Merge tag 'remoteproc-3.11-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / arch / x86 / kernel / tsc.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/module.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14
15 #include <asm/hpet.h>
16 #include <asm/timer.h>
17 #include <asm/vgtod.h>
18 #include <asm/time.h>
19 #include <asm/delay.h>
20 #include <asm/hypervisor.h>
21 #include <asm/nmi.h>
22 #include <asm/x86_init.h>
23
24 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
25 EXPORT_SYMBOL(cpu_khz);
26
27 unsigned int __read_mostly tsc_khz;
28 EXPORT_SYMBOL(tsc_khz);
29
30 /*
31 * TSC can be unstable due to cpufreq or due to unsynced TSCs
32 */
33 static int __read_mostly tsc_unstable;
34
35 /* native_sched_clock() is called before tsc_init(), so
36 we must start with the TSC soft disabled to prevent
37 erroneous rdtsc usage on !cpu_has_tsc processors */
38 static int __read_mostly tsc_disabled = -1;
39
40 int tsc_clocksource_reliable;
41 /*
42 * Scheduler clock - returns current time in nanosec units.
43 */
44 u64 native_sched_clock(void)
45 {
46 u64 this_offset;
47
48 /*
49 * Fall back to jiffies if there's no TSC available:
50 * ( But note that we still use it if the TSC is marked
51 * unstable. We do this because unlike Time Of Day,
52 * the scheduler clock tolerates small errors and it's
53 * very important for it to be as fast as the platform
54 * can achieve it. )
55 */
56 if (unlikely(tsc_disabled)) {
57 /* No locking but a rare wrong value is not a big deal: */
58 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
59 }
60
61 /* read the Time Stamp Counter: */
62 rdtscll(this_offset);
63
64 /* return the value in ns */
65 return __cycles_2_ns(this_offset);
66 }
67
68 /* We need to define a real function for sched_clock, to override the
69 weak default version */
70 #ifdef CONFIG_PARAVIRT
71 unsigned long long sched_clock(void)
72 {
73 return paravirt_sched_clock();
74 }
75 #else
76 unsigned long long
77 sched_clock(void) __attribute__((alias("native_sched_clock")));
78 #endif
79
80 unsigned long long native_read_tsc(void)
81 {
82 return __native_read_tsc();
83 }
84 EXPORT_SYMBOL(native_read_tsc);
85
86 int check_tsc_unstable(void)
87 {
88 return tsc_unstable;
89 }
90 EXPORT_SYMBOL_GPL(check_tsc_unstable);
91
92 #ifdef CONFIG_X86_TSC
93 int __init notsc_setup(char *str)
94 {
95 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
96 tsc_disabled = 1;
97 return 1;
98 }
99 #else
100 /*
101 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
102 * in cpu/common.c
103 */
104 int __init notsc_setup(char *str)
105 {
106 setup_clear_cpu_cap(X86_FEATURE_TSC);
107 return 1;
108 }
109 #endif
110
111 __setup("notsc", notsc_setup);
112
113 static int no_sched_irq_time;
114
115 static int __init tsc_setup(char *str)
116 {
117 if (!strcmp(str, "reliable"))
118 tsc_clocksource_reliable = 1;
119 if (!strncmp(str, "noirqtime", 9))
120 no_sched_irq_time = 1;
121 return 1;
122 }
123
124 __setup("tsc=", tsc_setup);
125
126 #define MAX_RETRIES 5
127 #define SMI_TRESHOLD 50000
128
129 /*
130 * Read TSC and the reference counters. Take care of SMI disturbance
131 */
132 static u64 tsc_read_refs(u64 *p, int hpet)
133 {
134 u64 t1, t2;
135 int i;
136
137 for (i = 0; i < MAX_RETRIES; i++) {
138 t1 = get_cycles();
139 if (hpet)
140 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
141 else
142 *p = acpi_pm_read_early();
143 t2 = get_cycles();
144 if ((t2 - t1) < SMI_TRESHOLD)
145 return t2;
146 }
147 return ULLONG_MAX;
148 }
149
150 /*
151 * Calculate the TSC frequency from HPET reference
152 */
153 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
154 {
155 u64 tmp;
156
157 if (hpet2 < hpet1)
158 hpet2 += 0x100000000ULL;
159 hpet2 -= hpet1;
160 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
161 do_div(tmp, 1000000);
162 do_div(deltatsc, tmp);
163
164 return (unsigned long) deltatsc;
165 }
166
167 /*
168 * Calculate the TSC frequency from PMTimer reference
169 */
170 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
171 {
172 u64 tmp;
173
174 if (!pm1 && !pm2)
175 return ULONG_MAX;
176
177 if (pm2 < pm1)
178 pm2 += (u64)ACPI_PM_OVRRUN;
179 pm2 -= pm1;
180 tmp = pm2 * 1000000000LL;
181 do_div(tmp, PMTMR_TICKS_PER_SEC);
182 do_div(deltatsc, tmp);
183
184 return (unsigned long) deltatsc;
185 }
186
187 #define CAL_MS 10
188 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
189 #define CAL_PIT_LOOPS 1000
190
191 #define CAL2_MS 50
192 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
193 #define CAL2_PIT_LOOPS 5000
194
195
196 /*
197 * Try to calibrate the TSC against the Programmable
198 * Interrupt Timer and return the frequency of the TSC
199 * in kHz.
200 *
201 * Return ULONG_MAX on failure to calibrate.
202 */
203 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
204 {
205 u64 tsc, t1, t2, delta;
206 unsigned long tscmin, tscmax;
207 int pitcnt;
208
209 /* Set the Gate high, disable speaker */
210 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
211
212 /*
213 * Setup CTC channel 2* for mode 0, (interrupt on terminal
214 * count mode), binary count. Set the latch register to 50ms
215 * (LSB then MSB) to begin countdown.
216 */
217 outb(0xb0, 0x43);
218 outb(latch & 0xff, 0x42);
219 outb(latch >> 8, 0x42);
220
221 tsc = t1 = t2 = get_cycles();
222
223 pitcnt = 0;
224 tscmax = 0;
225 tscmin = ULONG_MAX;
226 while ((inb(0x61) & 0x20) == 0) {
227 t2 = get_cycles();
228 delta = t2 - tsc;
229 tsc = t2;
230 if ((unsigned long) delta < tscmin)
231 tscmin = (unsigned int) delta;
232 if ((unsigned long) delta > tscmax)
233 tscmax = (unsigned int) delta;
234 pitcnt++;
235 }
236
237 /*
238 * Sanity checks:
239 *
240 * If we were not able to read the PIT more than loopmin
241 * times, then we have been hit by a massive SMI
242 *
243 * If the maximum is 10 times larger than the minimum,
244 * then we got hit by an SMI as well.
245 */
246 if (pitcnt < loopmin || tscmax > 10 * tscmin)
247 return ULONG_MAX;
248
249 /* Calculate the PIT value */
250 delta = t2 - t1;
251 do_div(delta, ms);
252 return delta;
253 }
254
255 /*
256 * This reads the current MSB of the PIT counter, and
257 * checks if we are running on sufficiently fast and
258 * non-virtualized hardware.
259 *
260 * Our expectations are:
261 *
262 * - the PIT is running at roughly 1.19MHz
263 *
264 * - each IO is going to take about 1us on real hardware,
265 * but we allow it to be much faster (by a factor of 10) or
266 * _slightly_ slower (ie we allow up to a 2us read+counter
267 * update - anything else implies a unacceptably slow CPU
268 * or PIT for the fast calibration to work.
269 *
270 * - with 256 PIT ticks to read the value, we have 214us to
271 * see the same MSB (and overhead like doing a single TSC
272 * read per MSB value etc).
273 *
274 * - We're doing 2 reads per loop (LSB, MSB), and we expect
275 * them each to take about a microsecond on real hardware.
276 * So we expect a count value of around 100. But we'll be
277 * generous, and accept anything over 50.
278 *
279 * - if the PIT is stuck, and we see *many* more reads, we
280 * return early (and the next caller of pit_expect_msb()
281 * then consider it a failure when they don't see the
282 * next expected value).
283 *
284 * These expectations mean that we know that we have seen the
285 * transition from one expected value to another with a fairly
286 * high accuracy, and we didn't miss any events. We can thus
287 * use the TSC value at the transitions to calculate a pretty
288 * good value for the TSC frequencty.
289 */
290 static inline int pit_verify_msb(unsigned char val)
291 {
292 /* Ignore LSB */
293 inb(0x42);
294 return inb(0x42) == val;
295 }
296
297 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
298 {
299 int count;
300 u64 tsc = 0, prev_tsc = 0;
301
302 for (count = 0; count < 50000; count++) {
303 if (!pit_verify_msb(val))
304 break;
305 prev_tsc = tsc;
306 tsc = get_cycles();
307 }
308 *deltap = get_cycles() - prev_tsc;
309 *tscp = tsc;
310
311 /*
312 * We require _some_ success, but the quality control
313 * will be based on the error terms on the TSC values.
314 */
315 return count > 5;
316 }
317
318 /*
319 * How many MSB values do we want to see? We aim for
320 * a maximum error rate of 500ppm (in practice the
321 * real error is much smaller), but refuse to spend
322 * more than 50ms on it.
323 */
324 #define MAX_QUICK_PIT_MS 50
325 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
326
327 static unsigned long quick_pit_calibrate(void)
328 {
329 int i;
330 u64 tsc, delta;
331 unsigned long d1, d2;
332
333 /* Set the Gate high, disable speaker */
334 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
335
336 /*
337 * Counter 2, mode 0 (one-shot), binary count
338 *
339 * NOTE! Mode 2 decrements by two (and then the
340 * output is flipped each time, giving the same
341 * final output frequency as a decrement-by-one),
342 * so mode 0 is much better when looking at the
343 * individual counts.
344 */
345 outb(0xb0, 0x43);
346
347 /* Start at 0xffff */
348 outb(0xff, 0x42);
349 outb(0xff, 0x42);
350
351 /*
352 * The PIT starts counting at the next edge, so we
353 * need to delay for a microsecond. The easiest way
354 * to do that is to just read back the 16-bit counter
355 * once from the PIT.
356 */
357 pit_verify_msb(0);
358
359 if (pit_expect_msb(0xff, &tsc, &d1)) {
360 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
361 if (!pit_expect_msb(0xff-i, &delta, &d2))
362 break;
363
364 /*
365 * Iterate until the error is less than 500 ppm
366 */
367 delta -= tsc;
368 if (d1+d2 >= delta >> 11)
369 continue;
370
371 /*
372 * Check the PIT one more time to verify that
373 * all TSC reads were stable wrt the PIT.
374 *
375 * This also guarantees serialization of the
376 * last cycle read ('d2') in pit_expect_msb.
377 */
378 if (!pit_verify_msb(0xfe - i))
379 break;
380 goto success;
381 }
382 }
383 pr_err("Fast TSC calibration failed\n");
384 return 0;
385
386 success:
387 /*
388 * Ok, if we get here, then we've seen the
389 * MSB of the PIT decrement 'i' times, and the
390 * error has shrunk to less than 500 ppm.
391 *
392 * As a result, we can depend on there not being
393 * any odd delays anywhere, and the TSC reads are
394 * reliable (within the error).
395 *
396 * kHz = ticks / time-in-seconds / 1000;
397 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
398 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
399 */
400 delta *= PIT_TICK_RATE;
401 do_div(delta, i*256*1000);
402 pr_info("Fast TSC calibration using PIT\n");
403 return delta;
404 }
405
406 /**
407 * native_calibrate_tsc - calibrate the tsc on boot
408 */
409 unsigned long native_calibrate_tsc(void)
410 {
411 u64 tsc1, tsc2, delta, ref1, ref2;
412 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
413 unsigned long flags, latch, ms, fast_calibrate;
414 int hpet = is_hpet_enabled(), i, loopmin;
415
416 local_irq_save(flags);
417 fast_calibrate = quick_pit_calibrate();
418 local_irq_restore(flags);
419 if (fast_calibrate)
420 return fast_calibrate;
421
422 /*
423 * Run 5 calibration loops to get the lowest frequency value
424 * (the best estimate). We use two different calibration modes
425 * here:
426 *
427 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
428 * load a timeout of 50ms. We read the time right after we
429 * started the timer and wait until the PIT count down reaches
430 * zero. In each wait loop iteration we read the TSC and check
431 * the delta to the previous read. We keep track of the min
432 * and max values of that delta. The delta is mostly defined
433 * by the IO time of the PIT access, so we can detect when a
434 * SMI/SMM disturbance happened between the two reads. If the
435 * maximum time is significantly larger than the minimum time,
436 * then we discard the result and have another try.
437 *
438 * 2) Reference counter. If available we use the HPET or the
439 * PMTIMER as a reference to check the sanity of that value.
440 * We use separate TSC readouts and check inside of the
441 * reference read for a SMI/SMM disturbance. We dicard
442 * disturbed values here as well. We do that around the PIT
443 * calibration delay loop as we have to wait for a certain
444 * amount of time anyway.
445 */
446
447 /* Preset PIT loop values */
448 latch = CAL_LATCH;
449 ms = CAL_MS;
450 loopmin = CAL_PIT_LOOPS;
451
452 for (i = 0; i < 3; i++) {
453 unsigned long tsc_pit_khz;
454
455 /*
456 * Read the start value and the reference count of
457 * hpet/pmtimer when available. Then do the PIT
458 * calibration, which will take at least 50ms, and
459 * read the end value.
460 */
461 local_irq_save(flags);
462 tsc1 = tsc_read_refs(&ref1, hpet);
463 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
464 tsc2 = tsc_read_refs(&ref2, hpet);
465 local_irq_restore(flags);
466
467 /* Pick the lowest PIT TSC calibration so far */
468 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
469
470 /* hpet or pmtimer available ? */
471 if (ref1 == ref2)
472 continue;
473
474 /* Check, whether the sampling was disturbed by an SMI */
475 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
476 continue;
477
478 tsc2 = (tsc2 - tsc1) * 1000000LL;
479 if (hpet)
480 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
481 else
482 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
483
484 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
485
486 /* Check the reference deviation */
487 delta = ((u64) tsc_pit_min) * 100;
488 do_div(delta, tsc_ref_min);
489
490 /*
491 * If both calibration results are inside a 10% window
492 * then we can be sure, that the calibration
493 * succeeded. We break out of the loop right away. We
494 * use the reference value, as it is more precise.
495 */
496 if (delta >= 90 && delta <= 110) {
497 pr_info("PIT calibration matches %s. %d loops\n",
498 hpet ? "HPET" : "PMTIMER", i + 1);
499 return tsc_ref_min;
500 }
501
502 /*
503 * Check whether PIT failed more than once. This
504 * happens in virtualized environments. We need to
505 * give the virtual PC a slightly longer timeframe for
506 * the HPET/PMTIMER to make the result precise.
507 */
508 if (i == 1 && tsc_pit_min == ULONG_MAX) {
509 latch = CAL2_LATCH;
510 ms = CAL2_MS;
511 loopmin = CAL2_PIT_LOOPS;
512 }
513 }
514
515 /*
516 * Now check the results.
517 */
518 if (tsc_pit_min == ULONG_MAX) {
519 /* PIT gave no useful value */
520 pr_warn("Unable to calibrate against PIT\n");
521
522 /* We don't have an alternative source, disable TSC */
523 if (!hpet && !ref1 && !ref2) {
524 pr_notice("No reference (HPET/PMTIMER) available\n");
525 return 0;
526 }
527
528 /* The alternative source failed as well, disable TSC */
529 if (tsc_ref_min == ULONG_MAX) {
530 pr_warn("HPET/PMTIMER calibration failed\n");
531 return 0;
532 }
533
534 /* Use the alternative source */
535 pr_info("using %s reference calibration\n",
536 hpet ? "HPET" : "PMTIMER");
537
538 return tsc_ref_min;
539 }
540
541 /* We don't have an alternative source, use the PIT calibration value */
542 if (!hpet && !ref1 && !ref2) {
543 pr_info("Using PIT calibration value\n");
544 return tsc_pit_min;
545 }
546
547 /* The alternative source failed, use the PIT calibration value */
548 if (tsc_ref_min == ULONG_MAX) {
549 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
550 return tsc_pit_min;
551 }
552
553 /*
554 * The calibration values differ too much. In doubt, we use
555 * the PIT value as we know that there are PMTIMERs around
556 * running at double speed. At least we let the user know:
557 */
558 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
559 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
560 pr_info("Using PIT calibration value\n");
561 return tsc_pit_min;
562 }
563
564 int recalibrate_cpu_khz(void)
565 {
566 #ifndef CONFIG_SMP
567 unsigned long cpu_khz_old = cpu_khz;
568
569 if (cpu_has_tsc) {
570 tsc_khz = x86_platform.calibrate_tsc();
571 cpu_khz = tsc_khz;
572 cpu_data(0).loops_per_jiffy =
573 cpufreq_scale(cpu_data(0).loops_per_jiffy,
574 cpu_khz_old, cpu_khz);
575 return 0;
576 } else
577 return -ENODEV;
578 #else
579 return -ENODEV;
580 #endif
581 }
582
583 EXPORT_SYMBOL(recalibrate_cpu_khz);
584
585
586 /* Accelerators for sched_clock()
587 * convert from cycles(64bits) => nanoseconds (64bits)
588 * basic equation:
589 * ns = cycles / (freq / ns_per_sec)
590 * ns = cycles * (ns_per_sec / freq)
591 * ns = cycles * (10^9 / (cpu_khz * 10^3))
592 * ns = cycles * (10^6 / cpu_khz)
593 *
594 * Then we use scaling math (suggested by george@mvista.com) to get:
595 * ns = cycles * (10^6 * SC / cpu_khz) / SC
596 * ns = cycles * cyc2ns_scale / SC
597 *
598 * And since SC is a constant power of two, we can convert the div
599 * into a shift.
600 *
601 * We can use khz divisor instead of mhz to keep a better precision, since
602 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
603 * (mathieu.desnoyers@polymtl.ca)
604 *
605 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
606 */
607
608 DEFINE_PER_CPU(unsigned long, cyc2ns);
609 DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
610
611 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
612 {
613 unsigned long long tsc_now, ns_now, *offset;
614 unsigned long flags, *scale;
615
616 local_irq_save(flags);
617 sched_clock_idle_sleep_event();
618
619 scale = &per_cpu(cyc2ns, cpu);
620 offset = &per_cpu(cyc2ns_offset, cpu);
621
622 rdtscll(tsc_now);
623 ns_now = __cycles_2_ns(tsc_now);
624
625 if (cpu_khz) {
626 *scale = ((NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR) +
627 cpu_khz / 2) / cpu_khz;
628 *offset = ns_now - mult_frac(tsc_now, *scale,
629 (1UL << CYC2NS_SCALE_FACTOR));
630 }
631
632 sched_clock_idle_wakeup_event(0);
633 local_irq_restore(flags);
634 }
635
636 static unsigned long long cyc2ns_suspend;
637
638 void tsc_save_sched_clock_state(void)
639 {
640 if (!sched_clock_stable)
641 return;
642
643 cyc2ns_suspend = sched_clock();
644 }
645
646 /*
647 * Even on processors with invariant TSC, TSC gets reset in some the
648 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
649 * arbitrary value (still sync'd across cpu's) during resume from such sleep
650 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
651 * that sched_clock() continues from the point where it was left off during
652 * suspend.
653 */
654 void tsc_restore_sched_clock_state(void)
655 {
656 unsigned long long offset;
657 unsigned long flags;
658 int cpu;
659
660 if (!sched_clock_stable)
661 return;
662
663 local_irq_save(flags);
664
665 __this_cpu_write(cyc2ns_offset, 0);
666 offset = cyc2ns_suspend - sched_clock();
667
668 for_each_possible_cpu(cpu)
669 per_cpu(cyc2ns_offset, cpu) = offset;
670
671 local_irq_restore(flags);
672 }
673
674 #ifdef CONFIG_CPU_FREQ
675
676 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
677 * changes.
678 *
679 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
680 * not that important because current Opteron setups do not support
681 * scaling on SMP anyroads.
682 *
683 * Should fix up last_tsc too. Currently gettimeofday in the
684 * first tick after the change will be slightly wrong.
685 */
686
687 static unsigned int ref_freq;
688 static unsigned long loops_per_jiffy_ref;
689 static unsigned long tsc_khz_ref;
690
691 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
692 void *data)
693 {
694 struct cpufreq_freqs *freq = data;
695 unsigned long *lpj;
696
697 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
698 return 0;
699
700 lpj = &boot_cpu_data.loops_per_jiffy;
701 #ifdef CONFIG_SMP
702 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
703 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
704 #endif
705
706 if (!ref_freq) {
707 ref_freq = freq->old;
708 loops_per_jiffy_ref = *lpj;
709 tsc_khz_ref = tsc_khz;
710 }
711 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
712 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
713 (val == CPUFREQ_RESUMECHANGE)) {
714 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
715
716 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
717 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
718 mark_tsc_unstable("cpufreq changes");
719 }
720
721 set_cyc2ns_scale(tsc_khz, freq->cpu);
722
723 return 0;
724 }
725
726 static struct notifier_block time_cpufreq_notifier_block = {
727 .notifier_call = time_cpufreq_notifier
728 };
729
730 static int __init cpufreq_tsc(void)
731 {
732 if (!cpu_has_tsc)
733 return 0;
734 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
735 return 0;
736 cpufreq_register_notifier(&time_cpufreq_notifier_block,
737 CPUFREQ_TRANSITION_NOTIFIER);
738 return 0;
739 }
740
741 core_initcall(cpufreq_tsc);
742
743 #endif /* CONFIG_CPU_FREQ */
744
745 /* clocksource code */
746
747 static struct clocksource clocksource_tsc;
748
749 /*
750 * We compare the TSC to the cycle_last value in the clocksource
751 * structure to avoid a nasty time-warp. This can be observed in a
752 * very small window right after one CPU updated cycle_last under
753 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
754 * is smaller than the cycle_last reference value due to a TSC which
755 * is slighty behind. This delta is nowhere else observable, but in
756 * that case it results in a forward time jump in the range of hours
757 * due to the unsigned delta calculation of the time keeping core
758 * code, which is necessary to support wrapping clocksources like pm
759 * timer.
760 */
761 static cycle_t read_tsc(struct clocksource *cs)
762 {
763 cycle_t ret = (cycle_t)get_cycles();
764
765 return ret >= clocksource_tsc.cycle_last ?
766 ret : clocksource_tsc.cycle_last;
767 }
768
769 static void resume_tsc(struct clocksource *cs)
770 {
771 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
772 clocksource_tsc.cycle_last = 0;
773 }
774
775 static struct clocksource clocksource_tsc = {
776 .name = "tsc",
777 .rating = 300,
778 .read = read_tsc,
779 .resume = resume_tsc,
780 .mask = CLOCKSOURCE_MASK(64),
781 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
782 CLOCK_SOURCE_MUST_VERIFY,
783 #ifdef CONFIG_X86_64
784 .archdata = { .vclock_mode = VCLOCK_TSC },
785 #endif
786 };
787
788 void mark_tsc_unstable(char *reason)
789 {
790 if (!tsc_unstable) {
791 tsc_unstable = 1;
792 sched_clock_stable = 0;
793 disable_sched_clock_irqtime();
794 pr_info("Marking TSC unstable due to %s\n", reason);
795 /* Change only the rating, when not registered */
796 if (clocksource_tsc.mult)
797 clocksource_mark_unstable(&clocksource_tsc);
798 else {
799 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
800 clocksource_tsc.rating = 0;
801 }
802 }
803 }
804
805 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
806
807 static void __init check_system_tsc_reliable(void)
808 {
809 #ifdef CONFIG_MGEODE_LX
810 /* RTSC counts during suspend */
811 #define RTSC_SUSP 0x100
812 unsigned long res_low, res_high;
813
814 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
815 /* Geode_LX - the OLPC CPU has a very reliable TSC */
816 if (res_low & RTSC_SUSP)
817 tsc_clocksource_reliable = 1;
818 #endif
819 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
820 tsc_clocksource_reliable = 1;
821 }
822
823 /*
824 * Make an educated guess if the TSC is trustworthy and synchronized
825 * over all CPUs.
826 */
827 __cpuinit int unsynchronized_tsc(void)
828 {
829 if (!cpu_has_tsc || tsc_unstable)
830 return 1;
831
832 #ifdef CONFIG_SMP
833 if (apic_is_clustered_box())
834 return 1;
835 #endif
836
837 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
838 return 0;
839
840 if (tsc_clocksource_reliable)
841 return 0;
842 /*
843 * Intel systems are normally all synchronized.
844 * Exceptions must mark TSC as unstable:
845 */
846 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
847 /* assume multi socket systems are not synchronized: */
848 if (num_possible_cpus() > 1)
849 return 1;
850 }
851
852 return 0;
853 }
854
855
856 static void tsc_refine_calibration_work(struct work_struct *work);
857 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
858 /**
859 * tsc_refine_calibration_work - Further refine tsc freq calibration
860 * @work - ignored.
861 *
862 * This functions uses delayed work over a period of a
863 * second to further refine the TSC freq value. Since this is
864 * timer based, instead of loop based, we don't block the boot
865 * process while this longer calibration is done.
866 *
867 * If there are any calibration anomalies (too many SMIs, etc),
868 * or the refined calibration is off by 1% of the fast early
869 * calibration, we throw out the new calibration and use the
870 * early calibration.
871 */
872 static void tsc_refine_calibration_work(struct work_struct *work)
873 {
874 static u64 tsc_start = -1, ref_start;
875 static int hpet;
876 u64 tsc_stop, ref_stop, delta;
877 unsigned long freq;
878
879 /* Don't bother refining TSC on unstable systems */
880 if (check_tsc_unstable())
881 goto out;
882
883 /*
884 * Since the work is started early in boot, we may be
885 * delayed the first time we expire. So set the workqueue
886 * again once we know timers are working.
887 */
888 if (tsc_start == -1) {
889 /*
890 * Only set hpet once, to avoid mixing hardware
891 * if the hpet becomes enabled later.
892 */
893 hpet = is_hpet_enabled();
894 schedule_delayed_work(&tsc_irqwork, HZ);
895 tsc_start = tsc_read_refs(&ref_start, hpet);
896 return;
897 }
898
899 tsc_stop = tsc_read_refs(&ref_stop, hpet);
900
901 /* hpet or pmtimer available ? */
902 if (ref_start == ref_stop)
903 goto out;
904
905 /* Check, whether the sampling was disturbed by an SMI */
906 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
907 goto out;
908
909 delta = tsc_stop - tsc_start;
910 delta *= 1000000LL;
911 if (hpet)
912 freq = calc_hpet_ref(delta, ref_start, ref_stop);
913 else
914 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
915
916 /* Make sure we're within 1% */
917 if (abs(tsc_khz - freq) > tsc_khz/100)
918 goto out;
919
920 tsc_khz = freq;
921 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
922 (unsigned long)tsc_khz / 1000,
923 (unsigned long)tsc_khz % 1000);
924
925 out:
926 clocksource_register_khz(&clocksource_tsc, tsc_khz);
927 }
928
929
930 static int __init init_tsc_clocksource(void)
931 {
932 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
933 return 0;
934
935 if (tsc_clocksource_reliable)
936 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
937 /* lower the rating if we already know its unstable: */
938 if (check_tsc_unstable()) {
939 clocksource_tsc.rating = 0;
940 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
941 }
942
943 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
944 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
945
946 /*
947 * Trust the results of the earlier calibration on systems
948 * exporting a reliable TSC.
949 */
950 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
951 clocksource_register_khz(&clocksource_tsc, tsc_khz);
952 return 0;
953 }
954
955 schedule_delayed_work(&tsc_irqwork, 0);
956 return 0;
957 }
958 /*
959 * We use device_initcall here, to ensure we run after the hpet
960 * is fully initialized, which may occur at fs_initcall time.
961 */
962 device_initcall(init_tsc_clocksource);
963
964 void __init tsc_init(void)
965 {
966 u64 lpj;
967 int cpu;
968
969 x86_init.timers.tsc_pre_init();
970
971 if (!cpu_has_tsc)
972 return;
973
974 tsc_khz = x86_platform.calibrate_tsc();
975 cpu_khz = tsc_khz;
976
977 if (!tsc_khz) {
978 mark_tsc_unstable("could not calculate TSC khz");
979 return;
980 }
981
982 pr_info("Detected %lu.%03lu MHz processor\n",
983 (unsigned long)cpu_khz / 1000,
984 (unsigned long)cpu_khz % 1000);
985
986 /*
987 * Secondary CPUs do not run through tsc_init(), so set up
988 * all the scale factors for all CPUs, assuming the same
989 * speed as the bootup CPU. (cpufreq notifiers will fix this
990 * up if their speed diverges)
991 */
992 for_each_possible_cpu(cpu)
993 set_cyc2ns_scale(cpu_khz, cpu);
994
995 if (tsc_disabled > 0)
996 return;
997
998 /* now allow native_sched_clock() to use rdtsc */
999 tsc_disabled = 0;
1000
1001 if (!no_sched_irq_time)
1002 enable_sched_clock_irqtime();
1003
1004 lpj = ((u64)tsc_khz * 1000);
1005 do_div(lpj, HZ);
1006 lpj_fine = lpj;
1007
1008 use_tsc_delay();
1009
1010 if (unsynchronized_tsc())
1011 mark_tsc_unstable("TSCs unsynchronized");
1012
1013 check_system_tsc_reliable();
1014 }
1015
1016 #ifdef CONFIG_SMP
1017 /*
1018 * If we have a constant TSC and are using the TSC for the delay loop,
1019 * we can skip clock calibration if another cpu in the same socket has already
1020 * been calibrated. This assumes that CONSTANT_TSC applies to all
1021 * cpus in the socket - this should be a safe assumption.
1022 */
1023 unsigned long __cpuinit calibrate_delay_is_known(void)
1024 {
1025 int i, cpu = smp_processor_id();
1026
1027 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1028 return 0;
1029
1030 for_each_online_cpu(i)
1031 if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1032 return cpu_data(i).loops_per_jiffy;
1033 return 0;
1034 }
1035 #endif
This page took 0.053987 seconds and 5 git commands to generate.