Merge branch 'core/printk' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux...
[deliverable/linux.git] / arch / x86 / kernel / traps_64.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9 /*
10 * 'Traps.c' handles hardware traps and faults after we have saved some
11 * state in 'entry.S'.
12 */
13 #include <linux/moduleparam.h>
14 #include <linux/interrupt.h>
15 #include <linux/kallsyms.h>
16 #include <linux/spinlock.h>
17 #include <linux/kprobes.h>
18 #include <linux/uaccess.h>
19 #include <linux/utsname.h>
20 #include <linux/kdebug.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/ptrace.h>
24 #include <linux/string.h>
25 #include <linux/unwind.h>
26 #include <linux/delay.h>
27 #include <linux/errno.h>
28 #include <linux/kexec.h>
29 #include <linux/sched.h>
30 #include <linux/timer.h>
31 #include <linux/init.h>
32 #include <linux/bug.h>
33 #include <linux/nmi.h>
34 #include <linux/mm.h>
35
36 #if defined(CONFIG_EDAC)
37 #include <linux/edac.h>
38 #endif
39
40 #include <asm/stacktrace.h>
41 #include <asm/processor.h>
42 #include <asm/debugreg.h>
43 #include <asm/atomic.h>
44 #include <asm/system.h>
45 #include <asm/unwind.h>
46 #include <asm/desc.h>
47 #include <asm/i387.h>
48 #include <asm/nmi.h>
49 #include <asm/smp.h>
50 #include <asm/io.h>
51 #include <asm/pgalloc.h>
52 #include <asm/proto.h>
53 #include <asm/pda.h>
54
55 #include <mach_traps.h>
56
57 asmlinkage void divide_error(void);
58 asmlinkage void debug(void);
59 asmlinkage void nmi(void);
60 asmlinkage void int3(void);
61 asmlinkage void overflow(void);
62 asmlinkage void bounds(void);
63 asmlinkage void invalid_op(void);
64 asmlinkage void device_not_available(void);
65 asmlinkage void double_fault(void);
66 asmlinkage void coprocessor_segment_overrun(void);
67 asmlinkage void invalid_TSS(void);
68 asmlinkage void segment_not_present(void);
69 asmlinkage void stack_segment(void);
70 asmlinkage void general_protection(void);
71 asmlinkage void page_fault(void);
72 asmlinkage void coprocessor_error(void);
73 asmlinkage void simd_coprocessor_error(void);
74 asmlinkage void alignment_check(void);
75 asmlinkage void spurious_interrupt_bug(void);
76 asmlinkage void machine_check(void);
77
78 int panic_on_unrecovered_nmi;
79 int kstack_depth_to_print = 12;
80 static unsigned int code_bytes = 64;
81 static int ignore_nmis;
82 static int die_counter;
83
84 static inline void conditional_sti(struct pt_regs *regs)
85 {
86 if (regs->flags & X86_EFLAGS_IF)
87 local_irq_enable();
88 }
89
90 static inline void preempt_conditional_sti(struct pt_regs *regs)
91 {
92 inc_preempt_count();
93 if (regs->flags & X86_EFLAGS_IF)
94 local_irq_enable();
95 }
96
97 static inline void preempt_conditional_cli(struct pt_regs *regs)
98 {
99 if (regs->flags & X86_EFLAGS_IF)
100 local_irq_disable();
101 /* Make sure to not schedule here because we could be running
102 on an exception stack. */
103 dec_preempt_count();
104 }
105
106 void printk_address(unsigned long address, int reliable)
107 {
108 printk(" [<%016lx>] %s%pS\n", address, reliable ? "": "? ", (void *) address);
109 }
110
111 static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack,
112 unsigned *usedp, char **idp)
113 {
114 static char ids[][8] = {
115 [DEBUG_STACK - 1] = "#DB",
116 [NMI_STACK - 1] = "NMI",
117 [DOUBLEFAULT_STACK - 1] = "#DF",
118 [STACKFAULT_STACK - 1] = "#SS",
119 [MCE_STACK - 1] = "#MC",
120 #if DEBUG_STKSZ > EXCEPTION_STKSZ
121 [N_EXCEPTION_STACKS ... N_EXCEPTION_STACKS + DEBUG_STKSZ / EXCEPTION_STKSZ - 2] = "#DB[?]"
122 #endif
123 };
124 unsigned k;
125
126 /*
127 * Iterate over all exception stacks, and figure out whether
128 * 'stack' is in one of them:
129 */
130 for (k = 0; k < N_EXCEPTION_STACKS; k++) {
131 unsigned long end = per_cpu(orig_ist, cpu).ist[k];
132 /*
133 * Is 'stack' above this exception frame's end?
134 * If yes then skip to the next frame.
135 */
136 if (stack >= end)
137 continue;
138 /*
139 * Is 'stack' above this exception frame's start address?
140 * If yes then we found the right frame.
141 */
142 if (stack >= end - EXCEPTION_STKSZ) {
143 /*
144 * Make sure we only iterate through an exception
145 * stack once. If it comes up for the second time
146 * then there's something wrong going on - just
147 * break out and return NULL:
148 */
149 if (*usedp & (1U << k))
150 break;
151 *usedp |= 1U << k;
152 *idp = ids[k];
153 return (unsigned long *)end;
154 }
155 /*
156 * If this is a debug stack, and if it has a larger size than
157 * the usual exception stacks, then 'stack' might still
158 * be within the lower portion of the debug stack:
159 */
160 #if DEBUG_STKSZ > EXCEPTION_STKSZ
161 if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) {
162 unsigned j = N_EXCEPTION_STACKS - 1;
163
164 /*
165 * Black magic. A large debug stack is composed of
166 * multiple exception stack entries, which we
167 * iterate through now. Dont look:
168 */
169 do {
170 ++j;
171 end -= EXCEPTION_STKSZ;
172 ids[j][4] = '1' + (j - N_EXCEPTION_STACKS);
173 } while (stack < end - EXCEPTION_STKSZ);
174 if (*usedp & (1U << j))
175 break;
176 *usedp |= 1U << j;
177 *idp = ids[j];
178 return (unsigned long *)end;
179 }
180 #endif
181 }
182 return NULL;
183 }
184
185 /*
186 * x86-64 can have up to three kernel stacks:
187 * process stack
188 * interrupt stack
189 * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
190 */
191
192 static inline int valid_stack_ptr(struct thread_info *tinfo,
193 void *p, unsigned int size, void *end)
194 {
195 void *t = tinfo;
196 if (end) {
197 if (p < end && p >= (end-THREAD_SIZE))
198 return 1;
199 else
200 return 0;
201 }
202 return p > t && p < t + THREAD_SIZE - size;
203 }
204
205 /* The form of the top of the frame on the stack */
206 struct stack_frame {
207 struct stack_frame *next_frame;
208 unsigned long return_address;
209 };
210
211 static inline unsigned long
212 print_context_stack(struct thread_info *tinfo,
213 unsigned long *stack, unsigned long bp,
214 const struct stacktrace_ops *ops, void *data,
215 unsigned long *end)
216 {
217 struct stack_frame *frame = (struct stack_frame *)bp;
218
219 while (valid_stack_ptr(tinfo, stack, sizeof(*stack), end)) {
220 unsigned long addr;
221
222 addr = *stack;
223 if (__kernel_text_address(addr)) {
224 if ((unsigned long) stack == bp + 8) {
225 ops->address(data, addr, 1);
226 frame = frame->next_frame;
227 bp = (unsigned long) frame;
228 } else {
229 ops->address(data, addr, bp == 0);
230 }
231 }
232 stack++;
233 }
234 return bp;
235 }
236
237 void dump_trace(struct task_struct *task, struct pt_regs *regs,
238 unsigned long *stack, unsigned long bp,
239 const struct stacktrace_ops *ops, void *data)
240 {
241 const unsigned cpu = get_cpu();
242 unsigned long *irqstack_end = (unsigned long*)cpu_pda(cpu)->irqstackptr;
243 unsigned used = 0;
244 struct thread_info *tinfo;
245
246 if (!task)
247 task = current;
248
249 if (!stack) {
250 unsigned long dummy;
251 stack = &dummy;
252 if (task && task != current)
253 stack = (unsigned long *)task->thread.sp;
254 }
255
256 #ifdef CONFIG_FRAME_POINTER
257 if (!bp) {
258 if (task == current) {
259 /* Grab bp right from our regs */
260 asm("movq %%rbp, %0" : "=r" (bp) :);
261 } else {
262 /* bp is the last reg pushed by switch_to */
263 bp = *(unsigned long *) task->thread.sp;
264 }
265 }
266 #endif
267
268 /*
269 * Print function call entries in all stacks, starting at the
270 * current stack address. If the stacks consist of nested
271 * exceptions
272 */
273 tinfo = task_thread_info(task);
274 for (;;) {
275 char *id;
276 unsigned long *estack_end;
277 estack_end = in_exception_stack(cpu, (unsigned long)stack,
278 &used, &id);
279
280 if (estack_end) {
281 if (ops->stack(data, id) < 0)
282 break;
283
284 bp = print_context_stack(tinfo, stack, bp, ops,
285 data, estack_end);
286 ops->stack(data, "<EOE>");
287 /*
288 * We link to the next stack via the
289 * second-to-last pointer (index -2 to end) in the
290 * exception stack:
291 */
292 stack = (unsigned long *) estack_end[-2];
293 continue;
294 }
295 if (irqstack_end) {
296 unsigned long *irqstack;
297 irqstack = irqstack_end -
298 (IRQSTACKSIZE - 64) / sizeof(*irqstack);
299
300 if (stack >= irqstack && stack < irqstack_end) {
301 if (ops->stack(data, "IRQ") < 0)
302 break;
303 bp = print_context_stack(tinfo, stack, bp,
304 ops, data, irqstack_end);
305 /*
306 * We link to the next stack (which would be
307 * the process stack normally) the last
308 * pointer (index -1 to end) in the IRQ stack:
309 */
310 stack = (unsigned long *) (irqstack_end[-1]);
311 irqstack_end = NULL;
312 ops->stack(data, "EOI");
313 continue;
314 }
315 }
316 break;
317 }
318
319 /*
320 * This handles the process stack:
321 */
322 bp = print_context_stack(tinfo, stack, bp, ops, data, NULL);
323 put_cpu();
324 }
325 EXPORT_SYMBOL(dump_trace);
326
327 static void
328 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
329 {
330 print_symbol(msg, symbol);
331 printk("\n");
332 }
333
334 static void print_trace_warning(void *data, char *msg)
335 {
336 printk("%s\n", msg);
337 }
338
339 static int print_trace_stack(void *data, char *name)
340 {
341 printk(" <%s> ", name);
342 return 0;
343 }
344
345 static void print_trace_address(void *data, unsigned long addr, int reliable)
346 {
347 touch_nmi_watchdog();
348 printk_address(addr, reliable);
349 }
350
351 static const struct stacktrace_ops print_trace_ops = {
352 .warning = print_trace_warning,
353 .warning_symbol = print_trace_warning_symbol,
354 .stack = print_trace_stack,
355 .address = print_trace_address,
356 };
357
358 void show_trace(struct task_struct *task, struct pt_regs *regs,
359 unsigned long *stack, unsigned long bp)
360 {
361 printk("\nCall Trace:\n");
362 dump_trace(task, regs, stack, bp, &print_trace_ops, NULL);
363 printk("\n");
364 }
365
366 static void
367 _show_stack(struct task_struct *task, struct pt_regs *regs,
368 unsigned long *sp, unsigned long bp)
369 {
370 unsigned long *stack;
371 int i;
372 const int cpu = smp_processor_id();
373 unsigned long *irqstack_end = (unsigned long *) (cpu_pda(cpu)->irqstackptr);
374 unsigned long *irqstack = (unsigned long *) (cpu_pda(cpu)->irqstackptr - IRQSTACKSIZE);
375
376 // debugging aid: "show_stack(NULL, NULL);" prints the
377 // back trace for this cpu.
378
379 if (sp == NULL) {
380 if (task)
381 sp = (unsigned long *)task->thread.sp;
382 else
383 sp = (unsigned long *)&sp;
384 }
385
386 stack = sp;
387 for (i = 0; i < kstack_depth_to_print; i++) {
388 if (stack >= irqstack && stack <= irqstack_end) {
389 if (stack == irqstack_end) {
390 stack = (unsigned long *) (irqstack_end[-1]);
391 printk(" <EOI> ");
392 }
393 } else {
394 if (((long) stack & (THREAD_SIZE-1)) == 0)
395 break;
396 }
397 if (i && ((i % 4) == 0))
398 printk("\n");
399 printk(" %016lx", *stack++);
400 touch_nmi_watchdog();
401 }
402 show_trace(task, regs, sp, bp);
403 }
404
405 void show_stack(struct task_struct *task, unsigned long *sp)
406 {
407 _show_stack(task, NULL, sp, 0);
408 }
409
410 /*
411 * The architecture-independent dump_stack generator
412 */
413 void dump_stack(void)
414 {
415 unsigned long bp = 0;
416 unsigned long stack;
417
418 #ifdef CONFIG_FRAME_POINTER
419 if (!bp)
420 asm("movq %%rbp, %0" : "=r" (bp):);
421 #endif
422
423 printk("Pid: %d, comm: %.20s %s %s %.*s\n",
424 current->pid, current->comm, print_tainted(),
425 init_utsname()->release,
426 (int)strcspn(init_utsname()->version, " "),
427 init_utsname()->version);
428 show_trace(NULL, NULL, &stack, bp);
429 }
430
431 EXPORT_SYMBOL(dump_stack);
432
433 void show_registers(struct pt_regs *regs)
434 {
435 int i;
436 unsigned long sp;
437 const int cpu = smp_processor_id();
438 struct task_struct *cur = cpu_pda(cpu)->pcurrent;
439
440 sp = regs->sp;
441 printk("CPU %d ", cpu);
442 __show_regs(regs);
443 printk("Process %s (pid: %d, threadinfo %p, task %p)\n",
444 cur->comm, cur->pid, task_thread_info(cur), cur);
445
446 /*
447 * When in-kernel, we also print out the stack and code at the
448 * time of the fault..
449 */
450 if (!user_mode(regs)) {
451 unsigned int code_prologue = code_bytes * 43 / 64;
452 unsigned int code_len = code_bytes;
453 unsigned char c;
454 u8 *ip;
455
456 printk("Stack: ");
457 _show_stack(NULL, regs, (unsigned long *)sp, regs->bp);
458 printk("\n");
459
460 printk(KERN_EMERG "Code: ");
461
462 ip = (u8 *)regs->ip - code_prologue;
463 if (ip < (u8 *)PAGE_OFFSET || probe_kernel_address(ip, c)) {
464 /* try starting at RIP */
465 ip = (u8 *)regs->ip;
466 code_len = code_len - code_prologue + 1;
467 }
468 for (i = 0; i < code_len; i++, ip++) {
469 if (ip < (u8 *)PAGE_OFFSET ||
470 probe_kernel_address(ip, c)) {
471 printk(" Bad RIP value.");
472 break;
473 }
474 if (ip == (u8 *)regs->ip)
475 printk("<%02x> ", c);
476 else
477 printk("%02x ", c);
478 }
479 }
480 printk("\n");
481 }
482
483 int is_valid_bugaddr(unsigned long ip)
484 {
485 unsigned short ud2;
486
487 if (__copy_from_user(&ud2, (const void __user *) ip, sizeof(ud2)))
488 return 0;
489
490 return ud2 == 0x0b0f;
491 }
492
493 static raw_spinlock_t die_lock = __RAW_SPIN_LOCK_UNLOCKED;
494 static int die_owner = -1;
495 static unsigned int die_nest_count;
496
497 unsigned __kprobes long oops_begin(void)
498 {
499 int cpu;
500 unsigned long flags;
501
502 oops_enter();
503
504 /* racy, but better than risking deadlock. */
505 raw_local_irq_save(flags);
506 cpu = smp_processor_id();
507 if (!__raw_spin_trylock(&die_lock)) {
508 if (cpu == die_owner)
509 /* nested oops. should stop eventually */;
510 else
511 __raw_spin_lock(&die_lock);
512 }
513 die_nest_count++;
514 die_owner = cpu;
515 console_verbose();
516 bust_spinlocks(1);
517 return flags;
518 }
519
520 void __kprobes oops_end(unsigned long flags, struct pt_regs *regs, int signr)
521 {
522 die_owner = -1;
523 bust_spinlocks(0);
524 die_nest_count--;
525 if (!die_nest_count)
526 /* Nest count reaches zero, release the lock. */
527 __raw_spin_unlock(&die_lock);
528 raw_local_irq_restore(flags);
529 if (!regs) {
530 oops_exit();
531 return;
532 }
533 if (panic_on_oops)
534 panic("Fatal exception");
535 oops_exit();
536 do_exit(signr);
537 }
538
539 int __kprobes __die(const char *str, struct pt_regs *regs, long err)
540 {
541 printk(KERN_EMERG "%s: %04lx [%u] ", str, err & 0xffff, ++die_counter);
542 #ifdef CONFIG_PREEMPT
543 printk("PREEMPT ");
544 #endif
545 #ifdef CONFIG_SMP
546 printk("SMP ");
547 #endif
548 #ifdef CONFIG_DEBUG_PAGEALLOC
549 printk("DEBUG_PAGEALLOC");
550 #endif
551 printk("\n");
552 if (notify_die(DIE_OOPS, str, regs, err,
553 current->thread.trap_no, SIGSEGV) == NOTIFY_STOP)
554 return 1;
555
556 show_registers(regs);
557 add_taint(TAINT_DIE);
558 /* Executive summary in case the oops scrolled away */
559 printk(KERN_ALERT "RIP ");
560 printk_address(regs->ip, 1);
561 printk(" RSP <%016lx>\n", regs->sp);
562 if (kexec_should_crash(current))
563 crash_kexec(regs);
564 return 0;
565 }
566
567 void die(const char *str, struct pt_regs *regs, long err)
568 {
569 unsigned long flags = oops_begin();
570
571 if (!user_mode(regs))
572 report_bug(regs->ip, regs);
573
574 if (__die(str, regs, err))
575 regs = NULL;
576 oops_end(flags, regs, SIGSEGV);
577 }
578
579 notrace __kprobes void
580 die_nmi(char *str, struct pt_regs *regs, int do_panic)
581 {
582 unsigned long flags;
583
584 if (notify_die(DIE_NMIWATCHDOG, str, regs, 0, 2, SIGINT) == NOTIFY_STOP)
585 return;
586
587 flags = oops_begin();
588 /*
589 * We are in trouble anyway, lets at least try
590 * to get a message out.
591 */
592 printk(KERN_EMERG "%s", str);
593 printk(" on CPU%d, ip %08lx, registers:\n",
594 smp_processor_id(), regs->ip);
595 show_registers(regs);
596 if (kexec_should_crash(current))
597 crash_kexec(regs);
598 if (do_panic || panic_on_oops)
599 panic("Non maskable interrupt");
600 oops_end(flags, NULL, SIGBUS);
601 nmi_exit();
602 local_irq_enable();
603 do_exit(SIGBUS);
604 }
605
606 static void __kprobes
607 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
608 long error_code, siginfo_t *info)
609 {
610 struct task_struct *tsk = current;
611
612 if (!user_mode(regs))
613 goto kernel_trap;
614
615 /*
616 * We want error_code and trap_no set for userspace faults and
617 * kernelspace faults which result in die(), but not
618 * kernelspace faults which are fixed up. die() gives the
619 * process no chance to handle the signal and notice the
620 * kernel fault information, so that won't result in polluting
621 * the information about previously queued, but not yet
622 * delivered, faults. See also do_general_protection below.
623 */
624 tsk->thread.error_code = error_code;
625 tsk->thread.trap_no = trapnr;
626
627 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
628 printk_ratelimit()) {
629 printk(KERN_INFO
630 "%s[%d] trap %s ip:%lx sp:%lx error:%lx",
631 tsk->comm, tsk->pid, str,
632 regs->ip, regs->sp, error_code);
633 print_vma_addr(" in ", regs->ip);
634 printk("\n");
635 }
636
637 if (info)
638 force_sig_info(signr, info, tsk);
639 else
640 force_sig(signr, tsk);
641 return;
642
643 kernel_trap:
644 if (!fixup_exception(regs)) {
645 tsk->thread.error_code = error_code;
646 tsk->thread.trap_no = trapnr;
647 die(str, regs, error_code);
648 }
649 return;
650 }
651
652 #define DO_ERROR(trapnr, signr, str, name) \
653 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
654 { \
655 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
656 == NOTIFY_STOP) \
657 return; \
658 conditional_sti(regs); \
659 do_trap(trapnr, signr, str, regs, error_code, NULL); \
660 }
661
662 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
663 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
664 { \
665 siginfo_t info; \
666 info.si_signo = signr; \
667 info.si_errno = 0; \
668 info.si_code = sicode; \
669 info.si_addr = (void __user *)siaddr; \
670 trace_hardirqs_fixup(); \
671 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
672 == NOTIFY_STOP) \
673 return; \
674 conditional_sti(regs); \
675 do_trap(trapnr, signr, str, regs, error_code, &info); \
676 }
677
678 DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
679 DO_ERROR(4, SIGSEGV, "overflow", overflow)
680 DO_ERROR(5, SIGSEGV, "bounds", bounds)
681 DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip)
682 DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
683 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
684 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
685 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
686
687 /* Runs on IST stack */
688 asmlinkage void do_stack_segment(struct pt_regs *regs, long error_code)
689 {
690 if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
691 12, SIGBUS) == NOTIFY_STOP)
692 return;
693 preempt_conditional_sti(regs);
694 do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
695 preempt_conditional_cli(regs);
696 }
697
698 asmlinkage void do_double_fault(struct pt_regs * regs, long error_code)
699 {
700 static const char str[] = "double fault";
701 struct task_struct *tsk = current;
702
703 /* Return not checked because double check cannot be ignored */
704 notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
705
706 tsk->thread.error_code = error_code;
707 tsk->thread.trap_no = 8;
708
709 /* This is always a kernel trap and never fixable (and thus must
710 never return). */
711 for (;;)
712 die(str, regs, error_code);
713 }
714
715 asmlinkage void __kprobes
716 do_general_protection(struct pt_regs *regs, long error_code)
717 {
718 struct task_struct *tsk;
719
720 conditional_sti(regs);
721
722 tsk = current;
723 if (!user_mode(regs))
724 goto gp_in_kernel;
725
726 tsk->thread.error_code = error_code;
727 tsk->thread.trap_no = 13;
728
729 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
730 printk_ratelimit()) {
731 printk(KERN_INFO
732 "%s[%d] general protection ip:%lx sp:%lx error:%lx",
733 tsk->comm, tsk->pid,
734 regs->ip, regs->sp, error_code);
735 print_vma_addr(" in ", regs->ip);
736 printk("\n");
737 }
738
739 force_sig(SIGSEGV, tsk);
740 return;
741
742 gp_in_kernel:
743 if (fixup_exception(regs))
744 return;
745
746 tsk->thread.error_code = error_code;
747 tsk->thread.trap_no = 13;
748 if (notify_die(DIE_GPF, "general protection fault", regs,
749 error_code, 13, SIGSEGV) == NOTIFY_STOP)
750 return;
751 die("general protection fault", regs, error_code);
752 }
753
754 static notrace __kprobes void
755 mem_parity_error(unsigned char reason, struct pt_regs *regs)
756 {
757 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
758 reason);
759 printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n");
760
761 #if defined(CONFIG_EDAC)
762 if (edac_handler_set()) {
763 edac_atomic_assert_error();
764 return;
765 }
766 #endif
767
768 if (panic_on_unrecovered_nmi)
769 panic("NMI: Not continuing");
770
771 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
772
773 /* Clear and disable the memory parity error line. */
774 reason = (reason & 0xf) | 4;
775 outb(reason, 0x61);
776 }
777
778 static notrace __kprobes void
779 io_check_error(unsigned char reason, struct pt_regs *regs)
780 {
781 printk("NMI: IOCK error (debug interrupt?)\n");
782 show_registers(regs);
783
784 /* Re-enable the IOCK line, wait for a few seconds */
785 reason = (reason & 0xf) | 8;
786 outb(reason, 0x61);
787 mdelay(2000);
788 reason &= ~8;
789 outb(reason, 0x61);
790 }
791
792 static notrace __kprobes void
793 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
794 {
795 if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
796 return;
797 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
798 reason);
799 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
800
801 if (panic_on_unrecovered_nmi)
802 panic("NMI: Not continuing");
803
804 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
805 }
806
807 /* Runs on IST stack. This code must keep interrupts off all the time.
808 Nested NMIs are prevented by the CPU. */
809 asmlinkage notrace __kprobes void default_do_nmi(struct pt_regs *regs)
810 {
811 unsigned char reason = 0;
812 int cpu;
813
814 cpu = smp_processor_id();
815
816 /* Only the BSP gets external NMIs from the system. */
817 if (!cpu)
818 reason = get_nmi_reason();
819
820 if (!(reason & 0xc0)) {
821 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
822 == NOTIFY_STOP)
823 return;
824 /*
825 * Ok, so this is none of the documented NMI sources,
826 * so it must be the NMI watchdog.
827 */
828 if (nmi_watchdog_tick(regs, reason))
829 return;
830 if (!do_nmi_callback(regs, cpu))
831 unknown_nmi_error(reason, regs);
832
833 return;
834 }
835 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
836 return;
837
838 /* AK: following checks seem to be broken on modern chipsets. FIXME */
839 if (reason & 0x80)
840 mem_parity_error(reason, regs);
841 if (reason & 0x40)
842 io_check_error(reason, regs);
843 }
844
845 asmlinkage notrace __kprobes void
846 do_nmi(struct pt_regs *regs, long error_code)
847 {
848 nmi_enter();
849
850 add_pda(__nmi_count, 1);
851
852 if (!ignore_nmis)
853 default_do_nmi(regs);
854
855 nmi_exit();
856 }
857
858 void stop_nmi(void)
859 {
860 acpi_nmi_disable();
861 ignore_nmis++;
862 }
863
864 void restart_nmi(void)
865 {
866 ignore_nmis--;
867 acpi_nmi_enable();
868 }
869
870 /* runs on IST stack. */
871 asmlinkage void __kprobes do_int3(struct pt_regs *regs, long error_code)
872 {
873 trace_hardirqs_fixup();
874
875 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
876 == NOTIFY_STOP)
877 return;
878
879 preempt_conditional_sti(regs);
880 do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
881 preempt_conditional_cli(regs);
882 }
883
884 /* Help handler running on IST stack to switch back to user stack
885 for scheduling or signal handling. The actual stack switch is done in
886 entry.S */
887 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
888 {
889 struct pt_regs *regs = eregs;
890 /* Did already sync */
891 if (eregs == (struct pt_regs *)eregs->sp)
892 ;
893 /* Exception from user space */
894 else if (user_mode(eregs))
895 regs = task_pt_regs(current);
896 /* Exception from kernel and interrupts are enabled. Move to
897 kernel process stack. */
898 else if (eregs->flags & X86_EFLAGS_IF)
899 regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
900 if (eregs != regs)
901 *regs = *eregs;
902 return regs;
903 }
904
905 /* runs on IST stack. */
906 asmlinkage void __kprobes do_debug(struct pt_regs * regs,
907 unsigned long error_code)
908 {
909 struct task_struct *tsk = current;
910 unsigned long condition;
911 siginfo_t info;
912
913 trace_hardirqs_fixup();
914
915 get_debugreg(condition, 6);
916
917 /*
918 * The processor cleared BTF, so don't mark that we need it set.
919 */
920 clear_tsk_thread_flag(tsk, TIF_DEBUGCTLMSR);
921 tsk->thread.debugctlmsr = 0;
922
923 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
924 SIGTRAP) == NOTIFY_STOP)
925 return;
926
927 preempt_conditional_sti(regs);
928
929 /* Mask out spurious debug traps due to lazy DR7 setting */
930 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
931 if (!tsk->thread.debugreg7)
932 goto clear_dr7;
933 }
934
935 tsk->thread.debugreg6 = condition;
936
937 /*
938 * Single-stepping through TF: make sure we ignore any events in
939 * kernel space (but re-enable TF when returning to user mode).
940 */
941 if (condition & DR_STEP) {
942 if (!user_mode(regs))
943 goto clear_TF_reenable;
944 }
945
946 /* Ok, finally something we can handle */
947 tsk->thread.trap_no = 1;
948 tsk->thread.error_code = error_code;
949 info.si_signo = SIGTRAP;
950 info.si_errno = 0;
951 info.si_code = TRAP_BRKPT;
952 info.si_addr = user_mode(regs) ? (void __user *)regs->ip : NULL;
953 force_sig_info(SIGTRAP, &info, tsk);
954
955 clear_dr7:
956 set_debugreg(0, 7);
957 preempt_conditional_cli(regs);
958 return;
959
960 clear_TF_reenable:
961 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
962 regs->flags &= ~X86_EFLAGS_TF;
963 preempt_conditional_cli(regs);
964 return;
965 }
966
967 static int kernel_math_error(struct pt_regs *regs, const char *str, int trapnr)
968 {
969 if (fixup_exception(regs))
970 return 1;
971
972 notify_die(DIE_GPF, str, regs, 0, trapnr, SIGFPE);
973 /* Illegal floating point operation in the kernel */
974 current->thread.trap_no = trapnr;
975 die(str, regs, 0);
976 return 0;
977 }
978
979 /*
980 * Note that we play around with the 'TS' bit in an attempt to get
981 * the correct behaviour even in the presence of the asynchronous
982 * IRQ13 behaviour
983 */
984 asmlinkage void do_coprocessor_error(struct pt_regs *regs)
985 {
986 void __user *ip = (void __user *)(regs->ip);
987 struct task_struct *task;
988 siginfo_t info;
989 unsigned short cwd, swd;
990
991 conditional_sti(regs);
992 if (!user_mode(regs) &&
993 kernel_math_error(regs, "kernel x87 math error", 16))
994 return;
995
996 /*
997 * Save the info for the exception handler and clear the error.
998 */
999 task = current;
1000 save_init_fpu(task);
1001 task->thread.trap_no = 16;
1002 task->thread.error_code = 0;
1003 info.si_signo = SIGFPE;
1004 info.si_errno = 0;
1005 info.si_code = __SI_FAULT;
1006 info.si_addr = ip;
1007 /*
1008 * (~cwd & swd) will mask out exceptions that are not set to unmasked
1009 * status. 0x3f is the exception bits in these regs, 0x200 is the
1010 * C1 reg you need in case of a stack fault, 0x040 is the stack
1011 * fault bit. We should only be taking one exception at a time,
1012 * so if this combination doesn't produce any single exception,
1013 * then we have a bad program that isn't synchronizing its FPU usage
1014 * and it will suffer the consequences since we won't be able to
1015 * fully reproduce the context of the exception
1016 */
1017 cwd = get_fpu_cwd(task);
1018 swd = get_fpu_swd(task);
1019 switch (swd & ~cwd & 0x3f) {
1020 case 0x000: /* No unmasked exception */
1021 default: /* Multiple exceptions */
1022 break;
1023 case 0x001: /* Invalid Op */
1024 /*
1025 * swd & 0x240 == 0x040: Stack Underflow
1026 * swd & 0x240 == 0x240: Stack Overflow
1027 * User must clear the SF bit (0x40) if set
1028 */
1029 info.si_code = FPE_FLTINV;
1030 break;
1031 case 0x002: /* Denormalize */
1032 case 0x010: /* Underflow */
1033 info.si_code = FPE_FLTUND;
1034 break;
1035 case 0x004: /* Zero Divide */
1036 info.si_code = FPE_FLTDIV;
1037 break;
1038 case 0x008: /* Overflow */
1039 info.si_code = FPE_FLTOVF;
1040 break;
1041 case 0x020: /* Precision */
1042 info.si_code = FPE_FLTRES;
1043 break;
1044 }
1045 force_sig_info(SIGFPE, &info, task);
1046 }
1047
1048 asmlinkage void bad_intr(void)
1049 {
1050 printk("bad interrupt");
1051 }
1052
1053 asmlinkage void do_simd_coprocessor_error(struct pt_regs *regs)
1054 {
1055 void __user *ip = (void __user *)(regs->ip);
1056 struct task_struct *task;
1057 siginfo_t info;
1058 unsigned short mxcsr;
1059
1060 conditional_sti(regs);
1061 if (!user_mode(regs) &&
1062 kernel_math_error(regs, "kernel simd math error", 19))
1063 return;
1064
1065 /*
1066 * Save the info for the exception handler and clear the error.
1067 */
1068 task = current;
1069 save_init_fpu(task);
1070 task->thread.trap_no = 19;
1071 task->thread.error_code = 0;
1072 info.si_signo = SIGFPE;
1073 info.si_errno = 0;
1074 info.si_code = __SI_FAULT;
1075 info.si_addr = ip;
1076 /*
1077 * The SIMD FPU exceptions are handled a little differently, as there
1078 * is only a single status/control register. Thus, to determine which
1079 * unmasked exception was caught we must mask the exception mask bits
1080 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
1081 */
1082 mxcsr = get_fpu_mxcsr(task);
1083 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
1084 case 0x000:
1085 default:
1086 break;
1087 case 0x001: /* Invalid Op */
1088 info.si_code = FPE_FLTINV;
1089 break;
1090 case 0x002: /* Denormalize */
1091 case 0x010: /* Underflow */
1092 info.si_code = FPE_FLTUND;
1093 break;
1094 case 0x004: /* Zero Divide */
1095 info.si_code = FPE_FLTDIV;
1096 break;
1097 case 0x008: /* Overflow */
1098 info.si_code = FPE_FLTOVF;
1099 break;
1100 case 0x020: /* Precision */
1101 info.si_code = FPE_FLTRES;
1102 break;
1103 }
1104 force_sig_info(SIGFPE, &info, task);
1105 }
1106
1107 asmlinkage void do_spurious_interrupt_bug(struct pt_regs * regs)
1108 {
1109 }
1110
1111 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
1112 {
1113 }
1114
1115 asmlinkage void __attribute__((weak)) mce_threshold_interrupt(void)
1116 {
1117 }
1118
1119 /*
1120 * 'math_state_restore()' saves the current math information in the
1121 * old math state array, and gets the new ones from the current task
1122 *
1123 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1124 * Don't touch unless you *really* know how it works.
1125 */
1126 asmlinkage void math_state_restore(void)
1127 {
1128 struct task_struct *me = current;
1129
1130 if (!used_math()) {
1131 local_irq_enable();
1132 /*
1133 * does a slab alloc which can sleep
1134 */
1135 if (init_fpu(me)) {
1136 /*
1137 * ran out of memory!
1138 */
1139 do_group_exit(SIGKILL);
1140 return;
1141 }
1142 local_irq_disable();
1143 }
1144
1145 clts(); /* Allow maths ops (or we recurse) */
1146 restore_fpu_checking(&me->thread.xstate->fxsave);
1147 task_thread_info(me)->status |= TS_USEDFPU;
1148 me->fpu_counter++;
1149 }
1150 EXPORT_SYMBOL_GPL(math_state_restore);
1151
1152 void __init trap_init(void)
1153 {
1154 set_intr_gate(0, &divide_error);
1155 set_intr_gate_ist(1, &debug, DEBUG_STACK);
1156 set_intr_gate_ist(2, &nmi, NMI_STACK);
1157 set_system_gate_ist(3, &int3, DEBUG_STACK); /* int3 can be called from all */
1158 set_system_gate(4, &overflow); /* int4 can be called from all */
1159 set_intr_gate(5, &bounds);
1160 set_intr_gate(6, &invalid_op);
1161 set_intr_gate(7, &device_not_available);
1162 set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK);
1163 set_intr_gate(9, &coprocessor_segment_overrun);
1164 set_intr_gate(10, &invalid_TSS);
1165 set_intr_gate(11, &segment_not_present);
1166 set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK);
1167 set_intr_gate(13, &general_protection);
1168 set_intr_gate(14, &page_fault);
1169 set_intr_gate(15, &spurious_interrupt_bug);
1170 set_intr_gate(16, &coprocessor_error);
1171 set_intr_gate(17, &alignment_check);
1172 #ifdef CONFIG_X86_MCE
1173 set_intr_gate_ist(18, &machine_check, MCE_STACK);
1174 #endif
1175 set_intr_gate(19, &simd_coprocessor_error);
1176
1177 #ifdef CONFIG_IA32_EMULATION
1178 set_system_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
1179 #endif
1180 /*
1181 * initialize the per thread extended state:
1182 */
1183 init_thread_xstate();
1184 /*
1185 * Should be a barrier for any external CPU state:
1186 */
1187 cpu_init();
1188 }
1189
1190 static int __init oops_setup(char *s)
1191 {
1192 if (!s)
1193 return -EINVAL;
1194 if (!strcmp(s, "panic"))
1195 panic_on_oops = 1;
1196 return 0;
1197 }
1198 early_param("oops", oops_setup);
1199
1200 static int __init kstack_setup(char *s)
1201 {
1202 if (!s)
1203 return -EINVAL;
1204 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1205 return 0;
1206 }
1207 early_param("kstack", kstack_setup);
1208
1209 static int __init code_bytes_setup(char *s)
1210 {
1211 code_bytes = simple_strtoul(s, NULL, 0);
1212 if (code_bytes > 8192)
1213 code_bytes = 8192;
1214
1215 return 1;
1216 }
1217 __setup("code_bytes=", code_bytes_setup);
This page took 0.054846 seconds and 5 git commands to generate.