Merge tag 'iio-fixes-for-4.2a' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[deliverable/linux.git] / arch / x86 / kvm / mtrr.c
1 /*
2 * vMTRR implementation
3 *
4 * Copyright (C) 2006 Qumranet, Inc.
5 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6 * Copyright(C) 2015 Intel Corporation.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 * Marcelo Tosatti <mtosatti@redhat.com>
12 * Paolo Bonzini <pbonzini@redhat.com>
13 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 */
18
19 #include <linux/kvm_host.h>
20 #include <asm/mtrr.h>
21
22 #include "cpuid.h"
23 #include "mmu.h"
24
25 #define IA32_MTRR_DEF_TYPE_E (1ULL << 11)
26 #define IA32_MTRR_DEF_TYPE_FE (1ULL << 10)
27 #define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff)
28
29 static bool msr_mtrr_valid(unsigned msr)
30 {
31 switch (msr) {
32 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
33 case MSR_MTRRfix64K_00000:
34 case MSR_MTRRfix16K_80000:
35 case MSR_MTRRfix16K_A0000:
36 case MSR_MTRRfix4K_C0000:
37 case MSR_MTRRfix4K_C8000:
38 case MSR_MTRRfix4K_D0000:
39 case MSR_MTRRfix4K_D8000:
40 case MSR_MTRRfix4K_E0000:
41 case MSR_MTRRfix4K_E8000:
42 case MSR_MTRRfix4K_F0000:
43 case MSR_MTRRfix4K_F8000:
44 case MSR_MTRRdefType:
45 case MSR_IA32_CR_PAT:
46 return true;
47 case 0x2f8:
48 return true;
49 }
50 return false;
51 }
52
53 static bool valid_pat_type(unsigned t)
54 {
55 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
56 }
57
58 static bool valid_mtrr_type(unsigned t)
59 {
60 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
61 }
62
63 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
64 {
65 int i;
66 u64 mask;
67
68 if (!msr_mtrr_valid(msr))
69 return false;
70
71 if (msr == MSR_IA32_CR_PAT) {
72 for (i = 0; i < 8; i++)
73 if (!valid_pat_type((data >> (i * 8)) & 0xff))
74 return false;
75 return true;
76 } else if (msr == MSR_MTRRdefType) {
77 if (data & ~0xcff)
78 return false;
79 return valid_mtrr_type(data & 0xff);
80 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
81 for (i = 0; i < 8 ; i++)
82 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
83 return false;
84 return true;
85 }
86
87 /* variable MTRRs */
88 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
89
90 mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
91 if ((msr & 1) == 0) {
92 /* MTRR base */
93 if (!valid_mtrr_type(data & 0xff))
94 return false;
95 mask |= 0xf00;
96 } else
97 /* MTRR mask */
98 mask |= 0x7ff;
99 if (data & mask) {
100 kvm_inject_gp(vcpu, 0);
101 return false;
102 }
103
104 return true;
105 }
106 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
107
108 static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
109 {
110 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
111 }
112
113 static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
114 {
115 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
116 }
117
118 static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
119 {
120 return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
121 }
122
123 /*
124 * Three terms are used in the following code:
125 * - segment, it indicates the address segments covered by fixed MTRRs.
126 * - unit, it corresponds to the MSR entry in the segment.
127 * - range, a range is covered in one memory cache type.
128 */
129 struct fixed_mtrr_segment {
130 u64 start;
131 u64 end;
132
133 int range_shift;
134
135 /* the start position in kvm_mtrr.fixed_ranges[]. */
136 int range_start;
137 };
138
139 static struct fixed_mtrr_segment fixed_seg_table[] = {
140 /* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
141 {
142 .start = 0x0,
143 .end = 0x80000,
144 .range_shift = 16, /* 64K */
145 .range_start = 0,
146 },
147
148 /*
149 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
150 * 16K fixed mtrr.
151 */
152 {
153 .start = 0x80000,
154 .end = 0xc0000,
155 .range_shift = 14, /* 16K */
156 .range_start = 8,
157 },
158
159 /*
160 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
161 * 4K fixed mtrr.
162 */
163 {
164 .start = 0xc0000,
165 .end = 0x100000,
166 .range_shift = 12, /* 12K */
167 .range_start = 24,
168 }
169 };
170
171 /*
172 * The size of unit is covered in one MSR, one MSR entry contains
173 * 8 ranges so that unit size is always 8 * 2^range_shift.
174 */
175 static u64 fixed_mtrr_seg_unit_size(int seg)
176 {
177 return 8 << fixed_seg_table[seg].range_shift;
178 }
179
180 static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
181 {
182 switch (msr) {
183 case MSR_MTRRfix64K_00000:
184 *seg = 0;
185 *unit = 0;
186 break;
187 case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
188 *seg = 1;
189 *unit = msr - MSR_MTRRfix16K_80000;
190 break;
191 case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
192 *seg = 2;
193 *unit = msr - MSR_MTRRfix4K_C0000;
194 break;
195 default:
196 return false;
197 }
198
199 return true;
200 }
201
202 static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
203 {
204 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
205 u64 unit_size = fixed_mtrr_seg_unit_size(seg);
206
207 *start = mtrr_seg->start + unit * unit_size;
208 *end = *start + unit_size;
209 WARN_ON(*end > mtrr_seg->end);
210 }
211
212 static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
213 {
214 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
215
216 WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
217 > mtrr_seg->end);
218
219 /* each unit has 8 ranges. */
220 return mtrr_seg->range_start + 8 * unit;
221 }
222
223 static int fixed_mtrr_seg_end_range_index(int seg)
224 {
225 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
226 int n;
227
228 n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
229 return mtrr_seg->range_start + n - 1;
230 }
231
232 static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
233 {
234 int seg, unit;
235
236 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
237 return false;
238
239 fixed_mtrr_seg_unit_range(seg, unit, start, end);
240 return true;
241 }
242
243 static int fixed_msr_to_range_index(u32 msr)
244 {
245 int seg, unit;
246
247 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
248 return -1;
249
250 return fixed_mtrr_seg_unit_range_index(seg, unit);
251 }
252
253 static int fixed_mtrr_addr_to_seg(u64 addr)
254 {
255 struct fixed_mtrr_segment *mtrr_seg;
256 int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
257
258 for (seg = 0; seg < seg_num; seg++) {
259 mtrr_seg = &fixed_seg_table[seg];
260 if (mtrr_seg->start >= addr && addr < mtrr_seg->end)
261 return seg;
262 }
263
264 return -1;
265 }
266
267 static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
268 {
269 struct fixed_mtrr_segment *mtrr_seg;
270 int index;
271
272 mtrr_seg = &fixed_seg_table[seg];
273 index = mtrr_seg->range_start;
274 index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
275 return index;
276 }
277
278 static u64 fixed_mtrr_range_end_addr(int seg, int index)
279 {
280 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
281 int pos = index - mtrr_seg->range_start;
282
283 return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
284 }
285
286 static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
287 {
288 u64 mask;
289
290 *start = range->base & PAGE_MASK;
291
292 mask = range->mask & PAGE_MASK;
293 mask |= ~0ULL << boot_cpu_data.x86_phys_bits;
294
295 /* This cannot overflow because writing to the reserved bits of
296 * variable MTRRs causes a #GP.
297 */
298 *end = (*start | ~mask) + 1;
299 }
300
301 static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
302 {
303 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
304 gfn_t start, end;
305 int index;
306
307 if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
308 !kvm_arch_has_noncoherent_dma(vcpu->kvm))
309 return;
310
311 if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
312 return;
313
314 /* fixed MTRRs. */
315 if (fixed_msr_to_range(msr, &start, &end)) {
316 if (!fixed_mtrr_is_enabled(mtrr_state))
317 return;
318 } else if (msr == MSR_MTRRdefType) {
319 start = 0x0;
320 end = ~0ULL;
321 } else {
322 /* variable range MTRRs. */
323 index = (msr - 0x200) / 2;
324 var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
325 }
326
327 kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
328 }
329
330 static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
331 {
332 return (range->mask & (1 << 11)) != 0;
333 }
334
335 static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
336 {
337 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
338 struct kvm_mtrr_range *tmp, *cur;
339 int index, is_mtrr_mask;
340
341 index = (msr - 0x200) / 2;
342 is_mtrr_mask = msr - 0x200 - 2 * index;
343 cur = &mtrr_state->var_ranges[index];
344
345 /* remove the entry if it's in the list. */
346 if (var_mtrr_range_is_valid(cur))
347 list_del(&mtrr_state->var_ranges[index].node);
348
349 if (!is_mtrr_mask)
350 cur->base = data;
351 else
352 cur->mask = data;
353
354 /* add it to the list if it's enabled. */
355 if (var_mtrr_range_is_valid(cur)) {
356 list_for_each_entry(tmp, &mtrr_state->head, node)
357 if (cur->base >= tmp->base)
358 break;
359 list_add_tail(&cur->node, &tmp->node);
360 }
361 }
362
363 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
364 {
365 int index;
366
367 if (!kvm_mtrr_valid(vcpu, msr, data))
368 return 1;
369
370 index = fixed_msr_to_range_index(msr);
371 if (index >= 0)
372 *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
373 else if (msr == MSR_MTRRdefType)
374 vcpu->arch.mtrr_state.deftype = data;
375 else if (msr == MSR_IA32_CR_PAT)
376 vcpu->arch.pat = data;
377 else
378 set_var_mtrr_msr(vcpu, msr, data);
379
380 update_mtrr(vcpu, msr);
381 return 0;
382 }
383
384 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
385 {
386 int index;
387
388 /* MSR_MTRRcap is a readonly MSR. */
389 if (msr == MSR_MTRRcap) {
390 /*
391 * SMRR = 0
392 * WC = 1
393 * FIX = 1
394 * VCNT = KVM_NR_VAR_MTRR
395 */
396 *pdata = 0x500 | KVM_NR_VAR_MTRR;
397 return 0;
398 }
399
400 if (!msr_mtrr_valid(msr))
401 return 1;
402
403 index = fixed_msr_to_range_index(msr);
404 if (index >= 0)
405 *pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
406 else if (msr == MSR_MTRRdefType)
407 *pdata = vcpu->arch.mtrr_state.deftype;
408 else if (msr == MSR_IA32_CR_PAT)
409 *pdata = vcpu->arch.pat;
410 else { /* Variable MTRRs */
411 int is_mtrr_mask;
412
413 index = (msr - 0x200) / 2;
414 is_mtrr_mask = msr - 0x200 - 2 * index;
415 if (!is_mtrr_mask)
416 *pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
417 else
418 *pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
419 }
420
421 return 0;
422 }
423
424 void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
425 {
426 INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
427 }
428
429 struct mtrr_iter {
430 /* input fields. */
431 struct kvm_mtrr *mtrr_state;
432 u64 start;
433 u64 end;
434
435 /* output fields. */
436 int mem_type;
437 /* [start, end) is not fully covered in MTRRs? */
438 bool partial_map;
439
440 /* private fields. */
441 union {
442 /* used for fixed MTRRs. */
443 struct {
444 int index;
445 int seg;
446 };
447
448 /* used for var MTRRs. */
449 struct {
450 struct kvm_mtrr_range *range;
451 /* max address has been covered in var MTRRs. */
452 u64 start_max;
453 };
454 };
455
456 bool fixed;
457 };
458
459 static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
460 {
461 int seg, index;
462
463 if (!fixed_mtrr_is_enabled(iter->mtrr_state))
464 return false;
465
466 seg = fixed_mtrr_addr_to_seg(iter->start);
467 if (seg < 0)
468 return false;
469
470 iter->fixed = true;
471 index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
472 iter->index = index;
473 iter->seg = seg;
474 return true;
475 }
476
477 static bool match_var_range(struct mtrr_iter *iter,
478 struct kvm_mtrr_range *range)
479 {
480 u64 start, end;
481
482 var_mtrr_range(range, &start, &end);
483 if (!(start >= iter->end || end <= iter->start)) {
484 iter->range = range;
485
486 /*
487 * the function is called when we do kvm_mtrr.head walking.
488 * Range has the minimum base address which interleaves
489 * [looker->start_max, looker->end).
490 */
491 iter->partial_map |= iter->start_max < start;
492
493 /* update the max address has been covered. */
494 iter->start_max = max(iter->start_max, end);
495 return true;
496 }
497
498 return false;
499 }
500
501 static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
502 {
503 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
504
505 list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
506 if (match_var_range(iter, iter->range))
507 return;
508
509 iter->range = NULL;
510 iter->partial_map |= iter->start_max < iter->end;
511 }
512
513 static void mtrr_lookup_var_start(struct mtrr_iter *iter)
514 {
515 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
516
517 iter->fixed = false;
518 iter->start_max = iter->start;
519 iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
520
521 __mtrr_lookup_var_next(iter);
522 }
523
524 static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
525 {
526 /* terminate the lookup. */
527 if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
528 iter->fixed = false;
529 iter->range = NULL;
530 return;
531 }
532
533 iter->index++;
534
535 /* have looked up for all fixed MTRRs. */
536 if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
537 return mtrr_lookup_var_start(iter);
538
539 /* switch to next segment. */
540 if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
541 iter->seg++;
542 }
543
544 static void mtrr_lookup_var_next(struct mtrr_iter *iter)
545 {
546 __mtrr_lookup_var_next(iter);
547 }
548
549 static void mtrr_lookup_start(struct mtrr_iter *iter)
550 {
551 if (!mtrr_is_enabled(iter->mtrr_state)) {
552 iter->partial_map = true;
553 return;
554 }
555
556 if (!mtrr_lookup_fixed_start(iter))
557 mtrr_lookup_var_start(iter);
558 }
559
560 static void mtrr_lookup_init(struct mtrr_iter *iter,
561 struct kvm_mtrr *mtrr_state, u64 start, u64 end)
562 {
563 iter->mtrr_state = mtrr_state;
564 iter->start = start;
565 iter->end = end;
566 iter->partial_map = false;
567 iter->fixed = false;
568 iter->range = NULL;
569
570 mtrr_lookup_start(iter);
571 }
572
573 static bool mtrr_lookup_okay(struct mtrr_iter *iter)
574 {
575 if (iter->fixed) {
576 iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
577 return true;
578 }
579
580 if (iter->range) {
581 iter->mem_type = iter->range->base & 0xff;
582 return true;
583 }
584
585 return false;
586 }
587
588 static void mtrr_lookup_next(struct mtrr_iter *iter)
589 {
590 if (iter->fixed)
591 mtrr_lookup_fixed_next(iter);
592 else
593 mtrr_lookup_var_next(iter);
594 }
595
596 #define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
597 for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
598 mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
599
600 u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
601 {
602 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
603 struct mtrr_iter iter;
604 u64 start, end;
605 int type = -1;
606 const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
607 | (1 << MTRR_TYPE_WRTHROUGH);
608
609 start = gfn_to_gpa(gfn);
610 end = start + PAGE_SIZE;
611
612 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
613 int curr_type = iter.mem_type;
614
615 /*
616 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
617 * Precedences.
618 */
619
620 if (type == -1) {
621 type = curr_type;
622 continue;
623 }
624
625 /*
626 * If two or more variable memory ranges match and the
627 * memory types are identical, then that memory type is
628 * used.
629 */
630 if (type == curr_type)
631 continue;
632
633 /*
634 * If two or more variable memory ranges match and one of
635 * the memory types is UC, the UC memory type used.
636 */
637 if (curr_type == MTRR_TYPE_UNCACHABLE)
638 return MTRR_TYPE_UNCACHABLE;
639
640 /*
641 * If two or more variable memory ranges match and the
642 * memory types are WT and WB, the WT memory type is used.
643 */
644 if (((1 << type) & wt_wb_mask) &&
645 ((1 << curr_type) & wt_wb_mask)) {
646 type = MTRR_TYPE_WRTHROUGH;
647 continue;
648 }
649
650 /*
651 * For overlaps not defined by the above rules, processor
652 * behavior is undefined.
653 */
654
655 /* We use WB for this undefined behavior. :( */
656 return MTRR_TYPE_WRBACK;
657 }
658
659 /* It is not covered by MTRRs. */
660 if (iter.partial_map) {
661 /*
662 * We just check one page, partially covered by MTRRs is
663 * impossible.
664 */
665 WARN_ON(type != -1);
666 type = mtrr_default_type(mtrr_state);
667 }
668 return type;
669 }
670 EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
671
672 bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
673 int page_num)
674 {
675 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
676 struct mtrr_iter iter;
677 u64 start, end;
678 int type = -1;
679
680 start = gfn_to_gpa(gfn);
681 end = gfn_to_gpa(gfn + page_num);
682 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
683 if (type == -1) {
684 type = iter.mem_type;
685 continue;
686 }
687
688 if (type != iter.mem_type)
689 return false;
690 }
691
692 if (!iter.partial_map)
693 return true;
694
695 if (type == -1)
696 return true;
697
698 return type == mtrr_default_type(mtrr_state);
699 }
This page took 0.044396 seconds and 6 git commands to generate.