KVM: i8254: remove pit and kvm from kvm_kpit_state
[deliverable/linux.git] / arch / x86 / kvm / i8254.c
1 /*
2 * 8253/8254 interval timer emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 *
28 * Authors:
29 * Sheng Yang <sheng.yang@intel.com>
30 * Based on QEMU and Xen.
31 */
32
33 #define pr_fmt(fmt) "pit: " fmt
34
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37
38 #include "ioapic.h"
39 #include "irq.h"
40 #include "i8254.h"
41 #include "x86.h"
42
43 #ifndef CONFIG_X86_64
44 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
45 #else
46 #define mod_64(x, y) ((x) % (y))
47 #endif
48
49 #define RW_STATE_LSB 1
50 #define RW_STATE_MSB 2
51 #define RW_STATE_WORD0 3
52 #define RW_STATE_WORD1 4
53
54 /* Compute with 96 bit intermediate result: (a*b)/c */
55 static u64 muldiv64(u64 a, u32 b, u32 c)
56 {
57 union {
58 u64 ll;
59 struct {
60 u32 low, high;
61 } l;
62 } u, res;
63 u64 rl, rh;
64
65 u.ll = a;
66 rl = (u64)u.l.low * (u64)b;
67 rh = (u64)u.l.high * (u64)b;
68 rh += (rl >> 32);
69 res.l.high = div64_u64(rh, c);
70 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
71 return res.ll;
72 }
73
74 static void pit_set_gate(struct kvm_pit *pit, int channel, u32 val)
75 {
76 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
77
78 switch (c->mode) {
79 default:
80 case 0:
81 case 4:
82 /* XXX: just disable/enable counting */
83 break;
84 case 1:
85 case 2:
86 case 3:
87 case 5:
88 /* Restart counting on rising edge. */
89 if (c->gate < val)
90 c->count_load_time = ktime_get();
91 break;
92 }
93
94 c->gate = val;
95 }
96
97 static int pit_get_gate(struct kvm_pit *pit, int channel)
98 {
99 return pit->pit_state.channels[channel].gate;
100 }
101
102 static s64 __kpit_elapsed(struct kvm_pit *pit)
103 {
104 s64 elapsed;
105 ktime_t remaining;
106 struct kvm_kpit_state *ps = &pit->pit_state;
107
108 if (!ps->period)
109 return 0;
110
111 /*
112 * The Counter does not stop when it reaches zero. In
113 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
114 * the highest count, either FFFF hex for binary counting
115 * or 9999 for BCD counting, and continues counting.
116 * Modes 2 and 3 are periodic; the Counter reloads
117 * itself with the initial count and continues counting
118 * from there.
119 */
120 remaining = hrtimer_get_remaining(&ps->timer);
121 elapsed = ps->period - ktime_to_ns(remaining);
122
123 return elapsed;
124 }
125
126 static s64 kpit_elapsed(struct kvm_pit *pit, struct kvm_kpit_channel_state *c,
127 int channel)
128 {
129 if (channel == 0)
130 return __kpit_elapsed(pit);
131
132 return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
133 }
134
135 static int pit_get_count(struct kvm_pit *pit, int channel)
136 {
137 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
138 s64 d, t;
139 int counter;
140
141 t = kpit_elapsed(pit, c, channel);
142 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
143
144 switch (c->mode) {
145 case 0:
146 case 1:
147 case 4:
148 case 5:
149 counter = (c->count - d) & 0xffff;
150 break;
151 case 3:
152 /* XXX: may be incorrect for odd counts */
153 counter = c->count - (mod_64((2 * d), c->count));
154 break;
155 default:
156 counter = c->count - mod_64(d, c->count);
157 break;
158 }
159 return counter;
160 }
161
162 static int pit_get_out(struct kvm_pit *pit, int channel)
163 {
164 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
165 s64 d, t;
166 int out;
167
168 t = kpit_elapsed(pit, c, channel);
169 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
170
171 switch (c->mode) {
172 default:
173 case 0:
174 out = (d >= c->count);
175 break;
176 case 1:
177 out = (d < c->count);
178 break;
179 case 2:
180 out = ((mod_64(d, c->count) == 0) && (d != 0));
181 break;
182 case 3:
183 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
184 break;
185 case 4:
186 case 5:
187 out = (d == c->count);
188 break;
189 }
190
191 return out;
192 }
193
194 static void pit_latch_count(struct kvm_pit *pit, int channel)
195 {
196 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
197
198 if (!c->count_latched) {
199 c->latched_count = pit_get_count(pit, channel);
200 c->count_latched = c->rw_mode;
201 }
202 }
203
204 static void pit_latch_status(struct kvm_pit *pit, int channel)
205 {
206 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
207
208 if (!c->status_latched) {
209 /* TODO: Return NULL COUNT (bit 6). */
210 c->status = ((pit_get_out(pit, channel) << 7) |
211 (c->rw_mode << 4) |
212 (c->mode << 1) |
213 c->bcd);
214 c->status_latched = 1;
215 }
216 }
217
218 static inline struct kvm_pit *pit_state_to_pit(struct kvm_kpit_state *ps)
219 {
220 return container_of(ps, struct kvm_pit, pit_state);
221 }
222
223 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
224 {
225 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
226 irq_ack_notifier);
227 struct kvm_pit *pit = pit_state_to_pit(ps);
228
229 atomic_set(&ps->irq_ack, 1);
230 /* irq_ack should be set before pending is read. Order accesses with
231 * inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work.
232 */
233 smp_mb();
234 if (atomic_dec_if_positive(&ps->pending) > 0)
235 queue_kthread_work(&pit->worker, &pit->expired);
236 }
237
238 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
239 {
240 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
241 struct hrtimer *timer;
242
243 if (!kvm_vcpu_is_bsp(vcpu) || !pit)
244 return;
245
246 timer = &pit->pit_state.timer;
247 mutex_lock(&pit->pit_state.lock);
248 if (hrtimer_cancel(timer))
249 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
250 mutex_unlock(&pit->pit_state.lock);
251 }
252
253 static void destroy_pit_timer(struct kvm_pit *pit)
254 {
255 hrtimer_cancel(&pit->pit_state.timer);
256 flush_kthread_work(&pit->expired);
257 }
258
259 static void pit_do_work(struct kthread_work *work)
260 {
261 struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
262 struct kvm *kvm = pit->kvm;
263 struct kvm_vcpu *vcpu;
264 int i;
265 struct kvm_kpit_state *ps = &pit->pit_state;
266
267 if (ps->reinject && !atomic_xchg(&ps->irq_ack, 0))
268 return;
269
270 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false);
271 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false);
272
273 /*
274 * Provides NMI watchdog support via Virtual Wire mode.
275 * The route is: PIT -> LVT0 in NMI mode.
276 *
277 * Note: Our Virtual Wire implementation does not follow
278 * the MP specification. We propagate a PIT interrupt to all
279 * VCPUs and only when LVT0 is in NMI mode. The interrupt can
280 * also be simultaneously delivered through PIC and IOAPIC.
281 */
282 if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
283 kvm_for_each_vcpu(i, vcpu, kvm)
284 kvm_apic_nmi_wd_deliver(vcpu);
285 }
286
287 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
288 {
289 struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
290 struct kvm_pit *pt = pit_state_to_pit(ps);
291
292 if (ps->reinject)
293 atomic_inc(&ps->pending);
294
295 queue_kthread_work(&pt->worker, &pt->expired);
296
297 if (ps->is_periodic) {
298 hrtimer_add_expires_ns(&ps->timer, ps->period);
299 return HRTIMER_RESTART;
300 } else
301 return HRTIMER_NORESTART;
302 }
303
304 static inline void kvm_pit_reset_reinject(struct kvm_pit *pit)
305 {
306 atomic_set(&pit->pit_state.pending, 0);
307 atomic_set(&pit->pit_state.irq_ack, 1);
308 }
309
310 void kvm_pit_set_reinject(struct kvm_pit *pit, bool reinject)
311 {
312 struct kvm_kpit_state *ps = &pit->pit_state;
313 struct kvm *kvm = pit->kvm;
314
315 if (ps->reinject == reinject)
316 return;
317
318 if (reinject) {
319 /* The initial state is preserved while ps->reinject == 0. */
320 kvm_pit_reset_reinject(pit);
321 kvm_register_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
322 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
323 } else {
324 kvm_unregister_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
325 kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
326 }
327
328 ps->reinject = reinject;
329 }
330
331 static void create_pit_timer(struct kvm_pit *pit, u32 val, int is_period)
332 {
333 struct kvm_kpit_state *ps = &pit->pit_state;
334 struct kvm *kvm = pit->kvm;
335 s64 interval;
336
337 if (!ioapic_in_kernel(kvm) ||
338 ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
339 return;
340
341 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
342
343 pr_debug("create pit timer, interval is %llu nsec\n", interval);
344
345 /* TODO The new value only affected after the retriggered */
346 hrtimer_cancel(&ps->timer);
347 flush_kthread_work(&pit->expired);
348 ps->period = interval;
349 ps->is_periodic = is_period;
350
351 ps->timer.function = pit_timer_fn;
352
353 kvm_pit_reset_reinject(pit);
354
355 /*
356 * Do not allow the guest to program periodic timers with small
357 * interval, since the hrtimers are not throttled by the host
358 * scheduler.
359 */
360 if (ps->is_periodic) {
361 s64 min_period = min_timer_period_us * 1000LL;
362
363 if (ps->period < min_period) {
364 pr_info_ratelimited(
365 "kvm: requested %lld ns "
366 "i8254 timer period limited to %lld ns\n",
367 ps->period, min_period);
368 ps->period = min_period;
369 }
370 }
371
372 hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
373 HRTIMER_MODE_ABS);
374 }
375
376 static void pit_load_count(struct kvm_pit *pit, int channel, u32 val)
377 {
378 struct kvm_kpit_state *ps = &pit->pit_state;
379
380 pr_debug("load_count val is %d, channel is %d\n", val, channel);
381
382 /*
383 * The largest possible initial count is 0; this is equivalent
384 * to 216 for binary counting and 104 for BCD counting.
385 */
386 if (val == 0)
387 val = 0x10000;
388
389 ps->channels[channel].count = val;
390
391 if (channel != 0) {
392 ps->channels[channel].count_load_time = ktime_get();
393 return;
394 }
395
396 /* Two types of timer
397 * mode 1 is one shot, mode 2 is period, otherwise del timer */
398 switch (ps->channels[0].mode) {
399 case 0:
400 case 1:
401 /* FIXME: enhance mode 4 precision */
402 case 4:
403 create_pit_timer(pit, val, 0);
404 break;
405 case 2:
406 case 3:
407 create_pit_timer(pit, val, 1);
408 break;
409 default:
410 destroy_pit_timer(pit);
411 }
412 }
413
414 void kvm_pit_load_count(struct kvm_pit *pit, int channel, u32 val,
415 int hpet_legacy_start)
416 {
417 u8 saved_mode;
418
419 WARN_ON_ONCE(!mutex_is_locked(&pit->pit_state.lock));
420
421 if (hpet_legacy_start) {
422 /* save existing mode for later reenablement */
423 WARN_ON(channel != 0);
424 saved_mode = pit->pit_state.channels[0].mode;
425 pit->pit_state.channels[0].mode = 0xff; /* disable timer */
426 pit_load_count(pit, channel, val);
427 pit->pit_state.channels[0].mode = saved_mode;
428 } else {
429 pit_load_count(pit, channel, val);
430 }
431 }
432
433 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
434 {
435 return container_of(dev, struct kvm_pit, dev);
436 }
437
438 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
439 {
440 return container_of(dev, struct kvm_pit, speaker_dev);
441 }
442
443 static inline int pit_in_range(gpa_t addr)
444 {
445 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
446 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
447 }
448
449 static int pit_ioport_write(struct kvm_vcpu *vcpu,
450 struct kvm_io_device *this,
451 gpa_t addr, int len, const void *data)
452 {
453 struct kvm_pit *pit = dev_to_pit(this);
454 struct kvm_kpit_state *pit_state = &pit->pit_state;
455 int channel, access;
456 struct kvm_kpit_channel_state *s;
457 u32 val = *(u32 *) data;
458 if (!pit_in_range(addr))
459 return -EOPNOTSUPP;
460
461 val &= 0xff;
462 addr &= KVM_PIT_CHANNEL_MASK;
463
464 mutex_lock(&pit_state->lock);
465
466 if (val != 0)
467 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
468 (unsigned int)addr, len, val);
469
470 if (addr == 3) {
471 channel = val >> 6;
472 if (channel == 3) {
473 /* Read-Back Command. */
474 for (channel = 0; channel < 3; channel++) {
475 s = &pit_state->channels[channel];
476 if (val & (2 << channel)) {
477 if (!(val & 0x20))
478 pit_latch_count(pit, channel);
479 if (!(val & 0x10))
480 pit_latch_status(pit, channel);
481 }
482 }
483 } else {
484 /* Select Counter <channel>. */
485 s = &pit_state->channels[channel];
486 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
487 if (access == 0) {
488 pit_latch_count(pit, channel);
489 } else {
490 s->rw_mode = access;
491 s->read_state = access;
492 s->write_state = access;
493 s->mode = (val >> 1) & 7;
494 if (s->mode > 5)
495 s->mode -= 4;
496 s->bcd = val & 1;
497 }
498 }
499 } else {
500 /* Write Count. */
501 s = &pit_state->channels[addr];
502 switch (s->write_state) {
503 default:
504 case RW_STATE_LSB:
505 pit_load_count(pit, addr, val);
506 break;
507 case RW_STATE_MSB:
508 pit_load_count(pit, addr, val << 8);
509 break;
510 case RW_STATE_WORD0:
511 s->write_latch = val;
512 s->write_state = RW_STATE_WORD1;
513 break;
514 case RW_STATE_WORD1:
515 pit_load_count(pit, addr, s->write_latch | (val << 8));
516 s->write_state = RW_STATE_WORD0;
517 break;
518 }
519 }
520
521 mutex_unlock(&pit_state->lock);
522 return 0;
523 }
524
525 static int pit_ioport_read(struct kvm_vcpu *vcpu,
526 struct kvm_io_device *this,
527 gpa_t addr, int len, void *data)
528 {
529 struct kvm_pit *pit = dev_to_pit(this);
530 struct kvm_kpit_state *pit_state = &pit->pit_state;
531 int ret, count;
532 struct kvm_kpit_channel_state *s;
533 if (!pit_in_range(addr))
534 return -EOPNOTSUPP;
535
536 addr &= KVM_PIT_CHANNEL_MASK;
537 if (addr == 3)
538 return 0;
539
540 s = &pit_state->channels[addr];
541
542 mutex_lock(&pit_state->lock);
543
544 if (s->status_latched) {
545 s->status_latched = 0;
546 ret = s->status;
547 } else if (s->count_latched) {
548 switch (s->count_latched) {
549 default:
550 case RW_STATE_LSB:
551 ret = s->latched_count & 0xff;
552 s->count_latched = 0;
553 break;
554 case RW_STATE_MSB:
555 ret = s->latched_count >> 8;
556 s->count_latched = 0;
557 break;
558 case RW_STATE_WORD0:
559 ret = s->latched_count & 0xff;
560 s->count_latched = RW_STATE_MSB;
561 break;
562 }
563 } else {
564 switch (s->read_state) {
565 default:
566 case RW_STATE_LSB:
567 count = pit_get_count(pit, addr);
568 ret = count & 0xff;
569 break;
570 case RW_STATE_MSB:
571 count = pit_get_count(pit, addr);
572 ret = (count >> 8) & 0xff;
573 break;
574 case RW_STATE_WORD0:
575 count = pit_get_count(pit, addr);
576 ret = count & 0xff;
577 s->read_state = RW_STATE_WORD1;
578 break;
579 case RW_STATE_WORD1:
580 count = pit_get_count(pit, addr);
581 ret = (count >> 8) & 0xff;
582 s->read_state = RW_STATE_WORD0;
583 break;
584 }
585 }
586
587 if (len > sizeof(ret))
588 len = sizeof(ret);
589 memcpy(data, (char *)&ret, len);
590
591 mutex_unlock(&pit_state->lock);
592 return 0;
593 }
594
595 static int speaker_ioport_write(struct kvm_vcpu *vcpu,
596 struct kvm_io_device *this,
597 gpa_t addr, int len, const void *data)
598 {
599 struct kvm_pit *pit = speaker_to_pit(this);
600 struct kvm_kpit_state *pit_state = &pit->pit_state;
601 u32 val = *(u32 *) data;
602 if (addr != KVM_SPEAKER_BASE_ADDRESS)
603 return -EOPNOTSUPP;
604
605 mutex_lock(&pit_state->lock);
606 pit_state->speaker_data_on = (val >> 1) & 1;
607 pit_set_gate(pit, 2, val & 1);
608 mutex_unlock(&pit_state->lock);
609 return 0;
610 }
611
612 static int speaker_ioport_read(struct kvm_vcpu *vcpu,
613 struct kvm_io_device *this,
614 gpa_t addr, int len, void *data)
615 {
616 struct kvm_pit *pit = speaker_to_pit(this);
617 struct kvm_kpit_state *pit_state = &pit->pit_state;
618 unsigned int refresh_clock;
619 int ret;
620 if (addr != KVM_SPEAKER_BASE_ADDRESS)
621 return -EOPNOTSUPP;
622
623 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
624 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
625
626 mutex_lock(&pit_state->lock);
627 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(pit, 2) |
628 (pit_get_out(pit, 2) << 5) | (refresh_clock << 4));
629 if (len > sizeof(ret))
630 len = sizeof(ret);
631 memcpy(data, (char *)&ret, len);
632 mutex_unlock(&pit_state->lock);
633 return 0;
634 }
635
636 static void kvm_pit_reset(struct kvm_pit *pit)
637 {
638 int i;
639 struct kvm_kpit_channel_state *c;
640
641 pit->pit_state.flags = 0;
642 for (i = 0; i < 3; i++) {
643 c = &pit->pit_state.channels[i];
644 c->mode = 0xff;
645 c->gate = (i != 2);
646 pit_load_count(pit, i, 0);
647 }
648
649 kvm_pit_reset_reinject(pit);
650 }
651
652 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
653 {
654 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
655
656 if (!mask)
657 kvm_pit_reset_reinject(pit);
658 }
659
660 static const struct kvm_io_device_ops pit_dev_ops = {
661 .read = pit_ioport_read,
662 .write = pit_ioport_write,
663 };
664
665 static const struct kvm_io_device_ops speaker_dev_ops = {
666 .read = speaker_ioport_read,
667 .write = speaker_ioport_write,
668 };
669
670 /* Caller must hold slots_lock */
671 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
672 {
673 struct kvm_pit *pit;
674 struct kvm_kpit_state *pit_state;
675 struct pid *pid;
676 pid_t pid_nr;
677 int ret;
678
679 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
680 if (!pit)
681 return NULL;
682
683 pit->irq_source_id = kvm_request_irq_source_id(kvm);
684 if (pit->irq_source_id < 0)
685 goto fail_request;
686
687 mutex_init(&pit->pit_state.lock);
688
689 pid = get_pid(task_tgid(current));
690 pid_nr = pid_vnr(pid);
691 put_pid(pid);
692
693 init_kthread_worker(&pit->worker);
694 pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
695 "kvm-pit/%d", pid_nr);
696 if (IS_ERR(pit->worker_task))
697 goto fail_kthread;
698
699 init_kthread_work(&pit->expired, pit_do_work);
700
701 pit->kvm = kvm;
702
703 pit_state = &pit->pit_state;
704 hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
705
706 pit_state->irq_ack_notifier.gsi = 0;
707 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
708 pit->mask_notifier.func = pit_mask_notifer;
709
710 kvm_pit_reset(pit);
711
712 kvm_pit_set_reinject(pit, true);
713
714 kvm_iodevice_init(&pit->dev, &pit_dev_ops);
715 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
716 KVM_PIT_MEM_LENGTH, &pit->dev);
717 if (ret < 0)
718 goto fail_register_pit;
719
720 if (flags & KVM_PIT_SPEAKER_DUMMY) {
721 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
722 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
723 KVM_SPEAKER_BASE_ADDRESS, 4,
724 &pit->speaker_dev);
725 if (ret < 0)
726 goto fail_register_speaker;
727 }
728
729 return pit;
730
731 fail_register_speaker:
732 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
733 fail_register_pit:
734 kvm_pit_set_reinject(pit, false);
735 kthread_stop(pit->worker_task);
736 fail_kthread:
737 kvm_free_irq_source_id(kvm, pit->irq_source_id);
738 fail_request:
739 kfree(pit);
740 return NULL;
741 }
742
743 void kvm_free_pit(struct kvm *kvm)
744 {
745 struct kvm_pit *pit = kvm->arch.vpit;
746
747 if (pit) {
748 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
749 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->speaker_dev);
750 kvm_pit_set_reinject(pit, false);
751 hrtimer_cancel(&pit->pit_state.timer);
752 flush_kthread_work(&pit->expired);
753 kthread_stop(pit->worker_task);
754 kvm_free_irq_source_id(kvm, pit->irq_source_id);
755 kfree(pit);
756 }
757 }
This page took 0.051634 seconds and 6 git commands to generate.