Merge remote-tracking branch 'spi/topic/build' into spi-next
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
51 bool tdp_enabled = false;
52
53 enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
89 #endif
90
91 #define PTE_PREFETCH_NUM 8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK 1
139 #define ACC_WRITE_MASK PT_WRITABLE_MASK
140 #define ACC_USER_MASK PT_USER_MASK
141 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
164 u64 *sptep;
165 int level;
166 unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196 shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 /*
201 * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
202 * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
203 * number.
204 */
205 #define MMIO_SPTE_GEN_LOW_SHIFT 3
206 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
207
208 #define MMIO_GEN_SHIFT 19
209 #define MMIO_GEN_LOW_SHIFT 9
210 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 1)
211 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
212 #define MMIO_MAX_GEN ((1 << MMIO_GEN_SHIFT) - 1)
213
214 static u64 generation_mmio_spte_mask(unsigned int gen)
215 {
216 u64 mask;
217
218 WARN_ON(gen > MMIO_MAX_GEN);
219
220 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
221 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
222 return mask;
223 }
224
225 static unsigned int get_mmio_spte_generation(u64 spte)
226 {
227 unsigned int gen;
228
229 spte &= ~shadow_mmio_mask;
230
231 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
232 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
233 return gen;
234 }
235
236 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
237 {
238 /*
239 * Init kvm generation close to MMIO_MAX_GEN to easily test the
240 * code of handling generation number wrap-around.
241 */
242 return (kvm_memslots(kvm)->generation +
243 MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
244 }
245
246 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
247 unsigned access)
248 {
249 unsigned int gen = kvm_current_mmio_generation(kvm);
250 u64 mask = generation_mmio_spte_mask(gen);
251
252 access &= ACC_WRITE_MASK | ACC_USER_MASK;
253 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
254
255 trace_mark_mmio_spte(sptep, gfn, access, gen);
256 mmu_spte_set(sptep, mask);
257 }
258
259 static bool is_mmio_spte(u64 spte)
260 {
261 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
262 }
263
264 static gfn_t get_mmio_spte_gfn(u64 spte)
265 {
266 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
267 return (spte & ~mask) >> PAGE_SHIFT;
268 }
269
270 static unsigned get_mmio_spte_access(u64 spte)
271 {
272 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
273 return (spte & ~mask) & ~PAGE_MASK;
274 }
275
276 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
277 pfn_t pfn, unsigned access)
278 {
279 if (unlikely(is_noslot_pfn(pfn))) {
280 mark_mmio_spte(kvm, sptep, gfn, access);
281 return true;
282 }
283
284 return false;
285 }
286
287 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
288 {
289 unsigned int kvm_gen, spte_gen;
290
291 kvm_gen = kvm_current_mmio_generation(kvm);
292 spte_gen = get_mmio_spte_generation(spte);
293
294 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
295 return likely(kvm_gen == spte_gen);
296 }
297
298 static inline u64 rsvd_bits(int s, int e)
299 {
300 return ((1ULL << (e - s + 1)) - 1) << s;
301 }
302
303 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
304 u64 dirty_mask, u64 nx_mask, u64 x_mask)
305 {
306 shadow_user_mask = user_mask;
307 shadow_accessed_mask = accessed_mask;
308 shadow_dirty_mask = dirty_mask;
309 shadow_nx_mask = nx_mask;
310 shadow_x_mask = x_mask;
311 }
312 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
313
314 static int is_cpuid_PSE36(void)
315 {
316 return 1;
317 }
318
319 static int is_nx(struct kvm_vcpu *vcpu)
320 {
321 return vcpu->arch.efer & EFER_NX;
322 }
323
324 static int is_shadow_present_pte(u64 pte)
325 {
326 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
327 }
328
329 static int is_large_pte(u64 pte)
330 {
331 return pte & PT_PAGE_SIZE_MASK;
332 }
333
334 static int is_dirty_gpte(unsigned long pte)
335 {
336 return pte & PT_DIRTY_MASK;
337 }
338
339 static int is_rmap_spte(u64 pte)
340 {
341 return is_shadow_present_pte(pte);
342 }
343
344 static int is_last_spte(u64 pte, int level)
345 {
346 if (level == PT_PAGE_TABLE_LEVEL)
347 return 1;
348 if (is_large_pte(pte))
349 return 1;
350 return 0;
351 }
352
353 static pfn_t spte_to_pfn(u64 pte)
354 {
355 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
356 }
357
358 static gfn_t pse36_gfn_delta(u32 gpte)
359 {
360 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
361
362 return (gpte & PT32_DIR_PSE36_MASK) << shift;
363 }
364
365 #ifdef CONFIG_X86_64
366 static void __set_spte(u64 *sptep, u64 spte)
367 {
368 *sptep = spte;
369 }
370
371 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
372 {
373 *sptep = spte;
374 }
375
376 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
377 {
378 return xchg(sptep, spte);
379 }
380
381 static u64 __get_spte_lockless(u64 *sptep)
382 {
383 return ACCESS_ONCE(*sptep);
384 }
385
386 static bool __check_direct_spte_mmio_pf(u64 spte)
387 {
388 /* It is valid if the spte is zapped. */
389 return spte == 0ull;
390 }
391 #else
392 union split_spte {
393 struct {
394 u32 spte_low;
395 u32 spte_high;
396 };
397 u64 spte;
398 };
399
400 static void count_spte_clear(u64 *sptep, u64 spte)
401 {
402 struct kvm_mmu_page *sp = page_header(__pa(sptep));
403
404 if (is_shadow_present_pte(spte))
405 return;
406
407 /* Ensure the spte is completely set before we increase the count */
408 smp_wmb();
409 sp->clear_spte_count++;
410 }
411
412 static void __set_spte(u64 *sptep, u64 spte)
413 {
414 union split_spte *ssptep, sspte;
415
416 ssptep = (union split_spte *)sptep;
417 sspte = (union split_spte)spte;
418
419 ssptep->spte_high = sspte.spte_high;
420
421 /*
422 * If we map the spte from nonpresent to present, We should store
423 * the high bits firstly, then set present bit, so cpu can not
424 * fetch this spte while we are setting the spte.
425 */
426 smp_wmb();
427
428 ssptep->spte_low = sspte.spte_low;
429 }
430
431 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
432 {
433 union split_spte *ssptep, sspte;
434
435 ssptep = (union split_spte *)sptep;
436 sspte = (union split_spte)spte;
437
438 ssptep->spte_low = sspte.spte_low;
439
440 /*
441 * If we map the spte from present to nonpresent, we should clear
442 * present bit firstly to avoid vcpu fetch the old high bits.
443 */
444 smp_wmb();
445
446 ssptep->spte_high = sspte.spte_high;
447 count_spte_clear(sptep, spte);
448 }
449
450 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
451 {
452 union split_spte *ssptep, sspte, orig;
453
454 ssptep = (union split_spte *)sptep;
455 sspte = (union split_spte)spte;
456
457 /* xchg acts as a barrier before the setting of the high bits */
458 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
459 orig.spte_high = ssptep->spte_high;
460 ssptep->spte_high = sspte.spte_high;
461 count_spte_clear(sptep, spte);
462
463 return orig.spte;
464 }
465
466 /*
467 * The idea using the light way get the spte on x86_32 guest is from
468 * gup_get_pte(arch/x86/mm/gup.c).
469 *
470 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
471 * coalesces them and we are running out of the MMU lock. Therefore
472 * we need to protect against in-progress updates of the spte.
473 *
474 * Reading the spte while an update is in progress may get the old value
475 * for the high part of the spte. The race is fine for a present->non-present
476 * change (because the high part of the spte is ignored for non-present spte),
477 * but for a present->present change we must reread the spte.
478 *
479 * All such changes are done in two steps (present->non-present and
480 * non-present->present), hence it is enough to count the number of
481 * present->non-present updates: if it changed while reading the spte,
482 * we might have hit the race. This is done using clear_spte_count.
483 */
484 static u64 __get_spte_lockless(u64 *sptep)
485 {
486 struct kvm_mmu_page *sp = page_header(__pa(sptep));
487 union split_spte spte, *orig = (union split_spte *)sptep;
488 int count;
489
490 retry:
491 count = sp->clear_spte_count;
492 smp_rmb();
493
494 spte.spte_low = orig->spte_low;
495 smp_rmb();
496
497 spte.spte_high = orig->spte_high;
498 smp_rmb();
499
500 if (unlikely(spte.spte_low != orig->spte_low ||
501 count != sp->clear_spte_count))
502 goto retry;
503
504 return spte.spte;
505 }
506
507 static bool __check_direct_spte_mmio_pf(u64 spte)
508 {
509 union split_spte sspte = (union split_spte)spte;
510 u32 high_mmio_mask = shadow_mmio_mask >> 32;
511
512 /* It is valid if the spte is zapped. */
513 if (spte == 0ull)
514 return true;
515
516 /* It is valid if the spte is being zapped. */
517 if (sspte.spte_low == 0ull &&
518 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
519 return true;
520
521 return false;
522 }
523 #endif
524
525 static bool spte_is_locklessly_modifiable(u64 spte)
526 {
527 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
528 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
529 }
530
531 static bool spte_has_volatile_bits(u64 spte)
532 {
533 /*
534 * Always atomicly update spte if it can be updated
535 * out of mmu-lock, it can ensure dirty bit is not lost,
536 * also, it can help us to get a stable is_writable_pte()
537 * to ensure tlb flush is not missed.
538 */
539 if (spte_is_locklessly_modifiable(spte))
540 return true;
541
542 if (!shadow_accessed_mask)
543 return false;
544
545 if (!is_shadow_present_pte(spte))
546 return false;
547
548 if ((spte & shadow_accessed_mask) &&
549 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
550 return false;
551
552 return true;
553 }
554
555 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
556 {
557 return (old_spte & bit_mask) && !(new_spte & bit_mask);
558 }
559
560 /* Rules for using mmu_spte_set:
561 * Set the sptep from nonpresent to present.
562 * Note: the sptep being assigned *must* be either not present
563 * or in a state where the hardware will not attempt to update
564 * the spte.
565 */
566 static void mmu_spte_set(u64 *sptep, u64 new_spte)
567 {
568 WARN_ON(is_shadow_present_pte(*sptep));
569 __set_spte(sptep, new_spte);
570 }
571
572 /* Rules for using mmu_spte_update:
573 * Update the state bits, it means the mapped pfn is not changged.
574 *
575 * Whenever we overwrite a writable spte with a read-only one we
576 * should flush remote TLBs. Otherwise rmap_write_protect
577 * will find a read-only spte, even though the writable spte
578 * might be cached on a CPU's TLB, the return value indicates this
579 * case.
580 */
581 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
582 {
583 u64 old_spte = *sptep;
584 bool ret = false;
585
586 WARN_ON(!is_rmap_spte(new_spte));
587
588 if (!is_shadow_present_pte(old_spte)) {
589 mmu_spte_set(sptep, new_spte);
590 return ret;
591 }
592
593 if (!spte_has_volatile_bits(old_spte))
594 __update_clear_spte_fast(sptep, new_spte);
595 else
596 old_spte = __update_clear_spte_slow(sptep, new_spte);
597
598 /*
599 * For the spte updated out of mmu-lock is safe, since
600 * we always atomicly update it, see the comments in
601 * spte_has_volatile_bits().
602 */
603 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
604 ret = true;
605
606 if (!shadow_accessed_mask)
607 return ret;
608
609 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
610 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
611 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
612 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
613
614 return ret;
615 }
616
617 /*
618 * Rules for using mmu_spte_clear_track_bits:
619 * It sets the sptep from present to nonpresent, and track the
620 * state bits, it is used to clear the last level sptep.
621 */
622 static int mmu_spte_clear_track_bits(u64 *sptep)
623 {
624 pfn_t pfn;
625 u64 old_spte = *sptep;
626
627 if (!spte_has_volatile_bits(old_spte))
628 __update_clear_spte_fast(sptep, 0ull);
629 else
630 old_spte = __update_clear_spte_slow(sptep, 0ull);
631
632 if (!is_rmap_spte(old_spte))
633 return 0;
634
635 pfn = spte_to_pfn(old_spte);
636
637 /*
638 * KVM does not hold the refcount of the page used by
639 * kvm mmu, before reclaiming the page, we should
640 * unmap it from mmu first.
641 */
642 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
643
644 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
645 kvm_set_pfn_accessed(pfn);
646 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
647 kvm_set_pfn_dirty(pfn);
648 return 1;
649 }
650
651 /*
652 * Rules for using mmu_spte_clear_no_track:
653 * Directly clear spte without caring the state bits of sptep,
654 * it is used to set the upper level spte.
655 */
656 static void mmu_spte_clear_no_track(u64 *sptep)
657 {
658 __update_clear_spte_fast(sptep, 0ull);
659 }
660
661 static u64 mmu_spte_get_lockless(u64 *sptep)
662 {
663 return __get_spte_lockless(sptep);
664 }
665
666 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
667 {
668 /*
669 * Prevent page table teardown by making any free-er wait during
670 * kvm_flush_remote_tlbs() IPI to all active vcpus.
671 */
672 local_irq_disable();
673 vcpu->mode = READING_SHADOW_PAGE_TABLES;
674 /*
675 * Make sure a following spte read is not reordered ahead of the write
676 * to vcpu->mode.
677 */
678 smp_mb();
679 }
680
681 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
682 {
683 /*
684 * Make sure the write to vcpu->mode is not reordered in front of
685 * reads to sptes. If it does, kvm_commit_zap_page() can see us
686 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
687 */
688 smp_mb();
689 vcpu->mode = OUTSIDE_GUEST_MODE;
690 local_irq_enable();
691 }
692
693 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
694 struct kmem_cache *base_cache, int min)
695 {
696 void *obj;
697
698 if (cache->nobjs >= min)
699 return 0;
700 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
701 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
702 if (!obj)
703 return -ENOMEM;
704 cache->objects[cache->nobjs++] = obj;
705 }
706 return 0;
707 }
708
709 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
710 {
711 return cache->nobjs;
712 }
713
714 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
715 struct kmem_cache *cache)
716 {
717 while (mc->nobjs)
718 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
719 }
720
721 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
722 int min)
723 {
724 void *page;
725
726 if (cache->nobjs >= min)
727 return 0;
728 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
729 page = (void *)__get_free_page(GFP_KERNEL);
730 if (!page)
731 return -ENOMEM;
732 cache->objects[cache->nobjs++] = page;
733 }
734 return 0;
735 }
736
737 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
738 {
739 while (mc->nobjs)
740 free_page((unsigned long)mc->objects[--mc->nobjs]);
741 }
742
743 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
744 {
745 int r;
746
747 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
748 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
749 if (r)
750 goto out;
751 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
752 if (r)
753 goto out;
754 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
755 mmu_page_header_cache, 4);
756 out:
757 return r;
758 }
759
760 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
761 {
762 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
763 pte_list_desc_cache);
764 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
765 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
766 mmu_page_header_cache);
767 }
768
769 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
770 {
771 void *p;
772
773 BUG_ON(!mc->nobjs);
774 p = mc->objects[--mc->nobjs];
775 return p;
776 }
777
778 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
779 {
780 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
781 }
782
783 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
784 {
785 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
786 }
787
788 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
789 {
790 if (!sp->role.direct)
791 return sp->gfns[index];
792
793 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
794 }
795
796 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
797 {
798 if (sp->role.direct)
799 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
800 else
801 sp->gfns[index] = gfn;
802 }
803
804 /*
805 * Return the pointer to the large page information for a given gfn,
806 * handling slots that are not large page aligned.
807 */
808 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
809 struct kvm_memory_slot *slot,
810 int level)
811 {
812 unsigned long idx;
813
814 idx = gfn_to_index(gfn, slot->base_gfn, level);
815 return &slot->arch.lpage_info[level - 2][idx];
816 }
817
818 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
819 {
820 struct kvm_memory_slot *slot;
821 struct kvm_lpage_info *linfo;
822 int i;
823
824 slot = gfn_to_memslot(kvm, gfn);
825 for (i = PT_DIRECTORY_LEVEL;
826 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
827 linfo = lpage_info_slot(gfn, slot, i);
828 linfo->write_count += 1;
829 }
830 kvm->arch.indirect_shadow_pages++;
831 }
832
833 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
834 {
835 struct kvm_memory_slot *slot;
836 struct kvm_lpage_info *linfo;
837 int i;
838
839 slot = gfn_to_memslot(kvm, gfn);
840 for (i = PT_DIRECTORY_LEVEL;
841 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
842 linfo = lpage_info_slot(gfn, slot, i);
843 linfo->write_count -= 1;
844 WARN_ON(linfo->write_count < 0);
845 }
846 kvm->arch.indirect_shadow_pages--;
847 }
848
849 static int has_wrprotected_page(struct kvm *kvm,
850 gfn_t gfn,
851 int level)
852 {
853 struct kvm_memory_slot *slot;
854 struct kvm_lpage_info *linfo;
855
856 slot = gfn_to_memslot(kvm, gfn);
857 if (slot) {
858 linfo = lpage_info_slot(gfn, slot, level);
859 return linfo->write_count;
860 }
861
862 return 1;
863 }
864
865 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
866 {
867 unsigned long page_size;
868 int i, ret = 0;
869
870 page_size = kvm_host_page_size(kvm, gfn);
871
872 for (i = PT_PAGE_TABLE_LEVEL;
873 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
874 if (page_size >= KVM_HPAGE_SIZE(i))
875 ret = i;
876 else
877 break;
878 }
879
880 return ret;
881 }
882
883 static struct kvm_memory_slot *
884 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
885 bool no_dirty_log)
886 {
887 struct kvm_memory_slot *slot;
888
889 slot = gfn_to_memslot(vcpu->kvm, gfn);
890 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
891 (no_dirty_log && slot->dirty_bitmap))
892 slot = NULL;
893
894 return slot;
895 }
896
897 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
898 {
899 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
900 }
901
902 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
903 {
904 int host_level, level, max_level;
905
906 host_level = host_mapping_level(vcpu->kvm, large_gfn);
907
908 if (host_level == PT_PAGE_TABLE_LEVEL)
909 return host_level;
910
911 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
912
913 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
914 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
915 break;
916
917 return level - 1;
918 }
919
920 /*
921 * Pte mapping structures:
922 *
923 * If pte_list bit zero is zero, then pte_list point to the spte.
924 *
925 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
926 * pte_list_desc containing more mappings.
927 *
928 * Returns the number of pte entries before the spte was added or zero if
929 * the spte was not added.
930 *
931 */
932 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
933 unsigned long *pte_list)
934 {
935 struct pte_list_desc *desc;
936 int i, count = 0;
937
938 if (!*pte_list) {
939 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
940 *pte_list = (unsigned long)spte;
941 } else if (!(*pte_list & 1)) {
942 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
943 desc = mmu_alloc_pte_list_desc(vcpu);
944 desc->sptes[0] = (u64 *)*pte_list;
945 desc->sptes[1] = spte;
946 *pte_list = (unsigned long)desc | 1;
947 ++count;
948 } else {
949 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
950 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
951 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
952 desc = desc->more;
953 count += PTE_LIST_EXT;
954 }
955 if (desc->sptes[PTE_LIST_EXT-1]) {
956 desc->more = mmu_alloc_pte_list_desc(vcpu);
957 desc = desc->more;
958 }
959 for (i = 0; desc->sptes[i]; ++i)
960 ++count;
961 desc->sptes[i] = spte;
962 }
963 return count;
964 }
965
966 static void
967 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
968 int i, struct pte_list_desc *prev_desc)
969 {
970 int j;
971
972 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
973 ;
974 desc->sptes[i] = desc->sptes[j];
975 desc->sptes[j] = NULL;
976 if (j != 0)
977 return;
978 if (!prev_desc && !desc->more)
979 *pte_list = (unsigned long)desc->sptes[0];
980 else
981 if (prev_desc)
982 prev_desc->more = desc->more;
983 else
984 *pte_list = (unsigned long)desc->more | 1;
985 mmu_free_pte_list_desc(desc);
986 }
987
988 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
989 {
990 struct pte_list_desc *desc;
991 struct pte_list_desc *prev_desc;
992 int i;
993
994 if (!*pte_list) {
995 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
996 BUG();
997 } else if (!(*pte_list & 1)) {
998 rmap_printk("pte_list_remove: %p 1->0\n", spte);
999 if ((u64 *)*pte_list != spte) {
1000 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
1001 BUG();
1002 }
1003 *pte_list = 0;
1004 } else {
1005 rmap_printk("pte_list_remove: %p many->many\n", spte);
1006 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1007 prev_desc = NULL;
1008 while (desc) {
1009 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1010 if (desc->sptes[i] == spte) {
1011 pte_list_desc_remove_entry(pte_list,
1012 desc, i,
1013 prev_desc);
1014 return;
1015 }
1016 prev_desc = desc;
1017 desc = desc->more;
1018 }
1019 pr_err("pte_list_remove: %p many->many\n", spte);
1020 BUG();
1021 }
1022 }
1023
1024 typedef void (*pte_list_walk_fn) (u64 *spte);
1025 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1026 {
1027 struct pte_list_desc *desc;
1028 int i;
1029
1030 if (!*pte_list)
1031 return;
1032
1033 if (!(*pte_list & 1))
1034 return fn((u64 *)*pte_list);
1035
1036 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1037 while (desc) {
1038 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1039 fn(desc->sptes[i]);
1040 desc = desc->more;
1041 }
1042 }
1043
1044 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1045 struct kvm_memory_slot *slot)
1046 {
1047 unsigned long idx;
1048
1049 idx = gfn_to_index(gfn, slot->base_gfn, level);
1050 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1051 }
1052
1053 /*
1054 * Take gfn and return the reverse mapping to it.
1055 */
1056 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1057 {
1058 struct kvm_memory_slot *slot;
1059
1060 slot = gfn_to_memslot(kvm, gfn);
1061 return __gfn_to_rmap(gfn, level, slot);
1062 }
1063
1064 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1065 {
1066 struct kvm_mmu_memory_cache *cache;
1067
1068 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1069 return mmu_memory_cache_free_objects(cache);
1070 }
1071
1072 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1073 {
1074 struct kvm_mmu_page *sp;
1075 unsigned long *rmapp;
1076
1077 sp = page_header(__pa(spte));
1078 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1079 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1080 return pte_list_add(vcpu, spte, rmapp);
1081 }
1082
1083 static void rmap_remove(struct kvm *kvm, u64 *spte)
1084 {
1085 struct kvm_mmu_page *sp;
1086 gfn_t gfn;
1087 unsigned long *rmapp;
1088
1089 sp = page_header(__pa(spte));
1090 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1091 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1092 pte_list_remove(spte, rmapp);
1093 }
1094
1095 /*
1096 * Used by the following functions to iterate through the sptes linked by a
1097 * rmap. All fields are private and not assumed to be used outside.
1098 */
1099 struct rmap_iterator {
1100 /* private fields */
1101 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1102 int pos; /* index of the sptep */
1103 };
1104
1105 /*
1106 * Iteration must be started by this function. This should also be used after
1107 * removing/dropping sptes from the rmap link because in such cases the
1108 * information in the itererator may not be valid.
1109 *
1110 * Returns sptep if found, NULL otherwise.
1111 */
1112 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1113 {
1114 if (!rmap)
1115 return NULL;
1116
1117 if (!(rmap & 1)) {
1118 iter->desc = NULL;
1119 return (u64 *)rmap;
1120 }
1121
1122 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1123 iter->pos = 0;
1124 return iter->desc->sptes[iter->pos];
1125 }
1126
1127 /*
1128 * Must be used with a valid iterator: e.g. after rmap_get_first().
1129 *
1130 * Returns sptep if found, NULL otherwise.
1131 */
1132 static u64 *rmap_get_next(struct rmap_iterator *iter)
1133 {
1134 if (iter->desc) {
1135 if (iter->pos < PTE_LIST_EXT - 1) {
1136 u64 *sptep;
1137
1138 ++iter->pos;
1139 sptep = iter->desc->sptes[iter->pos];
1140 if (sptep)
1141 return sptep;
1142 }
1143
1144 iter->desc = iter->desc->more;
1145
1146 if (iter->desc) {
1147 iter->pos = 0;
1148 /* desc->sptes[0] cannot be NULL */
1149 return iter->desc->sptes[iter->pos];
1150 }
1151 }
1152
1153 return NULL;
1154 }
1155
1156 static void drop_spte(struct kvm *kvm, u64 *sptep)
1157 {
1158 if (mmu_spte_clear_track_bits(sptep))
1159 rmap_remove(kvm, sptep);
1160 }
1161
1162
1163 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1164 {
1165 if (is_large_pte(*sptep)) {
1166 WARN_ON(page_header(__pa(sptep))->role.level ==
1167 PT_PAGE_TABLE_LEVEL);
1168 drop_spte(kvm, sptep);
1169 --kvm->stat.lpages;
1170 return true;
1171 }
1172
1173 return false;
1174 }
1175
1176 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1177 {
1178 if (__drop_large_spte(vcpu->kvm, sptep))
1179 kvm_flush_remote_tlbs(vcpu->kvm);
1180 }
1181
1182 /*
1183 * Write-protect on the specified @sptep, @pt_protect indicates whether
1184 * spte writ-protection is caused by protecting shadow page table.
1185 * @flush indicates whether tlb need be flushed.
1186 *
1187 * Note: write protection is difference between drity logging and spte
1188 * protection:
1189 * - for dirty logging, the spte can be set to writable at anytime if
1190 * its dirty bitmap is properly set.
1191 * - for spte protection, the spte can be writable only after unsync-ing
1192 * shadow page.
1193 *
1194 * Return true if the spte is dropped.
1195 */
1196 static bool
1197 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1198 {
1199 u64 spte = *sptep;
1200
1201 if (!is_writable_pte(spte) &&
1202 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1203 return false;
1204
1205 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1206
1207 if (__drop_large_spte(kvm, sptep)) {
1208 *flush |= true;
1209 return true;
1210 }
1211
1212 if (pt_protect)
1213 spte &= ~SPTE_MMU_WRITEABLE;
1214 spte = spte & ~PT_WRITABLE_MASK;
1215
1216 *flush |= mmu_spte_update(sptep, spte);
1217 return false;
1218 }
1219
1220 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1221 bool pt_protect)
1222 {
1223 u64 *sptep;
1224 struct rmap_iterator iter;
1225 bool flush = false;
1226
1227 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1228 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1229 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1230 sptep = rmap_get_first(*rmapp, &iter);
1231 continue;
1232 }
1233
1234 sptep = rmap_get_next(&iter);
1235 }
1236
1237 return flush;
1238 }
1239
1240 /**
1241 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1242 * @kvm: kvm instance
1243 * @slot: slot to protect
1244 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1245 * @mask: indicates which pages we should protect
1246 *
1247 * Used when we do not need to care about huge page mappings: e.g. during dirty
1248 * logging we do not have any such mappings.
1249 */
1250 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1251 struct kvm_memory_slot *slot,
1252 gfn_t gfn_offset, unsigned long mask)
1253 {
1254 unsigned long *rmapp;
1255
1256 while (mask) {
1257 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1258 PT_PAGE_TABLE_LEVEL, slot);
1259 __rmap_write_protect(kvm, rmapp, false);
1260
1261 /* clear the first set bit */
1262 mask &= mask - 1;
1263 }
1264 }
1265
1266 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1267 {
1268 struct kvm_memory_slot *slot;
1269 unsigned long *rmapp;
1270 int i;
1271 bool write_protected = false;
1272
1273 slot = gfn_to_memslot(kvm, gfn);
1274
1275 for (i = PT_PAGE_TABLE_LEVEL;
1276 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1277 rmapp = __gfn_to_rmap(gfn, i, slot);
1278 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1279 }
1280
1281 return write_protected;
1282 }
1283
1284 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1285 struct kvm_memory_slot *slot, unsigned long data)
1286 {
1287 u64 *sptep;
1288 struct rmap_iterator iter;
1289 int need_tlb_flush = 0;
1290
1291 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1292 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1293 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1294
1295 drop_spte(kvm, sptep);
1296 need_tlb_flush = 1;
1297 }
1298
1299 return need_tlb_flush;
1300 }
1301
1302 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1303 struct kvm_memory_slot *slot, unsigned long data)
1304 {
1305 u64 *sptep;
1306 struct rmap_iterator iter;
1307 int need_flush = 0;
1308 u64 new_spte;
1309 pte_t *ptep = (pte_t *)data;
1310 pfn_t new_pfn;
1311
1312 WARN_ON(pte_huge(*ptep));
1313 new_pfn = pte_pfn(*ptep);
1314
1315 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1316 BUG_ON(!is_shadow_present_pte(*sptep));
1317 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1318
1319 need_flush = 1;
1320
1321 if (pte_write(*ptep)) {
1322 drop_spte(kvm, sptep);
1323 sptep = rmap_get_first(*rmapp, &iter);
1324 } else {
1325 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1326 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1327
1328 new_spte &= ~PT_WRITABLE_MASK;
1329 new_spte &= ~SPTE_HOST_WRITEABLE;
1330 new_spte &= ~shadow_accessed_mask;
1331
1332 mmu_spte_clear_track_bits(sptep);
1333 mmu_spte_set(sptep, new_spte);
1334 sptep = rmap_get_next(&iter);
1335 }
1336 }
1337
1338 if (need_flush)
1339 kvm_flush_remote_tlbs(kvm);
1340
1341 return 0;
1342 }
1343
1344 static int kvm_handle_hva_range(struct kvm *kvm,
1345 unsigned long start,
1346 unsigned long end,
1347 unsigned long data,
1348 int (*handler)(struct kvm *kvm,
1349 unsigned long *rmapp,
1350 struct kvm_memory_slot *slot,
1351 unsigned long data))
1352 {
1353 int j;
1354 int ret = 0;
1355 struct kvm_memslots *slots;
1356 struct kvm_memory_slot *memslot;
1357
1358 slots = kvm_memslots(kvm);
1359
1360 kvm_for_each_memslot(memslot, slots) {
1361 unsigned long hva_start, hva_end;
1362 gfn_t gfn_start, gfn_end;
1363
1364 hva_start = max(start, memslot->userspace_addr);
1365 hva_end = min(end, memslot->userspace_addr +
1366 (memslot->npages << PAGE_SHIFT));
1367 if (hva_start >= hva_end)
1368 continue;
1369 /*
1370 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1371 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1372 */
1373 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1374 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1375
1376 for (j = PT_PAGE_TABLE_LEVEL;
1377 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1378 unsigned long idx, idx_end;
1379 unsigned long *rmapp;
1380
1381 /*
1382 * {idx(page_j) | page_j intersects with
1383 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1384 */
1385 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1386 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1387
1388 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1389
1390 for (; idx <= idx_end; ++idx)
1391 ret |= handler(kvm, rmapp++, memslot, data);
1392 }
1393 }
1394
1395 return ret;
1396 }
1397
1398 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1399 unsigned long data,
1400 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1401 struct kvm_memory_slot *slot,
1402 unsigned long data))
1403 {
1404 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1405 }
1406
1407 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1408 {
1409 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1410 }
1411
1412 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1413 {
1414 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1415 }
1416
1417 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1418 {
1419 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1420 }
1421
1422 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1423 struct kvm_memory_slot *slot, unsigned long data)
1424 {
1425 u64 *sptep;
1426 struct rmap_iterator uninitialized_var(iter);
1427 int young = 0;
1428
1429 /*
1430 * In case of absence of EPT Access and Dirty Bits supports,
1431 * emulate the accessed bit for EPT, by checking if this page has
1432 * an EPT mapping, and clearing it if it does. On the next access,
1433 * a new EPT mapping will be established.
1434 * This has some overhead, but not as much as the cost of swapping
1435 * out actively used pages or breaking up actively used hugepages.
1436 */
1437 if (!shadow_accessed_mask) {
1438 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1439 goto out;
1440 }
1441
1442 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1443 sptep = rmap_get_next(&iter)) {
1444 BUG_ON(!is_shadow_present_pte(*sptep));
1445
1446 if (*sptep & shadow_accessed_mask) {
1447 young = 1;
1448 clear_bit((ffs(shadow_accessed_mask) - 1),
1449 (unsigned long *)sptep);
1450 }
1451 }
1452 out:
1453 /* @data has hva passed to kvm_age_hva(). */
1454 trace_kvm_age_page(data, slot, young);
1455 return young;
1456 }
1457
1458 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1459 struct kvm_memory_slot *slot, unsigned long data)
1460 {
1461 u64 *sptep;
1462 struct rmap_iterator iter;
1463 int young = 0;
1464
1465 /*
1466 * If there's no access bit in the secondary pte set by the
1467 * hardware it's up to gup-fast/gup to set the access bit in
1468 * the primary pte or in the page structure.
1469 */
1470 if (!shadow_accessed_mask)
1471 goto out;
1472
1473 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1474 sptep = rmap_get_next(&iter)) {
1475 BUG_ON(!is_shadow_present_pte(*sptep));
1476
1477 if (*sptep & shadow_accessed_mask) {
1478 young = 1;
1479 break;
1480 }
1481 }
1482 out:
1483 return young;
1484 }
1485
1486 #define RMAP_RECYCLE_THRESHOLD 1000
1487
1488 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1489 {
1490 unsigned long *rmapp;
1491 struct kvm_mmu_page *sp;
1492
1493 sp = page_header(__pa(spte));
1494
1495 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1496
1497 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1498 kvm_flush_remote_tlbs(vcpu->kvm);
1499 }
1500
1501 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1502 {
1503 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1504 }
1505
1506 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1507 {
1508 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1509 }
1510
1511 #ifdef MMU_DEBUG
1512 static int is_empty_shadow_page(u64 *spt)
1513 {
1514 u64 *pos;
1515 u64 *end;
1516
1517 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1518 if (is_shadow_present_pte(*pos)) {
1519 printk(KERN_ERR "%s: %p %llx\n", __func__,
1520 pos, *pos);
1521 return 0;
1522 }
1523 return 1;
1524 }
1525 #endif
1526
1527 /*
1528 * This value is the sum of all of the kvm instances's
1529 * kvm->arch.n_used_mmu_pages values. We need a global,
1530 * aggregate version in order to make the slab shrinker
1531 * faster
1532 */
1533 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1534 {
1535 kvm->arch.n_used_mmu_pages += nr;
1536 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1537 }
1538
1539 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1540 {
1541 ASSERT(is_empty_shadow_page(sp->spt));
1542 hlist_del(&sp->hash_link);
1543 list_del(&sp->link);
1544 free_page((unsigned long)sp->spt);
1545 if (!sp->role.direct)
1546 free_page((unsigned long)sp->gfns);
1547 kmem_cache_free(mmu_page_header_cache, sp);
1548 }
1549
1550 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1551 {
1552 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1553 }
1554
1555 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1556 struct kvm_mmu_page *sp, u64 *parent_pte)
1557 {
1558 if (!parent_pte)
1559 return;
1560
1561 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1562 }
1563
1564 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1565 u64 *parent_pte)
1566 {
1567 pte_list_remove(parent_pte, &sp->parent_ptes);
1568 }
1569
1570 static void drop_parent_pte(struct kvm_mmu_page *sp,
1571 u64 *parent_pte)
1572 {
1573 mmu_page_remove_parent_pte(sp, parent_pte);
1574 mmu_spte_clear_no_track(parent_pte);
1575 }
1576
1577 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1578 u64 *parent_pte, int direct)
1579 {
1580 struct kvm_mmu_page *sp;
1581
1582 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1583 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1584 if (!direct)
1585 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1586 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1587
1588 /*
1589 * The active_mmu_pages list is the FIFO list, do not move the
1590 * page until it is zapped. kvm_zap_obsolete_pages depends on
1591 * this feature. See the comments in kvm_zap_obsolete_pages().
1592 */
1593 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1594 sp->parent_ptes = 0;
1595 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1596 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1597 return sp;
1598 }
1599
1600 static void mark_unsync(u64 *spte);
1601 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1602 {
1603 pte_list_walk(&sp->parent_ptes, mark_unsync);
1604 }
1605
1606 static void mark_unsync(u64 *spte)
1607 {
1608 struct kvm_mmu_page *sp;
1609 unsigned int index;
1610
1611 sp = page_header(__pa(spte));
1612 index = spte - sp->spt;
1613 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1614 return;
1615 if (sp->unsync_children++)
1616 return;
1617 kvm_mmu_mark_parents_unsync(sp);
1618 }
1619
1620 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1621 struct kvm_mmu_page *sp)
1622 {
1623 return 1;
1624 }
1625
1626 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1627 {
1628 }
1629
1630 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1631 struct kvm_mmu_page *sp, u64 *spte,
1632 const void *pte)
1633 {
1634 WARN_ON(1);
1635 }
1636
1637 #define KVM_PAGE_ARRAY_NR 16
1638
1639 struct kvm_mmu_pages {
1640 struct mmu_page_and_offset {
1641 struct kvm_mmu_page *sp;
1642 unsigned int idx;
1643 } page[KVM_PAGE_ARRAY_NR];
1644 unsigned int nr;
1645 };
1646
1647 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1648 int idx)
1649 {
1650 int i;
1651
1652 if (sp->unsync)
1653 for (i=0; i < pvec->nr; i++)
1654 if (pvec->page[i].sp == sp)
1655 return 0;
1656
1657 pvec->page[pvec->nr].sp = sp;
1658 pvec->page[pvec->nr].idx = idx;
1659 pvec->nr++;
1660 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1661 }
1662
1663 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1664 struct kvm_mmu_pages *pvec)
1665 {
1666 int i, ret, nr_unsync_leaf = 0;
1667
1668 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1669 struct kvm_mmu_page *child;
1670 u64 ent = sp->spt[i];
1671
1672 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1673 goto clear_child_bitmap;
1674
1675 child = page_header(ent & PT64_BASE_ADDR_MASK);
1676
1677 if (child->unsync_children) {
1678 if (mmu_pages_add(pvec, child, i))
1679 return -ENOSPC;
1680
1681 ret = __mmu_unsync_walk(child, pvec);
1682 if (!ret)
1683 goto clear_child_bitmap;
1684 else if (ret > 0)
1685 nr_unsync_leaf += ret;
1686 else
1687 return ret;
1688 } else if (child->unsync) {
1689 nr_unsync_leaf++;
1690 if (mmu_pages_add(pvec, child, i))
1691 return -ENOSPC;
1692 } else
1693 goto clear_child_bitmap;
1694
1695 continue;
1696
1697 clear_child_bitmap:
1698 __clear_bit(i, sp->unsync_child_bitmap);
1699 sp->unsync_children--;
1700 WARN_ON((int)sp->unsync_children < 0);
1701 }
1702
1703
1704 return nr_unsync_leaf;
1705 }
1706
1707 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1708 struct kvm_mmu_pages *pvec)
1709 {
1710 if (!sp->unsync_children)
1711 return 0;
1712
1713 mmu_pages_add(pvec, sp, 0);
1714 return __mmu_unsync_walk(sp, pvec);
1715 }
1716
1717 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1718 {
1719 WARN_ON(!sp->unsync);
1720 trace_kvm_mmu_sync_page(sp);
1721 sp->unsync = 0;
1722 --kvm->stat.mmu_unsync;
1723 }
1724
1725 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1726 struct list_head *invalid_list);
1727 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1728 struct list_head *invalid_list);
1729
1730 /*
1731 * NOTE: we should pay more attention on the zapped-obsolete page
1732 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1733 * since it has been deleted from active_mmu_pages but still can be found
1734 * at hast list.
1735 *
1736 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1737 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1738 * all the obsolete pages.
1739 */
1740 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1741 hlist_for_each_entry(_sp, \
1742 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1743 if ((_sp)->gfn != (_gfn)) {} else
1744
1745 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1746 for_each_gfn_sp(_kvm, _sp, _gfn) \
1747 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1748
1749 /* @sp->gfn should be write-protected at the call site */
1750 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1751 struct list_head *invalid_list, bool clear_unsync)
1752 {
1753 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1754 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1755 return 1;
1756 }
1757
1758 if (clear_unsync)
1759 kvm_unlink_unsync_page(vcpu->kvm, sp);
1760
1761 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1762 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1763 return 1;
1764 }
1765
1766 kvm_mmu_flush_tlb(vcpu);
1767 return 0;
1768 }
1769
1770 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1771 struct kvm_mmu_page *sp)
1772 {
1773 LIST_HEAD(invalid_list);
1774 int ret;
1775
1776 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1777 if (ret)
1778 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1779
1780 return ret;
1781 }
1782
1783 #ifdef CONFIG_KVM_MMU_AUDIT
1784 #include "mmu_audit.c"
1785 #else
1786 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1787 static void mmu_audit_disable(void) { }
1788 #endif
1789
1790 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1791 struct list_head *invalid_list)
1792 {
1793 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1794 }
1795
1796 /* @gfn should be write-protected at the call site */
1797 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1798 {
1799 struct kvm_mmu_page *s;
1800 LIST_HEAD(invalid_list);
1801 bool flush = false;
1802
1803 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1804 if (!s->unsync)
1805 continue;
1806
1807 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1808 kvm_unlink_unsync_page(vcpu->kvm, s);
1809 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1810 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1811 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1812 continue;
1813 }
1814 flush = true;
1815 }
1816
1817 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1818 if (flush)
1819 kvm_mmu_flush_tlb(vcpu);
1820 }
1821
1822 struct mmu_page_path {
1823 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1824 unsigned int idx[PT64_ROOT_LEVEL-1];
1825 };
1826
1827 #define for_each_sp(pvec, sp, parents, i) \
1828 for (i = mmu_pages_next(&pvec, &parents, -1), \
1829 sp = pvec.page[i].sp; \
1830 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1831 i = mmu_pages_next(&pvec, &parents, i))
1832
1833 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1834 struct mmu_page_path *parents,
1835 int i)
1836 {
1837 int n;
1838
1839 for (n = i+1; n < pvec->nr; n++) {
1840 struct kvm_mmu_page *sp = pvec->page[n].sp;
1841
1842 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1843 parents->idx[0] = pvec->page[n].idx;
1844 return n;
1845 }
1846
1847 parents->parent[sp->role.level-2] = sp;
1848 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1849 }
1850
1851 return n;
1852 }
1853
1854 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1855 {
1856 struct kvm_mmu_page *sp;
1857 unsigned int level = 0;
1858
1859 do {
1860 unsigned int idx = parents->idx[level];
1861
1862 sp = parents->parent[level];
1863 if (!sp)
1864 return;
1865
1866 --sp->unsync_children;
1867 WARN_ON((int)sp->unsync_children < 0);
1868 __clear_bit(idx, sp->unsync_child_bitmap);
1869 level++;
1870 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1871 }
1872
1873 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1874 struct mmu_page_path *parents,
1875 struct kvm_mmu_pages *pvec)
1876 {
1877 parents->parent[parent->role.level-1] = NULL;
1878 pvec->nr = 0;
1879 }
1880
1881 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1882 struct kvm_mmu_page *parent)
1883 {
1884 int i;
1885 struct kvm_mmu_page *sp;
1886 struct mmu_page_path parents;
1887 struct kvm_mmu_pages pages;
1888 LIST_HEAD(invalid_list);
1889
1890 kvm_mmu_pages_init(parent, &parents, &pages);
1891 while (mmu_unsync_walk(parent, &pages)) {
1892 bool protected = false;
1893
1894 for_each_sp(pages, sp, parents, i)
1895 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1896
1897 if (protected)
1898 kvm_flush_remote_tlbs(vcpu->kvm);
1899
1900 for_each_sp(pages, sp, parents, i) {
1901 kvm_sync_page(vcpu, sp, &invalid_list);
1902 mmu_pages_clear_parents(&parents);
1903 }
1904 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1905 cond_resched_lock(&vcpu->kvm->mmu_lock);
1906 kvm_mmu_pages_init(parent, &parents, &pages);
1907 }
1908 }
1909
1910 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1911 {
1912 int i;
1913
1914 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1915 sp->spt[i] = 0ull;
1916 }
1917
1918 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1919 {
1920 sp->write_flooding_count = 0;
1921 }
1922
1923 static void clear_sp_write_flooding_count(u64 *spte)
1924 {
1925 struct kvm_mmu_page *sp = page_header(__pa(spte));
1926
1927 __clear_sp_write_flooding_count(sp);
1928 }
1929
1930 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1931 {
1932 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1933 }
1934
1935 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1936 gfn_t gfn,
1937 gva_t gaddr,
1938 unsigned level,
1939 int direct,
1940 unsigned access,
1941 u64 *parent_pte)
1942 {
1943 union kvm_mmu_page_role role;
1944 unsigned quadrant;
1945 struct kvm_mmu_page *sp;
1946 bool need_sync = false;
1947
1948 role = vcpu->arch.mmu.base_role;
1949 role.level = level;
1950 role.direct = direct;
1951 if (role.direct)
1952 role.cr4_pae = 0;
1953 role.access = access;
1954 if (!vcpu->arch.mmu.direct_map
1955 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1956 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1957 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1958 role.quadrant = quadrant;
1959 }
1960 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1961 if (is_obsolete_sp(vcpu->kvm, sp))
1962 continue;
1963
1964 if (!need_sync && sp->unsync)
1965 need_sync = true;
1966
1967 if (sp->role.word != role.word)
1968 continue;
1969
1970 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1971 break;
1972
1973 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1974 if (sp->unsync_children) {
1975 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1976 kvm_mmu_mark_parents_unsync(sp);
1977 } else if (sp->unsync)
1978 kvm_mmu_mark_parents_unsync(sp);
1979
1980 __clear_sp_write_flooding_count(sp);
1981 trace_kvm_mmu_get_page(sp, false);
1982 return sp;
1983 }
1984 ++vcpu->kvm->stat.mmu_cache_miss;
1985 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1986 if (!sp)
1987 return sp;
1988 sp->gfn = gfn;
1989 sp->role = role;
1990 hlist_add_head(&sp->hash_link,
1991 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1992 if (!direct) {
1993 if (rmap_write_protect(vcpu->kvm, gfn))
1994 kvm_flush_remote_tlbs(vcpu->kvm);
1995 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1996 kvm_sync_pages(vcpu, gfn);
1997
1998 account_shadowed(vcpu->kvm, gfn);
1999 }
2000 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2001 init_shadow_page_table(sp);
2002 trace_kvm_mmu_get_page(sp, true);
2003 return sp;
2004 }
2005
2006 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2007 struct kvm_vcpu *vcpu, u64 addr)
2008 {
2009 iterator->addr = addr;
2010 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2011 iterator->level = vcpu->arch.mmu.shadow_root_level;
2012
2013 if (iterator->level == PT64_ROOT_LEVEL &&
2014 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2015 !vcpu->arch.mmu.direct_map)
2016 --iterator->level;
2017
2018 if (iterator->level == PT32E_ROOT_LEVEL) {
2019 iterator->shadow_addr
2020 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2021 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2022 --iterator->level;
2023 if (!iterator->shadow_addr)
2024 iterator->level = 0;
2025 }
2026 }
2027
2028 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2029 {
2030 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2031 return false;
2032
2033 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2034 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2035 return true;
2036 }
2037
2038 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2039 u64 spte)
2040 {
2041 if (is_last_spte(spte, iterator->level)) {
2042 iterator->level = 0;
2043 return;
2044 }
2045
2046 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2047 --iterator->level;
2048 }
2049
2050 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2051 {
2052 return __shadow_walk_next(iterator, *iterator->sptep);
2053 }
2054
2055 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
2056 {
2057 u64 spte;
2058
2059 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2060 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2061
2062 mmu_spte_set(sptep, spte);
2063 }
2064
2065 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2066 unsigned direct_access)
2067 {
2068 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2069 struct kvm_mmu_page *child;
2070
2071 /*
2072 * For the direct sp, if the guest pte's dirty bit
2073 * changed form clean to dirty, it will corrupt the
2074 * sp's access: allow writable in the read-only sp,
2075 * so we should update the spte at this point to get
2076 * a new sp with the correct access.
2077 */
2078 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2079 if (child->role.access == direct_access)
2080 return;
2081
2082 drop_parent_pte(child, sptep);
2083 kvm_flush_remote_tlbs(vcpu->kvm);
2084 }
2085 }
2086
2087 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2088 u64 *spte)
2089 {
2090 u64 pte;
2091 struct kvm_mmu_page *child;
2092
2093 pte = *spte;
2094 if (is_shadow_present_pte(pte)) {
2095 if (is_last_spte(pte, sp->role.level)) {
2096 drop_spte(kvm, spte);
2097 if (is_large_pte(pte))
2098 --kvm->stat.lpages;
2099 } else {
2100 child = page_header(pte & PT64_BASE_ADDR_MASK);
2101 drop_parent_pte(child, spte);
2102 }
2103 return true;
2104 }
2105
2106 if (is_mmio_spte(pte))
2107 mmu_spte_clear_no_track(spte);
2108
2109 return false;
2110 }
2111
2112 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2113 struct kvm_mmu_page *sp)
2114 {
2115 unsigned i;
2116
2117 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2118 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2119 }
2120
2121 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2122 {
2123 mmu_page_remove_parent_pte(sp, parent_pte);
2124 }
2125
2126 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2127 {
2128 u64 *sptep;
2129 struct rmap_iterator iter;
2130
2131 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2132 drop_parent_pte(sp, sptep);
2133 }
2134
2135 static int mmu_zap_unsync_children(struct kvm *kvm,
2136 struct kvm_mmu_page *parent,
2137 struct list_head *invalid_list)
2138 {
2139 int i, zapped = 0;
2140 struct mmu_page_path parents;
2141 struct kvm_mmu_pages pages;
2142
2143 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2144 return 0;
2145
2146 kvm_mmu_pages_init(parent, &parents, &pages);
2147 while (mmu_unsync_walk(parent, &pages)) {
2148 struct kvm_mmu_page *sp;
2149
2150 for_each_sp(pages, sp, parents, i) {
2151 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2152 mmu_pages_clear_parents(&parents);
2153 zapped++;
2154 }
2155 kvm_mmu_pages_init(parent, &parents, &pages);
2156 }
2157
2158 return zapped;
2159 }
2160
2161 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2162 struct list_head *invalid_list)
2163 {
2164 int ret;
2165
2166 trace_kvm_mmu_prepare_zap_page(sp);
2167 ++kvm->stat.mmu_shadow_zapped;
2168 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2169 kvm_mmu_page_unlink_children(kvm, sp);
2170 kvm_mmu_unlink_parents(kvm, sp);
2171
2172 if (!sp->role.invalid && !sp->role.direct)
2173 unaccount_shadowed(kvm, sp->gfn);
2174
2175 if (sp->unsync)
2176 kvm_unlink_unsync_page(kvm, sp);
2177 if (!sp->root_count) {
2178 /* Count self */
2179 ret++;
2180 list_move(&sp->link, invalid_list);
2181 kvm_mod_used_mmu_pages(kvm, -1);
2182 } else {
2183 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2184
2185 /*
2186 * The obsolete pages can not be used on any vcpus.
2187 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2188 */
2189 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2190 kvm_reload_remote_mmus(kvm);
2191 }
2192
2193 sp->role.invalid = 1;
2194 return ret;
2195 }
2196
2197 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2198 struct list_head *invalid_list)
2199 {
2200 struct kvm_mmu_page *sp, *nsp;
2201
2202 if (list_empty(invalid_list))
2203 return;
2204
2205 /*
2206 * wmb: make sure everyone sees our modifications to the page tables
2207 * rmb: make sure we see changes to vcpu->mode
2208 */
2209 smp_mb();
2210
2211 /*
2212 * Wait for all vcpus to exit guest mode and/or lockless shadow
2213 * page table walks.
2214 */
2215 kvm_flush_remote_tlbs(kvm);
2216
2217 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2218 WARN_ON(!sp->role.invalid || sp->root_count);
2219 kvm_mmu_free_page(sp);
2220 }
2221 }
2222
2223 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2224 struct list_head *invalid_list)
2225 {
2226 struct kvm_mmu_page *sp;
2227
2228 if (list_empty(&kvm->arch.active_mmu_pages))
2229 return false;
2230
2231 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2232 struct kvm_mmu_page, link);
2233 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2234
2235 return true;
2236 }
2237
2238 /*
2239 * Changing the number of mmu pages allocated to the vm
2240 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2241 */
2242 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2243 {
2244 LIST_HEAD(invalid_list);
2245
2246 spin_lock(&kvm->mmu_lock);
2247
2248 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2249 /* Need to free some mmu pages to achieve the goal. */
2250 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2251 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2252 break;
2253
2254 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2255 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2256 }
2257
2258 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2259
2260 spin_unlock(&kvm->mmu_lock);
2261 }
2262
2263 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2264 {
2265 struct kvm_mmu_page *sp;
2266 LIST_HEAD(invalid_list);
2267 int r;
2268
2269 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2270 r = 0;
2271 spin_lock(&kvm->mmu_lock);
2272 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2273 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2274 sp->role.word);
2275 r = 1;
2276 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2277 }
2278 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2279 spin_unlock(&kvm->mmu_lock);
2280
2281 return r;
2282 }
2283 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2284
2285 /*
2286 * The function is based on mtrr_type_lookup() in
2287 * arch/x86/kernel/cpu/mtrr/generic.c
2288 */
2289 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2290 u64 start, u64 end)
2291 {
2292 int i;
2293 u64 base, mask;
2294 u8 prev_match, curr_match;
2295 int num_var_ranges = KVM_NR_VAR_MTRR;
2296
2297 if (!mtrr_state->enabled)
2298 return 0xFF;
2299
2300 /* Make end inclusive end, instead of exclusive */
2301 end--;
2302
2303 /* Look in fixed ranges. Just return the type as per start */
2304 if (mtrr_state->have_fixed && (start < 0x100000)) {
2305 int idx;
2306
2307 if (start < 0x80000) {
2308 idx = 0;
2309 idx += (start >> 16);
2310 return mtrr_state->fixed_ranges[idx];
2311 } else if (start < 0xC0000) {
2312 idx = 1 * 8;
2313 idx += ((start - 0x80000) >> 14);
2314 return mtrr_state->fixed_ranges[idx];
2315 } else if (start < 0x1000000) {
2316 idx = 3 * 8;
2317 idx += ((start - 0xC0000) >> 12);
2318 return mtrr_state->fixed_ranges[idx];
2319 }
2320 }
2321
2322 /*
2323 * Look in variable ranges
2324 * Look of multiple ranges matching this address and pick type
2325 * as per MTRR precedence
2326 */
2327 if (!(mtrr_state->enabled & 2))
2328 return mtrr_state->def_type;
2329
2330 prev_match = 0xFF;
2331 for (i = 0; i < num_var_ranges; ++i) {
2332 unsigned short start_state, end_state;
2333
2334 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2335 continue;
2336
2337 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2338 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2339 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2340 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2341
2342 start_state = ((start & mask) == (base & mask));
2343 end_state = ((end & mask) == (base & mask));
2344 if (start_state != end_state)
2345 return 0xFE;
2346
2347 if ((start & mask) != (base & mask))
2348 continue;
2349
2350 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2351 if (prev_match == 0xFF) {
2352 prev_match = curr_match;
2353 continue;
2354 }
2355
2356 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2357 curr_match == MTRR_TYPE_UNCACHABLE)
2358 return MTRR_TYPE_UNCACHABLE;
2359
2360 if ((prev_match == MTRR_TYPE_WRBACK &&
2361 curr_match == MTRR_TYPE_WRTHROUGH) ||
2362 (prev_match == MTRR_TYPE_WRTHROUGH &&
2363 curr_match == MTRR_TYPE_WRBACK)) {
2364 prev_match = MTRR_TYPE_WRTHROUGH;
2365 curr_match = MTRR_TYPE_WRTHROUGH;
2366 }
2367
2368 if (prev_match != curr_match)
2369 return MTRR_TYPE_UNCACHABLE;
2370 }
2371
2372 if (prev_match != 0xFF)
2373 return prev_match;
2374
2375 return mtrr_state->def_type;
2376 }
2377
2378 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2379 {
2380 u8 mtrr;
2381
2382 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2383 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2384 if (mtrr == 0xfe || mtrr == 0xff)
2385 mtrr = MTRR_TYPE_WRBACK;
2386 return mtrr;
2387 }
2388 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2389
2390 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2391 {
2392 trace_kvm_mmu_unsync_page(sp);
2393 ++vcpu->kvm->stat.mmu_unsync;
2394 sp->unsync = 1;
2395
2396 kvm_mmu_mark_parents_unsync(sp);
2397 }
2398
2399 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2400 {
2401 struct kvm_mmu_page *s;
2402
2403 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2404 if (s->unsync)
2405 continue;
2406 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2407 __kvm_unsync_page(vcpu, s);
2408 }
2409 }
2410
2411 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2412 bool can_unsync)
2413 {
2414 struct kvm_mmu_page *s;
2415 bool need_unsync = false;
2416
2417 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2418 if (!can_unsync)
2419 return 1;
2420
2421 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2422 return 1;
2423
2424 if (!s->unsync)
2425 need_unsync = true;
2426 }
2427 if (need_unsync)
2428 kvm_unsync_pages(vcpu, gfn);
2429 return 0;
2430 }
2431
2432 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2433 unsigned pte_access, int level,
2434 gfn_t gfn, pfn_t pfn, bool speculative,
2435 bool can_unsync, bool host_writable)
2436 {
2437 u64 spte;
2438 int ret = 0;
2439
2440 if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2441 return 0;
2442
2443 spte = PT_PRESENT_MASK;
2444 if (!speculative)
2445 spte |= shadow_accessed_mask;
2446
2447 if (pte_access & ACC_EXEC_MASK)
2448 spte |= shadow_x_mask;
2449 else
2450 spte |= shadow_nx_mask;
2451
2452 if (pte_access & ACC_USER_MASK)
2453 spte |= shadow_user_mask;
2454
2455 if (level > PT_PAGE_TABLE_LEVEL)
2456 spte |= PT_PAGE_SIZE_MASK;
2457 if (tdp_enabled)
2458 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2459 kvm_is_mmio_pfn(pfn));
2460
2461 if (host_writable)
2462 spte |= SPTE_HOST_WRITEABLE;
2463 else
2464 pte_access &= ~ACC_WRITE_MASK;
2465
2466 spte |= (u64)pfn << PAGE_SHIFT;
2467
2468 if (pte_access & ACC_WRITE_MASK) {
2469
2470 /*
2471 * Other vcpu creates new sp in the window between
2472 * mapping_level() and acquiring mmu-lock. We can
2473 * allow guest to retry the access, the mapping can
2474 * be fixed if guest refault.
2475 */
2476 if (level > PT_PAGE_TABLE_LEVEL &&
2477 has_wrprotected_page(vcpu->kvm, gfn, level))
2478 goto done;
2479
2480 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2481
2482 /*
2483 * Optimization: for pte sync, if spte was writable the hash
2484 * lookup is unnecessary (and expensive). Write protection
2485 * is responsibility of mmu_get_page / kvm_sync_page.
2486 * Same reasoning can be applied to dirty page accounting.
2487 */
2488 if (!can_unsync && is_writable_pte(*sptep))
2489 goto set_pte;
2490
2491 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2492 pgprintk("%s: found shadow page for %llx, marking ro\n",
2493 __func__, gfn);
2494 ret = 1;
2495 pte_access &= ~ACC_WRITE_MASK;
2496 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2497 }
2498 }
2499
2500 if (pte_access & ACC_WRITE_MASK)
2501 mark_page_dirty(vcpu->kvm, gfn);
2502
2503 set_pte:
2504 if (mmu_spte_update(sptep, spte))
2505 kvm_flush_remote_tlbs(vcpu->kvm);
2506 done:
2507 return ret;
2508 }
2509
2510 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2511 unsigned pte_access, int write_fault, int *emulate,
2512 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2513 bool host_writable)
2514 {
2515 int was_rmapped = 0;
2516 int rmap_count;
2517
2518 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2519 *sptep, write_fault, gfn);
2520
2521 if (is_rmap_spte(*sptep)) {
2522 /*
2523 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2524 * the parent of the now unreachable PTE.
2525 */
2526 if (level > PT_PAGE_TABLE_LEVEL &&
2527 !is_large_pte(*sptep)) {
2528 struct kvm_mmu_page *child;
2529 u64 pte = *sptep;
2530
2531 child = page_header(pte & PT64_BASE_ADDR_MASK);
2532 drop_parent_pte(child, sptep);
2533 kvm_flush_remote_tlbs(vcpu->kvm);
2534 } else if (pfn != spte_to_pfn(*sptep)) {
2535 pgprintk("hfn old %llx new %llx\n",
2536 spte_to_pfn(*sptep), pfn);
2537 drop_spte(vcpu->kvm, sptep);
2538 kvm_flush_remote_tlbs(vcpu->kvm);
2539 } else
2540 was_rmapped = 1;
2541 }
2542
2543 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2544 true, host_writable)) {
2545 if (write_fault)
2546 *emulate = 1;
2547 kvm_mmu_flush_tlb(vcpu);
2548 }
2549
2550 if (unlikely(is_mmio_spte(*sptep) && emulate))
2551 *emulate = 1;
2552
2553 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2554 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2555 is_large_pte(*sptep)? "2MB" : "4kB",
2556 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2557 *sptep, sptep);
2558 if (!was_rmapped && is_large_pte(*sptep))
2559 ++vcpu->kvm->stat.lpages;
2560
2561 if (is_shadow_present_pte(*sptep)) {
2562 if (!was_rmapped) {
2563 rmap_count = rmap_add(vcpu, sptep, gfn);
2564 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2565 rmap_recycle(vcpu, sptep, gfn);
2566 }
2567 }
2568
2569 kvm_release_pfn_clean(pfn);
2570 }
2571
2572 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2573 {
2574 mmu_free_roots(vcpu);
2575 }
2576
2577 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2578 {
2579 int bit7;
2580
2581 bit7 = (gpte >> 7) & 1;
2582 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2583 }
2584
2585 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2586 bool no_dirty_log)
2587 {
2588 struct kvm_memory_slot *slot;
2589
2590 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2591 if (!slot)
2592 return KVM_PFN_ERR_FAULT;
2593
2594 return gfn_to_pfn_memslot_atomic(slot, gfn);
2595 }
2596
2597 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2598 struct kvm_mmu_page *sp, u64 *spte,
2599 u64 gpte)
2600 {
2601 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2602 goto no_present;
2603
2604 if (!is_present_gpte(gpte))
2605 goto no_present;
2606
2607 if (!(gpte & PT_ACCESSED_MASK))
2608 goto no_present;
2609
2610 return false;
2611
2612 no_present:
2613 drop_spte(vcpu->kvm, spte);
2614 return true;
2615 }
2616
2617 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2618 struct kvm_mmu_page *sp,
2619 u64 *start, u64 *end)
2620 {
2621 struct page *pages[PTE_PREFETCH_NUM];
2622 unsigned access = sp->role.access;
2623 int i, ret;
2624 gfn_t gfn;
2625
2626 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2627 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2628 return -1;
2629
2630 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2631 if (ret <= 0)
2632 return -1;
2633
2634 for (i = 0; i < ret; i++, gfn++, start++)
2635 mmu_set_spte(vcpu, start, access, 0, NULL,
2636 sp->role.level, gfn, page_to_pfn(pages[i]),
2637 true, true);
2638
2639 return 0;
2640 }
2641
2642 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2643 struct kvm_mmu_page *sp, u64 *sptep)
2644 {
2645 u64 *spte, *start = NULL;
2646 int i;
2647
2648 WARN_ON(!sp->role.direct);
2649
2650 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2651 spte = sp->spt + i;
2652
2653 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2654 if (is_shadow_present_pte(*spte) || spte == sptep) {
2655 if (!start)
2656 continue;
2657 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2658 break;
2659 start = NULL;
2660 } else if (!start)
2661 start = spte;
2662 }
2663 }
2664
2665 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2666 {
2667 struct kvm_mmu_page *sp;
2668
2669 /*
2670 * Since it's no accessed bit on EPT, it's no way to
2671 * distinguish between actually accessed translations
2672 * and prefetched, so disable pte prefetch if EPT is
2673 * enabled.
2674 */
2675 if (!shadow_accessed_mask)
2676 return;
2677
2678 sp = page_header(__pa(sptep));
2679 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2680 return;
2681
2682 __direct_pte_prefetch(vcpu, sp, sptep);
2683 }
2684
2685 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2686 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2687 bool prefault)
2688 {
2689 struct kvm_shadow_walk_iterator iterator;
2690 struct kvm_mmu_page *sp;
2691 int emulate = 0;
2692 gfn_t pseudo_gfn;
2693
2694 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2695 if (iterator.level == level) {
2696 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2697 write, &emulate, level, gfn, pfn,
2698 prefault, map_writable);
2699 direct_pte_prefetch(vcpu, iterator.sptep);
2700 ++vcpu->stat.pf_fixed;
2701 break;
2702 }
2703
2704 if (!is_shadow_present_pte(*iterator.sptep)) {
2705 u64 base_addr = iterator.addr;
2706
2707 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2708 pseudo_gfn = base_addr >> PAGE_SHIFT;
2709 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2710 iterator.level - 1,
2711 1, ACC_ALL, iterator.sptep);
2712
2713 link_shadow_page(iterator.sptep, sp);
2714 }
2715 }
2716 return emulate;
2717 }
2718
2719 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2720 {
2721 siginfo_t info;
2722
2723 info.si_signo = SIGBUS;
2724 info.si_errno = 0;
2725 info.si_code = BUS_MCEERR_AR;
2726 info.si_addr = (void __user *)address;
2727 info.si_addr_lsb = PAGE_SHIFT;
2728
2729 send_sig_info(SIGBUS, &info, tsk);
2730 }
2731
2732 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2733 {
2734 /*
2735 * Do not cache the mmio info caused by writing the readonly gfn
2736 * into the spte otherwise read access on readonly gfn also can
2737 * caused mmio page fault and treat it as mmio access.
2738 * Return 1 to tell kvm to emulate it.
2739 */
2740 if (pfn == KVM_PFN_ERR_RO_FAULT)
2741 return 1;
2742
2743 if (pfn == KVM_PFN_ERR_HWPOISON) {
2744 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2745 return 0;
2746 }
2747
2748 return -EFAULT;
2749 }
2750
2751 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2752 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2753 {
2754 pfn_t pfn = *pfnp;
2755 gfn_t gfn = *gfnp;
2756 int level = *levelp;
2757
2758 /*
2759 * Check if it's a transparent hugepage. If this would be an
2760 * hugetlbfs page, level wouldn't be set to
2761 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2762 * here.
2763 */
2764 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2765 level == PT_PAGE_TABLE_LEVEL &&
2766 PageTransCompound(pfn_to_page(pfn)) &&
2767 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2768 unsigned long mask;
2769 /*
2770 * mmu_notifier_retry was successful and we hold the
2771 * mmu_lock here, so the pmd can't become splitting
2772 * from under us, and in turn
2773 * __split_huge_page_refcount() can't run from under
2774 * us and we can safely transfer the refcount from
2775 * PG_tail to PG_head as we switch the pfn to tail to
2776 * head.
2777 */
2778 *levelp = level = PT_DIRECTORY_LEVEL;
2779 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2780 VM_BUG_ON((gfn & mask) != (pfn & mask));
2781 if (pfn & mask) {
2782 gfn &= ~mask;
2783 *gfnp = gfn;
2784 kvm_release_pfn_clean(pfn);
2785 pfn &= ~mask;
2786 kvm_get_pfn(pfn);
2787 *pfnp = pfn;
2788 }
2789 }
2790 }
2791
2792 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2793 pfn_t pfn, unsigned access, int *ret_val)
2794 {
2795 bool ret = true;
2796
2797 /* The pfn is invalid, report the error! */
2798 if (unlikely(is_error_pfn(pfn))) {
2799 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2800 goto exit;
2801 }
2802
2803 if (unlikely(is_noslot_pfn(pfn)))
2804 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2805
2806 ret = false;
2807 exit:
2808 return ret;
2809 }
2810
2811 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2812 {
2813 /*
2814 * Do not fix the mmio spte with invalid generation number which
2815 * need to be updated by slow page fault path.
2816 */
2817 if (unlikely(error_code & PFERR_RSVD_MASK))
2818 return false;
2819
2820 /*
2821 * #PF can be fast only if the shadow page table is present and it
2822 * is caused by write-protect, that means we just need change the
2823 * W bit of the spte which can be done out of mmu-lock.
2824 */
2825 if (!(error_code & PFERR_PRESENT_MASK) ||
2826 !(error_code & PFERR_WRITE_MASK))
2827 return false;
2828
2829 return true;
2830 }
2831
2832 static bool
2833 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2834 {
2835 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2836 gfn_t gfn;
2837
2838 WARN_ON(!sp->role.direct);
2839
2840 /*
2841 * The gfn of direct spte is stable since it is calculated
2842 * by sp->gfn.
2843 */
2844 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2845
2846 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2847 mark_page_dirty(vcpu->kvm, gfn);
2848
2849 return true;
2850 }
2851
2852 /*
2853 * Return value:
2854 * - true: let the vcpu to access on the same address again.
2855 * - false: let the real page fault path to fix it.
2856 */
2857 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2858 u32 error_code)
2859 {
2860 struct kvm_shadow_walk_iterator iterator;
2861 bool ret = false;
2862 u64 spte = 0ull;
2863
2864 if (!page_fault_can_be_fast(vcpu, error_code))
2865 return false;
2866
2867 walk_shadow_page_lockless_begin(vcpu);
2868 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2869 if (!is_shadow_present_pte(spte) || iterator.level < level)
2870 break;
2871
2872 /*
2873 * If the mapping has been changed, let the vcpu fault on the
2874 * same address again.
2875 */
2876 if (!is_rmap_spte(spte)) {
2877 ret = true;
2878 goto exit;
2879 }
2880
2881 if (!is_last_spte(spte, level))
2882 goto exit;
2883
2884 /*
2885 * Check if it is a spurious fault caused by TLB lazily flushed.
2886 *
2887 * Need not check the access of upper level table entries since
2888 * they are always ACC_ALL.
2889 */
2890 if (is_writable_pte(spte)) {
2891 ret = true;
2892 goto exit;
2893 }
2894
2895 /*
2896 * Currently, to simplify the code, only the spte write-protected
2897 * by dirty-log can be fast fixed.
2898 */
2899 if (!spte_is_locklessly_modifiable(spte))
2900 goto exit;
2901
2902 /*
2903 * Currently, fast page fault only works for direct mapping since
2904 * the gfn is not stable for indirect shadow page.
2905 * See Documentation/virtual/kvm/locking.txt to get more detail.
2906 */
2907 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2908 exit:
2909 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2910 spte, ret);
2911 walk_shadow_page_lockless_end(vcpu);
2912
2913 return ret;
2914 }
2915
2916 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2917 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2918 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2919
2920 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2921 gfn_t gfn, bool prefault)
2922 {
2923 int r;
2924 int level;
2925 int force_pt_level;
2926 pfn_t pfn;
2927 unsigned long mmu_seq;
2928 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2929
2930 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2931 if (likely(!force_pt_level)) {
2932 level = mapping_level(vcpu, gfn);
2933 /*
2934 * This path builds a PAE pagetable - so we can map
2935 * 2mb pages at maximum. Therefore check if the level
2936 * is larger than that.
2937 */
2938 if (level > PT_DIRECTORY_LEVEL)
2939 level = PT_DIRECTORY_LEVEL;
2940
2941 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2942 } else
2943 level = PT_PAGE_TABLE_LEVEL;
2944
2945 if (fast_page_fault(vcpu, v, level, error_code))
2946 return 0;
2947
2948 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2949 smp_rmb();
2950
2951 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2952 return 0;
2953
2954 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2955 return r;
2956
2957 spin_lock(&vcpu->kvm->mmu_lock);
2958 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2959 goto out_unlock;
2960 make_mmu_pages_available(vcpu);
2961 if (likely(!force_pt_level))
2962 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2963 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2964 prefault);
2965 spin_unlock(&vcpu->kvm->mmu_lock);
2966
2967
2968 return r;
2969
2970 out_unlock:
2971 spin_unlock(&vcpu->kvm->mmu_lock);
2972 kvm_release_pfn_clean(pfn);
2973 return 0;
2974 }
2975
2976
2977 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2978 {
2979 int i;
2980 struct kvm_mmu_page *sp;
2981 LIST_HEAD(invalid_list);
2982
2983 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2984 return;
2985
2986 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2987 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2988 vcpu->arch.mmu.direct_map)) {
2989 hpa_t root = vcpu->arch.mmu.root_hpa;
2990
2991 spin_lock(&vcpu->kvm->mmu_lock);
2992 sp = page_header(root);
2993 --sp->root_count;
2994 if (!sp->root_count && sp->role.invalid) {
2995 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2996 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2997 }
2998 spin_unlock(&vcpu->kvm->mmu_lock);
2999 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3000 return;
3001 }
3002
3003 spin_lock(&vcpu->kvm->mmu_lock);
3004 for (i = 0; i < 4; ++i) {
3005 hpa_t root = vcpu->arch.mmu.pae_root[i];
3006
3007 if (root) {
3008 root &= PT64_BASE_ADDR_MASK;
3009 sp = page_header(root);
3010 --sp->root_count;
3011 if (!sp->root_count && sp->role.invalid)
3012 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3013 &invalid_list);
3014 }
3015 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3016 }
3017 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3018 spin_unlock(&vcpu->kvm->mmu_lock);
3019 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3020 }
3021
3022 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3023 {
3024 int ret = 0;
3025
3026 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3027 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3028 ret = 1;
3029 }
3030
3031 return ret;
3032 }
3033
3034 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3035 {
3036 struct kvm_mmu_page *sp;
3037 unsigned i;
3038
3039 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3040 spin_lock(&vcpu->kvm->mmu_lock);
3041 make_mmu_pages_available(vcpu);
3042 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3043 1, ACC_ALL, NULL);
3044 ++sp->root_count;
3045 spin_unlock(&vcpu->kvm->mmu_lock);
3046 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3047 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3048 for (i = 0; i < 4; ++i) {
3049 hpa_t root = vcpu->arch.mmu.pae_root[i];
3050
3051 ASSERT(!VALID_PAGE(root));
3052 spin_lock(&vcpu->kvm->mmu_lock);
3053 make_mmu_pages_available(vcpu);
3054 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3055 i << 30,
3056 PT32_ROOT_LEVEL, 1, ACC_ALL,
3057 NULL);
3058 root = __pa(sp->spt);
3059 ++sp->root_count;
3060 spin_unlock(&vcpu->kvm->mmu_lock);
3061 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3062 }
3063 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3064 } else
3065 BUG();
3066
3067 return 0;
3068 }
3069
3070 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3071 {
3072 struct kvm_mmu_page *sp;
3073 u64 pdptr, pm_mask;
3074 gfn_t root_gfn;
3075 int i;
3076
3077 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3078
3079 if (mmu_check_root(vcpu, root_gfn))
3080 return 1;
3081
3082 /*
3083 * Do we shadow a long mode page table? If so we need to
3084 * write-protect the guests page table root.
3085 */
3086 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3087 hpa_t root = vcpu->arch.mmu.root_hpa;
3088
3089 ASSERT(!VALID_PAGE(root));
3090
3091 spin_lock(&vcpu->kvm->mmu_lock);
3092 make_mmu_pages_available(vcpu);
3093 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3094 0, ACC_ALL, NULL);
3095 root = __pa(sp->spt);
3096 ++sp->root_count;
3097 spin_unlock(&vcpu->kvm->mmu_lock);
3098 vcpu->arch.mmu.root_hpa = root;
3099 return 0;
3100 }
3101
3102 /*
3103 * We shadow a 32 bit page table. This may be a legacy 2-level
3104 * or a PAE 3-level page table. In either case we need to be aware that
3105 * the shadow page table may be a PAE or a long mode page table.
3106 */
3107 pm_mask = PT_PRESENT_MASK;
3108 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3109 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3110
3111 for (i = 0; i < 4; ++i) {
3112 hpa_t root = vcpu->arch.mmu.pae_root[i];
3113
3114 ASSERT(!VALID_PAGE(root));
3115 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3116 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3117 if (!is_present_gpte(pdptr)) {
3118 vcpu->arch.mmu.pae_root[i] = 0;
3119 continue;
3120 }
3121 root_gfn = pdptr >> PAGE_SHIFT;
3122 if (mmu_check_root(vcpu, root_gfn))
3123 return 1;
3124 }
3125 spin_lock(&vcpu->kvm->mmu_lock);
3126 make_mmu_pages_available(vcpu);
3127 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3128 PT32_ROOT_LEVEL, 0,
3129 ACC_ALL, NULL);
3130 root = __pa(sp->spt);
3131 ++sp->root_count;
3132 spin_unlock(&vcpu->kvm->mmu_lock);
3133
3134 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3135 }
3136 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3137
3138 /*
3139 * If we shadow a 32 bit page table with a long mode page
3140 * table we enter this path.
3141 */
3142 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3143 if (vcpu->arch.mmu.lm_root == NULL) {
3144 /*
3145 * The additional page necessary for this is only
3146 * allocated on demand.
3147 */
3148
3149 u64 *lm_root;
3150
3151 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3152 if (lm_root == NULL)
3153 return 1;
3154
3155 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3156
3157 vcpu->arch.mmu.lm_root = lm_root;
3158 }
3159
3160 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3161 }
3162
3163 return 0;
3164 }
3165
3166 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3167 {
3168 if (vcpu->arch.mmu.direct_map)
3169 return mmu_alloc_direct_roots(vcpu);
3170 else
3171 return mmu_alloc_shadow_roots(vcpu);
3172 }
3173
3174 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3175 {
3176 int i;
3177 struct kvm_mmu_page *sp;
3178
3179 if (vcpu->arch.mmu.direct_map)
3180 return;
3181
3182 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3183 return;
3184
3185 vcpu_clear_mmio_info(vcpu, ~0ul);
3186 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3187 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3188 hpa_t root = vcpu->arch.mmu.root_hpa;
3189 sp = page_header(root);
3190 mmu_sync_children(vcpu, sp);
3191 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3192 return;
3193 }
3194 for (i = 0; i < 4; ++i) {
3195 hpa_t root = vcpu->arch.mmu.pae_root[i];
3196
3197 if (root && VALID_PAGE(root)) {
3198 root &= PT64_BASE_ADDR_MASK;
3199 sp = page_header(root);
3200 mmu_sync_children(vcpu, sp);
3201 }
3202 }
3203 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3204 }
3205
3206 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3207 {
3208 spin_lock(&vcpu->kvm->mmu_lock);
3209 mmu_sync_roots(vcpu);
3210 spin_unlock(&vcpu->kvm->mmu_lock);
3211 }
3212
3213 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3214 u32 access, struct x86_exception *exception)
3215 {
3216 if (exception)
3217 exception->error_code = 0;
3218 return vaddr;
3219 }
3220
3221 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3222 u32 access,
3223 struct x86_exception *exception)
3224 {
3225 if (exception)
3226 exception->error_code = 0;
3227 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3228 }
3229
3230 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3231 {
3232 if (direct)
3233 return vcpu_match_mmio_gpa(vcpu, addr);
3234
3235 return vcpu_match_mmio_gva(vcpu, addr);
3236 }
3237
3238
3239 /*
3240 * On direct hosts, the last spte is only allows two states
3241 * for mmio page fault:
3242 * - It is the mmio spte
3243 * - It is zapped or it is being zapped.
3244 *
3245 * This function completely checks the spte when the last spte
3246 * is not the mmio spte.
3247 */
3248 static bool check_direct_spte_mmio_pf(u64 spte)
3249 {
3250 return __check_direct_spte_mmio_pf(spte);
3251 }
3252
3253 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3254 {
3255 struct kvm_shadow_walk_iterator iterator;
3256 u64 spte = 0ull;
3257
3258 walk_shadow_page_lockless_begin(vcpu);
3259 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3260 if (!is_shadow_present_pte(spte))
3261 break;
3262 walk_shadow_page_lockless_end(vcpu);
3263
3264 return spte;
3265 }
3266
3267 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3268 {
3269 u64 spte;
3270
3271 if (quickly_check_mmio_pf(vcpu, addr, direct))
3272 return RET_MMIO_PF_EMULATE;
3273
3274 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3275
3276 if (is_mmio_spte(spte)) {
3277 gfn_t gfn = get_mmio_spte_gfn(spte);
3278 unsigned access = get_mmio_spte_access(spte);
3279
3280 if (!check_mmio_spte(vcpu->kvm, spte))
3281 return RET_MMIO_PF_INVALID;
3282
3283 if (direct)
3284 addr = 0;
3285
3286 trace_handle_mmio_page_fault(addr, gfn, access);
3287 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3288 return RET_MMIO_PF_EMULATE;
3289 }
3290
3291 /*
3292 * It's ok if the gva is remapped by other cpus on shadow guest,
3293 * it's a BUG if the gfn is not a mmio page.
3294 */
3295 if (direct && !check_direct_spte_mmio_pf(spte))
3296 return RET_MMIO_PF_BUG;
3297
3298 /*
3299 * If the page table is zapped by other cpus, let CPU fault again on
3300 * the address.
3301 */
3302 return RET_MMIO_PF_RETRY;
3303 }
3304 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3305
3306 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3307 u32 error_code, bool direct)
3308 {
3309 int ret;
3310
3311 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3312 WARN_ON(ret == RET_MMIO_PF_BUG);
3313 return ret;
3314 }
3315
3316 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3317 u32 error_code, bool prefault)
3318 {
3319 gfn_t gfn;
3320 int r;
3321
3322 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3323
3324 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3325 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3326
3327 if (likely(r != RET_MMIO_PF_INVALID))
3328 return r;
3329 }
3330
3331 r = mmu_topup_memory_caches(vcpu);
3332 if (r)
3333 return r;
3334
3335 ASSERT(vcpu);
3336 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3337
3338 gfn = gva >> PAGE_SHIFT;
3339
3340 return nonpaging_map(vcpu, gva & PAGE_MASK,
3341 error_code, gfn, prefault);
3342 }
3343
3344 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3345 {
3346 struct kvm_arch_async_pf arch;
3347
3348 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3349 arch.gfn = gfn;
3350 arch.direct_map = vcpu->arch.mmu.direct_map;
3351 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3352
3353 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3354 }
3355
3356 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3357 {
3358 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3359 kvm_event_needs_reinjection(vcpu)))
3360 return false;
3361
3362 return kvm_x86_ops->interrupt_allowed(vcpu);
3363 }
3364
3365 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3366 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3367 {
3368 bool async;
3369
3370 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3371
3372 if (!async)
3373 return false; /* *pfn has correct page already */
3374
3375 if (!prefault && can_do_async_pf(vcpu)) {
3376 trace_kvm_try_async_get_page(gva, gfn);
3377 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3378 trace_kvm_async_pf_doublefault(gva, gfn);
3379 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3380 return true;
3381 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3382 return true;
3383 }
3384
3385 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3386
3387 return false;
3388 }
3389
3390 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3391 bool prefault)
3392 {
3393 pfn_t pfn;
3394 int r;
3395 int level;
3396 int force_pt_level;
3397 gfn_t gfn = gpa >> PAGE_SHIFT;
3398 unsigned long mmu_seq;
3399 int write = error_code & PFERR_WRITE_MASK;
3400 bool map_writable;
3401
3402 ASSERT(vcpu);
3403 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3404
3405 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3406 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3407
3408 if (likely(r != RET_MMIO_PF_INVALID))
3409 return r;
3410 }
3411
3412 r = mmu_topup_memory_caches(vcpu);
3413 if (r)
3414 return r;
3415
3416 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3417 if (likely(!force_pt_level)) {
3418 level = mapping_level(vcpu, gfn);
3419 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3420 } else
3421 level = PT_PAGE_TABLE_LEVEL;
3422
3423 if (fast_page_fault(vcpu, gpa, level, error_code))
3424 return 0;
3425
3426 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3427 smp_rmb();
3428
3429 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3430 return 0;
3431
3432 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3433 return r;
3434
3435 spin_lock(&vcpu->kvm->mmu_lock);
3436 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3437 goto out_unlock;
3438 make_mmu_pages_available(vcpu);
3439 if (likely(!force_pt_level))
3440 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3441 r = __direct_map(vcpu, gpa, write, map_writable,
3442 level, gfn, pfn, prefault);
3443 spin_unlock(&vcpu->kvm->mmu_lock);
3444
3445 return r;
3446
3447 out_unlock:
3448 spin_unlock(&vcpu->kvm->mmu_lock);
3449 kvm_release_pfn_clean(pfn);
3450 return 0;
3451 }
3452
3453 static void nonpaging_free(struct kvm_vcpu *vcpu)
3454 {
3455 mmu_free_roots(vcpu);
3456 }
3457
3458 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3459 struct kvm_mmu *context)
3460 {
3461 context->new_cr3 = nonpaging_new_cr3;
3462 context->page_fault = nonpaging_page_fault;
3463 context->gva_to_gpa = nonpaging_gva_to_gpa;
3464 context->free = nonpaging_free;
3465 context->sync_page = nonpaging_sync_page;
3466 context->invlpg = nonpaging_invlpg;
3467 context->update_pte = nonpaging_update_pte;
3468 context->root_level = 0;
3469 context->shadow_root_level = PT32E_ROOT_LEVEL;
3470 context->root_hpa = INVALID_PAGE;
3471 context->direct_map = true;
3472 context->nx = false;
3473 return 0;
3474 }
3475
3476 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3477 {
3478 ++vcpu->stat.tlb_flush;
3479 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3480 }
3481
3482 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3483 {
3484 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3485 mmu_free_roots(vcpu);
3486 }
3487
3488 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3489 {
3490 return kvm_read_cr3(vcpu);
3491 }
3492
3493 static void inject_page_fault(struct kvm_vcpu *vcpu,
3494 struct x86_exception *fault)
3495 {
3496 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3497 }
3498
3499 static void paging_free(struct kvm_vcpu *vcpu)
3500 {
3501 nonpaging_free(vcpu);
3502 }
3503
3504 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3505 {
3506 unsigned mask;
3507
3508 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3509
3510 mask = (unsigned)~ACC_WRITE_MASK;
3511 /* Allow write access to dirty gptes */
3512 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3513 *access &= mask;
3514 }
3515
3516 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3517 unsigned access, int *nr_present)
3518 {
3519 if (unlikely(is_mmio_spte(*sptep))) {
3520 if (gfn != get_mmio_spte_gfn(*sptep)) {
3521 mmu_spte_clear_no_track(sptep);
3522 return true;
3523 }
3524
3525 (*nr_present)++;
3526 mark_mmio_spte(kvm, sptep, gfn, access);
3527 return true;
3528 }
3529
3530 return false;
3531 }
3532
3533 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3534 {
3535 unsigned access;
3536
3537 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3538 access &= ~(gpte >> PT64_NX_SHIFT);
3539
3540 return access;
3541 }
3542
3543 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3544 {
3545 unsigned index;
3546
3547 index = level - 1;
3548 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3549 return mmu->last_pte_bitmap & (1 << index);
3550 }
3551
3552 #define PTTYPE 64
3553 #include "paging_tmpl.h"
3554 #undef PTTYPE
3555
3556 #define PTTYPE 32
3557 #include "paging_tmpl.h"
3558 #undef PTTYPE
3559
3560 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3561 struct kvm_mmu *context)
3562 {
3563 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3564 u64 exb_bit_rsvd = 0;
3565
3566 if (!context->nx)
3567 exb_bit_rsvd = rsvd_bits(63, 63);
3568 switch (context->root_level) {
3569 case PT32_ROOT_LEVEL:
3570 /* no rsvd bits for 2 level 4K page table entries */
3571 context->rsvd_bits_mask[0][1] = 0;
3572 context->rsvd_bits_mask[0][0] = 0;
3573 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3574
3575 if (!is_pse(vcpu)) {
3576 context->rsvd_bits_mask[1][1] = 0;
3577 break;
3578 }
3579
3580 if (is_cpuid_PSE36())
3581 /* 36bits PSE 4MB page */
3582 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3583 else
3584 /* 32 bits PSE 4MB page */
3585 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3586 break;
3587 case PT32E_ROOT_LEVEL:
3588 context->rsvd_bits_mask[0][2] =
3589 rsvd_bits(maxphyaddr, 63) |
3590 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3591 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3592 rsvd_bits(maxphyaddr, 62); /* PDE */
3593 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3594 rsvd_bits(maxphyaddr, 62); /* PTE */
3595 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3596 rsvd_bits(maxphyaddr, 62) |
3597 rsvd_bits(13, 20); /* large page */
3598 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3599 break;
3600 case PT64_ROOT_LEVEL:
3601 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3602 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3603 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3604 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3605 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3606 rsvd_bits(maxphyaddr, 51);
3607 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3608 rsvd_bits(maxphyaddr, 51);
3609 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3610 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3611 rsvd_bits(maxphyaddr, 51) |
3612 rsvd_bits(13, 29);
3613 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3614 rsvd_bits(maxphyaddr, 51) |
3615 rsvd_bits(13, 20); /* large page */
3616 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3617 break;
3618 }
3619 }
3620
3621 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3622 {
3623 unsigned bit, byte, pfec;
3624 u8 map;
3625 bool fault, x, w, u, wf, uf, ff, smep;
3626
3627 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3628 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3629 pfec = byte << 1;
3630 map = 0;
3631 wf = pfec & PFERR_WRITE_MASK;
3632 uf = pfec & PFERR_USER_MASK;
3633 ff = pfec & PFERR_FETCH_MASK;
3634 for (bit = 0; bit < 8; ++bit) {
3635 x = bit & ACC_EXEC_MASK;
3636 w = bit & ACC_WRITE_MASK;
3637 u = bit & ACC_USER_MASK;
3638
3639 /* Not really needed: !nx will cause pte.nx to fault */
3640 x |= !mmu->nx;
3641 /* Allow supervisor writes if !cr0.wp */
3642 w |= !is_write_protection(vcpu) && !uf;
3643 /* Disallow supervisor fetches of user code if cr4.smep */
3644 x &= !(smep && u && !uf);
3645
3646 fault = (ff && !x) || (uf && !u) || (wf && !w);
3647 map |= fault << bit;
3648 }
3649 mmu->permissions[byte] = map;
3650 }
3651 }
3652
3653 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3654 {
3655 u8 map;
3656 unsigned level, root_level = mmu->root_level;
3657 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3658
3659 if (root_level == PT32E_ROOT_LEVEL)
3660 --root_level;
3661 /* PT_PAGE_TABLE_LEVEL always terminates */
3662 map = 1 | (1 << ps_set_index);
3663 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3664 if (level <= PT_PDPE_LEVEL
3665 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3666 map |= 1 << (ps_set_index | (level - 1));
3667 }
3668 mmu->last_pte_bitmap = map;
3669 }
3670
3671 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3672 struct kvm_mmu *context,
3673 int level)
3674 {
3675 context->nx = is_nx(vcpu);
3676 context->root_level = level;
3677
3678 reset_rsvds_bits_mask(vcpu, context);
3679 update_permission_bitmask(vcpu, context);
3680 update_last_pte_bitmap(vcpu, context);
3681
3682 ASSERT(is_pae(vcpu));
3683 context->new_cr3 = paging_new_cr3;
3684 context->page_fault = paging64_page_fault;
3685 context->gva_to_gpa = paging64_gva_to_gpa;
3686 context->sync_page = paging64_sync_page;
3687 context->invlpg = paging64_invlpg;
3688 context->update_pte = paging64_update_pte;
3689 context->free = paging_free;
3690 context->shadow_root_level = level;
3691 context->root_hpa = INVALID_PAGE;
3692 context->direct_map = false;
3693 return 0;
3694 }
3695
3696 static int paging64_init_context(struct kvm_vcpu *vcpu,
3697 struct kvm_mmu *context)
3698 {
3699 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3700 }
3701
3702 static int paging32_init_context(struct kvm_vcpu *vcpu,
3703 struct kvm_mmu *context)
3704 {
3705 context->nx = false;
3706 context->root_level = PT32_ROOT_LEVEL;
3707
3708 reset_rsvds_bits_mask(vcpu, context);
3709 update_permission_bitmask(vcpu, context);
3710 update_last_pte_bitmap(vcpu, context);
3711
3712 context->new_cr3 = paging_new_cr3;
3713 context->page_fault = paging32_page_fault;
3714 context->gva_to_gpa = paging32_gva_to_gpa;
3715 context->free = paging_free;
3716 context->sync_page = paging32_sync_page;
3717 context->invlpg = paging32_invlpg;
3718 context->update_pte = paging32_update_pte;
3719 context->shadow_root_level = PT32E_ROOT_LEVEL;
3720 context->root_hpa = INVALID_PAGE;
3721 context->direct_map = false;
3722 return 0;
3723 }
3724
3725 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3726 struct kvm_mmu *context)
3727 {
3728 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3729 }
3730
3731 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3732 {
3733 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3734
3735 context->base_role.word = 0;
3736 context->new_cr3 = nonpaging_new_cr3;
3737 context->page_fault = tdp_page_fault;
3738 context->free = nonpaging_free;
3739 context->sync_page = nonpaging_sync_page;
3740 context->invlpg = nonpaging_invlpg;
3741 context->update_pte = nonpaging_update_pte;
3742 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3743 context->root_hpa = INVALID_PAGE;
3744 context->direct_map = true;
3745 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3746 context->get_cr3 = get_cr3;
3747 context->get_pdptr = kvm_pdptr_read;
3748 context->inject_page_fault = kvm_inject_page_fault;
3749
3750 if (!is_paging(vcpu)) {
3751 context->nx = false;
3752 context->gva_to_gpa = nonpaging_gva_to_gpa;
3753 context->root_level = 0;
3754 } else if (is_long_mode(vcpu)) {
3755 context->nx = is_nx(vcpu);
3756 context->root_level = PT64_ROOT_LEVEL;
3757 reset_rsvds_bits_mask(vcpu, context);
3758 context->gva_to_gpa = paging64_gva_to_gpa;
3759 } else if (is_pae(vcpu)) {
3760 context->nx = is_nx(vcpu);
3761 context->root_level = PT32E_ROOT_LEVEL;
3762 reset_rsvds_bits_mask(vcpu, context);
3763 context->gva_to_gpa = paging64_gva_to_gpa;
3764 } else {
3765 context->nx = false;
3766 context->root_level = PT32_ROOT_LEVEL;
3767 reset_rsvds_bits_mask(vcpu, context);
3768 context->gva_to_gpa = paging32_gva_to_gpa;
3769 }
3770
3771 update_permission_bitmask(vcpu, context);
3772 update_last_pte_bitmap(vcpu, context);
3773
3774 return 0;
3775 }
3776
3777 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3778 {
3779 int r;
3780 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3781 ASSERT(vcpu);
3782 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3783
3784 if (!is_paging(vcpu))
3785 r = nonpaging_init_context(vcpu, context);
3786 else if (is_long_mode(vcpu))
3787 r = paging64_init_context(vcpu, context);
3788 else if (is_pae(vcpu))
3789 r = paging32E_init_context(vcpu, context);
3790 else
3791 r = paging32_init_context(vcpu, context);
3792
3793 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3794 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3795 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3796 vcpu->arch.mmu.base_role.smep_andnot_wp
3797 = smep && !is_write_protection(vcpu);
3798
3799 return r;
3800 }
3801 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3802
3803 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3804 {
3805 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3806
3807 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3808 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3809 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3810 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3811
3812 return r;
3813 }
3814
3815 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3816 {
3817 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3818
3819 g_context->get_cr3 = get_cr3;
3820 g_context->get_pdptr = kvm_pdptr_read;
3821 g_context->inject_page_fault = kvm_inject_page_fault;
3822
3823 /*
3824 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3825 * translation of l2_gpa to l1_gpa addresses is done using the
3826 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3827 * functions between mmu and nested_mmu are swapped.
3828 */
3829 if (!is_paging(vcpu)) {
3830 g_context->nx = false;
3831 g_context->root_level = 0;
3832 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3833 } else if (is_long_mode(vcpu)) {
3834 g_context->nx = is_nx(vcpu);
3835 g_context->root_level = PT64_ROOT_LEVEL;
3836 reset_rsvds_bits_mask(vcpu, g_context);
3837 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3838 } else if (is_pae(vcpu)) {
3839 g_context->nx = is_nx(vcpu);
3840 g_context->root_level = PT32E_ROOT_LEVEL;
3841 reset_rsvds_bits_mask(vcpu, g_context);
3842 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3843 } else {
3844 g_context->nx = false;
3845 g_context->root_level = PT32_ROOT_LEVEL;
3846 reset_rsvds_bits_mask(vcpu, g_context);
3847 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3848 }
3849
3850 update_permission_bitmask(vcpu, g_context);
3851 update_last_pte_bitmap(vcpu, g_context);
3852
3853 return 0;
3854 }
3855
3856 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3857 {
3858 if (mmu_is_nested(vcpu))
3859 return init_kvm_nested_mmu(vcpu);
3860 else if (tdp_enabled)
3861 return init_kvm_tdp_mmu(vcpu);
3862 else
3863 return init_kvm_softmmu(vcpu);
3864 }
3865
3866 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3867 {
3868 ASSERT(vcpu);
3869 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3870 /* mmu.free() should set root_hpa = INVALID_PAGE */
3871 vcpu->arch.mmu.free(vcpu);
3872 }
3873
3874 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3875 {
3876 destroy_kvm_mmu(vcpu);
3877 return init_kvm_mmu(vcpu);
3878 }
3879 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3880
3881 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3882 {
3883 int r;
3884
3885 r = mmu_topup_memory_caches(vcpu);
3886 if (r)
3887 goto out;
3888 r = mmu_alloc_roots(vcpu);
3889 kvm_mmu_sync_roots(vcpu);
3890 if (r)
3891 goto out;
3892 /* set_cr3() should ensure TLB has been flushed */
3893 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3894 out:
3895 return r;
3896 }
3897 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3898
3899 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3900 {
3901 mmu_free_roots(vcpu);
3902 }
3903 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3904
3905 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3906 struct kvm_mmu_page *sp, u64 *spte,
3907 const void *new)
3908 {
3909 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3910 ++vcpu->kvm->stat.mmu_pde_zapped;
3911 return;
3912 }
3913
3914 ++vcpu->kvm->stat.mmu_pte_updated;
3915 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3916 }
3917
3918 static bool need_remote_flush(u64 old, u64 new)
3919 {
3920 if (!is_shadow_present_pte(old))
3921 return false;
3922 if (!is_shadow_present_pte(new))
3923 return true;
3924 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3925 return true;
3926 old ^= PT64_NX_MASK;
3927 new ^= PT64_NX_MASK;
3928 return (old & ~new & PT64_PERM_MASK) != 0;
3929 }
3930
3931 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3932 bool remote_flush, bool local_flush)
3933 {
3934 if (zap_page)
3935 return;
3936
3937 if (remote_flush)
3938 kvm_flush_remote_tlbs(vcpu->kvm);
3939 else if (local_flush)
3940 kvm_mmu_flush_tlb(vcpu);
3941 }
3942
3943 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3944 const u8 *new, int *bytes)
3945 {
3946 u64 gentry;
3947 int r;
3948
3949 /*
3950 * Assume that the pte write on a page table of the same type
3951 * as the current vcpu paging mode since we update the sptes only
3952 * when they have the same mode.
3953 */
3954 if (is_pae(vcpu) && *bytes == 4) {
3955 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3956 *gpa &= ~(gpa_t)7;
3957 *bytes = 8;
3958 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3959 if (r)
3960 gentry = 0;
3961 new = (const u8 *)&gentry;
3962 }
3963
3964 switch (*bytes) {
3965 case 4:
3966 gentry = *(const u32 *)new;
3967 break;
3968 case 8:
3969 gentry = *(const u64 *)new;
3970 break;
3971 default:
3972 gentry = 0;
3973 break;
3974 }
3975
3976 return gentry;
3977 }
3978
3979 /*
3980 * If we're seeing too many writes to a page, it may no longer be a page table,
3981 * or we may be forking, in which case it is better to unmap the page.
3982 */
3983 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3984 {
3985 /*
3986 * Skip write-flooding detected for the sp whose level is 1, because
3987 * it can become unsync, then the guest page is not write-protected.
3988 */
3989 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3990 return false;
3991
3992 return ++sp->write_flooding_count >= 3;
3993 }
3994
3995 /*
3996 * Misaligned accesses are too much trouble to fix up; also, they usually
3997 * indicate a page is not used as a page table.
3998 */
3999 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4000 int bytes)
4001 {
4002 unsigned offset, pte_size, misaligned;
4003
4004 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4005 gpa, bytes, sp->role.word);
4006
4007 offset = offset_in_page(gpa);
4008 pte_size = sp->role.cr4_pae ? 8 : 4;
4009
4010 /*
4011 * Sometimes, the OS only writes the last one bytes to update status
4012 * bits, for example, in linux, andb instruction is used in clear_bit().
4013 */
4014 if (!(offset & (pte_size - 1)) && bytes == 1)
4015 return false;
4016
4017 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4018 misaligned |= bytes < 4;
4019
4020 return misaligned;
4021 }
4022
4023 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4024 {
4025 unsigned page_offset, quadrant;
4026 u64 *spte;
4027 int level;
4028
4029 page_offset = offset_in_page(gpa);
4030 level = sp->role.level;
4031 *nspte = 1;
4032 if (!sp->role.cr4_pae) {
4033 page_offset <<= 1; /* 32->64 */
4034 /*
4035 * A 32-bit pde maps 4MB while the shadow pdes map
4036 * only 2MB. So we need to double the offset again
4037 * and zap two pdes instead of one.
4038 */
4039 if (level == PT32_ROOT_LEVEL) {
4040 page_offset &= ~7; /* kill rounding error */
4041 page_offset <<= 1;
4042 *nspte = 2;
4043 }
4044 quadrant = page_offset >> PAGE_SHIFT;
4045 page_offset &= ~PAGE_MASK;
4046 if (quadrant != sp->role.quadrant)
4047 return NULL;
4048 }
4049
4050 spte = &sp->spt[page_offset / sizeof(*spte)];
4051 return spte;
4052 }
4053
4054 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4055 const u8 *new, int bytes)
4056 {
4057 gfn_t gfn = gpa >> PAGE_SHIFT;
4058 union kvm_mmu_page_role mask = { .word = 0 };
4059 struct kvm_mmu_page *sp;
4060 LIST_HEAD(invalid_list);
4061 u64 entry, gentry, *spte;
4062 int npte;
4063 bool remote_flush, local_flush, zap_page;
4064
4065 /*
4066 * If we don't have indirect shadow pages, it means no page is
4067 * write-protected, so we can exit simply.
4068 */
4069 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4070 return;
4071
4072 zap_page = remote_flush = local_flush = false;
4073
4074 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4075
4076 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4077
4078 /*
4079 * No need to care whether allocation memory is successful
4080 * or not since pte prefetch is skiped if it does not have
4081 * enough objects in the cache.
4082 */
4083 mmu_topup_memory_caches(vcpu);
4084
4085 spin_lock(&vcpu->kvm->mmu_lock);
4086 ++vcpu->kvm->stat.mmu_pte_write;
4087 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4088
4089 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4090 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4091 if (detect_write_misaligned(sp, gpa, bytes) ||
4092 detect_write_flooding(sp)) {
4093 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4094 &invalid_list);
4095 ++vcpu->kvm->stat.mmu_flooded;
4096 continue;
4097 }
4098
4099 spte = get_written_sptes(sp, gpa, &npte);
4100 if (!spte)
4101 continue;
4102
4103 local_flush = true;
4104 while (npte--) {
4105 entry = *spte;
4106 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4107 if (gentry &&
4108 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4109 & mask.word) && rmap_can_add(vcpu))
4110 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4111 if (need_remote_flush(entry, *spte))
4112 remote_flush = true;
4113 ++spte;
4114 }
4115 }
4116 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4117 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4118 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4119 spin_unlock(&vcpu->kvm->mmu_lock);
4120 }
4121
4122 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4123 {
4124 gpa_t gpa;
4125 int r;
4126
4127 if (vcpu->arch.mmu.direct_map)
4128 return 0;
4129
4130 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4131
4132 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4133
4134 return r;
4135 }
4136 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4137
4138 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4139 {
4140 LIST_HEAD(invalid_list);
4141
4142 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4143 return;
4144
4145 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4146 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4147 break;
4148
4149 ++vcpu->kvm->stat.mmu_recycled;
4150 }
4151 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4152 }
4153
4154 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4155 {
4156 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4157 return vcpu_match_mmio_gpa(vcpu, addr);
4158
4159 return vcpu_match_mmio_gva(vcpu, addr);
4160 }
4161
4162 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4163 void *insn, int insn_len)
4164 {
4165 int r, emulation_type = EMULTYPE_RETRY;
4166 enum emulation_result er;
4167
4168 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4169 if (r < 0)
4170 goto out;
4171
4172 if (!r) {
4173 r = 1;
4174 goto out;
4175 }
4176
4177 if (is_mmio_page_fault(vcpu, cr2))
4178 emulation_type = 0;
4179
4180 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4181
4182 switch (er) {
4183 case EMULATE_DONE:
4184 return 1;
4185 case EMULATE_DO_MMIO:
4186 ++vcpu->stat.mmio_exits;
4187 /* fall through */
4188 case EMULATE_FAIL:
4189 return 0;
4190 default:
4191 BUG();
4192 }
4193 out:
4194 return r;
4195 }
4196 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4197
4198 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4199 {
4200 vcpu->arch.mmu.invlpg(vcpu, gva);
4201 kvm_mmu_flush_tlb(vcpu);
4202 ++vcpu->stat.invlpg;
4203 }
4204 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4205
4206 void kvm_enable_tdp(void)
4207 {
4208 tdp_enabled = true;
4209 }
4210 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4211
4212 void kvm_disable_tdp(void)
4213 {
4214 tdp_enabled = false;
4215 }
4216 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4217
4218 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4219 {
4220 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4221 if (vcpu->arch.mmu.lm_root != NULL)
4222 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4223 }
4224
4225 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4226 {
4227 struct page *page;
4228 int i;
4229
4230 ASSERT(vcpu);
4231
4232 /*
4233 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4234 * Therefore we need to allocate shadow page tables in the first
4235 * 4GB of memory, which happens to fit the DMA32 zone.
4236 */
4237 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4238 if (!page)
4239 return -ENOMEM;
4240
4241 vcpu->arch.mmu.pae_root = page_address(page);
4242 for (i = 0; i < 4; ++i)
4243 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4244
4245 return 0;
4246 }
4247
4248 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4249 {
4250 ASSERT(vcpu);
4251
4252 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4253 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4254 vcpu->arch.mmu.translate_gpa = translate_gpa;
4255 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4256
4257 return alloc_mmu_pages(vcpu);
4258 }
4259
4260 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4261 {
4262 ASSERT(vcpu);
4263 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4264
4265 return init_kvm_mmu(vcpu);
4266 }
4267
4268 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4269 {
4270 struct kvm_memory_slot *memslot;
4271 gfn_t last_gfn;
4272 int i;
4273
4274 memslot = id_to_memslot(kvm->memslots, slot);
4275 last_gfn = memslot->base_gfn + memslot->npages - 1;
4276
4277 spin_lock(&kvm->mmu_lock);
4278
4279 for (i = PT_PAGE_TABLE_LEVEL;
4280 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4281 unsigned long *rmapp;
4282 unsigned long last_index, index;
4283
4284 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4285 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4286
4287 for (index = 0; index <= last_index; ++index, ++rmapp) {
4288 if (*rmapp)
4289 __rmap_write_protect(kvm, rmapp, false);
4290
4291 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4292 kvm_flush_remote_tlbs(kvm);
4293 cond_resched_lock(&kvm->mmu_lock);
4294 }
4295 }
4296 }
4297
4298 kvm_flush_remote_tlbs(kvm);
4299 spin_unlock(&kvm->mmu_lock);
4300 }
4301
4302 #define BATCH_ZAP_PAGES 10
4303 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4304 {
4305 struct kvm_mmu_page *sp, *node;
4306 int batch = 0;
4307
4308 restart:
4309 list_for_each_entry_safe_reverse(sp, node,
4310 &kvm->arch.active_mmu_pages, link) {
4311 int ret;
4312
4313 /*
4314 * No obsolete page exists before new created page since
4315 * active_mmu_pages is the FIFO list.
4316 */
4317 if (!is_obsolete_sp(kvm, sp))
4318 break;
4319
4320 /*
4321 * Since we are reversely walking the list and the invalid
4322 * list will be moved to the head, skip the invalid page
4323 * can help us to avoid the infinity list walking.
4324 */
4325 if (sp->role.invalid)
4326 continue;
4327
4328 /*
4329 * Need not flush tlb since we only zap the sp with invalid
4330 * generation number.
4331 */
4332 if (batch >= BATCH_ZAP_PAGES &&
4333 cond_resched_lock(&kvm->mmu_lock)) {
4334 batch = 0;
4335 goto restart;
4336 }
4337
4338 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4339 &kvm->arch.zapped_obsolete_pages);
4340 batch += ret;
4341
4342 if (ret)
4343 goto restart;
4344 }
4345
4346 /*
4347 * Should flush tlb before free page tables since lockless-walking
4348 * may use the pages.
4349 */
4350 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4351 }
4352
4353 /*
4354 * Fast invalidate all shadow pages and use lock-break technique
4355 * to zap obsolete pages.
4356 *
4357 * It's required when memslot is being deleted or VM is being
4358 * destroyed, in these cases, we should ensure that KVM MMU does
4359 * not use any resource of the being-deleted slot or all slots
4360 * after calling the function.
4361 */
4362 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4363 {
4364 spin_lock(&kvm->mmu_lock);
4365 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4366 kvm->arch.mmu_valid_gen++;
4367
4368 /*
4369 * Notify all vcpus to reload its shadow page table
4370 * and flush TLB. Then all vcpus will switch to new
4371 * shadow page table with the new mmu_valid_gen.
4372 *
4373 * Note: we should do this under the protection of
4374 * mmu-lock, otherwise, vcpu would purge shadow page
4375 * but miss tlb flush.
4376 */
4377 kvm_reload_remote_mmus(kvm);
4378
4379 kvm_zap_obsolete_pages(kvm);
4380 spin_unlock(&kvm->mmu_lock);
4381 }
4382
4383 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4384 {
4385 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4386 }
4387
4388 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4389 {
4390 /*
4391 * The very rare case: if the generation-number is round,
4392 * zap all shadow pages.
4393 *
4394 * The max value is MMIO_MAX_GEN - 1 since it is not called
4395 * when mark memslot invalid.
4396 */
4397 if (unlikely(kvm_current_mmio_generation(kvm) >= (MMIO_MAX_GEN - 1))) {
4398 printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
4399 kvm_mmu_invalidate_zap_all_pages(kvm);
4400 }
4401 }
4402
4403 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4404 {
4405 struct kvm *kvm;
4406 int nr_to_scan = sc->nr_to_scan;
4407
4408 if (nr_to_scan == 0)
4409 goto out;
4410
4411 raw_spin_lock(&kvm_lock);
4412
4413 list_for_each_entry(kvm, &vm_list, vm_list) {
4414 int idx;
4415 LIST_HEAD(invalid_list);
4416
4417 /*
4418 * Never scan more than sc->nr_to_scan VM instances.
4419 * Will not hit this condition practically since we do not try
4420 * to shrink more than one VM and it is very unlikely to see
4421 * !n_used_mmu_pages so many times.
4422 */
4423 if (!nr_to_scan--)
4424 break;
4425 /*
4426 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4427 * here. We may skip a VM instance errorneosly, but we do not
4428 * want to shrink a VM that only started to populate its MMU
4429 * anyway.
4430 */
4431 if (!kvm->arch.n_used_mmu_pages &&
4432 !kvm_has_zapped_obsolete_pages(kvm))
4433 continue;
4434
4435 idx = srcu_read_lock(&kvm->srcu);
4436 spin_lock(&kvm->mmu_lock);
4437
4438 if (kvm_has_zapped_obsolete_pages(kvm)) {
4439 kvm_mmu_commit_zap_page(kvm,
4440 &kvm->arch.zapped_obsolete_pages);
4441 goto unlock;
4442 }
4443
4444 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
4445 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4446
4447 unlock:
4448 spin_unlock(&kvm->mmu_lock);
4449 srcu_read_unlock(&kvm->srcu, idx);
4450
4451 list_move_tail(&kvm->vm_list, &vm_list);
4452 break;
4453 }
4454
4455 raw_spin_unlock(&kvm_lock);
4456
4457 out:
4458 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4459 }
4460
4461 static struct shrinker mmu_shrinker = {
4462 .shrink = mmu_shrink,
4463 .seeks = DEFAULT_SEEKS * 10,
4464 };
4465
4466 static void mmu_destroy_caches(void)
4467 {
4468 if (pte_list_desc_cache)
4469 kmem_cache_destroy(pte_list_desc_cache);
4470 if (mmu_page_header_cache)
4471 kmem_cache_destroy(mmu_page_header_cache);
4472 }
4473
4474 int kvm_mmu_module_init(void)
4475 {
4476 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4477 sizeof(struct pte_list_desc),
4478 0, 0, NULL);
4479 if (!pte_list_desc_cache)
4480 goto nomem;
4481
4482 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4483 sizeof(struct kvm_mmu_page),
4484 0, 0, NULL);
4485 if (!mmu_page_header_cache)
4486 goto nomem;
4487
4488 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4489 goto nomem;
4490
4491 register_shrinker(&mmu_shrinker);
4492
4493 return 0;
4494
4495 nomem:
4496 mmu_destroy_caches();
4497 return -ENOMEM;
4498 }
4499
4500 /*
4501 * Caculate mmu pages needed for kvm.
4502 */
4503 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4504 {
4505 unsigned int nr_mmu_pages;
4506 unsigned int nr_pages = 0;
4507 struct kvm_memslots *slots;
4508 struct kvm_memory_slot *memslot;
4509
4510 slots = kvm_memslots(kvm);
4511
4512 kvm_for_each_memslot(memslot, slots)
4513 nr_pages += memslot->npages;
4514
4515 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4516 nr_mmu_pages = max(nr_mmu_pages,
4517 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4518
4519 return nr_mmu_pages;
4520 }
4521
4522 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4523 {
4524 struct kvm_shadow_walk_iterator iterator;
4525 u64 spte;
4526 int nr_sptes = 0;
4527
4528 walk_shadow_page_lockless_begin(vcpu);
4529 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4530 sptes[iterator.level-1] = spte;
4531 nr_sptes++;
4532 if (!is_shadow_present_pte(spte))
4533 break;
4534 }
4535 walk_shadow_page_lockless_end(vcpu);
4536
4537 return nr_sptes;
4538 }
4539 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4540
4541 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4542 {
4543 ASSERT(vcpu);
4544
4545 destroy_kvm_mmu(vcpu);
4546 free_mmu_pages(vcpu);
4547 mmu_free_memory_caches(vcpu);
4548 }
4549
4550 void kvm_mmu_module_exit(void)
4551 {
4552 mmu_destroy_caches();
4553 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4554 unregister_shrinker(&mmu_shrinker);
4555 mmu_audit_disable();
4556 }
This page took 0.159916 seconds and 5 git commands to generate.