Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes...
[deliverable/linux.git] / arch / x86 / kernel / traps_32.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8 /*
9 * 'Traps.c' handles hardware traps and faults after we have saved some
10 * state in 'asm.s'.
11 */
12 #include <linux/interrupt.h>
13 #include <linux/kallsyms.h>
14 #include <linux/spinlock.h>
15 #include <linux/highmem.h>
16 #include <linux/kprobes.h>
17 #include <linux/uaccess.h>
18 #include <linux/utsname.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/ptrace.h>
23 #include <linux/string.h>
24 #include <linux/unwind.h>
25 #include <linux/delay.h>
26 #include <linux/errno.h>
27 #include <linux/kexec.h>
28 #include <linux/sched.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/bug.h>
32 #include <linux/nmi.h>
33 #include <linux/mm.h>
34
35 #ifdef CONFIG_EISA
36 #include <linux/ioport.h>
37 #include <linux/eisa.h>
38 #endif
39
40 #ifdef CONFIG_MCA
41 #include <linux/mca.h>
42 #endif
43
44 #if defined(CONFIG_EDAC)
45 #include <linux/edac.h>
46 #endif
47
48 #include <asm/arch_hooks.h>
49 #include <asm/stacktrace.h>
50 #include <asm/processor.h>
51 #include <asm/debugreg.h>
52 #include <asm/atomic.h>
53 #include <asm/system.h>
54 #include <asm/unwind.h>
55 #include <asm/desc.h>
56 #include <asm/i387.h>
57 #include <asm/nmi.h>
58 #include <asm/smp.h>
59 #include <asm/io.h>
60
61 #include "mach_traps.h"
62
63 int panic_on_unrecovered_nmi;
64
65 DECLARE_BITMAP(used_vectors, NR_VECTORS);
66 EXPORT_SYMBOL_GPL(used_vectors);
67
68 asmlinkage int system_call(void);
69
70 /* Do we ignore FPU interrupts ? */
71 char ignore_fpu_irq;
72
73 /*
74 * The IDT has to be page-aligned to simplify the Pentium
75 * F0 0F bug workaround.. We have a special link segment
76 * for this.
77 */
78 gate_desc idt_table[256]
79 __attribute__((__section__(".data.idt"))) = { { { { 0, 0 } } }, };
80
81 asmlinkage void divide_error(void);
82 asmlinkage void debug(void);
83 asmlinkage void nmi(void);
84 asmlinkage void int3(void);
85 asmlinkage void overflow(void);
86 asmlinkage void bounds(void);
87 asmlinkage void invalid_op(void);
88 asmlinkage void device_not_available(void);
89 asmlinkage void coprocessor_segment_overrun(void);
90 asmlinkage void invalid_TSS(void);
91 asmlinkage void segment_not_present(void);
92 asmlinkage void stack_segment(void);
93 asmlinkage void general_protection(void);
94 asmlinkage void page_fault(void);
95 asmlinkage void coprocessor_error(void);
96 asmlinkage void simd_coprocessor_error(void);
97 asmlinkage void alignment_check(void);
98 asmlinkage void spurious_interrupt_bug(void);
99 asmlinkage void machine_check(void);
100
101 int kstack_depth_to_print = 24;
102 static unsigned int code_bytes = 64;
103
104 void printk_address(unsigned long address, int reliable)
105 {
106 #ifdef CONFIG_KALLSYMS
107 char namebuf[KSYM_NAME_LEN];
108 unsigned long offset = 0;
109 unsigned long symsize;
110 const char *symname;
111 char reliab[4] = "";
112 char *delim = ":";
113 char *modname;
114
115 symname = kallsyms_lookup(address, &symsize, &offset,
116 &modname, namebuf);
117 if (!symname) {
118 printk(" [<%08lx>]\n", address);
119 return;
120 }
121 if (!reliable)
122 strcpy(reliab, "? ");
123
124 if (!modname)
125 modname = delim = "";
126 printk(" [<%08lx>] %s%s%s%s%s+0x%lx/0x%lx\n",
127 address, reliab, delim, modname, delim, symname, offset, symsize);
128 #else
129 printk(" [<%08lx>]\n", address);
130 #endif
131 }
132
133 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p, unsigned size)
134 {
135 return p > (void *)tinfo &&
136 p <= (void *)tinfo + THREAD_SIZE - size;
137 }
138
139 /* The form of the top of the frame on the stack */
140 struct stack_frame {
141 struct stack_frame *next_frame;
142 unsigned long return_address;
143 };
144
145 static inline unsigned long
146 print_context_stack(struct thread_info *tinfo,
147 unsigned long *stack, unsigned long bp,
148 const struct stacktrace_ops *ops, void *data)
149 {
150 struct stack_frame *frame = (struct stack_frame *)bp;
151
152 while (valid_stack_ptr(tinfo, stack, sizeof(*stack))) {
153 unsigned long addr;
154
155 addr = *stack;
156 if (__kernel_text_address(addr)) {
157 if ((unsigned long) stack == bp + 4) {
158 ops->address(data, addr, 1);
159 frame = frame->next_frame;
160 bp = (unsigned long) frame;
161 } else {
162 ops->address(data, addr, bp == 0);
163 }
164 }
165 stack++;
166 }
167 return bp;
168 }
169
170 #define MSG(msg) ops->warning(data, msg)
171
172 void dump_trace(struct task_struct *task, struct pt_regs *regs,
173 unsigned long *stack, unsigned long bp,
174 const struct stacktrace_ops *ops, void *data)
175 {
176 if (!task)
177 task = current;
178
179 if (!stack) {
180 unsigned long dummy;
181
182 stack = &dummy;
183 if (task != current)
184 stack = (unsigned long *)task->thread.sp;
185 }
186
187 #ifdef CONFIG_FRAME_POINTER
188 if (!bp) {
189 if (task == current) {
190 /* Grab bp right from our regs */
191 asm("movl %%ebp, %0" : "=r" (bp) :);
192 } else {
193 /* bp is the last reg pushed by switch_to */
194 bp = *(unsigned long *) task->thread.sp;
195 }
196 }
197 #endif
198
199 while (1) {
200 struct thread_info *context;
201
202 context = (struct thread_info *)
203 ((unsigned long)stack & (~(THREAD_SIZE - 1)));
204 bp = print_context_stack(context, stack, bp, ops, data);
205 /*
206 * Should be after the line below, but somewhere
207 * in early boot context comes out corrupted and we
208 * can't reference it:
209 */
210 if (ops->stack(data, "IRQ") < 0)
211 break;
212 stack = (unsigned long *)context->previous_esp;
213 if (!stack)
214 break;
215 touch_nmi_watchdog();
216 }
217 }
218 EXPORT_SYMBOL(dump_trace);
219
220 static void
221 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
222 {
223 printk(data);
224 print_symbol(msg, symbol);
225 printk("\n");
226 }
227
228 static void print_trace_warning(void *data, char *msg)
229 {
230 printk("%s%s\n", (char *)data, msg);
231 }
232
233 static int print_trace_stack(void *data, char *name)
234 {
235 return 0;
236 }
237
238 /*
239 * Print one address/symbol entries per line.
240 */
241 static void print_trace_address(void *data, unsigned long addr, int reliable)
242 {
243 printk("%s [<%08lx>] ", (char *)data, addr);
244 if (!reliable)
245 printk("? ");
246 print_symbol("%s\n", addr);
247 touch_nmi_watchdog();
248 }
249
250 static const struct stacktrace_ops print_trace_ops = {
251 .warning = print_trace_warning,
252 .warning_symbol = print_trace_warning_symbol,
253 .stack = print_trace_stack,
254 .address = print_trace_address,
255 };
256
257 static void
258 show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
259 unsigned long *stack, unsigned long bp, char *log_lvl)
260 {
261 dump_trace(task, regs, stack, bp, &print_trace_ops, log_lvl);
262 printk("%s =======================\n", log_lvl);
263 }
264
265 void show_trace(struct task_struct *task, struct pt_regs *regs,
266 unsigned long *stack, unsigned long bp)
267 {
268 show_trace_log_lvl(task, regs, stack, bp, "");
269 }
270
271 static void
272 show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
273 unsigned long *sp, unsigned long bp, char *log_lvl)
274 {
275 unsigned long *stack;
276 int i;
277
278 if (sp == NULL) {
279 if (task)
280 sp = (unsigned long *)task->thread.sp;
281 else
282 sp = (unsigned long *)&sp;
283 }
284
285 stack = sp;
286 for (i = 0; i < kstack_depth_to_print; i++) {
287 if (kstack_end(stack))
288 break;
289 if (i && ((i % 8) == 0))
290 printk("\n%s ", log_lvl);
291 printk("%08lx ", *stack++);
292 }
293 printk("\n%sCall Trace:\n", log_lvl);
294
295 show_trace_log_lvl(task, regs, sp, bp, log_lvl);
296 }
297
298 void show_stack(struct task_struct *task, unsigned long *sp)
299 {
300 printk(" ");
301 show_stack_log_lvl(task, NULL, sp, 0, "");
302 }
303
304 /*
305 * The architecture-independent dump_stack generator
306 */
307 void dump_stack(void)
308 {
309 unsigned long bp = 0;
310 unsigned long stack;
311
312 #ifdef CONFIG_FRAME_POINTER
313 if (!bp)
314 asm("movl %%ebp, %0" : "=r" (bp):);
315 #endif
316
317 printk("Pid: %d, comm: %.20s %s %s %.*s\n",
318 current->pid, current->comm, print_tainted(),
319 init_utsname()->release,
320 (int)strcspn(init_utsname()->version, " "),
321 init_utsname()->version);
322
323 show_trace(current, NULL, &stack, bp);
324 }
325
326 EXPORT_SYMBOL(dump_stack);
327
328 void show_registers(struct pt_regs *regs)
329 {
330 int i;
331
332 print_modules();
333 __show_registers(regs, 0);
334
335 printk(KERN_EMERG "Process %.*s (pid: %d, ti=%p task=%p task.ti=%p)",
336 TASK_COMM_LEN, current->comm, task_pid_nr(current),
337 current_thread_info(), current, task_thread_info(current));
338 /*
339 * When in-kernel, we also print out the stack and code at the
340 * time of the fault..
341 */
342 if (!user_mode_vm(regs)) {
343 unsigned int code_prologue = code_bytes * 43 / 64;
344 unsigned int code_len = code_bytes;
345 unsigned char c;
346 u8 *ip;
347
348 printk("\n" KERN_EMERG "Stack: ");
349 show_stack_log_lvl(NULL, regs, &regs->sp, 0, KERN_EMERG);
350
351 printk(KERN_EMERG "Code: ");
352
353 ip = (u8 *)regs->ip - code_prologue;
354 if (ip < (u8 *)PAGE_OFFSET ||
355 probe_kernel_address(ip, c)) {
356 /* try starting at EIP */
357 ip = (u8 *)regs->ip;
358 code_len = code_len - code_prologue + 1;
359 }
360 for (i = 0; i < code_len; i++, ip++) {
361 if (ip < (u8 *)PAGE_OFFSET ||
362 probe_kernel_address(ip, c)) {
363 printk(" Bad EIP value.");
364 break;
365 }
366 if (ip == (u8 *)regs->ip)
367 printk("<%02x> ", c);
368 else
369 printk("%02x ", c);
370 }
371 }
372 printk("\n");
373 }
374
375 int is_valid_bugaddr(unsigned long ip)
376 {
377 unsigned short ud2;
378
379 if (ip < PAGE_OFFSET)
380 return 0;
381 if (probe_kernel_address((unsigned short *)ip, ud2))
382 return 0;
383
384 return ud2 == 0x0b0f;
385 }
386
387 static int die_counter;
388
389 int __kprobes __die(const char *str, struct pt_regs *regs, long err)
390 {
391 unsigned short ss;
392 unsigned long sp;
393
394 printk(KERN_EMERG "%s: %04lx [#%d] ", str, err & 0xffff, ++die_counter);
395 #ifdef CONFIG_PREEMPT
396 printk("PREEMPT ");
397 #endif
398 #ifdef CONFIG_SMP
399 printk("SMP ");
400 #endif
401 #ifdef CONFIG_DEBUG_PAGEALLOC
402 printk("DEBUG_PAGEALLOC");
403 #endif
404 printk("\n");
405
406 if (notify_die(DIE_OOPS, str, regs, err,
407 current->thread.trap_no, SIGSEGV) != NOTIFY_STOP) {
408
409 show_registers(regs);
410 /* Executive summary in case the oops scrolled away */
411 sp = (unsigned long) (&regs->sp);
412 savesegment(ss, ss);
413 if (user_mode(regs)) {
414 sp = regs->sp;
415 ss = regs->ss & 0xffff;
416 }
417 printk(KERN_EMERG "EIP: [<%08lx>] ", regs->ip);
418 print_symbol("%s", regs->ip);
419 printk(" SS:ESP %04x:%08lx\n", ss, sp);
420
421 return 0;
422 }
423
424 return 1;
425 }
426
427 /*
428 * This is gone through when something in the kernel has done something bad
429 * and is about to be terminated:
430 */
431 void die(const char *str, struct pt_regs *regs, long err)
432 {
433 static struct {
434 raw_spinlock_t lock;
435 u32 lock_owner;
436 int lock_owner_depth;
437 } die = {
438 .lock = __RAW_SPIN_LOCK_UNLOCKED,
439 .lock_owner = -1,
440 .lock_owner_depth = 0
441 };
442 unsigned long flags;
443
444 oops_enter();
445
446 if (die.lock_owner != raw_smp_processor_id()) {
447 console_verbose();
448 raw_local_irq_save(flags);
449 __raw_spin_lock(&die.lock);
450 die.lock_owner = smp_processor_id();
451 die.lock_owner_depth = 0;
452 bust_spinlocks(1);
453 } else {
454 raw_local_irq_save(flags);
455 }
456
457 if (++die.lock_owner_depth < 3) {
458 report_bug(regs->ip, regs);
459
460 if (__die(str, regs, err))
461 regs = NULL;
462 } else {
463 printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
464 }
465
466 bust_spinlocks(0);
467 die.lock_owner = -1;
468 add_taint(TAINT_DIE);
469 __raw_spin_unlock(&die.lock);
470 raw_local_irq_restore(flags);
471
472 if (!regs)
473 return;
474
475 if (kexec_should_crash(current))
476 crash_kexec(regs);
477
478 if (in_interrupt())
479 panic("Fatal exception in interrupt");
480
481 if (panic_on_oops)
482 panic("Fatal exception");
483
484 oops_exit();
485 do_exit(SIGSEGV);
486 }
487
488 static inline void
489 die_if_kernel(const char *str, struct pt_regs *regs, long err)
490 {
491 if (!user_mode_vm(regs))
492 die(str, regs, err);
493 }
494
495 static void __kprobes
496 do_trap(int trapnr, int signr, char *str, int vm86, struct pt_regs *regs,
497 long error_code, siginfo_t *info)
498 {
499 struct task_struct *tsk = current;
500
501 if (regs->flags & X86_VM_MASK) {
502 if (vm86)
503 goto vm86_trap;
504 goto trap_signal;
505 }
506
507 if (!user_mode(regs))
508 goto kernel_trap;
509
510 trap_signal:
511 /*
512 * We want error_code and trap_no set for userspace faults and
513 * kernelspace faults which result in die(), but not
514 * kernelspace faults which are fixed up. die() gives the
515 * process no chance to handle the signal and notice the
516 * kernel fault information, so that won't result in polluting
517 * the information about previously queued, but not yet
518 * delivered, faults. See also do_general_protection below.
519 */
520 tsk->thread.error_code = error_code;
521 tsk->thread.trap_no = trapnr;
522
523 if (info)
524 force_sig_info(signr, info, tsk);
525 else
526 force_sig(signr, tsk);
527 return;
528
529 kernel_trap:
530 if (!fixup_exception(regs)) {
531 tsk->thread.error_code = error_code;
532 tsk->thread.trap_no = trapnr;
533 die(str, regs, error_code);
534 }
535 return;
536
537 vm86_trap:
538 if (handle_vm86_trap((struct kernel_vm86_regs *) regs,
539 error_code, trapnr))
540 goto trap_signal;
541 return;
542 }
543
544 #define DO_ERROR(trapnr, signr, str, name) \
545 void do_##name(struct pt_regs *regs, long error_code) \
546 { \
547 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
548 == NOTIFY_STOP) \
549 return; \
550 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
551 }
552
553 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr, irq) \
554 void do_##name(struct pt_regs *regs, long error_code) \
555 { \
556 siginfo_t info; \
557 if (irq) \
558 local_irq_enable(); \
559 info.si_signo = signr; \
560 info.si_errno = 0; \
561 info.si_code = sicode; \
562 info.si_addr = (void __user *)siaddr; \
563 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
564 == NOTIFY_STOP) \
565 return; \
566 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
567 }
568
569 #define DO_VM86_ERROR(trapnr, signr, str, name) \
570 void do_##name(struct pt_regs *regs, long error_code) \
571 { \
572 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
573 == NOTIFY_STOP) \
574 return; \
575 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
576 }
577
578 #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
579 void do_##name(struct pt_regs *regs, long error_code) \
580 { \
581 siginfo_t info; \
582 info.si_signo = signr; \
583 info.si_errno = 0; \
584 info.si_code = sicode; \
585 info.si_addr = (void __user *)siaddr; \
586 trace_hardirqs_fixup(); \
587 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
588 == NOTIFY_STOP) \
589 return; \
590 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
591 }
592
593 DO_VM86_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
594 #ifndef CONFIG_KPROBES
595 DO_VM86_ERROR(3, SIGTRAP, "int3", int3)
596 #endif
597 DO_VM86_ERROR(4, SIGSEGV, "overflow", overflow)
598 DO_VM86_ERROR(5, SIGSEGV, "bounds", bounds)
599 DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip, 0)
600 DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
601 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
602 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
603 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
604 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0, 0)
605 DO_ERROR_INFO(32, SIGILL, "iret exception", iret_error, ILL_BADSTK, 0, 1)
606
607 void __kprobes do_general_protection(struct pt_regs *regs, long error_code)
608 {
609 struct thread_struct *thread;
610 struct tss_struct *tss;
611 int cpu;
612
613 cpu = get_cpu();
614 tss = &per_cpu(init_tss, cpu);
615 thread = &current->thread;
616
617 /*
618 * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
619 * invalid offset set (the LAZY one) and the faulting thread has
620 * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
621 * and we set the offset field correctly. Then we let the CPU to
622 * restart the faulting instruction.
623 */
624 if (tss->x86_tss.io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
625 thread->io_bitmap_ptr) {
626 memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
627 thread->io_bitmap_max);
628 /*
629 * If the previously set map was extending to higher ports
630 * than the current one, pad extra space with 0xff (no access).
631 */
632 if (thread->io_bitmap_max < tss->io_bitmap_max) {
633 memset((char *) tss->io_bitmap +
634 thread->io_bitmap_max, 0xff,
635 tss->io_bitmap_max - thread->io_bitmap_max);
636 }
637 tss->io_bitmap_max = thread->io_bitmap_max;
638 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
639 tss->io_bitmap_owner = thread;
640 put_cpu();
641
642 return;
643 }
644 put_cpu();
645
646 if (regs->flags & X86_VM_MASK)
647 goto gp_in_vm86;
648
649 if (!user_mode(regs))
650 goto gp_in_kernel;
651
652 current->thread.error_code = error_code;
653 current->thread.trap_no = 13;
654
655 if (show_unhandled_signals && unhandled_signal(current, SIGSEGV) &&
656 printk_ratelimit()) {
657 printk(KERN_INFO
658 "%s[%d] general protection ip:%lx sp:%lx error:%lx",
659 current->comm, task_pid_nr(current),
660 regs->ip, regs->sp, error_code);
661 print_vma_addr(" in ", regs->ip);
662 printk("\n");
663 }
664
665 force_sig(SIGSEGV, current);
666 return;
667
668 gp_in_vm86:
669 local_irq_enable();
670 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
671 return;
672
673 gp_in_kernel:
674 if (!fixup_exception(regs)) {
675 current->thread.error_code = error_code;
676 current->thread.trap_no = 13;
677 if (notify_die(DIE_GPF, "general protection fault", regs,
678 error_code, 13, SIGSEGV) == NOTIFY_STOP)
679 return;
680 die("general protection fault", regs, error_code);
681 }
682 }
683
684 static notrace __kprobes void
685 mem_parity_error(unsigned char reason, struct pt_regs *regs)
686 {
687 printk(KERN_EMERG
688 "Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
689 reason, smp_processor_id());
690
691 printk(KERN_EMERG
692 "You have some hardware problem, likely on the PCI bus.\n");
693
694 #if defined(CONFIG_EDAC)
695 if (edac_handler_set()) {
696 edac_atomic_assert_error();
697 return;
698 }
699 #endif
700
701 if (panic_on_unrecovered_nmi)
702 panic("NMI: Not continuing");
703
704 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
705
706 /* Clear and disable the memory parity error line. */
707 clear_mem_error(reason);
708 }
709
710 static notrace __kprobes void
711 io_check_error(unsigned char reason, struct pt_regs *regs)
712 {
713 unsigned long i;
714
715 printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
716 show_registers(regs);
717
718 /* Re-enable the IOCK line, wait for a few seconds */
719 reason = (reason & 0xf) | 8;
720 outb(reason, 0x61);
721
722 i = 2000;
723 while (--i)
724 udelay(1000);
725
726 reason &= ~8;
727 outb(reason, 0x61);
728 }
729
730 static notrace __kprobes void
731 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
732 {
733 if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
734 return;
735 #ifdef CONFIG_MCA
736 /*
737 * Might actually be able to figure out what the guilty party
738 * is:
739 */
740 if (MCA_bus) {
741 mca_handle_nmi();
742 return;
743 }
744 #endif
745 printk(KERN_EMERG
746 "Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
747 reason, smp_processor_id());
748
749 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
750 if (panic_on_unrecovered_nmi)
751 panic("NMI: Not continuing");
752
753 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
754 }
755
756 static DEFINE_SPINLOCK(nmi_print_lock);
757
758 void notrace __kprobes die_nmi(struct pt_regs *regs, const char *msg)
759 {
760 if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 2, SIGINT) == NOTIFY_STOP)
761 return;
762
763 spin_lock(&nmi_print_lock);
764 /*
765 * We are in trouble anyway, lets at least try
766 * to get a message out:
767 */
768 bust_spinlocks(1);
769 printk(KERN_EMERG "%s", msg);
770 printk(" on CPU%d, ip %08lx, registers:\n",
771 smp_processor_id(), regs->ip);
772 show_registers(regs);
773 console_silent();
774 spin_unlock(&nmi_print_lock);
775 bust_spinlocks(0);
776
777 /*
778 * If we are in kernel we are probably nested up pretty bad
779 * and might aswell get out now while we still can:
780 */
781 if (!user_mode_vm(regs)) {
782 current->thread.trap_no = 2;
783 crash_kexec(regs);
784 }
785
786 do_exit(SIGSEGV);
787 }
788
789 static notrace __kprobes void default_do_nmi(struct pt_regs *regs)
790 {
791 unsigned char reason = 0;
792
793 /* Only the BSP gets external NMIs from the system: */
794 if (!smp_processor_id())
795 reason = get_nmi_reason();
796
797 if (!(reason & 0xc0)) {
798 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
799 == NOTIFY_STOP)
800 return;
801 #ifdef CONFIG_X86_LOCAL_APIC
802 /*
803 * Ok, so this is none of the documented NMI sources,
804 * so it must be the NMI watchdog.
805 */
806 if (nmi_watchdog_tick(regs, reason))
807 return;
808 if (!do_nmi_callback(regs, smp_processor_id()))
809 unknown_nmi_error(reason, regs);
810 #else
811 unknown_nmi_error(reason, regs);
812 #endif
813
814 return;
815 }
816 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
817 return;
818 if (reason & 0x80)
819 mem_parity_error(reason, regs);
820 if (reason & 0x40)
821 io_check_error(reason, regs);
822 /*
823 * Reassert NMI in case it became active meanwhile
824 * as it's edge-triggered:
825 */
826 reassert_nmi();
827 }
828
829 static int ignore_nmis;
830
831 notrace __kprobes void do_nmi(struct pt_regs *regs, long error_code)
832 {
833 int cpu;
834
835 nmi_enter();
836
837 cpu = smp_processor_id();
838
839 ++nmi_count(cpu);
840
841 if (!ignore_nmis)
842 default_do_nmi(regs);
843
844 nmi_exit();
845 }
846
847 void stop_nmi(void)
848 {
849 acpi_nmi_disable();
850 ignore_nmis++;
851 }
852
853 void restart_nmi(void)
854 {
855 ignore_nmis--;
856 acpi_nmi_enable();
857 }
858
859 #ifdef CONFIG_KPROBES
860 void __kprobes do_int3(struct pt_regs *regs, long error_code)
861 {
862 trace_hardirqs_fixup();
863
864 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
865 == NOTIFY_STOP)
866 return;
867 /*
868 * This is an interrupt gate, because kprobes wants interrupts
869 * disabled. Normal trap handlers don't.
870 */
871 restore_interrupts(regs);
872
873 do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
874 }
875 #endif
876
877 /*
878 * Our handling of the processor debug registers is non-trivial.
879 * We do not clear them on entry and exit from the kernel. Therefore
880 * it is possible to get a watchpoint trap here from inside the kernel.
881 * However, the code in ./ptrace.c has ensured that the user can
882 * only set watchpoints on userspace addresses. Therefore the in-kernel
883 * watchpoint trap can only occur in code which is reading/writing
884 * from user space. Such code must not hold kernel locks (since it
885 * can equally take a page fault), therefore it is safe to call
886 * force_sig_info even though that claims and releases locks.
887 *
888 * Code in ./signal.c ensures that the debug control register
889 * is restored before we deliver any signal, and therefore that
890 * user code runs with the correct debug control register even though
891 * we clear it here.
892 *
893 * Being careful here means that we don't have to be as careful in a
894 * lot of more complicated places (task switching can be a bit lazy
895 * about restoring all the debug state, and ptrace doesn't have to
896 * find every occurrence of the TF bit that could be saved away even
897 * by user code)
898 */
899 void __kprobes do_debug(struct pt_regs *regs, long error_code)
900 {
901 struct task_struct *tsk = current;
902 unsigned int condition;
903
904 trace_hardirqs_fixup();
905
906 get_debugreg(condition, 6);
907
908 /*
909 * The processor cleared BTF, so don't mark that we need it set.
910 */
911 clear_tsk_thread_flag(tsk, TIF_DEBUGCTLMSR);
912 tsk->thread.debugctlmsr = 0;
913
914 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
915 SIGTRAP) == NOTIFY_STOP)
916 return;
917 /* It's safe to allow irq's after DR6 has been saved */
918 if (regs->flags & X86_EFLAGS_IF)
919 local_irq_enable();
920
921 /* Mask out spurious debug traps due to lazy DR7 setting */
922 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
923 if (!tsk->thread.debugreg7)
924 goto clear_dr7;
925 }
926
927 if (regs->flags & X86_VM_MASK)
928 goto debug_vm86;
929
930 /* Save debug status register where ptrace can see it */
931 tsk->thread.debugreg6 = condition;
932
933 /*
934 * Single-stepping through TF: make sure we ignore any events in
935 * kernel space (but re-enable TF when returning to user mode).
936 */
937 if (condition & DR_STEP) {
938 /*
939 * We already checked v86 mode above, so we can
940 * check for kernel mode by just checking the CPL
941 * of CS.
942 */
943 if (!user_mode(regs))
944 goto clear_TF_reenable;
945 }
946
947 /* Ok, finally something we can handle */
948 send_sigtrap(tsk, regs, error_code);
949
950 /*
951 * Disable additional traps. They'll be re-enabled when
952 * the signal is delivered.
953 */
954 clear_dr7:
955 set_debugreg(0, 7);
956 return;
957
958 debug_vm86:
959 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
960 return;
961
962 clear_TF_reenable:
963 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
964 regs->flags &= ~X86_EFLAGS_TF;
965 return;
966 }
967
968 /*
969 * Note that we play around with the 'TS' bit in an attempt to get
970 * the correct behaviour even in the presence of the asynchronous
971 * IRQ13 behaviour
972 */
973 void math_error(void __user *ip)
974 {
975 struct task_struct *task;
976 unsigned short cwd;
977 unsigned short swd;
978 siginfo_t info;
979
980 /*
981 * Save the info for the exception handler and clear the error.
982 */
983 task = current;
984 save_init_fpu(task);
985 task->thread.trap_no = 16;
986 task->thread.error_code = 0;
987 info.si_signo = SIGFPE;
988 info.si_errno = 0;
989 info.si_code = __SI_FAULT;
990 info.si_addr = ip;
991 /*
992 * (~cwd & swd) will mask out exceptions that are not set to unmasked
993 * status. 0x3f is the exception bits in these regs, 0x200 is the
994 * C1 reg you need in case of a stack fault, 0x040 is the stack
995 * fault bit. We should only be taking one exception at a time,
996 * so if this combination doesn't produce any single exception,
997 * then we have a bad program that isn't syncronizing its FPU usage
998 * and it will suffer the consequences since we won't be able to
999 * fully reproduce the context of the exception
1000 */
1001 cwd = get_fpu_cwd(task);
1002 swd = get_fpu_swd(task);
1003 switch (swd & ~cwd & 0x3f) {
1004 case 0x000: /* No unmasked exception */
1005 return;
1006 default: /* Multiple exceptions */
1007 break;
1008 case 0x001: /* Invalid Op */
1009 /*
1010 * swd & 0x240 == 0x040: Stack Underflow
1011 * swd & 0x240 == 0x240: Stack Overflow
1012 * User must clear the SF bit (0x40) if set
1013 */
1014 info.si_code = FPE_FLTINV;
1015 break;
1016 case 0x002: /* Denormalize */
1017 case 0x010: /* Underflow */
1018 info.si_code = FPE_FLTUND;
1019 break;
1020 case 0x004: /* Zero Divide */
1021 info.si_code = FPE_FLTDIV;
1022 break;
1023 case 0x008: /* Overflow */
1024 info.si_code = FPE_FLTOVF;
1025 break;
1026 case 0x020: /* Precision */
1027 info.si_code = FPE_FLTRES;
1028 break;
1029 }
1030 force_sig_info(SIGFPE, &info, task);
1031 }
1032
1033 void do_coprocessor_error(struct pt_regs *regs, long error_code)
1034 {
1035 ignore_fpu_irq = 1;
1036 math_error((void __user *)regs->ip);
1037 }
1038
1039 static void simd_math_error(void __user *ip)
1040 {
1041 struct task_struct *task;
1042 unsigned short mxcsr;
1043 siginfo_t info;
1044
1045 /*
1046 * Save the info for the exception handler and clear the error.
1047 */
1048 task = current;
1049 save_init_fpu(task);
1050 task->thread.trap_no = 19;
1051 task->thread.error_code = 0;
1052 info.si_signo = SIGFPE;
1053 info.si_errno = 0;
1054 info.si_code = __SI_FAULT;
1055 info.si_addr = ip;
1056 /*
1057 * The SIMD FPU exceptions are handled a little differently, as there
1058 * is only a single status/control register. Thus, to determine which
1059 * unmasked exception was caught we must mask the exception mask bits
1060 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
1061 */
1062 mxcsr = get_fpu_mxcsr(task);
1063 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
1064 case 0x000:
1065 default:
1066 break;
1067 case 0x001: /* Invalid Op */
1068 info.si_code = FPE_FLTINV;
1069 break;
1070 case 0x002: /* Denormalize */
1071 case 0x010: /* Underflow */
1072 info.si_code = FPE_FLTUND;
1073 break;
1074 case 0x004: /* Zero Divide */
1075 info.si_code = FPE_FLTDIV;
1076 break;
1077 case 0x008: /* Overflow */
1078 info.si_code = FPE_FLTOVF;
1079 break;
1080 case 0x020: /* Precision */
1081 info.si_code = FPE_FLTRES;
1082 break;
1083 }
1084 force_sig_info(SIGFPE, &info, task);
1085 }
1086
1087 void do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
1088 {
1089 if (cpu_has_xmm) {
1090 /* Handle SIMD FPU exceptions on PIII+ processors. */
1091 ignore_fpu_irq = 1;
1092 simd_math_error((void __user *)regs->ip);
1093 return;
1094 }
1095 /*
1096 * Handle strange cache flush from user space exception
1097 * in all other cases. This is undocumented behaviour.
1098 */
1099 if (regs->flags & X86_VM_MASK) {
1100 handle_vm86_fault((struct kernel_vm86_regs *)regs, error_code);
1101 return;
1102 }
1103 current->thread.trap_no = 19;
1104 current->thread.error_code = error_code;
1105 die_if_kernel("cache flush denied", regs, error_code);
1106 force_sig(SIGSEGV, current);
1107 }
1108
1109 void do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
1110 {
1111 #if 0
1112 /* No need to warn about this any longer. */
1113 printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
1114 #endif
1115 }
1116
1117 unsigned long patch_espfix_desc(unsigned long uesp, unsigned long kesp)
1118 {
1119 struct desc_struct *gdt = __get_cpu_var(gdt_page).gdt;
1120 unsigned long base = (kesp - uesp) & -THREAD_SIZE;
1121 unsigned long new_kesp = kesp - base;
1122 unsigned long lim_pages = (new_kesp | (THREAD_SIZE - 1)) >> PAGE_SHIFT;
1123 __u64 desc = *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS];
1124
1125 /* Set up base for espfix segment */
1126 desc &= 0x00f0ff0000000000ULL;
1127 desc |= ((((__u64)base) << 16) & 0x000000ffffff0000ULL) |
1128 ((((__u64)base) << 32) & 0xff00000000000000ULL) |
1129 ((((__u64)lim_pages) << 32) & 0x000f000000000000ULL) |
1130 (lim_pages & 0xffff);
1131 *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS] = desc;
1132
1133 return new_kesp;
1134 }
1135
1136 /*
1137 * 'math_state_restore()' saves the current math information in the
1138 * old math state array, and gets the new ones from the current task
1139 *
1140 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1141 * Don't touch unless you *really* know how it works.
1142 *
1143 * Must be called with kernel preemption disabled (in this case,
1144 * local interrupts are disabled at the call-site in entry.S).
1145 */
1146 asmlinkage void math_state_restore(void)
1147 {
1148 struct thread_info *thread = current_thread_info();
1149 struct task_struct *tsk = thread->task;
1150
1151 if (!tsk_used_math(tsk)) {
1152 local_irq_enable();
1153 /*
1154 * does a slab alloc which can sleep
1155 */
1156 if (init_fpu(tsk)) {
1157 /*
1158 * ran out of memory!
1159 */
1160 do_group_exit(SIGKILL);
1161 return;
1162 }
1163 local_irq_disable();
1164 }
1165
1166 clts(); /* Allow maths ops (or we recurse) */
1167 restore_fpu(tsk);
1168 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
1169 tsk->fpu_counter++;
1170 }
1171 EXPORT_SYMBOL_GPL(math_state_restore);
1172
1173 #ifndef CONFIG_MATH_EMULATION
1174
1175 asmlinkage void math_emulate(long arg)
1176 {
1177 printk(KERN_EMERG
1178 "math-emulation not enabled and no coprocessor found.\n");
1179 printk(KERN_EMERG "killing %s.\n", current->comm);
1180 force_sig(SIGFPE, current);
1181 schedule();
1182 }
1183
1184 #endif /* CONFIG_MATH_EMULATION */
1185
1186 void __init trap_init(void)
1187 {
1188 int i;
1189
1190 #ifdef CONFIG_EISA
1191 void __iomem *p = early_ioremap(0x0FFFD9, 4);
1192
1193 if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
1194 EISA_bus = 1;
1195 early_iounmap(p, 4);
1196 #endif
1197
1198 #ifdef CONFIG_X86_LOCAL_APIC
1199 init_apic_mappings();
1200 #endif
1201 set_trap_gate(0, &divide_error);
1202 set_intr_gate(1, &debug);
1203 set_intr_gate(2, &nmi);
1204 set_system_intr_gate(3, &int3); /* int3/4 can be called from all */
1205 set_system_gate(4, &overflow);
1206 set_trap_gate(5, &bounds);
1207 set_trap_gate(6, &invalid_op);
1208 set_trap_gate(7, &device_not_available);
1209 set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS);
1210 set_trap_gate(9, &coprocessor_segment_overrun);
1211 set_trap_gate(10, &invalid_TSS);
1212 set_trap_gate(11, &segment_not_present);
1213 set_trap_gate(12, &stack_segment);
1214 set_trap_gate(13, &general_protection);
1215 set_intr_gate(14, &page_fault);
1216 set_trap_gate(15, &spurious_interrupt_bug);
1217 set_trap_gate(16, &coprocessor_error);
1218 set_trap_gate(17, &alignment_check);
1219 #ifdef CONFIG_X86_MCE
1220 set_trap_gate(18, &machine_check);
1221 #endif
1222 set_trap_gate(19, &simd_coprocessor_error);
1223
1224 if (cpu_has_fxsr) {
1225 printk(KERN_INFO "Enabling fast FPU save and restore... ");
1226 set_in_cr4(X86_CR4_OSFXSR);
1227 printk("done.\n");
1228 }
1229 if (cpu_has_xmm) {
1230 printk(KERN_INFO
1231 "Enabling unmasked SIMD FPU exception support... ");
1232 set_in_cr4(X86_CR4_OSXMMEXCPT);
1233 printk("done.\n");
1234 }
1235
1236 set_system_gate(SYSCALL_VECTOR, &system_call);
1237
1238 /* Reserve all the builtin and the syscall vector: */
1239 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
1240 set_bit(i, used_vectors);
1241
1242 set_bit(SYSCALL_VECTOR, used_vectors);
1243
1244 init_thread_xstate();
1245 /*
1246 * Should be a barrier for any external CPU state:
1247 */
1248 cpu_init();
1249
1250 trap_init_hook();
1251 }
1252
1253 static int __init kstack_setup(char *s)
1254 {
1255 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1256
1257 return 1;
1258 }
1259 __setup("kstack=", kstack_setup);
1260
1261 static int __init code_bytes_setup(char *s)
1262 {
1263 code_bytes = simple_strtoul(s, NULL, 0);
1264 if (code_bytes > 8192)
1265 code_bytes = 8192;
1266
1267 return 1;
1268 }
1269 __setup("code_bytes=", code_bytes_setup);
This page took 0.092964 seconds and 5 git commands to generate.