dc4d954efacd11e6f98f6c168e8c2ae7ed38487a
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19
20 #include "mmu.h"
21 #include "x86.h"
22 #include "kvm_cache_regs.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/types.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/swap.h>
31 #include <linux/hugetlb.h>
32 #include <linux/compiler.h>
33 #include <linux/srcu.h>
34
35 #include <asm/page.h>
36 #include <asm/cmpxchg.h>
37 #include <asm/io.h>
38 #include <asm/vmx.h>
39
40 /*
41 * When setting this variable to true it enables Two-Dimensional-Paging
42 * where the hardware walks 2 page tables:
43 * 1. the guest-virtual to guest-physical
44 * 2. while doing 1. it walks guest-physical to host-physical
45 * If the hardware supports that we don't need to do shadow paging.
46 */
47 bool tdp_enabled = false;
48
49 #undef MMU_DEBUG
50
51 #undef AUDIT
52
53 #ifdef AUDIT
54 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
55 #else
56 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
57 #endif
58
59 #ifdef MMU_DEBUG
60
61 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
62 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
63
64 #else
65
66 #define pgprintk(x...) do { } while (0)
67 #define rmap_printk(x...) do { } while (0)
68
69 #endif
70
71 #if defined(MMU_DEBUG) || defined(AUDIT)
72 static int dbg = 0;
73 module_param(dbg, bool, 0644);
74 #endif
75
76 static int oos_shadow = 1;
77 module_param(oos_shadow, bool, 0644);
78
79 #ifndef MMU_DEBUG
80 #define ASSERT(x) do { } while (0)
81 #else
82 #define ASSERT(x) \
83 if (!(x)) { \
84 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
85 __FILE__, __LINE__, #x); \
86 }
87 #endif
88
89 #define PT_FIRST_AVAIL_BITS_SHIFT 9
90 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
91
92 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
93
94 #define PT64_LEVEL_BITS 9
95
96 #define PT64_LEVEL_SHIFT(level) \
97 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
98
99 #define PT64_LEVEL_MASK(level) \
100 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
101
102 #define PT64_INDEX(address, level)\
103 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
104
105
106 #define PT32_LEVEL_BITS 10
107
108 #define PT32_LEVEL_SHIFT(level) \
109 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
110
111 #define PT32_LEVEL_MASK(level) \
112 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
113 #define PT32_LVL_OFFSET_MASK(level) \
114 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
115 * PT32_LEVEL_BITS))) - 1))
116
117 #define PT32_INDEX(address, level)\
118 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
119
120
121 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
122 #define PT64_DIR_BASE_ADDR_MASK \
123 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
124 #define PT64_LVL_ADDR_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
127 #define PT64_LVL_OFFSET_MASK(level) \
128 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
129 * PT64_LEVEL_BITS))) - 1))
130
131 #define PT32_BASE_ADDR_MASK PAGE_MASK
132 #define PT32_DIR_BASE_ADDR_MASK \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
134 #define PT32_LVL_ADDR_MASK(level) \
135 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
136 * PT32_LEVEL_BITS))) - 1))
137
138 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
139 | PT64_NX_MASK)
140
141 #define PFERR_PRESENT_MASK (1U << 0)
142 #define PFERR_WRITE_MASK (1U << 1)
143 #define PFERR_USER_MASK (1U << 2)
144 #define PFERR_RSVD_MASK (1U << 3)
145 #define PFERR_FETCH_MASK (1U << 4)
146
147 #define RMAP_EXT 4
148
149 #define ACC_EXEC_MASK 1
150 #define ACC_WRITE_MASK PT_WRITABLE_MASK
151 #define ACC_USER_MASK PT_USER_MASK
152 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
153
154 #define CREATE_TRACE_POINTS
155 #include "mmutrace.h"
156
157 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
158
159 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
160
161 struct kvm_rmap_desc {
162 u64 *sptes[RMAP_EXT];
163 struct kvm_rmap_desc *more;
164 };
165
166 struct kvm_shadow_walk_iterator {
167 u64 addr;
168 hpa_t shadow_addr;
169 int level;
170 u64 *sptep;
171 unsigned index;
172 };
173
174 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)); \
177 shadow_walk_next(&(_walker)))
178
179
180 struct kvm_unsync_walk {
181 int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
182 };
183
184 typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
185
186 static struct kmem_cache *pte_chain_cache;
187 static struct kmem_cache *rmap_desc_cache;
188 static struct kmem_cache *mmu_page_header_cache;
189
190 static u64 __read_mostly shadow_trap_nonpresent_pte;
191 static u64 __read_mostly shadow_notrap_nonpresent_pte;
192 static u64 __read_mostly shadow_base_present_pte;
193 static u64 __read_mostly shadow_nx_mask;
194 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
195 static u64 __read_mostly shadow_user_mask;
196 static u64 __read_mostly shadow_accessed_mask;
197 static u64 __read_mostly shadow_dirty_mask;
198
199 static inline u64 rsvd_bits(int s, int e)
200 {
201 return ((1ULL << (e - s + 1)) - 1) << s;
202 }
203
204 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
205 {
206 shadow_trap_nonpresent_pte = trap_pte;
207 shadow_notrap_nonpresent_pte = notrap_pte;
208 }
209 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
210
211 void kvm_mmu_set_base_ptes(u64 base_pte)
212 {
213 shadow_base_present_pte = base_pte;
214 }
215 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
216
217 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
218 u64 dirty_mask, u64 nx_mask, u64 x_mask)
219 {
220 shadow_user_mask = user_mask;
221 shadow_accessed_mask = accessed_mask;
222 shadow_dirty_mask = dirty_mask;
223 shadow_nx_mask = nx_mask;
224 shadow_x_mask = x_mask;
225 }
226 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
227
228 static int is_write_protection(struct kvm_vcpu *vcpu)
229 {
230 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
231 }
232
233 static int is_cpuid_PSE36(void)
234 {
235 return 1;
236 }
237
238 static int is_nx(struct kvm_vcpu *vcpu)
239 {
240 return vcpu->arch.efer & EFER_NX;
241 }
242
243 static int is_shadow_present_pte(u64 pte)
244 {
245 return pte != shadow_trap_nonpresent_pte
246 && pte != shadow_notrap_nonpresent_pte;
247 }
248
249 static int is_large_pte(u64 pte)
250 {
251 return pte & PT_PAGE_SIZE_MASK;
252 }
253
254 static int is_writable_pte(unsigned long pte)
255 {
256 return pte & PT_WRITABLE_MASK;
257 }
258
259 static int is_dirty_gpte(unsigned long pte)
260 {
261 return pte & PT_DIRTY_MASK;
262 }
263
264 static int is_rmap_spte(u64 pte)
265 {
266 return is_shadow_present_pte(pte);
267 }
268
269 static int is_last_spte(u64 pte, int level)
270 {
271 if (level == PT_PAGE_TABLE_LEVEL)
272 return 1;
273 if (is_large_pte(pte))
274 return 1;
275 return 0;
276 }
277
278 static pfn_t spte_to_pfn(u64 pte)
279 {
280 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
281 }
282
283 static gfn_t pse36_gfn_delta(u32 gpte)
284 {
285 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
286
287 return (gpte & PT32_DIR_PSE36_MASK) << shift;
288 }
289
290 static void __set_spte(u64 *sptep, u64 spte)
291 {
292 #ifdef CONFIG_X86_64
293 set_64bit((unsigned long *)sptep, spte);
294 #else
295 set_64bit((unsigned long long *)sptep, spte);
296 #endif
297 }
298
299 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
300 struct kmem_cache *base_cache, int min)
301 {
302 void *obj;
303
304 if (cache->nobjs >= min)
305 return 0;
306 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
307 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
308 if (!obj)
309 return -ENOMEM;
310 cache->objects[cache->nobjs++] = obj;
311 }
312 return 0;
313 }
314
315 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
316 {
317 while (mc->nobjs)
318 kfree(mc->objects[--mc->nobjs]);
319 }
320
321 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
322 int min)
323 {
324 struct page *page;
325
326 if (cache->nobjs >= min)
327 return 0;
328 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
329 page = alloc_page(GFP_KERNEL);
330 if (!page)
331 return -ENOMEM;
332 set_page_private(page, 0);
333 cache->objects[cache->nobjs++] = page_address(page);
334 }
335 return 0;
336 }
337
338 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
339 {
340 while (mc->nobjs)
341 free_page((unsigned long)mc->objects[--mc->nobjs]);
342 }
343
344 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
345 {
346 int r;
347
348 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
349 pte_chain_cache, 4);
350 if (r)
351 goto out;
352 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
353 rmap_desc_cache, 4);
354 if (r)
355 goto out;
356 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
357 if (r)
358 goto out;
359 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
360 mmu_page_header_cache, 4);
361 out:
362 return r;
363 }
364
365 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
366 {
367 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
368 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
369 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
370 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
371 }
372
373 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
374 size_t size)
375 {
376 void *p;
377
378 BUG_ON(!mc->nobjs);
379 p = mc->objects[--mc->nobjs];
380 return p;
381 }
382
383 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
384 {
385 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
386 sizeof(struct kvm_pte_chain));
387 }
388
389 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
390 {
391 kfree(pc);
392 }
393
394 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
395 {
396 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
397 sizeof(struct kvm_rmap_desc));
398 }
399
400 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
401 {
402 kfree(rd);
403 }
404
405 /*
406 * Return the pointer to the largepage write count for a given
407 * gfn, handling slots that are not large page aligned.
408 */
409 static int *slot_largepage_idx(gfn_t gfn,
410 struct kvm_memory_slot *slot,
411 int level)
412 {
413 unsigned long idx;
414
415 idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
416 (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
417 return &slot->lpage_info[level - 2][idx].write_count;
418 }
419
420 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
421 {
422 struct kvm_memory_slot *slot;
423 int *write_count;
424 int i;
425
426 gfn = unalias_gfn(kvm, gfn);
427
428 slot = gfn_to_memslot_unaliased(kvm, gfn);
429 for (i = PT_DIRECTORY_LEVEL;
430 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
431 write_count = slot_largepage_idx(gfn, slot, i);
432 *write_count += 1;
433 }
434 }
435
436 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
437 {
438 struct kvm_memory_slot *slot;
439 int *write_count;
440 int i;
441
442 gfn = unalias_gfn(kvm, gfn);
443 for (i = PT_DIRECTORY_LEVEL;
444 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
445 slot = gfn_to_memslot_unaliased(kvm, gfn);
446 write_count = slot_largepage_idx(gfn, slot, i);
447 *write_count -= 1;
448 WARN_ON(*write_count < 0);
449 }
450 }
451
452 static int has_wrprotected_page(struct kvm *kvm,
453 gfn_t gfn,
454 int level)
455 {
456 struct kvm_memory_slot *slot;
457 int *largepage_idx;
458
459 gfn = unalias_gfn(kvm, gfn);
460 slot = gfn_to_memslot_unaliased(kvm, gfn);
461 if (slot) {
462 largepage_idx = slot_largepage_idx(gfn, slot, level);
463 return *largepage_idx;
464 }
465
466 return 1;
467 }
468
469 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
470 {
471 unsigned long page_size = PAGE_SIZE;
472 struct vm_area_struct *vma;
473 unsigned long addr;
474 int i, ret = 0;
475
476 addr = gfn_to_hva(kvm, gfn);
477 if (kvm_is_error_hva(addr))
478 return PT_PAGE_TABLE_LEVEL;
479
480 down_read(&current->mm->mmap_sem);
481 vma = find_vma(current->mm, addr);
482 if (!vma)
483 goto out;
484
485 page_size = vma_kernel_pagesize(vma);
486
487 out:
488 up_read(&current->mm->mmap_sem);
489
490 for (i = PT_PAGE_TABLE_LEVEL;
491 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
492 if (page_size >= KVM_HPAGE_SIZE(i))
493 ret = i;
494 else
495 break;
496 }
497
498 return ret;
499 }
500
501 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
502 {
503 struct kvm_memory_slot *slot;
504 int host_level, level, max_level;
505
506 slot = gfn_to_memslot(vcpu->kvm, large_gfn);
507 if (slot && slot->dirty_bitmap)
508 return PT_PAGE_TABLE_LEVEL;
509
510 host_level = host_mapping_level(vcpu->kvm, large_gfn);
511
512 if (host_level == PT_PAGE_TABLE_LEVEL)
513 return host_level;
514
515 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
516 kvm_x86_ops->get_lpage_level() : host_level;
517
518 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
519 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
520 break;
521
522 return level - 1;
523 }
524
525 /*
526 * Take gfn and return the reverse mapping to it.
527 * Note: gfn must be unaliased before this function get called
528 */
529
530 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
531 {
532 struct kvm_memory_slot *slot;
533 unsigned long idx;
534
535 slot = gfn_to_memslot(kvm, gfn);
536 if (likely(level == PT_PAGE_TABLE_LEVEL))
537 return &slot->rmap[gfn - slot->base_gfn];
538
539 idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
540 (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
541
542 return &slot->lpage_info[level - 2][idx].rmap_pde;
543 }
544
545 /*
546 * Reverse mapping data structures:
547 *
548 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
549 * that points to page_address(page).
550 *
551 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
552 * containing more mappings.
553 *
554 * Returns the number of rmap entries before the spte was added or zero if
555 * the spte was not added.
556 *
557 */
558 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
559 {
560 struct kvm_mmu_page *sp;
561 struct kvm_rmap_desc *desc;
562 unsigned long *rmapp;
563 int i, count = 0;
564
565 if (!is_rmap_spte(*spte))
566 return count;
567 gfn = unalias_gfn(vcpu->kvm, gfn);
568 sp = page_header(__pa(spte));
569 sp->gfns[spte - sp->spt] = gfn;
570 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
571 if (!*rmapp) {
572 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
573 *rmapp = (unsigned long)spte;
574 } else if (!(*rmapp & 1)) {
575 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
576 desc = mmu_alloc_rmap_desc(vcpu);
577 desc->sptes[0] = (u64 *)*rmapp;
578 desc->sptes[1] = spte;
579 *rmapp = (unsigned long)desc | 1;
580 } else {
581 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
582 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
583 while (desc->sptes[RMAP_EXT-1] && desc->more) {
584 desc = desc->more;
585 count += RMAP_EXT;
586 }
587 if (desc->sptes[RMAP_EXT-1]) {
588 desc->more = mmu_alloc_rmap_desc(vcpu);
589 desc = desc->more;
590 }
591 for (i = 0; desc->sptes[i]; ++i)
592 ;
593 desc->sptes[i] = spte;
594 }
595 return count;
596 }
597
598 static void rmap_desc_remove_entry(unsigned long *rmapp,
599 struct kvm_rmap_desc *desc,
600 int i,
601 struct kvm_rmap_desc *prev_desc)
602 {
603 int j;
604
605 for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
606 ;
607 desc->sptes[i] = desc->sptes[j];
608 desc->sptes[j] = NULL;
609 if (j != 0)
610 return;
611 if (!prev_desc && !desc->more)
612 *rmapp = (unsigned long)desc->sptes[0];
613 else
614 if (prev_desc)
615 prev_desc->more = desc->more;
616 else
617 *rmapp = (unsigned long)desc->more | 1;
618 mmu_free_rmap_desc(desc);
619 }
620
621 static void rmap_remove(struct kvm *kvm, u64 *spte)
622 {
623 struct kvm_rmap_desc *desc;
624 struct kvm_rmap_desc *prev_desc;
625 struct kvm_mmu_page *sp;
626 pfn_t pfn;
627 unsigned long *rmapp;
628 int i;
629
630 if (!is_rmap_spte(*spte))
631 return;
632 sp = page_header(__pa(spte));
633 pfn = spte_to_pfn(*spte);
634 if (*spte & shadow_accessed_mask)
635 kvm_set_pfn_accessed(pfn);
636 if (is_writable_pte(*spte))
637 kvm_set_pfn_dirty(pfn);
638 rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], sp->role.level);
639 if (!*rmapp) {
640 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
641 BUG();
642 } else if (!(*rmapp & 1)) {
643 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
644 if ((u64 *)*rmapp != spte) {
645 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
646 spte, *spte);
647 BUG();
648 }
649 *rmapp = 0;
650 } else {
651 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
652 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
653 prev_desc = NULL;
654 while (desc) {
655 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
656 if (desc->sptes[i] == spte) {
657 rmap_desc_remove_entry(rmapp,
658 desc, i,
659 prev_desc);
660 return;
661 }
662 prev_desc = desc;
663 desc = desc->more;
664 }
665 pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
666 BUG();
667 }
668 }
669
670 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
671 {
672 struct kvm_rmap_desc *desc;
673 struct kvm_rmap_desc *prev_desc;
674 u64 *prev_spte;
675 int i;
676
677 if (!*rmapp)
678 return NULL;
679 else if (!(*rmapp & 1)) {
680 if (!spte)
681 return (u64 *)*rmapp;
682 return NULL;
683 }
684 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
685 prev_desc = NULL;
686 prev_spte = NULL;
687 while (desc) {
688 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
689 if (prev_spte == spte)
690 return desc->sptes[i];
691 prev_spte = desc->sptes[i];
692 }
693 desc = desc->more;
694 }
695 return NULL;
696 }
697
698 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
699 {
700 unsigned long *rmapp;
701 u64 *spte;
702 int i, write_protected = 0;
703
704 gfn = unalias_gfn(kvm, gfn);
705 rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
706
707 spte = rmap_next(kvm, rmapp, NULL);
708 while (spte) {
709 BUG_ON(!spte);
710 BUG_ON(!(*spte & PT_PRESENT_MASK));
711 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
712 if (is_writable_pte(*spte)) {
713 __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
714 write_protected = 1;
715 }
716 spte = rmap_next(kvm, rmapp, spte);
717 }
718 if (write_protected) {
719 pfn_t pfn;
720
721 spte = rmap_next(kvm, rmapp, NULL);
722 pfn = spte_to_pfn(*spte);
723 kvm_set_pfn_dirty(pfn);
724 }
725
726 /* check for huge page mappings */
727 for (i = PT_DIRECTORY_LEVEL;
728 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
729 rmapp = gfn_to_rmap(kvm, gfn, i);
730 spte = rmap_next(kvm, rmapp, NULL);
731 while (spte) {
732 BUG_ON(!spte);
733 BUG_ON(!(*spte & PT_PRESENT_MASK));
734 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
735 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
736 if (is_writable_pte(*spte)) {
737 rmap_remove(kvm, spte);
738 --kvm->stat.lpages;
739 __set_spte(spte, shadow_trap_nonpresent_pte);
740 spte = NULL;
741 write_protected = 1;
742 }
743 spte = rmap_next(kvm, rmapp, spte);
744 }
745 }
746
747 return write_protected;
748 }
749
750 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
751 unsigned long data)
752 {
753 u64 *spte;
754 int need_tlb_flush = 0;
755
756 while ((spte = rmap_next(kvm, rmapp, NULL))) {
757 BUG_ON(!(*spte & PT_PRESENT_MASK));
758 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
759 rmap_remove(kvm, spte);
760 __set_spte(spte, shadow_trap_nonpresent_pte);
761 need_tlb_flush = 1;
762 }
763 return need_tlb_flush;
764 }
765
766 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
767 unsigned long data)
768 {
769 int need_flush = 0;
770 u64 *spte, new_spte;
771 pte_t *ptep = (pte_t *)data;
772 pfn_t new_pfn;
773
774 WARN_ON(pte_huge(*ptep));
775 new_pfn = pte_pfn(*ptep);
776 spte = rmap_next(kvm, rmapp, NULL);
777 while (spte) {
778 BUG_ON(!is_shadow_present_pte(*spte));
779 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
780 need_flush = 1;
781 if (pte_write(*ptep)) {
782 rmap_remove(kvm, spte);
783 __set_spte(spte, shadow_trap_nonpresent_pte);
784 spte = rmap_next(kvm, rmapp, NULL);
785 } else {
786 new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
787 new_spte |= (u64)new_pfn << PAGE_SHIFT;
788
789 new_spte &= ~PT_WRITABLE_MASK;
790 new_spte &= ~SPTE_HOST_WRITEABLE;
791 if (is_writable_pte(*spte))
792 kvm_set_pfn_dirty(spte_to_pfn(*spte));
793 __set_spte(spte, new_spte);
794 spte = rmap_next(kvm, rmapp, spte);
795 }
796 }
797 if (need_flush)
798 kvm_flush_remote_tlbs(kvm);
799
800 return 0;
801 }
802
803 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
804 unsigned long data,
805 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
806 unsigned long data))
807 {
808 int i, j;
809 int retval = 0;
810 struct kvm_memslots *slots;
811
812 slots = rcu_dereference(kvm->memslots);
813
814 for (i = 0; i < slots->nmemslots; i++) {
815 struct kvm_memory_slot *memslot = &slots->memslots[i];
816 unsigned long start = memslot->userspace_addr;
817 unsigned long end;
818
819 end = start + (memslot->npages << PAGE_SHIFT);
820 if (hva >= start && hva < end) {
821 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
822
823 retval |= handler(kvm, &memslot->rmap[gfn_offset],
824 data);
825
826 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
827 int idx = gfn_offset;
828 idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
829 retval |= handler(kvm,
830 &memslot->lpage_info[j][idx].rmap_pde,
831 data);
832 }
833 }
834 }
835
836 return retval;
837 }
838
839 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
840 {
841 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
842 }
843
844 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
845 {
846 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
847 }
848
849 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
850 unsigned long data)
851 {
852 u64 *spte;
853 int young = 0;
854
855 /* always return old for EPT */
856 if (!shadow_accessed_mask)
857 return 0;
858
859 spte = rmap_next(kvm, rmapp, NULL);
860 while (spte) {
861 int _young;
862 u64 _spte = *spte;
863 BUG_ON(!(_spte & PT_PRESENT_MASK));
864 _young = _spte & PT_ACCESSED_MASK;
865 if (_young) {
866 young = 1;
867 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
868 }
869 spte = rmap_next(kvm, rmapp, spte);
870 }
871 return young;
872 }
873
874 #define RMAP_RECYCLE_THRESHOLD 1000
875
876 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
877 {
878 unsigned long *rmapp;
879 struct kvm_mmu_page *sp;
880
881 sp = page_header(__pa(spte));
882
883 gfn = unalias_gfn(vcpu->kvm, gfn);
884 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
885
886 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
887 kvm_flush_remote_tlbs(vcpu->kvm);
888 }
889
890 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
891 {
892 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
893 }
894
895 #ifdef MMU_DEBUG
896 static int is_empty_shadow_page(u64 *spt)
897 {
898 u64 *pos;
899 u64 *end;
900
901 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
902 if (is_shadow_present_pte(*pos)) {
903 printk(KERN_ERR "%s: %p %llx\n", __func__,
904 pos, *pos);
905 return 0;
906 }
907 return 1;
908 }
909 #endif
910
911 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
912 {
913 ASSERT(is_empty_shadow_page(sp->spt));
914 list_del(&sp->link);
915 __free_page(virt_to_page(sp->spt));
916 __free_page(virt_to_page(sp->gfns));
917 kfree(sp);
918 ++kvm->arch.n_free_mmu_pages;
919 }
920
921 static unsigned kvm_page_table_hashfn(gfn_t gfn)
922 {
923 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
924 }
925
926 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
927 u64 *parent_pte)
928 {
929 struct kvm_mmu_page *sp;
930
931 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
932 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
933 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
934 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
935 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
936 INIT_LIST_HEAD(&sp->oos_link);
937 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
938 sp->multimapped = 0;
939 sp->parent_pte = parent_pte;
940 --vcpu->kvm->arch.n_free_mmu_pages;
941 return sp;
942 }
943
944 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
945 struct kvm_mmu_page *sp, u64 *parent_pte)
946 {
947 struct kvm_pte_chain *pte_chain;
948 struct hlist_node *node;
949 int i;
950
951 if (!parent_pte)
952 return;
953 if (!sp->multimapped) {
954 u64 *old = sp->parent_pte;
955
956 if (!old) {
957 sp->parent_pte = parent_pte;
958 return;
959 }
960 sp->multimapped = 1;
961 pte_chain = mmu_alloc_pte_chain(vcpu);
962 INIT_HLIST_HEAD(&sp->parent_ptes);
963 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
964 pte_chain->parent_ptes[0] = old;
965 }
966 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
967 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
968 continue;
969 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
970 if (!pte_chain->parent_ptes[i]) {
971 pte_chain->parent_ptes[i] = parent_pte;
972 return;
973 }
974 }
975 pte_chain = mmu_alloc_pte_chain(vcpu);
976 BUG_ON(!pte_chain);
977 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
978 pte_chain->parent_ptes[0] = parent_pte;
979 }
980
981 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
982 u64 *parent_pte)
983 {
984 struct kvm_pte_chain *pte_chain;
985 struct hlist_node *node;
986 int i;
987
988 if (!sp->multimapped) {
989 BUG_ON(sp->parent_pte != parent_pte);
990 sp->parent_pte = NULL;
991 return;
992 }
993 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
994 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
995 if (!pte_chain->parent_ptes[i])
996 break;
997 if (pte_chain->parent_ptes[i] != parent_pte)
998 continue;
999 while (i + 1 < NR_PTE_CHAIN_ENTRIES
1000 && pte_chain->parent_ptes[i + 1]) {
1001 pte_chain->parent_ptes[i]
1002 = pte_chain->parent_ptes[i + 1];
1003 ++i;
1004 }
1005 pte_chain->parent_ptes[i] = NULL;
1006 if (i == 0) {
1007 hlist_del(&pte_chain->link);
1008 mmu_free_pte_chain(pte_chain);
1009 if (hlist_empty(&sp->parent_ptes)) {
1010 sp->multimapped = 0;
1011 sp->parent_pte = NULL;
1012 }
1013 }
1014 return;
1015 }
1016 BUG();
1017 }
1018
1019
1020 static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1021 mmu_parent_walk_fn fn)
1022 {
1023 struct kvm_pte_chain *pte_chain;
1024 struct hlist_node *node;
1025 struct kvm_mmu_page *parent_sp;
1026 int i;
1027
1028 if (!sp->multimapped && sp->parent_pte) {
1029 parent_sp = page_header(__pa(sp->parent_pte));
1030 fn(vcpu, parent_sp);
1031 mmu_parent_walk(vcpu, parent_sp, fn);
1032 return;
1033 }
1034 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1035 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1036 if (!pte_chain->parent_ptes[i])
1037 break;
1038 parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
1039 fn(vcpu, parent_sp);
1040 mmu_parent_walk(vcpu, parent_sp, fn);
1041 }
1042 }
1043
1044 static void kvm_mmu_update_unsync_bitmap(u64 *spte)
1045 {
1046 unsigned int index;
1047 struct kvm_mmu_page *sp = page_header(__pa(spte));
1048
1049 index = spte - sp->spt;
1050 if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
1051 sp->unsync_children++;
1052 WARN_ON(!sp->unsync_children);
1053 }
1054
1055 static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
1056 {
1057 struct kvm_pte_chain *pte_chain;
1058 struct hlist_node *node;
1059 int i;
1060
1061 if (!sp->parent_pte)
1062 return;
1063
1064 if (!sp->multimapped) {
1065 kvm_mmu_update_unsync_bitmap(sp->parent_pte);
1066 return;
1067 }
1068
1069 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1070 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1071 if (!pte_chain->parent_ptes[i])
1072 break;
1073 kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
1074 }
1075 }
1076
1077 static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1078 {
1079 kvm_mmu_update_parents_unsync(sp);
1080 return 1;
1081 }
1082
1083 static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
1084 struct kvm_mmu_page *sp)
1085 {
1086 mmu_parent_walk(vcpu, sp, unsync_walk_fn);
1087 kvm_mmu_update_parents_unsync(sp);
1088 }
1089
1090 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1091 struct kvm_mmu_page *sp)
1092 {
1093 int i;
1094
1095 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1096 sp->spt[i] = shadow_trap_nonpresent_pte;
1097 }
1098
1099 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1100 struct kvm_mmu_page *sp)
1101 {
1102 return 1;
1103 }
1104
1105 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1106 {
1107 }
1108
1109 #define KVM_PAGE_ARRAY_NR 16
1110
1111 struct kvm_mmu_pages {
1112 struct mmu_page_and_offset {
1113 struct kvm_mmu_page *sp;
1114 unsigned int idx;
1115 } page[KVM_PAGE_ARRAY_NR];
1116 unsigned int nr;
1117 };
1118
1119 #define for_each_unsync_children(bitmap, idx) \
1120 for (idx = find_first_bit(bitmap, 512); \
1121 idx < 512; \
1122 idx = find_next_bit(bitmap, 512, idx+1))
1123
1124 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1125 int idx)
1126 {
1127 int i;
1128
1129 if (sp->unsync)
1130 for (i=0; i < pvec->nr; i++)
1131 if (pvec->page[i].sp == sp)
1132 return 0;
1133
1134 pvec->page[pvec->nr].sp = sp;
1135 pvec->page[pvec->nr].idx = idx;
1136 pvec->nr++;
1137 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1138 }
1139
1140 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1141 struct kvm_mmu_pages *pvec)
1142 {
1143 int i, ret, nr_unsync_leaf = 0;
1144
1145 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1146 u64 ent = sp->spt[i];
1147
1148 if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
1149 struct kvm_mmu_page *child;
1150 child = page_header(ent & PT64_BASE_ADDR_MASK);
1151
1152 if (child->unsync_children) {
1153 if (mmu_pages_add(pvec, child, i))
1154 return -ENOSPC;
1155
1156 ret = __mmu_unsync_walk(child, pvec);
1157 if (!ret)
1158 __clear_bit(i, sp->unsync_child_bitmap);
1159 else if (ret > 0)
1160 nr_unsync_leaf += ret;
1161 else
1162 return ret;
1163 }
1164
1165 if (child->unsync) {
1166 nr_unsync_leaf++;
1167 if (mmu_pages_add(pvec, child, i))
1168 return -ENOSPC;
1169 }
1170 }
1171 }
1172
1173 if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
1174 sp->unsync_children = 0;
1175
1176 return nr_unsync_leaf;
1177 }
1178
1179 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1180 struct kvm_mmu_pages *pvec)
1181 {
1182 if (!sp->unsync_children)
1183 return 0;
1184
1185 mmu_pages_add(pvec, sp, 0);
1186 return __mmu_unsync_walk(sp, pvec);
1187 }
1188
1189 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
1190 {
1191 unsigned index;
1192 struct hlist_head *bucket;
1193 struct kvm_mmu_page *sp;
1194 struct hlist_node *node;
1195
1196 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1197 index = kvm_page_table_hashfn(gfn);
1198 bucket = &kvm->arch.mmu_page_hash[index];
1199 hlist_for_each_entry(sp, node, bucket, hash_link)
1200 if (sp->gfn == gfn && !sp->role.direct
1201 && !sp->role.invalid) {
1202 pgprintk("%s: found role %x\n",
1203 __func__, sp->role.word);
1204 return sp;
1205 }
1206 return NULL;
1207 }
1208
1209 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1210 {
1211 WARN_ON(!sp->unsync);
1212 sp->unsync = 0;
1213 --kvm->stat.mmu_unsync;
1214 }
1215
1216 static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
1217
1218 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1219 {
1220 if (sp->role.glevels != vcpu->arch.mmu.root_level) {
1221 kvm_mmu_zap_page(vcpu->kvm, sp);
1222 return 1;
1223 }
1224
1225 trace_kvm_mmu_sync_page(sp);
1226 if (rmap_write_protect(vcpu->kvm, sp->gfn))
1227 kvm_flush_remote_tlbs(vcpu->kvm);
1228 kvm_unlink_unsync_page(vcpu->kvm, sp);
1229 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1230 kvm_mmu_zap_page(vcpu->kvm, sp);
1231 return 1;
1232 }
1233
1234 kvm_mmu_flush_tlb(vcpu);
1235 return 0;
1236 }
1237
1238 struct mmu_page_path {
1239 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1240 unsigned int idx[PT64_ROOT_LEVEL-1];
1241 };
1242
1243 #define for_each_sp(pvec, sp, parents, i) \
1244 for (i = mmu_pages_next(&pvec, &parents, -1), \
1245 sp = pvec.page[i].sp; \
1246 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1247 i = mmu_pages_next(&pvec, &parents, i))
1248
1249 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1250 struct mmu_page_path *parents,
1251 int i)
1252 {
1253 int n;
1254
1255 for (n = i+1; n < pvec->nr; n++) {
1256 struct kvm_mmu_page *sp = pvec->page[n].sp;
1257
1258 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1259 parents->idx[0] = pvec->page[n].idx;
1260 return n;
1261 }
1262
1263 parents->parent[sp->role.level-2] = sp;
1264 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1265 }
1266
1267 return n;
1268 }
1269
1270 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1271 {
1272 struct kvm_mmu_page *sp;
1273 unsigned int level = 0;
1274
1275 do {
1276 unsigned int idx = parents->idx[level];
1277
1278 sp = parents->parent[level];
1279 if (!sp)
1280 return;
1281
1282 --sp->unsync_children;
1283 WARN_ON((int)sp->unsync_children < 0);
1284 __clear_bit(idx, sp->unsync_child_bitmap);
1285 level++;
1286 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1287 }
1288
1289 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1290 struct mmu_page_path *parents,
1291 struct kvm_mmu_pages *pvec)
1292 {
1293 parents->parent[parent->role.level-1] = NULL;
1294 pvec->nr = 0;
1295 }
1296
1297 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1298 struct kvm_mmu_page *parent)
1299 {
1300 int i;
1301 struct kvm_mmu_page *sp;
1302 struct mmu_page_path parents;
1303 struct kvm_mmu_pages pages;
1304
1305 kvm_mmu_pages_init(parent, &parents, &pages);
1306 while (mmu_unsync_walk(parent, &pages)) {
1307 int protected = 0;
1308
1309 for_each_sp(pages, sp, parents, i)
1310 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1311
1312 if (protected)
1313 kvm_flush_remote_tlbs(vcpu->kvm);
1314
1315 for_each_sp(pages, sp, parents, i) {
1316 kvm_sync_page(vcpu, sp);
1317 mmu_pages_clear_parents(&parents);
1318 }
1319 cond_resched_lock(&vcpu->kvm->mmu_lock);
1320 kvm_mmu_pages_init(parent, &parents, &pages);
1321 }
1322 }
1323
1324 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1325 gfn_t gfn,
1326 gva_t gaddr,
1327 unsigned level,
1328 int direct,
1329 unsigned access,
1330 u64 *parent_pte)
1331 {
1332 union kvm_mmu_page_role role;
1333 unsigned index;
1334 unsigned quadrant;
1335 struct hlist_head *bucket;
1336 struct kvm_mmu_page *sp;
1337 struct hlist_node *node, *tmp;
1338
1339 role = vcpu->arch.mmu.base_role;
1340 role.level = level;
1341 role.direct = direct;
1342 role.access = access;
1343 if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1344 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1345 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1346 role.quadrant = quadrant;
1347 }
1348 index = kvm_page_table_hashfn(gfn);
1349 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1350 hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
1351 if (sp->gfn == gfn) {
1352 if (sp->unsync)
1353 if (kvm_sync_page(vcpu, sp))
1354 continue;
1355
1356 if (sp->role.word != role.word)
1357 continue;
1358
1359 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1360 if (sp->unsync_children) {
1361 set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
1362 kvm_mmu_mark_parents_unsync(vcpu, sp);
1363 }
1364 trace_kvm_mmu_get_page(sp, false);
1365 return sp;
1366 }
1367 ++vcpu->kvm->stat.mmu_cache_miss;
1368 sp = kvm_mmu_alloc_page(vcpu, parent_pte);
1369 if (!sp)
1370 return sp;
1371 sp->gfn = gfn;
1372 sp->role = role;
1373 hlist_add_head(&sp->hash_link, bucket);
1374 if (!direct) {
1375 if (rmap_write_protect(vcpu->kvm, gfn))
1376 kvm_flush_remote_tlbs(vcpu->kvm);
1377 account_shadowed(vcpu->kvm, gfn);
1378 }
1379 if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1380 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1381 else
1382 nonpaging_prefetch_page(vcpu, sp);
1383 trace_kvm_mmu_get_page(sp, true);
1384 return sp;
1385 }
1386
1387 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1388 struct kvm_vcpu *vcpu, u64 addr)
1389 {
1390 iterator->addr = addr;
1391 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1392 iterator->level = vcpu->arch.mmu.shadow_root_level;
1393 if (iterator->level == PT32E_ROOT_LEVEL) {
1394 iterator->shadow_addr
1395 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1396 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1397 --iterator->level;
1398 if (!iterator->shadow_addr)
1399 iterator->level = 0;
1400 }
1401 }
1402
1403 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1404 {
1405 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1406 return false;
1407
1408 if (iterator->level == PT_PAGE_TABLE_LEVEL)
1409 if (is_large_pte(*iterator->sptep))
1410 return false;
1411
1412 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1413 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1414 return true;
1415 }
1416
1417 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1418 {
1419 iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1420 --iterator->level;
1421 }
1422
1423 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1424 struct kvm_mmu_page *sp)
1425 {
1426 unsigned i;
1427 u64 *pt;
1428 u64 ent;
1429
1430 pt = sp->spt;
1431
1432 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1433 ent = pt[i];
1434
1435 if (is_shadow_present_pte(ent)) {
1436 if (!is_last_spte(ent, sp->role.level)) {
1437 ent &= PT64_BASE_ADDR_MASK;
1438 mmu_page_remove_parent_pte(page_header(ent),
1439 &pt[i]);
1440 } else {
1441 if (is_large_pte(ent))
1442 --kvm->stat.lpages;
1443 rmap_remove(kvm, &pt[i]);
1444 }
1445 }
1446 pt[i] = shadow_trap_nonpresent_pte;
1447 }
1448 }
1449
1450 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1451 {
1452 mmu_page_remove_parent_pte(sp, parent_pte);
1453 }
1454
1455 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1456 {
1457 int i;
1458 struct kvm_vcpu *vcpu;
1459
1460 kvm_for_each_vcpu(i, vcpu, kvm)
1461 vcpu->arch.last_pte_updated = NULL;
1462 }
1463
1464 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1465 {
1466 u64 *parent_pte;
1467
1468 while (sp->multimapped || sp->parent_pte) {
1469 if (!sp->multimapped)
1470 parent_pte = sp->parent_pte;
1471 else {
1472 struct kvm_pte_chain *chain;
1473
1474 chain = container_of(sp->parent_ptes.first,
1475 struct kvm_pte_chain, link);
1476 parent_pte = chain->parent_ptes[0];
1477 }
1478 BUG_ON(!parent_pte);
1479 kvm_mmu_put_page(sp, parent_pte);
1480 __set_spte(parent_pte, shadow_trap_nonpresent_pte);
1481 }
1482 }
1483
1484 static int mmu_zap_unsync_children(struct kvm *kvm,
1485 struct kvm_mmu_page *parent)
1486 {
1487 int i, zapped = 0;
1488 struct mmu_page_path parents;
1489 struct kvm_mmu_pages pages;
1490
1491 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1492 return 0;
1493
1494 kvm_mmu_pages_init(parent, &parents, &pages);
1495 while (mmu_unsync_walk(parent, &pages)) {
1496 struct kvm_mmu_page *sp;
1497
1498 for_each_sp(pages, sp, parents, i) {
1499 kvm_mmu_zap_page(kvm, sp);
1500 mmu_pages_clear_parents(&parents);
1501 }
1502 zapped += pages.nr;
1503 kvm_mmu_pages_init(parent, &parents, &pages);
1504 }
1505
1506 return zapped;
1507 }
1508
1509 static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1510 {
1511 int ret;
1512
1513 trace_kvm_mmu_zap_page(sp);
1514 ++kvm->stat.mmu_shadow_zapped;
1515 ret = mmu_zap_unsync_children(kvm, sp);
1516 kvm_mmu_page_unlink_children(kvm, sp);
1517 kvm_mmu_unlink_parents(kvm, sp);
1518 kvm_flush_remote_tlbs(kvm);
1519 if (!sp->role.invalid && !sp->role.direct)
1520 unaccount_shadowed(kvm, sp->gfn);
1521 if (sp->unsync)
1522 kvm_unlink_unsync_page(kvm, sp);
1523 if (!sp->root_count) {
1524 hlist_del(&sp->hash_link);
1525 kvm_mmu_free_page(kvm, sp);
1526 } else {
1527 sp->role.invalid = 1;
1528 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1529 kvm_reload_remote_mmus(kvm);
1530 }
1531 kvm_mmu_reset_last_pte_updated(kvm);
1532 return ret;
1533 }
1534
1535 /*
1536 * Changing the number of mmu pages allocated to the vm
1537 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
1538 */
1539 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
1540 {
1541 int used_pages;
1542
1543 used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
1544 used_pages = max(0, used_pages);
1545
1546 /*
1547 * If we set the number of mmu pages to be smaller be than the
1548 * number of actived pages , we must to free some mmu pages before we
1549 * change the value
1550 */
1551
1552 if (used_pages > kvm_nr_mmu_pages) {
1553 while (used_pages > kvm_nr_mmu_pages) {
1554 struct kvm_mmu_page *page;
1555
1556 page = container_of(kvm->arch.active_mmu_pages.prev,
1557 struct kvm_mmu_page, link);
1558 kvm_mmu_zap_page(kvm, page);
1559 used_pages--;
1560 }
1561 kvm->arch.n_free_mmu_pages = 0;
1562 }
1563 else
1564 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
1565 - kvm->arch.n_alloc_mmu_pages;
1566
1567 kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
1568 }
1569
1570 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1571 {
1572 unsigned index;
1573 struct hlist_head *bucket;
1574 struct kvm_mmu_page *sp;
1575 struct hlist_node *node, *n;
1576 int r;
1577
1578 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1579 r = 0;
1580 index = kvm_page_table_hashfn(gfn);
1581 bucket = &kvm->arch.mmu_page_hash[index];
1582 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
1583 if (sp->gfn == gfn && !sp->role.direct) {
1584 pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
1585 sp->role.word);
1586 r = 1;
1587 if (kvm_mmu_zap_page(kvm, sp))
1588 n = bucket->first;
1589 }
1590 return r;
1591 }
1592
1593 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1594 {
1595 unsigned index;
1596 struct hlist_head *bucket;
1597 struct kvm_mmu_page *sp;
1598 struct hlist_node *node, *nn;
1599
1600 index = kvm_page_table_hashfn(gfn);
1601 bucket = &kvm->arch.mmu_page_hash[index];
1602 hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
1603 if (sp->gfn == gfn && !sp->role.direct
1604 && !sp->role.invalid) {
1605 pgprintk("%s: zap %lx %x\n",
1606 __func__, gfn, sp->role.word);
1607 kvm_mmu_zap_page(kvm, sp);
1608 }
1609 }
1610 }
1611
1612 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1613 {
1614 int slot = memslot_id(kvm, gfn);
1615 struct kvm_mmu_page *sp = page_header(__pa(pte));
1616
1617 __set_bit(slot, sp->slot_bitmap);
1618 }
1619
1620 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1621 {
1622 int i;
1623 u64 *pt = sp->spt;
1624
1625 if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1626 return;
1627
1628 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1629 if (pt[i] == shadow_notrap_nonpresent_pte)
1630 __set_spte(&pt[i], shadow_trap_nonpresent_pte);
1631 }
1632 }
1633
1634 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
1635 {
1636 struct page *page;
1637
1638 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1639
1640 if (gpa == UNMAPPED_GVA)
1641 return NULL;
1642
1643 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1644
1645 return page;
1646 }
1647
1648 /*
1649 * The function is based on mtrr_type_lookup() in
1650 * arch/x86/kernel/cpu/mtrr/generic.c
1651 */
1652 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1653 u64 start, u64 end)
1654 {
1655 int i;
1656 u64 base, mask;
1657 u8 prev_match, curr_match;
1658 int num_var_ranges = KVM_NR_VAR_MTRR;
1659
1660 if (!mtrr_state->enabled)
1661 return 0xFF;
1662
1663 /* Make end inclusive end, instead of exclusive */
1664 end--;
1665
1666 /* Look in fixed ranges. Just return the type as per start */
1667 if (mtrr_state->have_fixed && (start < 0x100000)) {
1668 int idx;
1669
1670 if (start < 0x80000) {
1671 idx = 0;
1672 idx += (start >> 16);
1673 return mtrr_state->fixed_ranges[idx];
1674 } else if (start < 0xC0000) {
1675 idx = 1 * 8;
1676 idx += ((start - 0x80000) >> 14);
1677 return mtrr_state->fixed_ranges[idx];
1678 } else if (start < 0x1000000) {
1679 idx = 3 * 8;
1680 idx += ((start - 0xC0000) >> 12);
1681 return mtrr_state->fixed_ranges[idx];
1682 }
1683 }
1684
1685 /*
1686 * Look in variable ranges
1687 * Look of multiple ranges matching this address and pick type
1688 * as per MTRR precedence
1689 */
1690 if (!(mtrr_state->enabled & 2))
1691 return mtrr_state->def_type;
1692
1693 prev_match = 0xFF;
1694 for (i = 0; i < num_var_ranges; ++i) {
1695 unsigned short start_state, end_state;
1696
1697 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1698 continue;
1699
1700 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1701 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1702 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1703 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1704
1705 start_state = ((start & mask) == (base & mask));
1706 end_state = ((end & mask) == (base & mask));
1707 if (start_state != end_state)
1708 return 0xFE;
1709
1710 if ((start & mask) != (base & mask))
1711 continue;
1712
1713 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1714 if (prev_match == 0xFF) {
1715 prev_match = curr_match;
1716 continue;
1717 }
1718
1719 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1720 curr_match == MTRR_TYPE_UNCACHABLE)
1721 return MTRR_TYPE_UNCACHABLE;
1722
1723 if ((prev_match == MTRR_TYPE_WRBACK &&
1724 curr_match == MTRR_TYPE_WRTHROUGH) ||
1725 (prev_match == MTRR_TYPE_WRTHROUGH &&
1726 curr_match == MTRR_TYPE_WRBACK)) {
1727 prev_match = MTRR_TYPE_WRTHROUGH;
1728 curr_match = MTRR_TYPE_WRTHROUGH;
1729 }
1730
1731 if (prev_match != curr_match)
1732 return MTRR_TYPE_UNCACHABLE;
1733 }
1734
1735 if (prev_match != 0xFF)
1736 return prev_match;
1737
1738 return mtrr_state->def_type;
1739 }
1740
1741 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1742 {
1743 u8 mtrr;
1744
1745 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1746 (gfn << PAGE_SHIFT) + PAGE_SIZE);
1747 if (mtrr == 0xfe || mtrr == 0xff)
1748 mtrr = MTRR_TYPE_WRBACK;
1749 return mtrr;
1750 }
1751 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1752
1753 static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1754 {
1755 unsigned index;
1756 struct hlist_head *bucket;
1757 struct kvm_mmu_page *s;
1758 struct hlist_node *node, *n;
1759
1760 trace_kvm_mmu_unsync_page(sp);
1761 index = kvm_page_table_hashfn(sp->gfn);
1762 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1763 /* don't unsync if pagetable is shadowed with multiple roles */
1764 hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
1765 if (s->gfn != sp->gfn || s->role.direct)
1766 continue;
1767 if (s->role.word != sp->role.word)
1768 return 1;
1769 }
1770 ++vcpu->kvm->stat.mmu_unsync;
1771 sp->unsync = 1;
1772
1773 kvm_mmu_mark_parents_unsync(vcpu, sp);
1774
1775 mmu_convert_notrap(sp);
1776 return 0;
1777 }
1778
1779 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1780 bool can_unsync)
1781 {
1782 struct kvm_mmu_page *shadow;
1783
1784 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
1785 if (shadow) {
1786 if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
1787 return 1;
1788 if (shadow->unsync)
1789 return 0;
1790 if (can_unsync && oos_shadow)
1791 return kvm_unsync_page(vcpu, shadow);
1792 return 1;
1793 }
1794 return 0;
1795 }
1796
1797 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1798 unsigned pte_access, int user_fault,
1799 int write_fault, int dirty, int level,
1800 gfn_t gfn, pfn_t pfn, bool speculative,
1801 bool can_unsync, bool reset_host_protection)
1802 {
1803 u64 spte;
1804 int ret = 0;
1805
1806 /*
1807 * We don't set the accessed bit, since we sometimes want to see
1808 * whether the guest actually used the pte (in order to detect
1809 * demand paging).
1810 */
1811 spte = shadow_base_present_pte | shadow_dirty_mask;
1812 if (!speculative)
1813 spte |= shadow_accessed_mask;
1814 if (!dirty)
1815 pte_access &= ~ACC_WRITE_MASK;
1816 if (pte_access & ACC_EXEC_MASK)
1817 spte |= shadow_x_mask;
1818 else
1819 spte |= shadow_nx_mask;
1820 if (pte_access & ACC_USER_MASK)
1821 spte |= shadow_user_mask;
1822 if (level > PT_PAGE_TABLE_LEVEL)
1823 spte |= PT_PAGE_SIZE_MASK;
1824 if (tdp_enabled)
1825 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
1826 kvm_is_mmio_pfn(pfn));
1827
1828 if (reset_host_protection)
1829 spte |= SPTE_HOST_WRITEABLE;
1830
1831 spte |= (u64)pfn << PAGE_SHIFT;
1832
1833 if ((pte_access & ACC_WRITE_MASK)
1834 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
1835
1836 if (level > PT_PAGE_TABLE_LEVEL &&
1837 has_wrprotected_page(vcpu->kvm, gfn, level)) {
1838 ret = 1;
1839 spte = shadow_trap_nonpresent_pte;
1840 goto set_pte;
1841 }
1842
1843 spte |= PT_WRITABLE_MASK;
1844
1845 /*
1846 * Optimization: for pte sync, if spte was writable the hash
1847 * lookup is unnecessary (and expensive). Write protection
1848 * is responsibility of mmu_get_page / kvm_sync_page.
1849 * Same reasoning can be applied to dirty page accounting.
1850 */
1851 if (!can_unsync && is_writable_pte(*sptep))
1852 goto set_pte;
1853
1854 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
1855 pgprintk("%s: found shadow page for %lx, marking ro\n",
1856 __func__, gfn);
1857 ret = 1;
1858 pte_access &= ~ACC_WRITE_MASK;
1859 if (is_writable_pte(spte))
1860 spte &= ~PT_WRITABLE_MASK;
1861 }
1862 }
1863
1864 if (pte_access & ACC_WRITE_MASK)
1865 mark_page_dirty(vcpu->kvm, gfn);
1866
1867 set_pte:
1868 __set_spte(sptep, spte);
1869 return ret;
1870 }
1871
1872 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1873 unsigned pt_access, unsigned pte_access,
1874 int user_fault, int write_fault, int dirty,
1875 int *ptwrite, int level, gfn_t gfn,
1876 pfn_t pfn, bool speculative,
1877 bool reset_host_protection)
1878 {
1879 int was_rmapped = 0;
1880 int was_writable = is_writable_pte(*sptep);
1881 int rmap_count;
1882
1883 pgprintk("%s: spte %llx access %x write_fault %d"
1884 " user_fault %d gfn %lx\n",
1885 __func__, *sptep, pt_access,
1886 write_fault, user_fault, gfn);
1887
1888 if (is_rmap_spte(*sptep)) {
1889 /*
1890 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1891 * the parent of the now unreachable PTE.
1892 */
1893 if (level > PT_PAGE_TABLE_LEVEL &&
1894 !is_large_pte(*sptep)) {
1895 struct kvm_mmu_page *child;
1896 u64 pte = *sptep;
1897
1898 child = page_header(pte & PT64_BASE_ADDR_MASK);
1899 mmu_page_remove_parent_pte(child, sptep);
1900 } else if (pfn != spte_to_pfn(*sptep)) {
1901 pgprintk("hfn old %lx new %lx\n",
1902 spte_to_pfn(*sptep), pfn);
1903 rmap_remove(vcpu->kvm, sptep);
1904 } else
1905 was_rmapped = 1;
1906 }
1907
1908 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
1909 dirty, level, gfn, pfn, speculative, true,
1910 reset_host_protection)) {
1911 if (write_fault)
1912 *ptwrite = 1;
1913 kvm_x86_ops->tlb_flush(vcpu);
1914 }
1915
1916 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
1917 pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
1918 is_large_pte(*sptep)? "2MB" : "4kB",
1919 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
1920 *sptep, sptep);
1921 if (!was_rmapped && is_large_pte(*sptep))
1922 ++vcpu->kvm->stat.lpages;
1923
1924 page_header_update_slot(vcpu->kvm, sptep, gfn);
1925 if (!was_rmapped) {
1926 rmap_count = rmap_add(vcpu, sptep, gfn);
1927 kvm_release_pfn_clean(pfn);
1928 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
1929 rmap_recycle(vcpu, sptep, gfn);
1930 } else {
1931 if (was_writable)
1932 kvm_release_pfn_dirty(pfn);
1933 else
1934 kvm_release_pfn_clean(pfn);
1935 }
1936 if (speculative) {
1937 vcpu->arch.last_pte_updated = sptep;
1938 vcpu->arch.last_pte_gfn = gfn;
1939 }
1940 }
1941
1942 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
1943 {
1944 }
1945
1946 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
1947 int level, gfn_t gfn, pfn_t pfn)
1948 {
1949 struct kvm_shadow_walk_iterator iterator;
1950 struct kvm_mmu_page *sp;
1951 int pt_write = 0;
1952 gfn_t pseudo_gfn;
1953
1954 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
1955 if (iterator.level == level) {
1956 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
1957 0, write, 1, &pt_write,
1958 level, gfn, pfn, false, true);
1959 ++vcpu->stat.pf_fixed;
1960 break;
1961 }
1962
1963 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
1964 pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
1965 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
1966 iterator.level - 1,
1967 1, ACC_ALL, iterator.sptep);
1968 if (!sp) {
1969 pgprintk("nonpaging_map: ENOMEM\n");
1970 kvm_release_pfn_clean(pfn);
1971 return -ENOMEM;
1972 }
1973
1974 __set_spte(iterator.sptep,
1975 __pa(sp->spt)
1976 | PT_PRESENT_MASK | PT_WRITABLE_MASK
1977 | shadow_user_mask | shadow_x_mask);
1978 }
1979 }
1980 return pt_write;
1981 }
1982
1983 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1984 {
1985 int r;
1986 int level;
1987 pfn_t pfn;
1988 unsigned long mmu_seq;
1989
1990 level = mapping_level(vcpu, gfn);
1991
1992 /*
1993 * This path builds a PAE pagetable - so we can map 2mb pages at
1994 * maximum. Therefore check if the level is larger than that.
1995 */
1996 if (level > PT_DIRECTORY_LEVEL)
1997 level = PT_DIRECTORY_LEVEL;
1998
1999 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2000
2001 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2002 smp_rmb();
2003 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2004
2005 /* mmio */
2006 if (is_error_pfn(pfn)) {
2007 kvm_release_pfn_clean(pfn);
2008 return 1;
2009 }
2010
2011 spin_lock(&vcpu->kvm->mmu_lock);
2012 if (mmu_notifier_retry(vcpu, mmu_seq))
2013 goto out_unlock;
2014 kvm_mmu_free_some_pages(vcpu);
2015 r = __direct_map(vcpu, v, write, level, gfn, pfn);
2016 spin_unlock(&vcpu->kvm->mmu_lock);
2017
2018
2019 return r;
2020
2021 out_unlock:
2022 spin_unlock(&vcpu->kvm->mmu_lock);
2023 kvm_release_pfn_clean(pfn);
2024 return 0;
2025 }
2026
2027
2028 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2029 {
2030 int i;
2031 struct kvm_mmu_page *sp;
2032
2033 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2034 return;
2035 spin_lock(&vcpu->kvm->mmu_lock);
2036 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2037 hpa_t root = vcpu->arch.mmu.root_hpa;
2038
2039 sp = page_header(root);
2040 --sp->root_count;
2041 if (!sp->root_count && sp->role.invalid)
2042 kvm_mmu_zap_page(vcpu->kvm, sp);
2043 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2044 spin_unlock(&vcpu->kvm->mmu_lock);
2045 return;
2046 }
2047 for (i = 0; i < 4; ++i) {
2048 hpa_t root = vcpu->arch.mmu.pae_root[i];
2049
2050 if (root) {
2051 root &= PT64_BASE_ADDR_MASK;
2052 sp = page_header(root);
2053 --sp->root_count;
2054 if (!sp->root_count && sp->role.invalid)
2055 kvm_mmu_zap_page(vcpu->kvm, sp);
2056 }
2057 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2058 }
2059 spin_unlock(&vcpu->kvm->mmu_lock);
2060 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2061 }
2062
2063 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2064 {
2065 int ret = 0;
2066
2067 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2068 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
2069 ret = 1;
2070 }
2071
2072 return ret;
2073 }
2074
2075 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2076 {
2077 int i;
2078 gfn_t root_gfn;
2079 struct kvm_mmu_page *sp;
2080 int direct = 0;
2081 u64 pdptr;
2082
2083 root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
2084
2085 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2086 hpa_t root = vcpu->arch.mmu.root_hpa;
2087
2088 ASSERT(!VALID_PAGE(root));
2089 if (tdp_enabled)
2090 direct = 1;
2091 if (mmu_check_root(vcpu, root_gfn))
2092 return 1;
2093 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
2094 PT64_ROOT_LEVEL, direct,
2095 ACC_ALL, NULL);
2096 root = __pa(sp->spt);
2097 ++sp->root_count;
2098 vcpu->arch.mmu.root_hpa = root;
2099 return 0;
2100 }
2101 direct = !is_paging(vcpu);
2102 if (tdp_enabled)
2103 direct = 1;
2104 for (i = 0; i < 4; ++i) {
2105 hpa_t root = vcpu->arch.mmu.pae_root[i];
2106
2107 ASSERT(!VALID_PAGE(root));
2108 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2109 pdptr = kvm_pdptr_read(vcpu, i);
2110 if (!is_present_gpte(pdptr)) {
2111 vcpu->arch.mmu.pae_root[i] = 0;
2112 continue;
2113 }
2114 root_gfn = pdptr >> PAGE_SHIFT;
2115 } else if (vcpu->arch.mmu.root_level == 0)
2116 root_gfn = 0;
2117 if (mmu_check_root(vcpu, root_gfn))
2118 return 1;
2119 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2120 PT32_ROOT_LEVEL, direct,
2121 ACC_ALL, NULL);
2122 root = __pa(sp->spt);
2123 ++sp->root_count;
2124 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2125 }
2126 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2127 return 0;
2128 }
2129
2130 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2131 {
2132 int i;
2133 struct kvm_mmu_page *sp;
2134
2135 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2136 return;
2137 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2138 hpa_t root = vcpu->arch.mmu.root_hpa;
2139 sp = page_header(root);
2140 mmu_sync_children(vcpu, sp);
2141 return;
2142 }
2143 for (i = 0; i < 4; ++i) {
2144 hpa_t root = vcpu->arch.mmu.pae_root[i];
2145
2146 if (root && VALID_PAGE(root)) {
2147 root &= PT64_BASE_ADDR_MASK;
2148 sp = page_header(root);
2149 mmu_sync_children(vcpu, sp);
2150 }
2151 }
2152 }
2153
2154 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2155 {
2156 spin_lock(&vcpu->kvm->mmu_lock);
2157 mmu_sync_roots(vcpu);
2158 spin_unlock(&vcpu->kvm->mmu_lock);
2159 }
2160
2161 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
2162 {
2163 return vaddr;
2164 }
2165
2166 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2167 u32 error_code)
2168 {
2169 gfn_t gfn;
2170 int r;
2171
2172 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2173 r = mmu_topup_memory_caches(vcpu);
2174 if (r)
2175 return r;
2176
2177 ASSERT(vcpu);
2178 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2179
2180 gfn = gva >> PAGE_SHIFT;
2181
2182 return nonpaging_map(vcpu, gva & PAGE_MASK,
2183 error_code & PFERR_WRITE_MASK, gfn);
2184 }
2185
2186 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
2187 u32 error_code)
2188 {
2189 pfn_t pfn;
2190 int r;
2191 int level;
2192 gfn_t gfn = gpa >> PAGE_SHIFT;
2193 unsigned long mmu_seq;
2194
2195 ASSERT(vcpu);
2196 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2197
2198 r = mmu_topup_memory_caches(vcpu);
2199 if (r)
2200 return r;
2201
2202 level = mapping_level(vcpu, gfn);
2203
2204 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2205
2206 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2207 smp_rmb();
2208 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2209 if (is_error_pfn(pfn)) {
2210 kvm_release_pfn_clean(pfn);
2211 return 1;
2212 }
2213 spin_lock(&vcpu->kvm->mmu_lock);
2214 if (mmu_notifier_retry(vcpu, mmu_seq))
2215 goto out_unlock;
2216 kvm_mmu_free_some_pages(vcpu);
2217 r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
2218 level, gfn, pfn);
2219 spin_unlock(&vcpu->kvm->mmu_lock);
2220
2221 return r;
2222
2223 out_unlock:
2224 spin_unlock(&vcpu->kvm->mmu_lock);
2225 kvm_release_pfn_clean(pfn);
2226 return 0;
2227 }
2228
2229 static void nonpaging_free(struct kvm_vcpu *vcpu)
2230 {
2231 mmu_free_roots(vcpu);
2232 }
2233
2234 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
2235 {
2236 struct kvm_mmu *context = &vcpu->arch.mmu;
2237
2238 context->new_cr3 = nonpaging_new_cr3;
2239 context->page_fault = nonpaging_page_fault;
2240 context->gva_to_gpa = nonpaging_gva_to_gpa;
2241 context->free = nonpaging_free;
2242 context->prefetch_page = nonpaging_prefetch_page;
2243 context->sync_page = nonpaging_sync_page;
2244 context->invlpg = nonpaging_invlpg;
2245 context->root_level = 0;
2246 context->shadow_root_level = PT32E_ROOT_LEVEL;
2247 context->root_hpa = INVALID_PAGE;
2248 return 0;
2249 }
2250
2251 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2252 {
2253 ++vcpu->stat.tlb_flush;
2254 kvm_x86_ops->tlb_flush(vcpu);
2255 }
2256
2257 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2258 {
2259 pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
2260 mmu_free_roots(vcpu);
2261 }
2262
2263 static void inject_page_fault(struct kvm_vcpu *vcpu,
2264 u64 addr,
2265 u32 err_code)
2266 {
2267 kvm_inject_page_fault(vcpu, addr, err_code);
2268 }
2269
2270 static void paging_free(struct kvm_vcpu *vcpu)
2271 {
2272 nonpaging_free(vcpu);
2273 }
2274
2275 static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
2276 {
2277 int bit7;
2278
2279 bit7 = (gpte >> 7) & 1;
2280 return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
2281 }
2282
2283 #define PTTYPE 64
2284 #include "paging_tmpl.h"
2285 #undef PTTYPE
2286
2287 #define PTTYPE 32
2288 #include "paging_tmpl.h"
2289 #undef PTTYPE
2290
2291 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
2292 {
2293 struct kvm_mmu *context = &vcpu->arch.mmu;
2294 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2295 u64 exb_bit_rsvd = 0;
2296
2297 if (!is_nx(vcpu))
2298 exb_bit_rsvd = rsvd_bits(63, 63);
2299 switch (level) {
2300 case PT32_ROOT_LEVEL:
2301 /* no rsvd bits for 2 level 4K page table entries */
2302 context->rsvd_bits_mask[0][1] = 0;
2303 context->rsvd_bits_mask[0][0] = 0;
2304 if (is_cpuid_PSE36())
2305 /* 36bits PSE 4MB page */
2306 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2307 else
2308 /* 32 bits PSE 4MB page */
2309 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2310 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
2311 break;
2312 case PT32E_ROOT_LEVEL:
2313 context->rsvd_bits_mask[0][2] =
2314 rsvd_bits(maxphyaddr, 63) |
2315 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2316 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2317 rsvd_bits(maxphyaddr, 62); /* PDE */
2318 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2319 rsvd_bits(maxphyaddr, 62); /* PTE */
2320 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2321 rsvd_bits(maxphyaddr, 62) |
2322 rsvd_bits(13, 20); /* large page */
2323 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
2324 break;
2325 case PT64_ROOT_LEVEL:
2326 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2327 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2328 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2329 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2330 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2331 rsvd_bits(maxphyaddr, 51);
2332 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2333 rsvd_bits(maxphyaddr, 51);
2334 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2335 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2336 rsvd_bits(maxphyaddr, 51) |
2337 rsvd_bits(13, 29);
2338 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2339 rsvd_bits(maxphyaddr, 51) |
2340 rsvd_bits(13, 20); /* large page */
2341 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
2342 break;
2343 }
2344 }
2345
2346 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
2347 {
2348 struct kvm_mmu *context = &vcpu->arch.mmu;
2349
2350 ASSERT(is_pae(vcpu));
2351 context->new_cr3 = paging_new_cr3;
2352 context->page_fault = paging64_page_fault;
2353 context->gva_to_gpa = paging64_gva_to_gpa;
2354 context->prefetch_page = paging64_prefetch_page;
2355 context->sync_page = paging64_sync_page;
2356 context->invlpg = paging64_invlpg;
2357 context->free = paging_free;
2358 context->root_level = level;
2359 context->shadow_root_level = level;
2360 context->root_hpa = INVALID_PAGE;
2361 return 0;
2362 }
2363
2364 static int paging64_init_context(struct kvm_vcpu *vcpu)
2365 {
2366 reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
2367 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
2368 }
2369
2370 static int paging32_init_context(struct kvm_vcpu *vcpu)
2371 {
2372 struct kvm_mmu *context = &vcpu->arch.mmu;
2373
2374 reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
2375 context->new_cr3 = paging_new_cr3;
2376 context->page_fault = paging32_page_fault;
2377 context->gva_to_gpa = paging32_gva_to_gpa;
2378 context->free = paging_free;
2379 context->prefetch_page = paging32_prefetch_page;
2380 context->sync_page = paging32_sync_page;
2381 context->invlpg = paging32_invlpg;
2382 context->root_level = PT32_ROOT_LEVEL;
2383 context->shadow_root_level = PT32E_ROOT_LEVEL;
2384 context->root_hpa = INVALID_PAGE;
2385 return 0;
2386 }
2387
2388 static int paging32E_init_context(struct kvm_vcpu *vcpu)
2389 {
2390 reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
2391 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
2392 }
2393
2394 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2395 {
2396 struct kvm_mmu *context = &vcpu->arch.mmu;
2397
2398 context->new_cr3 = nonpaging_new_cr3;
2399 context->page_fault = tdp_page_fault;
2400 context->free = nonpaging_free;
2401 context->prefetch_page = nonpaging_prefetch_page;
2402 context->sync_page = nonpaging_sync_page;
2403 context->invlpg = nonpaging_invlpg;
2404 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2405 context->root_hpa = INVALID_PAGE;
2406
2407 if (!is_paging(vcpu)) {
2408 context->gva_to_gpa = nonpaging_gva_to_gpa;
2409 context->root_level = 0;
2410 } else if (is_long_mode(vcpu)) {
2411 reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
2412 context->gva_to_gpa = paging64_gva_to_gpa;
2413 context->root_level = PT64_ROOT_LEVEL;
2414 } else if (is_pae(vcpu)) {
2415 reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
2416 context->gva_to_gpa = paging64_gva_to_gpa;
2417 context->root_level = PT32E_ROOT_LEVEL;
2418 } else {
2419 reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
2420 context->gva_to_gpa = paging32_gva_to_gpa;
2421 context->root_level = PT32_ROOT_LEVEL;
2422 }
2423
2424 return 0;
2425 }
2426
2427 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2428 {
2429 int r;
2430
2431 ASSERT(vcpu);
2432 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2433
2434 if (!is_paging(vcpu))
2435 r = nonpaging_init_context(vcpu);
2436 else if (is_long_mode(vcpu))
2437 r = paging64_init_context(vcpu);
2438 else if (is_pae(vcpu))
2439 r = paging32E_init_context(vcpu);
2440 else
2441 r = paging32_init_context(vcpu);
2442
2443 vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
2444
2445 return r;
2446 }
2447
2448 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
2449 {
2450 vcpu->arch.update_pte.pfn = bad_pfn;
2451
2452 if (tdp_enabled)
2453 return init_kvm_tdp_mmu(vcpu);
2454 else
2455 return init_kvm_softmmu(vcpu);
2456 }
2457
2458 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
2459 {
2460 ASSERT(vcpu);
2461 if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
2462 vcpu->arch.mmu.free(vcpu);
2463 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2464 }
2465 }
2466
2467 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
2468 {
2469 destroy_kvm_mmu(vcpu);
2470 return init_kvm_mmu(vcpu);
2471 }
2472 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
2473
2474 int kvm_mmu_load(struct kvm_vcpu *vcpu)
2475 {
2476 int r;
2477
2478 r = mmu_topup_memory_caches(vcpu);
2479 if (r)
2480 goto out;
2481 spin_lock(&vcpu->kvm->mmu_lock);
2482 kvm_mmu_free_some_pages(vcpu);
2483 r = mmu_alloc_roots(vcpu);
2484 mmu_sync_roots(vcpu);
2485 spin_unlock(&vcpu->kvm->mmu_lock);
2486 if (r)
2487 goto out;
2488 /* set_cr3() should ensure TLB has been flushed */
2489 kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
2490 out:
2491 return r;
2492 }
2493 EXPORT_SYMBOL_GPL(kvm_mmu_load);
2494
2495 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
2496 {
2497 mmu_free_roots(vcpu);
2498 }
2499
2500 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
2501 struct kvm_mmu_page *sp,
2502 u64 *spte)
2503 {
2504 u64 pte;
2505 struct kvm_mmu_page *child;
2506
2507 pte = *spte;
2508 if (is_shadow_present_pte(pte)) {
2509 if (is_last_spte(pte, sp->role.level))
2510 rmap_remove(vcpu->kvm, spte);
2511 else {
2512 child = page_header(pte & PT64_BASE_ADDR_MASK);
2513 mmu_page_remove_parent_pte(child, spte);
2514 }
2515 }
2516 __set_spte(spte, shadow_trap_nonpresent_pte);
2517 if (is_large_pte(pte))
2518 --vcpu->kvm->stat.lpages;
2519 }
2520
2521 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
2522 struct kvm_mmu_page *sp,
2523 u64 *spte,
2524 const void *new)
2525 {
2526 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
2527 ++vcpu->kvm->stat.mmu_pde_zapped;
2528 return;
2529 }
2530
2531 ++vcpu->kvm->stat.mmu_pte_updated;
2532 if (sp->role.glevels == PT32_ROOT_LEVEL)
2533 paging32_update_pte(vcpu, sp, spte, new);
2534 else
2535 paging64_update_pte(vcpu, sp, spte, new);
2536 }
2537
2538 static bool need_remote_flush(u64 old, u64 new)
2539 {
2540 if (!is_shadow_present_pte(old))
2541 return false;
2542 if (!is_shadow_present_pte(new))
2543 return true;
2544 if ((old ^ new) & PT64_BASE_ADDR_MASK)
2545 return true;
2546 old ^= PT64_NX_MASK;
2547 new ^= PT64_NX_MASK;
2548 return (old & ~new & PT64_PERM_MASK) != 0;
2549 }
2550
2551 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
2552 {
2553 if (need_remote_flush(old, new))
2554 kvm_flush_remote_tlbs(vcpu->kvm);
2555 else
2556 kvm_mmu_flush_tlb(vcpu);
2557 }
2558
2559 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
2560 {
2561 u64 *spte = vcpu->arch.last_pte_updated;
2562
2563 return !!(spte && (*spte & shadow_accessed_mask));
2564 }
2565
2566 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2567 const u8 *new, int bytes)
2568 {
2569 gfn_t gfn;
2570 int r;
2571 u64 gpte = 0;
2572 pfn_t pfn;
2573
2574 if (bytes != 4 && bytes != 8)
2575 return;
2576
2577 /*
2578 * Assume that the pte write on a page table of the same type
2579 * as the current vcpu paging mode. This is nearly always true
2580 * (might be false while changing modes). Note it is verified later
2581 * by update_pte().
2582 */
2583 if (is_pae(vcpu)) {
2584 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
2585 if ((bytes == 4) && (gpa % 4 == 0)) {
2586 r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
2587 if (r)
2588 return;
2589 memcpy((void *)&gpte + (gpa % 8), new, 4);
2590 } else if ((bytes == 8) && (gpa % 8 == 0)) {
2591 memcpy((void *)&gpte, new, 8);
2592 }
2593 } else {
2594 if ((bytes == 4) && (gpa % 4 == 0))
2595 memcpy((void *)&gpte, new, 4);
2596 }
2597 if (!is_present_gpte(gpte))
2598 return;
2599 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
2600
2601 vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
2602 smp_rmb();
2603 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2604
2605 if (is_error_pfn(pfn)) {
2606 kvm_release_pfn_clean(pfn);
2607 return;
2608 }
2609 vcpu->arch.update_pte.gfn = gfn;
2610 vcpu->arch.update_pte.pfn = pfn;
2611 }
2612
2613 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2614 {
2615 u64 *spte = vcpu->arch.last_pte_updated;
2616
2617 if (spte
2618 && vcpu->arch.last_pte_gfn == gfn
2619 && shadow_accessed_mask
2620 && !(*spte & shadow_accessed_mask)
2621 && is_shadow_present_pte(*spte))
2622 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
2623 }
2624
2625 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2626 const u8 *new, int bytes,
2627 bool guest_initiated)
2628 {
2629 gfn_t gfn = gpa >> PAGE_SHIFT;
2630 struct kvm_mmu_page *sp;
2631 struct hlist_node *node, *n;
2632 struct hlist_head *bucket;
2633 unsigned index;
2634 u64 entry, gentry;
2635 u64 *spte;
2636 unsigned offset = offset_in_page(gpa);
2637 unsigned pte_size;
2638 unsigned page_offset;
2639 unsigned misaligned;
2640 unsigned quadrant;
2641 int level;
2642 int flooded = 0;
2643 int npte;
2644 int r;
2645
2646 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
2647 mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
2648 spin_lock(&vcpu->kvm->mmu_lock);
2649 kvm_mmu_access_page(vcpu, gfn);
2650 kvm_mmu_free_some_pages(vcpu);
2651 ++vcpu->kvm->stat.mmu_pte_write;
2652 kvm_mmu_audit(vcpu, "pre pte write");
2653 if (guest_initiated) {
2654 if (gfn == vcpu->arch.last_pt_write_gfn
2655 && !last_updated_pte_accessed(vcpu)) {
2656 ++vcpu->arch.last_pt_write_count;
2657 if (vcpu->arch.last_pt_write_count >= 3)
2658 flooded = 1;
2659 } else {
2660 vcpu->arch.last_pt_write_gfn = gfn;
2661 vcpu->arch.last_pt_write_count = 1;
2662 vcpu->arch.last_pte_updated = NULL;
2663 }
2664 }
2665 index = kvm_page_table_hashfn(gfn);
2666 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
2667 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
2668 if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
2669 continue;
2670 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
2671 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
2672 misaligned |= bytes < 4;
2673 if (misaligned || flooded) {
2674 /*
2675 * Misaligned accesses are too much trouble to fix
2676 * up; also, they usually indicate a page is not used
2677 * as a page table.
2678 *
2679 * If we're seeing too many writes to a page,
2680 * it may no longer be a page table, or we may be
2681 * forking, in which case it is better to unmap the
2682 * page.
2683 */
2684 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
2685 gpa, bytes, sp->role.word);
2686 if (kvm_mmu_zap_page(vcpu->kvm, sp))
2687 n = bucket->first;
2688 ++vcpu->kvm->stat.mmu_flooded;
2689 continue;
2690 }
2691 page_offset = offset;
2692 level = sp->role.level;
2693 npte = 1;
2694 if (sp->role.glevels == PT32_ROOT_LEVEL) {
2695 page_offset <<= 1; /* 32->64 */
2696 /*
2697 * A 32-bit pde maps 4MB while the shadow pdes map
2698 * only 2MB. So we need to double the offset again
2699 * and zap two pdes instead of one.
2700 */
2701 if (level == PT32_ROOT_LEVEL) {
2702 page_offset &= ~7; /* kill rounding error */
2703 page_offset <<= 1;
2704 npte = 2;
2705 }
2706 quadrant = page_offset >> PAGE_SHIFT;
2707 page_offset &= ~PAGE_MASK;
2708 if (quadrant != sp->role.quadrant)
2709 continue;
2710 }
2711 spte = &sp->spt[page_offset / sizeof(*spte)];
2712 if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
2713 gentry = 0;
2714 r = kvm_read_guest_atomic(vcpu->kvm,
2715 gpa & ~(u64)(pte_size - 1),
2716 &gentry, pte_size);
2717 new = (const void *)&gentry;
2718 if (r < 0)
2719 new = NULL;
2720 }
2721 while (npte--) {
2722 entry = *spte;
2723 mmu_pte_write_zap_pte(vcpu, sp, spte);
2724 if (new)
2725 mmu_pte_write_new_pte(vcpu, sp, spte, new);
2726 mmu_pte_write_flush_tlb(vcpu, entry, *spte);
2727 ++spte;
2728 }
2729 }
2730 kvm_mmu_audit(vcpu, "post pte write");
2731 spin_unlock(&vcpu->kvm->mmu_lock);
2732 if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
2733 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
2734 vcpu->arch.update_pte.pfn = bad_pfn;
2735 }
2736 }
2737
2738 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2739 {
2740 gpa_t gpa;
2741 int r;
2742
2743 if (tdp_enabled)
2744 return 0;
2745
2746 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
2747
2748 spin_lock(&vcpu->kvm->mmu_lock);
2749 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2750 spin_unlock(&vcpu->kvm->mmu_lock);
2751 return r;
2752 }
2753 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
2754
2755 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
2756 {
2757 while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES &&
2758 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
2759 struct kvm_mmu_page *sp;
2760
2761 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
2762 struct kvm_mmu_page, link);
2763 kvm_mmu_zap_page(vcpu->kvm, sp);
2764 ++vcpu->kvm->stat.mmu_recycled;
2765 }
2766 }
2767
2768 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
2769 {
2770 int r;
2771 enum emulation_result er;
2772
2773 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
2774 if (r < 0)
2775 goto out;
2776
2777 if (!r) {
2778 r = 1;
2779 goto out;
2780 }
2781
2782 r = mmu_topup_memory_caches(vcpu);
2783 if (r)
2784 goto out;
2785
2786 er = emulate_instruction(vcpu, cr2, error_code, 0);
2787
2788 switch (er) {
2789 case EMULATE_DONE:
2790 return 1;
2791 case EMULATE_DO_MMIO:
2792 ++vcpu->stat.mmio_exits;
2793 return 0;
2794 case EMULATE_FAIL:
2795 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2796 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2797 vcpu->run->internal.ndata = 0;
2798 return 0;
2799 default:
2800 BUG();
2801 }
2802 out:
2803 return r;
2804 }
2805 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
2806
2807 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
2808 {
2809 vcpu->arch.mmu.invlpg(vcpu, gva);
2810 kvm_mmu_flush_tlb(vcpu);
2811 ++vcpu->stat.invlpg;
2812 }
2813 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
2814
2815 void kvm_enable_tdp(void)
2816 {
2817 tdp_enabled = true;
2818 }
2819 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
2820
2821 void kvm_disable_tdp(void)
2822 {
2823 tdp_enabled = false;
2824 }
2825 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
2826
2827 static void free_mmu_pages(struct kvm_vcpu *vcpu)
2828 {
2829 free_page((unsigned long)vcpu->arch.mmu.pae_root);
2830 }
2831
2832 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
2833 {
2834 struct page *page;
2835 int i;
2836
2837 ASSERT(vcpu);
2838
2839 /*
2840 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
2841 * Therefore we need to allocate shadow page tables in the first
2842 * 4GB of memory, which happens to fit the DMA32 zone.
2843 */
2844 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
2845 if (!page)
2846 return -ENOMEM;
2847
2848 vcpu->arch.mmu.pae_root = page_address(page);
2849 for (i = 0; i < 4; ++i)
2850 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2851
2852 return 0;
2853 }
2854
2855 int kvm_mmu_create(struct kvm_vcpu *vcpu)
2856 {
2857 ASSERT(vcpu);
2858 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2859
2860 return alloc_mmu_pages(vcpu);
2861 }
2862
2863 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
2864 {
2865 ASSERT(vcpu);
2866 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2867
2868 return init_kvm_mmu(vcpu);
2869 }
2870
2871 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
2872 {
2873 ASSERT(vcpu);
2874
2875 destroy_kvm_mmu(vcpu);
2876 free_mmu_pages(vcpu);
2877 mmu_free_memory_caches(vcpu);
2878 }
2879
2880 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
2881 {
2882 struct kvm_mmu_page *sp;
2883
2884 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
2885 int i;
2886 u64 *pt;
2887
2888 if (!test_bit(slot, sp->slot_bitmap))
2889 continue;
2890
2891 pt = sp->spt;
2892 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2893 /* avoid RMW */
2894 if (pt[i] & PT_WRITABLE_MASK)
2895 pt[i] &= ~PT_WRITABLE_MASK;
2896 }
2897 kvm_flush_remote_tlbs(kvm);
2898 }
2899
2900 void kvm_mmu_zap_all(struct kvm *kvm)
2901 {
2902 struct kvm_mmu_page *sp, *node;
2903
2904 spin_lock(&kvm->mmu_lock);
2905 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
2906 if (kvm_mmu_zap_page(kvm, sp))
2907 node = container_of(kvm->arch.active_mmu_pages.next,
2908 struct kvm_mmu_page, link);
2909 spin_unlock(&kvm->mmu_lock);
2910
2911 kvm_flush_remote_tlbs(kvm);
2912 }
2913
2914 static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
2915 {
2916 struct kvm_mmu_page *page;
2917
2918 page = container_of(kvm->arch.active_mmu_pages.prev,
2919 struct kvm_mmu_page, link);
2920 kvm_mmu_zap_page(kvm, page);
2921 }
2922
2923 static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
2924 {
2925 struct kvm *kvm;
2926 struct kvm *kvm_freed = NULL;
2927 int cache_count = 0;
2928
2929 spin_lock(&kvm_lock);
2930
2931 list_for_each_entry(kvm, &vm_list, vm_list) {
2932 int npages, idx;
2933
2934 idx = srcu_read_lock(&kvm->srcu);
2935 spin_lock(&kvm->mmu_lock);
2936 npages = kvm->arch.n_alloc_mmu_pages -
2937 kvm->arch.n_free_mmu_pages;
2938 cache_count += npages;
2939 if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
2940 kvm_mmu_remove_one_alloc_mmu_page(kvm);
2941 cache_count--;
2942 kvm_freed = kvm;
2943 }
2944 nr_to_scan--;
2945
2946 spin_unlock(&kvm->mmu_lock);
2947 srcu_read_unlock(&kvm->srcu, idx);
2948 }
2949 if (kvm_freed)
2950 list_move_tail(&kvm_freed->vm_list, &vm_list);
2951
2952 spin_unlock(&kvm_lock);
2953
2954 return cache_count;
2955 }
2956
2957 static struct shrinker mmu_shrinker = {
2958 .shrink = mmu_shrink,
2959 .seeks = DEFAULT_SEEKS * 10,
2960 };
2961
2962 static void mmu_destroy_caches(void)
2963 {
2964 if (pte_chain_cache)
2965 kmem_cache_destroy(pte_chain_cache);
2966 if (rmap_desc_cache)
2967 kmem_cache_destroy(rmap_desc_cache);
2968 if (mmu_page_header_cache)
2969 kmem_cache_destroy(mmu_page_header_cache);
2970 }
2971
2972 void kvm_mmu_module_exit(void)
2973 {
2974 mmu_destroy_caches();
2975 unregister_shrinker(&mmu_shrinker);
2976 }
2977
2978 int kvm_mmu_module_init(void)
2979 {
2980 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
2981 sizeof(struct kvm_pte_chain),
2982 0, 0, NULL);
2983 if (!pte_chain_cache)
2984 goto nomem;
2985 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
2986 sizeof(struct kvm_rmap_desc),
2987 0, 0, NULL);
2988 if (!rmap_desc_cache)
2989 goto nomem;
2990
2991 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
2992 sizeof(struct kvm_mmu_page),
2993 0, 0, NULL);
2994 if (!mmu_page_header_cache)
2995 goto nomem;
2996
2997 register_shrinker(&mmu_shrinker);
2998
2999 return 0;
3000
3001 nomem:
3002 mmu_destroy_caches();
3003 return -ENOMEM;
3004 }
3005
3006 /*
3007 * Caculate mmu pages needed for kvm.
3008 */
3009 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3010 {
3011 int i;
3012 unsigned int nr_mmu_pages;
3013 unsigned int nr_pages = 0;
3014 struct kvm_memslots *slots;
3015
3016 slots = rcu_dereference(kvm->memslots);
3017 for (i = 0; i < slots->nmemslots; i++)
3018 nr_pages += slots->memslots[i].npages;
3019
3020 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3021 nr_mmu_pages = max(nr_mmu_pages,
3022 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3023
3024 return nr_mmu_pages;
3025 }
3026
3027 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3028 unsigned len)
3029 {
3030 if (len > buffer->len)
3031 return NULL;
3032 return buffer->ptr;
3033 }
3034
3035 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3036 unsigned len)
3037 {
3038 void *ret;
3039
3040 ret = pv_mmu_peek_buffer(buffer, len);
3041 if (!ret)
3042 return ret;
3043 buffer->ptr += len;
3044 buffer->len -= len;
3045 buffer->processed += len;
3046 return ret;
3047 }
3048
3049 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3050 gpa_t addr, gpa_t value)
3051 {
3052 int bytes = 8;
3053 int r;
3054
3055 if (!is_long_mode(vcpu) && !is_pae(vcpu))
3056 bytes = 4;
3057
3058 r = mmu_topup_memory_caches(vcpu);
3059 if (r)
3060 return r;
3061
3062 if (!emulator_write_phys(vcpu, addr, &value, bytes))
3063 return -EFAULT;
3064
3065 return 1;
3066 }
3067
3068 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3069 {
3070 kvm_set_cr3(vcpu, vcpu->arch.cr3);
3071 return 1;
3072 }
3073
3074 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3075 {
3076 spin_lock(&vcpu->kvm->mmu_lock);
3077 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3078 spin_unlock(&vcpu->kvm->mmu_lock);
3079 return 1;
3080 }
3081
3082 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3083 struct kvm_pv_mmu_op_buffer *buffer)
3084 {
3085 struct kvm_mmu_op_header *header;
3086
3087 header = pv_mmu_peek_buffer(buffer, sizeof *header);
3088 if (!header)
3089 return 0;
3090 switch (header->op) {
3091 case KVM_MMU_OP_WRITE_PTE: {
3092 struct kvm_mmu_op_write_pte *wpte;
3093
3094 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3095 if (!wpte)
3096 return 0;
3097 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3098 wpte->pte_val);
3099 }
3100 case KVM_MMU_OP_FLUSH_TLB: {
3101 struct kvm_mmu_op_flush_tlb *ftlb;
3102
3103 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3104 if (!ftlb)
3105 return 0;
3106 return kvm_pv_mmu_flush_tlb(vcpu);
3107 }
3108 case KVM_MMU_OP_RELEASE_PT: {
3109 struct kvm_mmu_op_release_pt *rpt;
3110
3111 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3112 if (!rpt)
3113 return 0;
3114 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3115 }
3116 default: return 0;
3117 }
3118 }
3119
3120 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3121 gpa_t addr, unsigned long *ret)
3122 {
3123 int r;
3124 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3125
3126 buffer->ptr = buffer->buf;
3127 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3128 buffer->processed = 0;
3129
3130 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3131 if (r)
3132 goto out;
3133
3134 while (buffer->len) {
3135 r = kvm_pv_mmu_op_one(vcpu, buffer);
3136 if (r < 0)
3137 goto out;
3138 if (r == 0)
3139 break;
3140 }
3141
3142 r = 1;
3143 out:
3144 *ret = buffer->processed;
3145 return r;
3146 }
3147
3148 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3149 {
3150 struct kvm_shadow_walk_iterator iterator;
3151 int nr_sptes = 0;
3152
3153 spin_lock(&vcpu->kvm->mmu_lock);
3154 for_each_shadow_entry(vcpu, addr, iterator) {
3155 sptes[iterator.level-1] = *iterator.sptep;
3156 nr_sptes++;
3157 if (!is_shadow_present_pte(*iterator.sptep))
3158 break;
3159 }
3160 spin_unlock(&vcpu->kvm->mmu_lock);
3161
3162 return nr_sptes;
3163 }
3164 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3165
3166 #ifdef AUDIT
3167
3168 static const char *audit_msg;
3169
3170 static gva_t canonicalize(gva_t gva)
3171 {
3172 #ifdef CONFIG_X86_64
3173 gva = (long long)(gva << 16) >> 16;
3174 #endif
3175 return gva;
3176 }
3177
3178
3179 typedef void (*inspect_spte_fn) (struct kvm *kvm, struct kvm_mmu_page *sp,
3180 u64 *sptep);
3181
3182 static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
3183 inspect_spte_fn fn)
3184 {
3185 int i;
3186
3187 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3188 u64 ent = sp->spt[i];
3189
3190 if (is_shadow_present_pte(ent)) {
3191 if (!is_last_spte(ent, sp->role.level)) {
3192 struct kvm_mmu_page *child;
3193 child = page_header(ent & PT64_BASE_ADDR_MASK);
3194 __mmu_spte_walk(kvm, child, fn);
3195 } else
3196 fn(kvm, sp, &sp->spt[i]);
3197 }
3198 }
3199 }
3200
3201 static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
3202 {
3203 int i;
3204 struct kvm_mmu_page *sp;
3205
3206 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3207 return;
3208 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3209 hpa_t root = vcpu->arch.mmu.root_hpa;
3210 sp = page_header(root);
3211 __mmu_spte_walk(vcpu->kvm, sp, fn);
3212 return;
3213 }
3214 for (i = 0; i < 4; ++i) {
3215 hpa_t root = vcpu->arch.mmu.pae_root[i];
3216
3217 if (root && VALID_PAGE(root)) {
3218 root &= PT64_BASE_ADDR_MASK;
3219 sp = page_header(root);
3220 __mmu_spte_walk(vcpu->kvm, sp, fn);
3221 }
3222 }
3223 return;
3224 }
3225
3226 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
3227 gva_t va, int level)
3228 {
3229 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
3230 int i;
3231 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
3232
3233 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
3234 u64 ent = pt[i];
3235
3236 if (ent == shadow_trap_nonpresent_pte)
3237 continue;
3238
3239 va = canonicalize(va);
3240 if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
3241 audit_mappings_page(vcpu, ent, va, level - 1);
3242 else {
3243 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
3244 gfn_t gfn = gpa >> PAGE_SHIFT;
3245 pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
3246 hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
3247
3248 if (is_error_pfn(pfn)) {
3249 kvm_release_pfn_clean(pfn);
3250 continue;
3251 }
3252
3253 if (is_shadow_present_pte(ent)
3254 && (ent & PT64_BASE_ADDR_MASK) != hpa)
3255 printk(KERN_ERR "xx audit error: (%s) levels %d"
3256 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
3257 audit_msg, vcpu->arch.mmu.root_level,
3258 va, gpa, hpa, ent,
3259 is_shadow_present_pte(ent));
3260 else if (ent == shadow_notrap_nonpresent_pte
3261 && !is_error_hpa(hpa))
3262 printk(KERN_ERR "audit: (%s) notrap shadow,"
3263 " valid guest gva %lx\n", audit_msg, va);
3264 kvm_release_pfn_clean(pfn);
3265
3266 }
3267 }
3268 }
3269
3270 static void audit_mappings(struct kvm_vcpu *vcpu)
3271 {
3272 unsigned i;
3273
3274 if (vcpu->arch.mmu.root_level == 4)
3275 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
3276 else
3277 for (i = 0; i < 4; ++i)
3278 if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
3279 audit_mappings_page(vcpu,
3280 vcpu->arch.mmu.pae_root[i],
3281 i << 30,
3282 2);
3283 }
3284
3285 static int count_rmaps(struct kvm_vcpu *vcpu)
3286 {
3287 int nmaps = 0;
3288 int i, j, k, idx;
3289
3290 idx = srcu_read_lock(&kvm->srcu);
3291 slots = rcu_dereference(kvm->memslots);
3292 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
3293 struct kvm_memory_slot *m = &slots->memslots[i];
3294 struct kvm_rmap_desc *d;
3295
3296 for (j = 0; j < m->npages; ++j) {
3297 unsigned long *rmapp = &m->rmap[j];
3298
3299 if (!*rmapp)
3300 continue;
3301 if (!(*rmapp & 1)) {
3302 ++nmaps;
3303 continue;
3304 }
3305 d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
3306 while (d) {
3307 for (k = 0; k < RMAP_EXT; ++k)
3308 if (d->sptes[k])
3309 ++nmaps;
3310 else
3311 break;
3312 d = d->more;
3313 }
3314 }
3315 }
3316 srcu_read_unlock(&kvm->srcu, idx);
3317 return nmaps;
3318 }
3319
3320 void inspect_spte_has_rmap(struct kvm *kvm, struct kvm_mmu_page *sp, u64 *sptep)
3321 {
3322 unsigned long *rmapp;
3323 struct kvm_mmu_page *rev_sp;
3324 gfn_t gfn;
3325
3326 if (*sptep & PT_WRITABLE_MASK) {
3327 rev_sp = page_header(__pa(sptep));
3328 gfn = rev_sp->gfns[sptep - rev_sp->spt];
3329
3330 if (!gfn_to_memslot(kvm, gfn)) {
3331 if (!printk_ratelimit())
3332 return;
3333 printk(KERN_ERR "%s: no memslot for gfn %ld\n",
3334 audit_msg, gfn);
3335 printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
3336 audit_msg, sptep - rev_sp->spt,
3337 rev_sp->gfn);
3338 dump_stack();
3339 return;
3340 }
3341
3342 rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt],
3343 is_large_pte(*sptep));
3344 if (!*rmapp) {
3345 if (!printk_ratelimit())
3346 return;
3347 printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
3348 audit_msg, *sptep);
3349 dump_stack();
3350 }
3351 }
3352
3353 }
3354
3355 void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
3356 {
3357 mmu_spte_walk(vcpu, inspect_spte_has_rmap);
3358 }
3359
3360 static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
3361 {
3362 struct kvm_mmu_page *sp;
3363 int i;
3364
3365 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3366 u64 *pt = sp->spt;
3367
3368 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
3369 continue;
3370
3371 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3372 u64 ent = pt[i];
3373
3374 if (!(ent & PT_PRESENT_MASK))
3375 continue;
3376 if (!(ent & PT_WRITABLE_MASK))
3377 continue;
3378 inspect_spte_has_rmap(vcpu->kvm, sp, &pt[i]);
3379 }
3380 }
3381 return;
3382 }
3383
3384 static void audit_rmap(struct kvm_vcpu *vcpu)
3385 {
3386 check_writable_mappings_rmap(vcpu);
3387 count_rmaps(vcpu);
3388 }
3389
3390 static void audit_write_protection(struct kvm_vcpu *vcpu)
3391 {
3392 struct kvm_mmu_page *sp;
3393 struct kvm_memory_slot *slot;
3394 unsigned long *rmapp;
3395 u64 *spte;
3396 gfn_t gfn;
3397
3398 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3399 if (sp->role.direct)
3400 continue;
3401 if (sp->unsync)
3402 continue;
3403
3404 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
3405 slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
3406 rmapp = &slot->rmap[gfn - slot->base_gfn];
3407
3408 spte = rmap_next(vcpu->kvm, rmapp, NULL);
3409 while (spte) {
3410 if (*spte & PT_WRITABLE_MASK)
3411 printk(KERN_ERR "%s: (%s) shadow page has "
3412 "writable mappings: gfn %lx role %x\n",
3413 __func__, audit_msg, sp->gfn,
3414 sp->role.word);
3415 spte = rmap_next(vcpu->kvm, rmapp, spte);
3416 }
3417 }
3418 }
3419
3420 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
3421 {
3422 int olddbg = dbg;
3423
3424 dbg = 0;
3425 audit_msg = msg;
3426 audit_rmap(vcpu);
3427 audit_write_protection(vcpu);
3428 if (strcmp("pre pte write", audit_msg) != 0)
3429 audit_mappings(vcpu);
3430 audit_writable_sptes_have_rmaps(vcpu);
3431 dbg = olddbg;
3432 }
3433
3434 #endif
This page took 0.135193 seconds and 4 git commands to generate.