */
90 cpumask_t node_to_cpumask_map[MAX_NUMNODES] __read_mostly =
91 { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE };
92 EXPORT_SYMBOL(node_to_cpumask_map);
93 /* which node each logical CPU is on */
94 int cpu_to_node_map[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 };
95 EXPORT_SYMBOL(cpu_to_node_map);
96
97 /* set up a mapping between cpu and node. */
98 static void map_cpu_to_node(int cpu, int node)
99 {
100 printk(KERN_INFO "Mapping cpu %d to node %d\n", cpu, node);
101 cpu_set(cpu, node_to_cpumask_map[node]);
102 cpu_to_node_map[cpu] = node;
103 }
104
105 /* undo a mapping between cpu and node. */
106 static void unmap_cpu_to_node(int cpu)
107 {
108 int node;
109
110 printk(KERN_INFO "Unmapping cpu %d from all nodes\n", cpu);
111 for (node = 0; node < MAX_NUMNODES; node++)
112 cpu_clear(cpu, node_to_cpumask_map[node]);
113 cpu_to_node_map[cpu] = 0;
114 }
115 #else /* !(CONFIG_NUMA && CONFIG_X86_32) */
116 #define map_cpu_to_node(cpu, node) ({})
117 #define unmap_cpu_to_node(cpu) ({})
118 #endif
119
120 #ifdef CONFIG_X86_32
121 u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly =
122 { [0 ... NR_CPUS-1] = BAD_APICID };
123
124 void map_cpu_to_logical_apicid(void)
125 {
126 int cpu = smp_processor_id();
127 int apicid = logical_smp_processor_id();
128 int node = apicid_to_node(apicid);
129
130 if (!node_online(node))
131 node = first_online_node;
132
133 cpu_2_logical_apicid[cpu] = apicid;
134 map_cpu_to_node(cpu, node);
135 }
136
137 void unmap_cpu_to_logical_apicid(int cpu)
138 {
139 cpu_2_logical_apicid[cpu] = BAD_APICID;
140 unmap_cpu_to_node(cpu);
141 }
142 #else
143 #define unmap_cpu_to_logical_apicid(cpu) do {} while (0)
144 #define map_cpu_to_logical_apicid() do {} while (0)
145 #endif
146
147 /*
148 * Report back to the Boot Processor.
149 * Running on AP.
150 */
151 void __cpuinit smp_callin(void)
152 {
153 int cpuid, phys_id;
154 unsigned long timeout;
155
156 /*
157 * If waken up by an INIT in an 82489DX configuration
158 * we may get here before an INIT-deassert IPI reaches
159 * our local APIC. We have to wait for the IPI or we'll
160 * lock up on an APIC access.
161 */
162 wait_for_init_deassert(&init_deasserted);
163
164 /*
165 * (This works even if the APIC is not enabled.)
166 */
167 phys_id = GET_APIC_ID(apic_read(APIC_ID));
168 cpuid = smp_processor_id();
169 if (cpu_isset(cpuid, cpu_callin_map)) {
170 panic("%s: phys CPU#%d, CPU#%d already present??\n", __func__,
171 phys_id, cpuid);
172 }
173 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
174
175 /*
176 * STARTUP IPIs are fragile beasts as they might sometimes
177 * trigger some glue motherboard logic. Complete APIC bus
178 * silence for 1 second, this overestimates the time the
179 * boot CPU is spending to send the up to 2 STARTUP IPIs
180 * by a factor of two. This should be enough.
181 */
182
183 /*
184 * Waiting 2s total for startup (udelay is not yet working)
185 */
186 timeout = jiffies + 2*HZ;
187 while (time_before(jiffies, timeout)) {
188 /*
189 * Has the boot CPU finished it's STARTUP sequence?
190 */
191 if (cpu_isset(cpuid, cpu_callout_map))
192 break;
193 cpu_relax();
194 }
195
196 if (!time_before(jiffies, timeout)) {
197 panic("%s: CPU%d started up but did not get a callout!\n",
198 __func__, cpuid);
199 }
200
201 /*
202 * the boot CPU has finished the init stage and is spinning
203 * on callin_map until we finish. We are free to set up this
204 * CPU, first the APIC. (this is probably redundant on most
205 * boards)
206 */
207
208 Dprintk("CALLIN, before setup_local_APIC().\n");
209 smp_callin_clear_local_apic();
210 setup_local_APIC();
211 end_local_APIC_setup();
212 map_cpu_to_logical_apicid();
213
214 /*
215 * Get our bogomips.
216 *
217 * Need to enable IRQs because it can take longer and then
218 * the NMI watchdog might kill us.
219 */
220 local_irq_enable();
221 calibrate_delay();
222 local_irq_disable();
223 Dprintk("Stack at about %p\n", &cpuid);
224
225 /*
226 * Save our processor parameters
227 */
228 smp_store_cpu_info(cpuid);
229
230 /*
231 * Allow the master to continue.
232 */
233 cpu_set(cpuid, cpu_callin_map);
234 }
235
236 /*
237 * Activate a secondary processor.
238 */
239 void __cpuinit start_secondary(void *unused)
240 {
241 /*
242 * Don't put *anything* before cpu_init(), SMP booting is too
243 * fragile that we want to limit the things done here to the
244 * most necessary things.
245 */
246 #ifdef CONFIG_VMI
247 vmi_bringup();
248 #endif
249 cpu_init();
250 preempt_disable();
251 smp_callin();
252
253 /* otherwise gcc will move up smp_processor_id before the cpu_init */
254 barrier();
255 /*
256 * Check TSC synchronization with the BP:
257 */
258 check_tsc_sync_target();
259
260 if (nmi_watchdog == NMI_IO_APIC) {
261 disable_8259A_irq(0);
262 enable_NMI_through_LVT0();
263 enable_8259A_irq(0);
264 }
265
266 /* This must be done before setting cpu_online_map */
267 set_cpu_sibling_map(raw_smp_processor_id());
268 wmb();
269
270 /*
271 * We need to hold call_lock, so there is no inconsistency
272 * between the time smp_call_function() determines number of
273 * IPI recipients, and the time when the determination is made
274 * for which cpus receive the IPI. Holding this
275 * lock helps us to not include this cpu in a currently in progress
276 * smp_call_function().
277 */
278 lock_ipi_call_lock();
279 #ifdef CONFIG_X86_64
280 spin_lock(&vector_lock);
281
282 /* Setup the per cpu irq handling data structures */
283 __setup_vector_irq(smp_processor_id());
284 /*
285 * Allow the master to continue.
286 */
287 spin_unlock(&vector_lock);
288 #endif
289 cpu_set(smp_processor_id(), cpu_online_map);
290 unlock_ipi_call_lock();
291 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
292
293 setup_secondary_clock();
294
295 wmb();
296 cpu_idle();
297 }
298
299 #ifdef CONFIG_X86_32
300 /*
301 * Everything has been set up for the secondary
302 * CPUs - they just need to reload everything
303 * from the task structure
304 * This function must not return.
305 */
306 void __devinit initialize_secondary(void)
307 {
308 /*
309 * We don't actually need to load the full TSS,
310 * basically just the stack pointer and the ip.
311 */
312
313 asm volatile(
314 "movl %0,%%esp\n\t"
315 "jmp *%1"
316 :
317 :"m" (current->thread.sp), "m" (current->thread.ip));
318 }
319 #endif
320
321 static void __cpuinit smp_apply_quirks(struct cpuinfo_x86 *c)
322 {
323 #ifdef CONFIG_X86_32
324 /*
325 * Mask B, Pentium, but not Pentium MMX
326 */
327 if (c->x86_vendor == X86_VENDOR_INTEL &&
328 c->x86 == 5 &&
329 c->x86_mask >= 1 && c->x86_mask <= 4 &&
330 c->x86_model <= 3)
331 /*
332 * Remember we have B step Pentia with bugs
333 */
334 smp_b_stepping = 1;
335
336 /*
337 * Certain Athlons might work (for various values of 'work') in SMP
338 * but they are not certified as MP capable.
339 */
340 if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
341
342 if (num_possible_cpus() == 1)
343 goto valid_k7;
344
345 /* Athlon 660/661 is valid. */
346 if ((c->x86_model == 6) && ((c->x86_mask == 0) ||
347 (c->x86_mask == 1)))
348 goto valid_k7;
349
350 /* Duron 670 is valid */
351 if ((c->x86_model == 7) && (c->x86_mask == 0))
352 goto valid_k7;
353
354 /*
355 * Athlon 662, Duron 671, and Athlon >model 7 have capability
356 * bit. It's worth noting that the A5 stepping (662) of some
357 * Athlon XP's have the MP bit set.
358 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
359 * more.
360 */
361 if (((c->x86_model == 6) && (c->x86_mask >= 2)) ||
362 ((c->x86_model == 7) && (c->x86_mask >= 1)) ||
363 (c->x86_model > 7))
364 if (cpu_has_mp)
365 goto valid_k7;
366
367 /* If we get here, not a certified SMP capable AMD system. */
368 add_taint(TAINT_UNSAFE_SMP);
369 }
370
371 valid_k7:
372 ;
373 #endif
374 }
375
376 void smp_checks(void)
377 {
378 if (smp_b_stepping)
379 printk(KERN_WARNING "WARNING: SMP operation may be unreliable"
380 "with B stepping processors.\n");
381
382 /*
383 * Don't taint if we are running SMP kernel on a single non-MP
384 * approved Athlon
385 */
386 if (tainted & TAINT_UNSAFE_SMP) {
387 if (num_online_cpus())
388 printk(KERN_INFO "WARNING: This combination of AMD"
389 "processors is not suitable for SMP.\n");
390 else
391 tainted &= ~TAINT_UNSAFE_SMP;
392 }
393 }
394
395 /*
396 * The bootstrap kernel entry code has set these up. Save them for
397 * a given CPU
398 */
399
400 void __cpuinit smp_store_cpu_info(int id)
401 {
402 struct cpuinfo_x86 *c = &cpu_data(id);
403
404 *c = boot_cpu_data;
405 c->cpu_index = id;
406 if (id != 0)
407 identify_secondary_cpu(c);
408 smp_apply_quirks(c);
409 }
410
411
412 void __cpuinit set_cpu_sibling_map(int cpu)
413 {
414 int i;
415 struct cpuinfo_x86 *c = &cpu_data(cpu);
416
417 cpu_set(cpu, cpu_sibling_setup_map);
418
419 if (smp_num_siblings > 1) {
420 for_each_cpu_mask(i, cpu_sibling_setup_map) {
421 if (c->phys_proc_id == cpu_data(i).phys_proc_id &&
422 c->cpu_core_id == cpu_data(i).cpu_core_id) {
423 cpu_set(i, per_cpu(cpu_sibling_map, cpu));
424 cpu_set(cpu, per_cpu(cpu_sibling_map, i));
425 cpu_set(i, per_cpu(cpu_core_map, cpu));
426 cpu_set(cpu, per_cpu(cpu_core_map, i));
427 cpu_set(i, c->llc_shared_map);
428 cpu_set(cpu, cpu_data(i).llc_shared_map);
429 }
430 }
431 } else {
432 cpu_set(cpu, per_cpu(cpu_sibling_map, cpu));
433 }
434
435 cpu_set(cpu, c->llc_shared_map);
436
437 if (current_cpu_data.x86_max_cores == 1) {
438 per_cpu(cpu_core_map, cpu) = per_cpu(cpu_sibling_map, cpu);
439 c->booted_cores = 1;
440 return;
441 }
442
443 for_each_cpu_mask(i, cpu_sibling_setup_map) {
444 if (per_cpu(cpu_llc_id, cpu) != BAD_APICID &&
445 per_cpu(cpu_llc_id, cpu) == per_cpu(cpu_llc_id, i)) {
446 cpu_set(i, c->llc_shared_map);
447 cpu_set(cpu, cpu_data(i).llc_shared_map);
448 }
449 if (c->phys_proc_id == cpu_data(i).phys_proc_id) {
450 cpu_set(i, per_cpu(cpu_core_map, cpu));
451 cpu_set(cpu, per_cpu(cpu_core_map, i));
452 /*
453 * Does this new cpu bringup a new core?
454 */
455 if (cpus_weight(per_cpu(cpu_sibling_map, cpu)) == 1) {
456 /*
457 * for each core in package, increment
458 * the booted_cores for this new cpu
459 */
460 if (first_cpu(per_cpu(cpu_sibling_map, i)) == i)
461 c->booted_cores++;
462 /*
463 * increment the core count for all
464 * the other cpus in this package
465 */
466 if (i != cpu)
467 cpu_data(i).booted_cores++;
468 } else if (i != cpu && !c->booted_cores)
469 c->booted_cores = cpu_data(i).booted_cores;
470 }
471 }
472 }
473
474 /* maps the cpu to the sched domain representing multi-core */
475 cpumask_t cpu_coregroup_map(int cpu)
476 {
477 struct cpuinfo_x86 *c = &cpu_data(cpu);
478 /*
479 * For perf, we return last level cache shared map.
480 * And for power savings, we return cpu_core_map
481 */
482 if (sched_mc_power_savings || sched_smt_power_savings)
483 return per_cpu(cpu_core_map, cpu);
484 else
485 return c->llc_shared_map;
486 }
487
488 /*
489 * Currently trivial. Write the real->protected mode
490 * bootstrap into the page concerned. The caller
491 * has made sure it's suitably aligned.
492 */
493
494 unsigned long __cpuinit setup_trampoline(void)
495 {
496 memcpy(trampoline_base, trampoline_data,
497 trampoline_end - trampoline_data);
498 return virt_to_phys(trampoline_base);
499 }
500
501 #ifdef CONFIG_X86_32
502 /*
503 * We are called very early to get the low memory for the
504 * SMP bootup trampoline page.
505 */
506 void __init smp_alloc_memory(void)
507 {
508 trampoline_base = alloc_bootmem_low_pages(PAGE_SIZE);
509 /*
510 * Has to be in very low memory so we can execute
511 * real-mode AP code.
512 */
513 if (__pa(trampoline_base) >= 0x9F000)
514 BUG();
515 }
516 #endif
517
518 void impress_friends(void)
519 {
520 int cpu;
521 unsigned long bogosum = 0;
522 /*
523 * Allow the user to impress friends.
524 */
525 Dprintk("Before bogomips.\n");
526 for_each_possible_cpu(cpu)
527 if (cpu_isset(cpu, cpu_callout_map))
528 bogosum += cpu_data(cpu).loops_per_jiffy;
529 printk(KERN_INFO
530 "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
531 num_online_cpus(),
532 bogosum/(500000/HZ),
533 (bogosum/(5000/HZ))%100);
534
535 Dprintk("Before bogocount - setting activated=1.\n");
536 }
537
538 static inline void __inquire_remote_apic(int apicid)
539 {
540 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
541 char *names[] = { "ID", "VERSION", "SPIV" };
542 int timeout;
543 u32 status;
544
545 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
546
547 for (i = 0; i < ARRAY_SIZE(regs); i++) {
548 printk(KERN_INFO "... APIC #%d %s: ", apicid, names[i]);
549
550 /*
551 * Wait for idle.
552 */
553 status = safe_apic_wait_icr_idle();
554 if (status)
555 printk(KERN_CONT
556 "a previous APIC delivery may have failed\n");
557
558 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
559 apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
560
561 timeout = 0;
562 do {
563 udelay(100);
564 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
565 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
566
567 switch (status) {
568 case APIC_ICR_RR_VALID:
569 status = apic_read(APIC_RRR);
570 printk(KERN_CONT "%08x\n", status);
571 break;
572 default:
573 printk(KERN_CONT "failed\n");
574 }
575 }
576 }
577
578 #ifdef WAKE_SECONDARY_VIA_NMI
579 /*
580 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
581 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
582 * won't ... remember to clear down the APIC, etc later.
583 */
584 static int __devinit
585 wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip)
586 {
587 unsigned long send_status, accept_status = 0;
588 int maxlvt;
589
590 /* Target chip */
591 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid));
592
593 /* Boot on the stack */
594 /* Kick the second */
595 apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL);
596
597 Dprintk("Waiting for send to finish...\n");
598 send_status = safe_apic_wait_icr_idle();
599
600 /*
601 * Give the other CPU some time to accept the IPI.
602 */
603 udelay(200);
604 /*
605 * Due to the Pentium erratum 3AP.
606 */
607 maxlvt = lapic_get_maxlvt();
608 if (maxlvt > 3) {
609 apic_read_around(APIC_SPIV);
610 apic_write(APIC_ESR, 0);
611 }
612 accept_status = (apic_read(APIC_ESR) & 0xEF);
613 Dprintk("NMI sent.\n");
614
615 if (send_status)
616 printk(KERN_ERR "APIC never delivered???\n");
617 if (accept_status)
618 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
619
620 return (send_status | accept_status);
621 }
622 #endif /* WAKE_SECONDARY_VIA_NMI */
623
624 #ifdef WAKE_SECONDARY_VIA_INIT
625 static int __devinit
626 wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip)
627 {
628 unsigned long send_status, accept_status = 0;
629 int maxlvt, num_starts, j;
630
631 /*
632 * Be paranoid about clearing APIC errors.
633 */
634 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
635 apic_read_around(APIC_SPIV);
636 apic_write(APIC_ESR, 0);
637 apic_read(APIC_ESR);
638 }
639
640 Dprintk("Asserting INIT.\n");
641
642 /*
643 * Turn INIT on target chip
644 */
645 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
646
647 /*
648 * Send IPI
649 */
650 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
651 | APIC_DM_INIT);
652
653 Dprintk("Waiting for send to finish...\n");
654 send_status = safe_apic_wait_icr_idle();
655
656 mdelay(10);
657
658 Dprintk("Deasserting INIT.\n");
659
660 /* Target chip */
661 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
662
663 /* Send IPI */
664 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
665
666 Dprintk("Waiting for send to finish...\n");
667 send_status = safe_apic_wait_icr_idle();
668
669 mb();
670 atomic_set(&init_deasserted, 1);
671
672 /*
673 * Should we send STARTUP IPIs ?
674 *
675 * Determine this based on the APIC version.
676 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
677 */
678 if (APIC_INTEGRATED(apic_version[phys_apicid]))
679 num_starts = 2;
680 else
681 num_starts = 0;
682
683 /*
684 * Paravirt / VMI wants a startup IPI hook here to set up the
685 * target processor state.
686 */
687 startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
688 #ifdef CONFIG_X86_64
689 (unsigned long)init_rsp);
690 #else
691 (unsigned long)stack_start.sp);
692 #endif
693
694 /*
695 * Run STARTUP IPI loop.
696 */
697 Dprintk("#startup loops: %d.\n", num_starts);
698
699 maxlvt = lapic_get_maxlvt();
700
701 for (j = 1; j <= num_starts; j++) {
702 Dprintk("Sending STARTUP #%d.\n", j);
703 apic_read_around(APIC_SPIV);
704 apic_write(APIC_ESR, 0);
705 apic_read(APIC_ESR);
706 Dprintk("After apic_write.\n");
707
708 /*
709 * STARTUP IPI
710 */
711
712 /* Target chip */
713 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
714
715 /* Boot on the stack */
716 /* Kick the second */
717 apic_write_around(APIC_ICR, APIC_DM_STARTUP
718 | (start_eip >> 12));
719
720 /*
721 * Give the other CPU some time to accept the IPI.
722 */
723 udelay(300);
724
725 Dprintk("Startup point 1.\n");
726
727 Dprintk("Waiting for send to finish...\n");
728 send_status = safe_apic_wait_icr_idle();
729
730 /*
731 * Give the other CPU some time to accept the IPI.
732 */
733 udelay(200);
734 /*
735 * Due to the Pentium erratum 3AP.
736 */
737 if (maxlvt > 3) {
738 apic_read_around(APIC_SPIV);
739 apic_write(APIC_ESR, 0);
740 }
741 accept_status = (apic_read(APIC_ESR) & 0xEF);
742 if (send_status || accept_status)
743 break;
744 }
745 Dprintk("After Startup.\n");
746
747 if (send_status)
748 printk(KERN_ERR "APIC never delivered???\n");
749 if (accept_status)
750 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
751
752 return (send_status | accept_status);
753 }
754 #endif /* WAKE_SECONDARY_VIA_INIT */
755
756 struct create_idle {
757 struct work_struct work;
758 struct task_struct *idle;
759 struct completion done;
760 int cpu;
761 };
762
763 static void __cpuinit do_fork_idle(struct work_struct *work)
764 {
765 struct create_idle *c_idle =
766 container_of(work, struct create_idle, work);
767
768 c_idle->idle = fork_idle(c_idle->cpu);
769 complete(&c_idle->done);
770 }
771
772 static int __cpuinit do_boot_cpu(int apicid, int cpu)
773 /*
774 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
775 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
776 * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu.
777 */
778 {
779 unsigned long boot_error = 0;
780 int timeout;
781 unsigned long start_ip;
782 unsigned short nmi_high = 0, nmi_low = 0;
783 struct create_idle c_idle = {
784 .cpu = cpu,
785 .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
786 };
787 INIT_WORK(&c_idle.work, do_fork_idle);
788 #ifdef CONFIG_X86_64
789 /* allocate memory for gdts of secondary cpus. Hotplug is considered */
790 if (!cpu_gdt_descr[cpu].address &&
791 !(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) {
792 printk(KERN_ERR "Failed to allocate GDT for CPU %d\n", cpu);
793 return -1;
794 }
795
796 /* Allocate node local memory for AP pdas */
797 if (cpu_pda(cpu) == &boot_cpu_pda[cpu]) {
798 struct x8664_pda *newpda, *pda;
799 int node = cpu_to_node(cpu);
800 pda = cpu_pda(cpu);
801 newpda = kmalloc_node(sizeof(struct x8664_pda), GFP_ATOMIC,
802 node);
803 if (newpda) {
804 memcpy(newpda, pda, sizeof(struct x8664_pda));
805 cpu_pda(cpu) = newpda;
806 } else
807 printk(KERN_ERR
808 "Could not allocate node local PDA for CPU %d on node %d\n",
809 cpu, node);
810 }
811 #endif
812
813 alternatives_smp_switch(1);
814
815 c_idle.idle = get_idle_for_cpu(cpu);
816
817 /*
818 * We can't use kernel_thread since we must avoid to
819 * reschedule the child.
820 */
821 if (c_idle.idle) {
822 c_idle.idle->thread.sp = (unsigned long) (((struct pt_regs *)
823 (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1);
824 init_idle(c_idle.idle, cpu);
825 goto do_rest;
826 }
827
828 if (!keventd_up() || current_is_keventd())
829 c_idle.work.func(&c_idle.work);
830 else {
831 schedule_work(&c_idle.work);
832 wait_for_completion(&c_idle.done);
833 }
834
835 if (IS_ERR(c_idle.idle)) {
836 printk("failed fork for CPU %d\n", cpu);
837 return PTR_ERR(c_idle.idle);
838 }
839
840 set_idle_for_cpu(cpu, c_idle.idle);
841 do_rest:
842 #ifdef CONFIG_X86_32
843 per_cpu(current_task, cpu) = c_idle.idle;
844 init_gdt(cpu);
845 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
846 c_idle.idle->thread.ip = (unsigned long) start_secondary;
847 /* Stack for startup_32 can be just as for start_secondary onwards */
848 stack_start.sp = (void *) c_idle.idle->thread.sp;
849 irq_ctx_init(cpu);
850 #else
851 cpu_pda(cpu)->pcurrent = c_idle.idle;
852 init_rsp = c_idle.idle->thread.sp;
853 load_sp0(&per_cpu(init_tss, cpu), &c_idle.idle->thread);
854 initial_code = (unsigned long)start_secondary;
855 clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
856 #endif
857
858 /* start_ip had better be page-aligned! */
859 start_ip = setup_trampoline();
860
861 /* So we see what's up */
862 printk(KERN_INFO "Booting processor %d/%d ip %lx\n",
863 cpu, apicid, start_ip);
864
865 /*
866 * This grunge runs the startup process for
867 * the targeted processor.
868 */
869
870 atomic_set(&init_deasserted, 0);
871
872 Dprintk("Setting warm reset code and vector.\n");
873
874 store_NMI_vector(&nmi_high, &nmi_low);
875
876 smpboot_setup_warm_reset_vector(start_ip);
877 /*
878 * Be paranoid about clearing APIC errors.
879 */
880 apic_write(APIC_ESR, 0);
881 apic_read(APIC_ESR);
882
883
884 /*
885 * Starting actual IPI sequence...
886 */
887 boot_error = wakeup_secondary_cpu(apicid, start_ip);
888
889 if (!boot_error) {
890 /*
891 * allow APs to start initializing.
892 */
893 Dprintk("Before Callout %d.\n", cpu);
894 cpu_set(cpu, cpu_callout_map);
895 Dprintk("After Callout %d.\n", cpu);
896
897 /*
898 * Wait 5s total for a response
899 */
900 for (timeout = 0; timeout < 50000; timeout++) {
901 if (cpu_isset(cpu, cpu_callin_map))
902 break; /* It has booted */
903 udelay(100);
904 }
905
906 if (cpu_isset(cpu, cpu_callin_map)) {
907 /* number CPUs logically, starting from 1 (BSP is 0) */
908 Dprintk("OK.\n");
909 printk(KERN_INFO "CPU%d: ", cpu);
910 print_cpu_info(&cpu_data(cpu));
911 Dprintk("CPU has booted.\n");
912 } else {
913 boot_error = 1;
914 if (*((volatile unsigned char *)trampoline_base)
915 == 0xA5)
916 /* trampoline started but...? */
917 printk(KERN_ERR "Stuck ??\n");
918 else
919 /* trampoline code not run */
920 printk(KERN_ERR "Not responding.\n");
921 inquire_remote_apic(apicid);
922 }
923 }
924
925 if (boot_error) {
926 /* Try to put things back the way they were before ... */
927 unmap_cpu_to_logical_apicid(cpu);
928 #ifdef CONFIG_X86_64
929 clear_node_cpumask(cpu); /* was set by numa_add_cpu */
930 #endif
931 cpu_clear(cpu, cpu_callout_map); /* was set by do_boot_cpu() */
932 cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */
933 cpu_clear(cpu, cpu_possible_map);
934 cpu_clear(cpu, cpu_present_map);
935 per_cpu(x86_cpu_to_apicid, cpu) = BAD_APICID;
936 }
937
938 /* mark "stuck" area as not stuck */
939 *((volatile unsigned long *)trampoline_base) = 0;
940
941 return boot_error;
942 }
943
944 int __cpuinit native_cpu_up(unsigned int cpu)
945 {
946 int apicid = cpu_present_to_apicid(cpu);
947 unsigned long flags;
948 int err;
949
950 WARN_ON(irqs_disabled());
951
952 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
953
954 if (apicid == BAD_APICID || apicid == boot_cpu_physical_apicid ||
955 !physid_isset(apicid, phys_cpu_present_map)) {
956 printk(KERN_ERR "%s: bad cpu %d\n", __func__, cpu);
957 return -EINVAL;
958 }
959
960 /*
961 * Already booted CPU?
962 */
963 if (cpu_isset(cpu, cpu_callin_map)) {
964 Dprintk("do_boot_cpu %d Already started\n", cpu);
965 return -ENOSYS;
966 }
967
968 /*
969 * Save current MTRR state in case it was changed since early boot
970 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
971 */
972 mtrr_save_state();
973
974 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
975
976 #ifdef CONFIG_X86_32
977 /* init low mem mapping */
978 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
979 min_t(unsigned long, KERNEL_PGD_PTRS, USER_PGD_PTRS));
980 flush_tlb_all();
981 #endif
982
983 err = do_boot_cpu(apicid, cpu);
984 if (err < 0) {
985 Dprintk("do_boot_cpu failed %d\n", err);
986 return err;
987 }
988
989 /*
990 * Check TSC synchronization with the AP (keep irqs disabled
991 * while doing so):
992 */
993 local_irq_save(flags);
994 check_tsc_sync_source(cpu);
995 local_irq_restore(flags);
996
997 while (!cpu_isset(cpu, cpu_online_map)) {
998 cpu_relax();
999 touch_nmi_watchdog();
1000 }
1001
1002 return 0;
1003 }
1004
1005 /*
1006 * Early setup to make printk work.
1007 */
1008 void __init native_smp_prepare_boot_cpu(void)
1009 {
1010 int me = smp_processor_id();
1011 #ifdef CONFIG_X86_32
1012 init_gdt(me);
1013 switch_to_new_gdt();
1014 #endif
1015 /* already set me in cpu_online_map in boot_cpu_init() */
1016 cpu_set(me, cpu_callout_map);
1017 per_cpu(cpu_state, me) = CPU_ONLINE;
1018 }
1019
1020 #ifdef CONFIG_HOTPLUG_CPU
1021 void remove_siblinginfo(int cpu)
1022 {
1023 int sibling;
1024 struct cpuinfo_x86 *c = &cpu_data(cpu);
1025
1026 for_each_cpu_mask(sibling, per_cpu(cpu_core_map, cpu)) {
1027 cpu_clear(cpu, per_cpu(cpu_core_map, sibling));
1028 /*/
1029 * last thread sibling in this cpu core going down
1030 */
1031 if (cpus_weight(per_cpu(cpu_sibling_map, cpu)) == 1)
1032 cpu_data(sibling).booted_cores--;
1033 }
1034
1035 for_each_cpu_mask(sibling, per_cpu(cpu_sibling_map, cpu))
1036 cpu_clear(cpu, per_cpu(cpu_sibling_map, sibling));
1037 cpus_clear(per_cpu(cpu_sibling_map, cpu));
1038 cpus_clear(per_cpu(cpu_core_map, cpu));
1039 c->phys_proc_id = 0;
1040 c->cpu_core_id = 0;
1041 cpu_clear(cpu, cpu_sibling_setup_map);
1042 }
1043
1044 int additional_cpus __initdata = -1;
1045
1046 static __init int setup_additional_cpus(char *s)
1047 {
1048 return s && get_option(&s, &additional_cpus) ? 0 : -EINVAL;
1049 }
1050 early_param("additional_cpus", setup_additional_cpus);
1051
1052 /*
1053 * cpu_possible_map should be static, it cannot change as cpu's
1054 * are onlined, or offlined. The reason is per-cpu data-structures
1055 * are allocated by some modules at init time, and dont expect to
1056 * do this dynamically on cpu arrival/departure.
1057 * cpu_present_map on the other hand can change dynamically.
1058 * In case when cpu_hotplug is not compiled, then we resort to current
1059 * behaviour, which is cpu_possible == cpu_present.
1060 * - Ashok Raj
1061 *
1062 * Three ways to find out the number of additional hotplug CPUs:
1063 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1064 * - The user can overwrite it with additional_cpus=NUM
1065 * - Otherwise don't reserve additional CPUs.
1066 * We do this because additional CPUs waste a lot of memory.
1067 * -AK
1068 */
1069 __init void prefill_possible_map(void)
1070 {
1071 int i;
1072 int possible;
1073
1074 if (additional_cpus == -1) {
1075 if (disabled_cpus > 0)
1076 additional_cpus = disabled_cpus;
1077 else
1078 additional_cpus = 0;
1079 }
1080 possible = num_processors + additional_cpus;
1081 if (possible > NR_CPUS)
1082 possible = NR_CPUS;
1083
1084 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
1085 possible, max_t(int, possible - num_processors, 0));
1086
1087 for (i = 0; i < possible; i++)
1088 cpu_set(i, cpu_possible_map);
1089 }
1090
1091 static void __ref remove_cpu_from_maps(int cpu)
1092 {
1093 cpu_clear(cpu, cpu_online_map);
1094 #ifdef CONFIG_X86_64
1095 cpu_clear(cpu, cpu_callout_map);
1096 cpu_clear(cpu, cpu_callin_map);
1097 /* was set by cpu_init() */
1098 clear_bit(cpu, (unsigned long *)&cpu_initialized);
1099 clear_node_cpumask(cpu);
1100 #endif
1101 }
1102
1103 int __cpu_disable(void)
1104 {
1105 int cpu = smp_processor_id();
1106
1107 /*
1108 * Perhaps use cpufreq to drop frequency, but that could go
1109 * into generic code.
1110 *
1111 * We won't take down the boot processor on i386 due to some
1112 * interrupts only being able to be serviced by the BSP.
1113 * Especially so if we're not using an IOAPIC -zwane
1114 */
1115 if (cpu == 0)
1116 return -EBUSY;
1117
1118 if (nmi_watchdog == NMI_LOCAL_APIC)
1119 stop_apic_nmi_watchdog(NULL);
1120 clear_local_APIC();
1121
1122 /*
1123 * HACK:
1124 * Allow any queued timer interrupts to get serviced
1125 * This is only a temporary solution until we cleanup
1126 * fixup_irqs as we do for IA64.
1127 */
1128 local_irq_enable();
1129 mdelay(1);
1130
1131 local_irq_disable();
1132 remove_siblinginfo(cpu);
1133
1134 /* It's now safe to remove this processor from the online map */
1135 remove_cpu_from_maps(cpu);
1136 fixup_irqs(cpu_online_map);
1137 return 0;
1138 }
1139
1140 void __cpu_die(unsigned int cpu)
1141 {
1142 /* We don't do anything here: idle task is faking death itself. */
1143 unsigned int i;
1144
1145 for (i = 0; i < 10; i++) {
1146 /* They ack this in play_dead by setting CPU_DEAD */
1147 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1148 printk(KERN_INFO "CPU %d is now offline\n", cpu);
1149 if (1 == num_online_cpus())
1150 alternatives_smp_switch(0);
1151 return;
1152 }
1153 msleep(100);
1154 }
1155 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1156 }
1157 #else /* ... !CONFIG_HOTPLUG_CPU */
1158 int __cpu_disable(void)
1159 {
1160 return -ENOSYS;
1161 }
1162
1163 void __cpu_die(unsigned int cpu)
1164 {
1165 /* We said "no" in __cpu_disable */
1166 BUG();
1167 }
1168 #endif
1169
1170 /*
1171 * If the BIOS enumerates physical processors before logical,
1172 * maxcpus=N at enumeration-time can be used to disable HT.
1173 */
1174 static int __init parse_maxcpus(char *arg)
1175 {
1176 extern unsigned int maxcpus;
1177
1178 maxcpus = simple_strtoul(arg, NULL, 0);
1179 return 0;
1180 }
1181 early_param("maxcpus", parse_maxcpus);
This page took 0.072525 seconds and 6 git commands to generate.