Merge branch 'for-4.2' of git://linux-nfs.org/~bfields/linux
[deliverable/linux.git] / arch / x86 / kvm / mtrr.c
1 /*
2 * vMTRR implementation
3 *
4 * Copyright (C) 2006 Qumranet, Inc.
5 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6 * Copyright(C) 2015 Intel Corporation.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 * Marcelo Tosatti <mtosatti@redhat.com>
12 * Paolo Bonzini <pbonzini@redhat.com>
13 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 */
18
19 #include <linux/kvm_host.h>
20 #include <asm/mtrr.h>
21
22 #include "cpuid.h"
23 #include "mmu.h"
24
25 #define IA32_MTRR_DEF_TYPE_E (1ULL << 11)
26 #define IA32_MTRR_DEF_TYPE_FE (1ULL << 10)
27 #define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff)
28
29 static bool msr_mtrr_valid(unsigned msr)
30 {
31 switch (msr) {
32 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
33 case MSR_MTRRfix64K_00000:
34 case MSR_MTRRfix16K_80000:
35 case MSR_MTRRfix16K_A0000:
36 case MSR_MTRRfix4K_C0000:
37 case MSR_MTRRfix4K_C8000:
38 case MSR_MTRRfix4K_D0000:
39 case MSR_MTRRfix4K_D8000:
40 case MSR_MTRRfix4K_E0000:
41 case MSR_MTRRfix4K_E8000:
42 case MSR_MTRRfix4K_F0000:
43 case MSR_MTRRfix4K_F8000:
44 case MSR_MTRRdefType:
45 case MSR_IA32_CR_PAT:
46 return true;
47 case 0x2f8:
48 return true;
49 }
50 return false;
51 }
52
53 static bool valid_pat_type(unsigned t)
54 {
55 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
56 }
57
58 static bool valid_mtrr_type(unsigned t)
59 {
60 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
61 }
62
63 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
64 {
65 int i;
66 u64 mask;
67
68 if (!msr_mtrr_valid(msr))
69 return false;
70
71 if (msr == MSR_IA32_CR_PAT) {
72 for (i = 0; i < 8; i++)
73 if (!valid_pat_type((data >> (i * 8)) & 0xff))
74 return false;
75 return true;
76 } else if (msr == MSR_MTRRdefType) {
77 if (data & ~0xcff)
78 return false;
79 return valid_mtrr_type(data & 0xff);
80 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
81 for (i = 0; i < 8 ; i++)
82 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
83 return false;
84 return true;
85 }
86
87 /* variable MTRRs */
88 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
89
90 mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
91 if ((msr & 1) == 0) {
92 /* MTRR base */
93 if (!valid_mtrr_type(data & 0xff))
94 return false;
95 mask |= 0xf00;
96 } else
97 /* MTRR mask */
98 mask |= 0x7ff;
99 if (data & mask) {
100 kvm_inject_gp(vcpu, 0);
101 return false;
102 }
103
104 return true;
105 }
106 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
107
108 static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
109 {
110 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
111 }
112
113 static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
114 {
115 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
116 }
117
118 static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
119 {
120 return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
121 }
122
123 static u8 mtrr_disabled_type(void)
124 {
125 /*
126 * Intel SDM 11.11.2.2: all MTRRs are disabled when
127 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
128 * memory type is applied to all of physical memory.
129 */
130 return MTRR_TYPE_UNCACHABLE;
131 }
132
133 /*
134 * Three terms are used in the following code:
135 * - segment, it indicates the address segments covered by fixed MTRRs.
136 * - unit, it corresponds to the MSR entry in the segment.
137 * - range, a range is covered in one memory cache type.
138 */
139 struct fixed_mtrr_segment {
140 u64 start;
141 u64 end;
142
143 int range_shift;
144
145 /* the start position in kvm_mtrr.fixed_ranges[]. */
146 int range_start;
147 };
148
149 static struct fixed_mtrr_segment fixed_seg_table[] = {
150 /* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
151 {
152 .start = 0x0,
153 .end = 0x80000,
154 .range_shift = 16, /* 64K */
155 .range_start = 0,
156 },
157
158 /*
159 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
160 * 16K fixed mtrr.
161 */
162 {
163 .start = 0x80000,
164 .end = 0xc0000,
165 .range_shift = 14, /* 16K */
166 .range_start = 8,
167 },
168
169 /*
170 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
171 * 4K fixed mtrr.
172 */
173 {
174 .start = 0xc0000,
175 .end = 0x100000,
176 .range_shift = 12, /* 12K */
177 .range_start = 24,
178 }
179 };
180
181 /*
182 * The size of unit is covered in one MSR, one MSR entry contains
183 * 8 ranges so that unit size is always 8 * 2^range_shift.
184 */
185 static u64 fixed_mtrr_seg_unit_size(int seg)
186 {
187 return 8 << fixed_seg_table[seg].range_shift;
188 }
189
190 static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
191 {
192 switch (msr) {
193 case MSR_MTRRfix64K_00000:
194 *seg = 0;
195 *unit = 0;
196 break;
197 case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
198 *seg = 1;
199 *unit = msr - MSR_MTRRfix16K_80000;
200 break;
201 case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
202 *seg = 2;
203 *unit = msr - MSR_MTRRfix4K_C0000;
204 break;
205 default:
206 return false;
207 }
208
209 return true;
210 }
211
212 static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
213 {
214 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
215 u64 unit_size = fixed_mtrr_seg_unit_size(seg);
216
217 *start = mtrr_seg->start + unit * unit_size;
218 *end = *start + unit_size;
219 WARN_ON(*end > mtrr_seg->end);
220 }
221
222 static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
223 {
224 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
225
226 WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
227 > mtrr_seg->end);
228
229 /* each unit has 8 ranges. */
230 return mtrr_seg->range_start + 8 * unit;
231 }
232
233 static int fixed_mtrr_seg_end_range_index(int seg)
234 {
235 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
236 int n;
237
238 n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
239 return mtrr_seg->range_start + n - 1;
240 }
241
242 static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
243 {
244 int seg, unit;
245
246 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
247 return false;
248
249 fixed_mtrr_seg_unit_range(seg, unit, start, end);
250 return true;
251 }
252
253 static int fixed_msr_to_range_index(u32 msr)
254 {
255 int seg, unit;
256
257 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
258 return -1;
259
260 return fixed_mtrr_seg_unit_range_index(seg, unit);
261 }
262
263 static int fixed_mtrr_addr_to_seg(u64 addr)
264 {
265 struct fixed_mtrr_segment *mtrr_seg;
266 int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
267
268 for (seg = 0; seg < seg_num; seg++) {
269 mtrr_seg = &fixed_seg_table[seg];
270 if (mtrr_seg->start >= addr && addr < mtrr_seg->end)
271 return seg;
272 }
273
274 return -1;
275 }
276
277 static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
278 {
279 struct fixed_mtrr_segment *mtrr_seg;
280 int index;
281
282 mtrr_seg = &fixed_seg_table[seg];
283 index = mtrr_seg->range_start;
284 index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
285 return index;
286 }
287
288 static u64 fixed_mtrr_range_end_addr(int seg, int index)
289 {
290 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
291 int pos = index - mtrr_seg->range_start;
292
293 return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
294 }
295
296 static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
297 {
298 u64 mask;
299
300 *start = range->base & PAGE_MASK;
301
302 mask = range->mask & PAGE_MASK;
303 mask |= ~0ULL << boot_cpu_data.x86_phys_bits;
304
305 /* This cannot overflow because writing to the reserved bits of
306 * variable MTRRs causes a #GP.
307 */
308 *end = (*start | ~mask) + 1;
309 }
310
311 static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
312 {
313 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
314 gfn_t start, end;
315 int index;
316
317 if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
318 !kvm_arch_has_noncoherent_dma(vcpu->kvm))
319 return;
320
321 if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
322 return;
323
324 /* fixed MTRRs. */
325 if (fixed_msr_to_range(msr, &start, &end)) {
326 if (!fixed_mtrr_is_enabled(mtrr_state))
327 return;
328 } else if (msr == MSR_MTRRdefType) {
329 start = 0x0;
330 end = ~0ULL;
331 } else {
332 /* variable range MTRRs. */
333 index = (msr - 0x200) / 2;
334 var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
335 }
336
337 kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
338 }
339
340 static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
341 {
342 return (range->mask & (1 << 11)) != 0;
343 }
344
345 static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
346 {
347 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
348 struct kvm_mtrr_range *tmp, *cur;
349 int index, is_mtrr_mask;
350
351 index = (msr - 0x200) / 2;
352 is_mtrr_mask = msr - 0x200 - 2 * index;
353 cur = &mtrr_state->var_ranges[index];
354
355 /* remove the entry if it's in the list. */
356 if (var_mtrr_range_is_valid(cur))
357 list_del(&mtrr_state->var_ranges[index].node);
358
359 if (!is_mtrr_mask)
360 cur->base = data;
361 else
362 cur->mask = data;
363
364 /* add it to the list if it's enabled. */
365 if (var_mtrr_range_is_valid(cur)) {
366 list_for_each_entry(tmp, &mtrr_state->head, node)
367 if (cur->base >= tmp->base)
368 break;
369 list_add_tail(&cur->node, &tmp->node);
370 }
371 }
372
373 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
374 {
375 int index;
376
377 if (!kvm_mtrr_valid(vcpu, msr, data))
378 return 1;
379
380 index = fixed_msr_to_range_index(msr);
381 if (index >= 0)
382 *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
383 else if (msr == MSR_MTRRdefType)
384 vcpu->arch.mtrr_state.deftype = data;
385 else if (msr == MSR_IA32_CR_PAT)
386 vcpu->arch.pat = data;
387 else
388 set_var_mtrr_msr(vcpu, msr, data);
389
390 update_mtrr(vcpu, msr);
391 return 0;
392 }
393
394 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
395 {
396 int index;
397
398 /* MSR_MTRRcap is a readonly MSR. */
399 if (msr == MSR_MTRRcap) {
400 /*
401 * SMRR = 0
402 * WC = 1
403 * FIX = 1
404 * VCNT = KVM_NR_VAR_MTRR
405 */
406 *pdata = 0x500 | KVM_NR_VAR_MTRR;
407 return 0;
408 }
409
410 if (!msr_mtrr_valid(msr))
411 return 1;
412
413 index = fixed_msr_to_range_index(msr);
414 if (index >= 0)
415 *pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
416 else if (msr == MSR_MTRRdefType)
417 *pdata = vcpu->arch.mtrr_state.deftype;
418 else if (msr == MSR_IA32_CR_PAT)
419 *pdata = vcpu->arch.pat;
420 else { /* Variable MTRRs */
421 int is_mtrr_mask;
422
423 index = (msr - 0x200) / 2;
424 is_mtrr_mask = msr - 0x200 - 2 * index;
425 if (!is_mtrr_mask)
426 *pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
427 else
428 *pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
429 }
430
431 return 0;
432 }
433
434 void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
435 {
436 INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
437 }
438
439 struct mtrr_iter {
440 /* input fields. */
441 struct kvm_mtrr *mtrr_state;
442 u64 start;
443 u64 end;
444
445 /* output fields. */
446 int mem_type;
447 /* mtrr is completely disabled? */
448 bool mtrr_disabled;
449 /* [start, end) is not fully covered in MTRRs? */
450 bool partial_map;
451
452 /* private fields. */
453 union {
454 /* used for fixed MTRRs. */
455 struct {
456 int index;
457 int seg;
458 };
459
460 /* used for var MTRRs. */
461 struct {
462 struct kvm_mtrr_range *range;
463 /* max address has been covered in var MTRRs. */
464 u64 start_max;
465 };
466 };
467
468 bool fixed;
469 };
470
471 static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
472 {
473 int seg, index;
474
475 if (!fixed_mtrr_is_enabled(iter->mtrr_state))
476 return false;
477
478 seg = fixed_mtrr_addr_to_seg(iter->start);
479 if (seg < 0)
480 return false;
481
482 iter->fixed = true;
483 index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
484 iter->index = index;
485 iter->seg = seg;
486 return true;
487 }
488
489 static bool match_var_range(struct mtrr_iter *iter,
490 struct kvm_mtrr_range *range)
491 {
492 u64 start, end;
493
494 var_mtrr_range(range, &start, &end);
495 if (!(start >= iter->end || end <= iter->start)) {
496 iter->range = range;
497
498 /*
499 * the function is called when we do kvm_mtrr.head walking.
500 * Range has the minimum base address which interleaves
501 * [looker->start_max, looker->end).
502 */
503 iter->partial_map |= iter->start_max < start;
504
505 /* update the max address has been covered. */
506 iter->start_max = max(iter->start_max, end);
507 return true;
508 }
509
510 return false;
511 }
512
513 static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
514 {
515 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
516
517 list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
518 if (match_var_range(iter, iter->range))
519 return;
520
521 iter->range = NULL;
522 iter->partial_map |= iter->start_max < iter->end;
523 }
524
525 static void mtrr_lookup_var_start(struct mtrr_iter *iter)
526 {
527 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
528
529 iter->fixed = false;
530 iter->start_max = iter->start;
531 iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
532
533 __mtrr_lookup_var_next(iter);
534 }
535
536 static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
537 {
538 /* terminate the lookup. */
539 if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
540 iter->fixed = false;
541 iter->range = NULL;
542 return;
543 }
544
545 iter->index++;
546
547 /* have looked up for all fixed MTRRs. */
548 if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
549 return mtrr_lookup_var_start(iter);
550
551 /* switch to next segment. */
552 if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
553 iter->seg++;
554 }
555
556 static void mtrr_lookup_var_next(struct mtrr_iter *iter)
557 {
558 __mtrr_lookup_var_next(iter);
559 }
560
561 static void mtrr_lookup_start(struct mtrr_iter *iter)
562 {
563 if (!mtrr_is_enabled(iter->mtrr_state)) {
564 iter->mtrr_disabled = true;
565 return;
566 }
567
568 if (!mtrr_lookup_fixed_start(iter))
569 mtrr_lookup_var_start(iter);
570 }
571
572 static void mtrr_lookup_init(struct mtrr_iter *iter,
573 struct kvm_mtrr *mtrr_state, u64 start, u64 end)
574 {
575 iter->mtrr_state = mtrr_state;
576 iter->start = start;
577 iter->end = end;
578 iter->mtrr_disabled = false;
579 iter->partial_map = false;
580 iter->fixed = false;
581 iter->range = NULL;
582
583 mtrr_lookup_start(iter);
584 }
585
586 static bool mtrr_lookup_okay(struct mtrr_iter *iter)
587 {
588 if (iter->fixed) {
589 iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
590 return true;
591 }
592
593 if (iter->range) {
594 iter->mem_type = iter->range->base & 0xff;
595 return true;
596 }
597
598 return false;
599 }
600
601 static void mtrr_lookup_next(struct mtrr_iter *iter)
602 {
603 if (iter->fixed)
604 mtrr_lookup_fixed_next(iter);
605 else
606 mtrr_lookup_var_next(iter);
607 }
608
609 #define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
610 for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
611 mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
612
613 u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
614 {
615 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
616 struct mtrr_iter iter;
617 u64 start, end;
618 int type = -1;
619 const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
620 | (1 << MTRR_TYPE_WRTHROUGH);
621
622 start = gfn_to_gpa(gfn);
623 end = start + PAGE_SIZE;
624
625 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
626 int curr_type = iter.mem_type;
627
628 /*
629 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
630 * Precedences.
631 */
632
633 if (type == -1) {
634 type = curr_type;
635 continue;
636 }
637
638 /*
639 * If two or more variable memory ranges match and the
640 * memory types are identical, then that memory type is
641 * used.
642 */
643 if (type == curr_type)
644 continue;
645
646 /*
647 * If two or more variable memory ranges match and one of
648 * the memory types is UC, the UC memory type used.
649 */
650 if (curr_type == MTRR_TYPE_UNCACHABLE)
651 return MTRR_TYPE_UNCACHABLE;
652
653 /*
654 * If two or more variable memory ranges match and the
655 * memory types are WT and WB, the WT memory type is used.
656 */
657 if (((1 << type) & wt_wb_mask) &&
658 ((1 << curr_type) & wt_wb_mask)) {
659 type = MTRR_TYPE_WRTHROUGH;
660 continue;
661 }
662
663 /*
664 * For overlaps not defined by the above rules, processor
665 * behavior is undefined.
666 */
667
668 /* We use WB for this undefined behavior. :( */
669 return MTRR_TYPE_WRBACK;
670 }
671
672 if (iter.mtrr_disabled)
673 return mtrr_disabled_type();
674
675 /*
676 * We just check one page, partially covered by MTRRs is
677 * impossible.
678 */
679 WARN_ON(iter.partial_map);
680
681 /* not contained in any MTRRs. */
682 if (type == -1)
683 return mtrr_default_type(mtrr_state);
684
685 return type;
686 }
687 EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
688
689 bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
690 int page_num)
691 {
692 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
693 struct mtrr_iter iter;
694 u64 start, end;
695 int type = -1;
696
697 start = gfn_to_gpa(gfn);
698 end = gfn_to_gpa(gfn + page_num);
699 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
700 if (type == -1) {
701 type = iter.mem_type;
702 continue;
703 }
704
705 if (type != iter.mem_type)
706 return false;
707 }
708
709 if (iter.mtrr_disabled)
710 return true;
711
712 if (!iter.partial_map)
713 return true;
714
715 if (type == -1)
716 return true;
717
718 return type == mtrr_default_type(mtrr_state);
719 }
This page took 0.082532 seconds and 6 git commands to generate.