Merge 3.16-rc5 into char-misc-next
[deliverable/linux.git] / arch / x86 / kvm / svm.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24
25 #include <linux/module.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/kernel.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33
34 #include <asm/perf_event.h>
35 #include <asm/tlbflush.h>
36 #include <asm/desc.h>
37 #include <asm/debugreg.h>
38 #include <asm/kvm_para.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #define __ex(x) __kvm_handle_fault_on_reboot(x)
44
45 MODULE_AUTHOR("Qumranet");
46 MODULE_LICENSE("GPL");
47
48 static const struct x86_cpu_id svm_cpu_id[] = {
49 X86_FEATURE_MATCH(X86_FEATURE_SVM),
50 {}
51 };
52 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
53
54 #define IOPM_ALLOC_ORDER 2
55 #define MSRPM_ALLOC_ORDER 1
56
57 #define SEG_TYPE_LDT 2
58 #define SEG_TYPE_BUSY_TSS16 3
59
60 #define SVM_FEATURE_NPT (1 << 0)
61 #define SVM_FEATURE_LBRV (1 << 1)
62 #define SVM_FEATURE_SVML (1 << 2)
63 #define SVM_FEATURE_NRIP (1 << 3)
64 #define SVM_FEATURE_TSC_RATE (1 << 4)
65 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
66 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
67 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
68 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
69
70 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
71 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
72 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
73
74 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
75
76 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
77 #define TSC_RATIO_MIN 0x0000000000000001ULL
78 #define TSC_RATIO_MAX 0x000000ffffffffffULL
79
80 static bool erratum_383_found __read_mostly;
81
82 static const u32 host_save_user_msrs[] = {
83 #ifdef CONFIG_X86_64
84 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
85 MSR_FS_BASE,
86 #endif
87 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
88 };
89
90 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
91
92 struct kvm_vcpu;
93
94 struct nested_state {
95 struct vmcb *hsave;
96 u64 hsave_msr;
97 u64 vm_cr_msr;
98 u64 vmcb;
99
100 /* These are the merged vectors */
101 u32 *msrpm;
102
103 /* gpa pointers to the real vectors */
104 u64 vmcb_msrpm;
105 u64 vmcb_iopm;
106
107 /* A VMEXIT is required but not yet emulated */
108 bool exit_required;
109
110 /* cache for intercepts of the guest */
111 u32 intercept_cr;
112 u32 intercept_dr;
113 u32 intercept_exceptions;
114 u64 intercept;
115
116 /* Nested Paging related state */
117 u64 nested_cr3;
118 };
119
120 #define MSRPM_OFFSETS 16
121 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
122
123 /*
124 * Set osvw_len to higher value when updated Revision Guides
125 * are published and we know what the new status bits are
126 */
127 static uint64_t osvw_len = 4, osvw_status;
128
129 struct vcpu_svm {
130 struct kvm_vcpu vcpu;
131 struct vmcb *vmcb;
132 unsigned long vmcb_pa;
133 struct svm_cpu_data *svm_data;
134 uint64_t asid_generation;
135 uint64_t sysenter_esp;
136 uint64_t sysenter_eip;
137
138 u64 next_rip;
139
140 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
141 struct {
142 u16 fs;
143 u16 gs;
144 u16 ldt;
145 u64 gs_base;
146 } host;
147
148 u32 *msrpm;
149
150 ulong nmi_iret_rip;
151
152 struct nested_state nested;
153
154 bool nmi_singlestep;
155
156 unsigned int3_injected;
157 unsigned long int3_rip;
158 u32 apf_reason;
159
160 u64 tsc_ratio;
161 };
162
163 static DEFINE_PER_CPU(u64, current_tsc_ratio);
164 #define TSC_RATIO_DEFAULT 0x0100000000ULL
165
166 #define MSR_INVALID 0xffffffffU
167
168 static const struct svm_direct_access_msrs {
169 u32 index; /* Index of the MSR */
170 bool always; /* True if intercept is always on */
171 } direct_access_msrs[] = {
172 { .index = MSR_STAR, .always = true },
173 { .index = MSR_IA32_SYSENTER_CS, .always = true },
174 #ifdef CONFIG_X86_64
175 { .index = MSR_GS_BASE, .always = true },
176 { .index = MSR_FS_BASE, .always = true },
177 { .index = MSR_KERNEL_GS_BASE, .always = true },
178 { .index = MSR_LSTAR, .always = true },
179 { .index = MSR_CSTAR, .always = true },
180 { .index = MSR_SYSCALL_MASK, .always = true },
181 #endif
182 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
183 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
184 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
185 { .index = MSR_IA32_LASTINTTOIP, .always = false },
186 { .index = MSR_INVALID, .always = false },
187 };
188
189 /* enable NPT for AMD64 and X86 with PAE */
190 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
191 static bool npt_enabled = true;
192 #else
193 static bool npt_enabled;
194 #endif
195
196 /* allow nested paging (virtualized MMU) for all guests */
197 static int npt = true;
198 module_param(npt, int, S_IRUGO);
199
200 /* allow nested virtualization in KVM/SVM */
201 static int nested = true;
202 module_param(nested, int, S_IRUGO);
203
204 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
205 static void svm_complete_interrupts(struct vcpu_svm *svm);
206
207 static int nested_svm_exit_handled(struct vcpu_svm *svm);
208 static int nested_svm_intercept(struct vcpu_svm *svm);
209 static int nested_svm_vmexit(struct vcpu_svm *svm);
210 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
211 bool has_error_code, u32 error_code);
212 static u64 __scale_tsc(u64 ratio, u64 tsc);
213
214 enum {
215 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
216 pause filter count */
217 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
218 VMCB_ASID, /* ASID */
219 VMCB_INTR, /* int_ctl, int_vector */
220 VMCB_NPT, /* npt_en, nCR3, gPAT */
221 VMCB_CR, /* CR0, CR3, CR4, EFER */
222 VMCB_DR, /* DR6, DR7 */
223 VMCB_DT, /* GDT, IDT */
224 VMCB_SEG, /* CS, DS, SS, ES, CPL */
225 VMCB_CR2, /* CR2 only */
226 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
227 VMCB_DIRTY_MAX,
228 };
229
230 /* TPR and CR2 are always written before VMRUN */
231 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
232
233 static inline void mark_all_dirty(struct vmcb *vmcb)
234 {
235 vmcb->control.clean = 0;
236 }
237
238 static inline void mark_all_clean(struct vmcb *vmcb)
239 {
240 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
241 & ~VMCB_ALWAYS_DIRTY_MASK;
242 }
243
244 static inline void mark_dirty(struct vmcb *vmcb, int bit)
245 {
246 vmcb->control.clean &= ~(1 << bit);
247 }
248
249 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
250 {
251 return container_of(vcpu, struct vcpu_svm, vcpu);
252 }
253
254 static void recalc_intercepts(struct vcpu_svm *svm)
255 {
256 struct vmcb_control_area *c, *h;
257 struct nested_state *g;
258
259 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
260
261 if (!is_guest_mode(&svm->vcpu))
262 return;
263
264 c = &svm->vmcb->control;
265 h = &svm->nested.hsave->control;
266 g = &svm->nested;
267
268 c->intercept_cr = h->intercept_cr | g->intercept_cr;
269 c->intercept_dr = h->intercept_dr | g->intercept_dr;
270 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
271 c->intercept = h->intercept | g->intercept;
272 }
273
274 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
275 {
276 if (is_guest_mode(&svm->vcpu))
277 return svm->nested.hsave;
278 else
279 return svm->vmcb;
280 }
281
282 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
283 {
284 struct vmcb *vmcb = get_host_vmcb(svm);
285
286 vmcb->control.intercept_cr |= (1U << bit);
287
288 recalc_intercepts(svm);
289 }
290
291 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
292 {
293 struct vmcb *vmcb = get_host_vmcb(svm);
294
295 vmcb->control.intercept_cr &= ~(1U << bit);
296
297 recalc_intercepts(svm);
298 }
299
300 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
301 {
302 struct vmcb *vmcb = get_host_vmcb(svm);
303
304 return vmcb->control.intercept_cr & (1U << bit);
305 }
306
307 static inline void set_dr_intercepts(struct vcpu_svm *svm)
308 {
309 struct vmcb *vmcb = get_host_vmcb(svm);
310
311 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
312 | (1 << INTERCEPT_DR1_READ)
313 | (1 << INTERCEPT_DR2_READ)
314 | (1 << INTERCEPT_DR3_READ)
315 | (1 << INTERCEPT_DR4_READ)
316 | (1 << INTERCEPT_DR5_READ)
317 | (1 << INTERCEPT_DR6_READ)
318 | (1 << INTERCEPT_DR7_READ)
319 | (1 << INTERCEPT_DR0_WRITE)
320 | (1 << INTERCEPT_DR1_WRITE)
321 | (1 << INTERCEPT_DR2_WRITE)
322 | (1 << INTERCEPT_DR3_WRITE)
323 | (1 << INTERCEPT_DR4_WRITE)
324 | (1 << INTERCEPT_DR5_WRITE)
325 | (1 << INTERCEPT_DR6_WRITE)
326 | (1 << INTERCEPT_DR7_WRITE);
327
328 recalc_intercepts(svm);
329 }
330
331 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
332 {
333 struct vmcb *vmcb = get_host_vmcb(svm);
334
335 vmcb->control.intercept_dr = 0;
336
337 recalc_intercepts(svm);
338 }
339
340 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
341 {
342 struct vmcb *vmcb = get_host_vmcb(svm);
343
344 vmcb->control.intercept_exceptions |= (1U << bit);
345
346 recalc_intercepts(svm);
347 }
348
349 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
350 {
351 struct vmcb *vmcb = get_host_vmcb(svm);
352
353 vmcb->control.intercept_exceptions &= ~(1U << bit);
354
355 recalc_intercepts(svm);
356 }
357
358 static inline void set_intercept(struct vcpu_svm *svm, int bit)
359 {
360 struct vmcb *vmcb = get_host_vmcb(svm);
361
362 vmcb->control.intercept |= (1ULL << bit);
363
364 recalc_intercepts(svm);
365 }
366
367 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
368 {
369 struct vmcb *vmcb = get_host_vmcb(svm);
370
371 vmcb->control.intercept &= ~(1ULL << bit);
372
373 recalc_intercepts(svm);
374 }
375
376 static inline void enable_gif(struct vcpu_svm *svm)
377 {
378 svm->vcpu.arch.hflags |= HF_GIF_MASK;
379 }
380
381 static inline void disable_gif(struct vcpu_svm *svm)
382 {
383 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
384 }
385
386 static inline bool gif_set(struct vcpu_svm *svm)
387 {
388 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
389 }
390
391 static unsigned long iopm_base;
392
393 struct kvm_ldttss_desc {
394 u16 limit0;
395 u16 base0;
396 unsigned base1:8, type:5, dpl:2, p:1;
397 unsigned limit1:4, zero0:3, g:1, base2:8;
398 u32 base3;
399 u32 zero1;
400 } __attribute__((packed));
401
402 struct svm_cpu_data {
403 int cpu;
404
405 u64 asid_generation;
406 u32 max_asid;
407 u32 next_asid;
408 struct kvm_ldttss_desc *tss_desc;
409
410 struct page *save_area;
411 };
412
413 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
414
415 struct svm_init_data {
416 int cpu;
417 int r;
418 };
419
420 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
421
422 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
423 #define MSRS_RANGE_SIZE 2048
424 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
425
426 static u32 svm_msrpm_offset(u32 msr)
427 {
428 u32 offset;
429 int i;
430
431 for (i = 0; i < NUM_MSR_MAPS; i++) {
432 if (msr < msrpm_ranges[i] ||
433 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
434 continue;
435
436 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
437 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
438
439 /* Now we have the u8 offset - but need the u32 offset */
440 return offset / 4;
441 }
442
443 /* MSR not in any range */
444 return MSR_INVALID;
445 }
446
447 #define MAX_INST_SIZE 15
448
449 static inline void clgi(void)
450 {
451 asm volatile (__ex(SVM_CLGI));
452 }
453
454 static inline void stgi(void)
455 {
456 asm volatile (__ex(SVM_STGI));
457 }
458
459 static inline void invlpga(unsigned long addr, u32 asid)
460 {
461 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
462 }
463
464 static int get_npt_level(void)
465 {
466 #ifdef CONFIG_X86_64
467 return PT64_ROOT_LEVEL;
468 #else
469 return PT32E_ROOT_LEVEL;
470 #endif
471 }
472
473 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
474 {
475 vcpu->arch.efer = efer;
476 if (!npt_enabled && !(efer & EFER_LMA))
477 efer &= ~EFER_LME;
478
479 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
480 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
481 }
482
483 static int is_external_interrupt(u32 info)
484 {
485 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
486 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
487 }
488
489 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
490 {
491 struct vcpu_svm *svm = to_svm(vcpu);
492 u32 ret = 0;
493
494 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
495 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
496 return ret & mask;
497 }
498
499 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
500 {
501 struct vcpu_svm *svm = to_svm(vcpu);
502
503 if (mask == 0)
504 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
505 else
506 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
507
508 }
509
510 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
511 {
512 struct vcpu_svm *svm = to_svm(vcpu);
513
514 if (svm->vmcb->control.next_rip != 0)
515 svm->next_rip = svm->vmcb->control.next_rip;
516
517 if (!svm->next_rip) {
518 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
519 EMULATE_DONE)
520 printk(KERN_DEBUG "%s: NOP\n", __func__);
521 return;
522 }
523 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
524 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
525 __func__, kvm_rip_read(vcpu), svm->next_rip);
526
527 kvm_rip_write(vcpu, svm->next_rip);
528 svm_set_interrupt_shadow(vcpu, 0);
529 }
530
531 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
532 bool has_error_code, u32 error_code,
533 bool reinject)
534 {
535 struct vcpu_svm *svm = to_svm(vcpu);
536
537 /*
538 * If we are within a nested VM we'd better #VMEXIT and let the guest
539 * handle the exception
540 */
541 if (!reinject &&
542 nested_svm_check_exception(svm, nr, has_error_code, error_code))
543 return;
544
545 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
546 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
547
548 /*
549 * For guest debugging where we have to reinject #BP if some
550 * INT3 is guest-owned:
551 * Emulate nRIP by moving RIP forward. Will fail if injection
552 * raises a fault that is not intercepted. Still better than
553 * failing in all cases.
554 */
555 skip_emulated_instruction(&svm->vcpu);
556 rip = kvm_rip_read(&svm->vcpu);
557 svm->int3_rip = rip + svm->vmcb->save.cs.base;
558 svm->int3_injected = rip - old_rip;
559 }
560
561 svm->vmcb->control.event_inj = nr
562 | SVM_EVTINJ_VALID
563 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
564 | SVM_EVTINJ_TYPE_EXEPT;
565 svm->vmcb->control.event_inj_err = error_code;
566 }
567
568 static void svm_init_erratum_383(void)
569 {
570 u32 low, high;
571 int err;
572 u64 val;
573
574 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
575 return;
576
577 /* Use _safe variants to not break nested virtualization */
578 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
579 if (err)
580 return;
581
582 val |= (1ULL << 47);
583
584 low = lower_32_bits(val);
585 high = upper_32_bits(val);
586
587 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
588
589 erratum_383_found = true;
590 }
591
592 static void svm_init_osvw(struct kvm_vcpu *vcpu)
593 {
594 /*
595 * Guests should see errata 400 and 415 as fixed (assuming that
596 * HLT and IO instructions are intercepted).
597 */
598 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
599 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
600
601 /*
602 * By increasing VCPU's osvw.length to 3 we are telling the guest that
603 * all osvw.status bits inside that length, including bit 0 (which is
604 * reserved for erratum 298), are valid. However, if host processor's
605 * osvw_len is 0 then osvw_status[0] carries no information. We need to
606 * be conservative here and therefore we tell the guest that erratum 298
607 * is present (because we really don't know).
608 */
609 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
610 vcpu->arch.osvw.status |= 1;
611 }
612
613 static int has_svm(void)
614 {
615 const char *msg;
616
617 if (!cpu_has_svm(&msg)) {
618 printk(KERN_INFO "has_svm: %s\n", msg);
619 return 0;
620 }
621
622 return 1;
623 }
624
625 static void svm_hardware_disable(void *garbage)
626 {
627 /* Make sure we clean up behind us */
628 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
629 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
630
631 cpu_svm_disable();
632
633 amd_pmu_disable_virt();
634 }
635
636 static int svm_hardware_enable(void *garbage)
637 {
638
639 struct svm_cpu_data *sd;
640 uint64_t efer;
641 struct desc_ptr gdt_descr;
642 struct desc_struct *gdt;
643 int me = raw_smp_processor_id();
644
645 rdmsrl(MSR_EFER, efer);
646 if (efer & EFER_SVME)
647 return -EBUSY;
648
649 if (!has_svm()) {
650 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
651 return -EINVAL;
652 }
653 sd = per_cpu(svm_data, me);
654 if (!sd) {
655 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
656 return -EINVAL;
657 }
658
659 sd->asid_generation = 1;
660 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
661 sd->next_asid = sd->max_asid + 1;
662
663 native_store_gdt(&gdt_descr);
664 gdt = (struct desc_struct *)gdt_descr.address;
665 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
666
667 wrmsrl(MSR_EFER, efer | EFER_SVME);
668
669 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
670
671 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
672 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
673 __get_cpu_var(current_tsc_ratio) = TSC_RATIO_DEFAULT;
674 }
675
676
677 /*
678 * Get OSVW bits.
679 *
680 * Note that it is possible to have a system with mixed processor
681 * revisions and therefore different OSVW bits. If bits are not the same
682 * on different processors then choose the worst case (i.e. if erratum
683 * is present on one processor and not on another then assume that the
684 * erratum is present everywhere).
685 */
686 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
687 uint64_t len, status = 0;
688 int err;
689
690 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
691 if (!err)
692 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
693 &err);
694
695 if (err)
696 osvw_status = osvw_len = 0;
697 else {
698 if (len < osvw_len)
699 osvw_len = len;
700 osvw_status |= status;
701 osvw_status &= (1ULL << osvw_len) - 1;
702 }
703 } else
704 osvw_status = osvw_len = 0;
705
706 svm_init_erratum_383();
707
708 amd_pmu_enable_virt();
709
710 return 0;
711 }
712
713 static void svm_cpu_uninit(int cpu)
714 {
715 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
716
717 if (!sd)
718 return;
719
720 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
721 __free_page(sd->save_area);
722 kfree(sd);
723 }
724
725 static int svm_cpu_init(int cpu)
726 {
727 struct svm_cpu_data *sd;
728 int r;
729
730 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
731 if (!sd)
732 return -ENOMEM;
733 sd->cpu = cpu;
734 sd->save_area = alloc_page(GFP_KERNEL);
735 r = -ENOMEM;
736 if (!sd->save_area)
737 goto err_1;
738
739 per_cpu(svm_data, cpu) = sd;
740
741 return 0;
742
743 err_1:
744 kfree(sd);
745 return r;
746
747 }
748
749 static bool valid_msr_intercept(u32 index)
750 {
751 int i;
752
753 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
754 if (direct_access_msrs[i].index == index)
755 return true;
756
757 return false;
758 }
759
760 static void set_msr_interception(u32 *msrpm, unsigned msr,
761 int read, int write)
762 {
763 u8 bit_read, bit_write;
764 unsigned long tmp;
765 u32 offset;
766
767 /*
768 * If this warning triggers extend the direct_access_msrs list at the
769 * beginning of the file
770 */
771 WARN_ON(!valid_msr_intercept(msr));
772
773 offset = svm_msrpm_offset(msr);
774 bit_read = 2 * (msr & 0x0f);
775 bit_write = 2 * (msr & 0x0f) + 1;
776 tmp = msrpm[offset];
777
778 BUG_ON(offset == MSR_INVALID);
779
780 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
781 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
782
783 msrpm[offset] = tmp;
784 }
785
786 static void svm_vcpu_init_msrpm(u32 *msrpm)
787 {
788 int i;
789
790 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
791
792 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
793 if (!direct_access_msrs[i].always)
794 continue;
795
796 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
797 }
798 }
799
800 static void add_msr_offset(u32 offset)
801 {
802 int i;
803
804 for (i = 0; i < MSRPM_OFFSETS; ++i) {
805
806 /* Offset already in list? */
807 if (msrpm_offsets[i] == offset)
808 return;
809
810 /* Slot used by another offset? */
811 if (msrpm_offsets[i] != MSR_INVALID)
812 continue;
813
814 /* Add offset to list */
815 msrpm_offsets[i] = offset;
816
817 return;
818 }
819
820 /*
821 * If this BUG triggers the msrpm_offsets table has an overflow. Just
822 * increase MSRPM_OFFSETS in this case.
823 */
824 BUG();
825 }
826
827 static void init_msrpm_offsets(void)
828 {
829 int i;
830
831 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
832
833 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
834 u32 offset;
835
836 offset = svm_msrpm_offset(direct_access_msrs[i].index);
837 BUG_ON(offset == MSR_INVALID);
838
839 add_msr_offset(offset);
840 }
841 }
842
843 static void svm_enable_lbrv(struct vcpu_svm *svm)
844 {
845 u32 *msrpm = svm->msrpm;
846
847 svm->vmcb->control.lbr_ctl = 1;
848 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
849 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
850 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
851 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
852 }
853
854 static void svm_disable_lbrv(struct vcpu_svm *svm)
855 {
856 u32 *msrpm = svm->msrpm;
857
858 svm->vmcb->control.lbr_ctl = 0;
859 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
860 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
861 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
862 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
863 }
864
865 static __init int svm_hardware_setup(void)
866 {
867 int cpu;
868 struct page *iopm_pages;
869 void *iopm_va;
870 int r;
871
872 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
873
874 if (!iopm_pages)
875 return -ENOMEM;
876
877 iopm_va = page_address(iopm_pages);
878 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
879 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
880
881 init_msrpm_offsets();
882
883 if (boot_cpu_has(X86_FEATURE_NX))
884 kvm_enable_efer_bits(EFER_NX);
885
886 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
887 kvm_enable_efer_bits(EFER_FFXSR);
888
889 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
890 u64 max;
891
892 kvm_has_tsc_control = true;
893
894 /*
895 * Make sure the user can only configure tsc_khz values that
896 * fit into a signed integer.
897 * A min value is not calculated needed because it will always
898 * be 1 on all machines and a value of 0 is used to disable
899 * tsc-scaling for the vcpu.
900 */
901 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
902
903 kvm_max_guest_tsc_khz = max;
904 }
905
906 if (nested) {
907 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
908 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
909 }
910
911 for_each_possible_cpu(cpu) {
912 r = svm_cpu_init(cpu);
913 if (r)
914 goto err;
915 }
916
917 if (!boot_cpu_has(X86_FEATURE_NPT))
918 npt_enabled = false;
919
920 if (npt_enabled && !npt) {
921 printk(KERN_INFO "kvm: Nested Paging disabled\n");
922 npt_enabled = false;
923 }
924
925 if (npt_enabled) {
926 printk(KERN_INFO "kvm: Nested Paging enabled\n");
927 kvm_enable_tdp();
928 } else
929 kvm_disable_tdp();
930
931 return 0;
932
933 err:
934 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
935 iopm_base = 0;
936 return r;
937 }
938
939 static __exit void svm_hardware_unsetup(void)
940 {
941 int cpu;
942
943 for_each_possible_cpu(cpu)
944 svm_cpu_uninit(cpu);
945
946 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
947 iopm_base = 0;
948 }
949
950 static void init_seg(struct vmcb_seg *seg)
951 {
952 seg->selector = 0;
953 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
954 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
955 seg->limit = 0xffff;
956 seg->base = 0;
957 }
958
959 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
960 {
961 seg->selector = 0;
962 seg->attrib = SVM_SELECTOR_P_MASK | type;
963 seg->limit = 0xffff;
964 seg->base = 0;
965 }
966
967 static u64 __scale_tsc(u64 ratio, u64 tsc)
968 {
969 u64 mult, frac, _tsc;
970
971 mult = ratio >> 32;
972 frac = ratio & ((1ULL << 32) - 1);
973
974 _tsc = tsc;
975 _tsc *= mult;
976 _tsc += (tsc >> 32) * frac;
977 _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
978
979 return _tsc;
980 }
981
982 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
983 {
984 struct vcpu_svm *svm = to_svm(vcpu);
985 u64 _tsc = tsc;
986
987 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
988 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
989
990 return _tsc;
991 }
992
993 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
994 {
995 struct vcpu_svm *svm = to_svm(vcpu);
996 u64 ratio;
997 u64 khz;
998
999 /* Guest TSC same frequency as host TSC? */
1000 if (!scale) {
1001 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1002 return;
1003 }
1004
1005 /* TSC scaling supported? */
1006 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1007 if (user_tsc_khz > tsc_khz) {
1008 vcpu->arch.tsc_catchup = 1;
1009 vcpu->arch.tsc_always_catchup = 1;
1010 } else
1011 WARN(1, "user requested TSC rate below hardware speed\n");
1012 return;
1013 }
1014
1015 khz = user_tsc_khz;
1016
1017 /* TSC scaling required - calculate ratio */
1018 ratio = khz << 32;
1019 do_div(ratio, tsc_khz);
1020
1021 if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1022 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1023 user_tsc_khz);
1024 return;
1025 }
1026 svm->tsc_ratio = ratio;
1027 }
1028
1029 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1030 {
1031 struct vcpu_svm *svm = to_svm(vcpu);
1032
1033 return svm->vmcb->control.tsc_offset;
1034 }
1035
1036 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1037 {
1038 struct vcpu_svm *svm = to_svm(vcpu);
1039 u64 g_tsc_offset = 0;
1040
1041 if (is_guest_mode(vcpu)) {
1042 g_tsc_offset = svm->vmcb->control.tsc_offset -
1043 svm->nested.hsave->control.tsc_offset;
1044 svm->nested.hsave->control.tsc_offset = offset;
1045 } else
1046 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1047 svm->vmcb->control.tsc_offset,
1048 offset);
1049
1050 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1051
1052 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1053 }
1054
1055 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1056 {
1057 struct vcpu_svm *svm = to_svm(vcpu);
1058
1059 WARN_ON(adjustment < 0);
1060 if (host)
1061 adjustment = svm_scale_tsc(vcpu, adjustment);
1062
1063 svm->vmcb->control.tsc_offset += adjustment;
1064 if (is_guest_mode(vcpu))
1065 svm->nested.hsave->control.tsc_offset += adjustment;
1066 else
1067 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1068 svm->vmcb->control.tsc_offset - adjustment,
1069 svm->vmcb->control.tsc_offset);
1070
1071 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1072 }
1073
1074 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1075 {
1076 u64 tsc;
1077
1078 tsc = svm_scale_tsc(vcpu, native_read_tsc());
1079
1080 return target_tsc - tsc;
1081 }
1082
1083 static void init_vmcb(struct vcpu_svm *svm)
1084 {
1085 struct vmcb_control_area *control = &svm->vmcb->control;
1086 struct vmcb_save_area *save = &svm->vmcb->save;
1087
1088 svm->vcpu.fpu_active = 1;
1089 svm->vcpu.arch.hflags = 0;
1090
1091 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1092 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1093 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1094 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1095 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1096 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1097 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1098
1099 set_dr_intercepts(svm);
1100
1101 set_exception_intercept(svm, PF_VECTOR);
1102 set_exception_intercept(svm, UD_VECTOR);
1103 set_exception_intercept(svm, MC_VECTOR);
1104
1105 set_intercept(svm, INTERCEPT_INTR);
1106 set_intercept(svm, INTERCEPT_NMI);
1107 set_intercept(svm, INTERCEPT_SMI);
1108 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1109 set_intercept(svm, INTERCEPT_RDPMC);
1110 set_intercept(svm, INTERCEPT_CPUID);
1111 set_intercept(svm, INTERCEPT_INVD);
1112 set_intercept(svm, INTERCEPT_HLT);
1113 set_intercept(svm, INTERCEPT_INVLPG);
1114 set_intercept(svm, INTERCEPT_INVLPGA);
1115 set_intercept(svm, INTERCEPT_IOIO_PROT);
1116 set_intercept(svm, INTERCEPT_MSR_PROT);
1117 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1118 set_intercept(svm, INTERCEPT_SHUTDOWN);
1119 set_intercept(svm, INTERCEPT_VMRUN);
1120 set_intercept(svm, INTERCEPT_VMMCALL);
1121 set_intercept(svm, INTERCEPT_VMLOAD);
1122 set_intercept(svm, INTERCEPT_VMSAVE);
1123 set_intercept(svm, INTERCEPT_STGI);
1124 set_intercept(svm, INTERCEPT_CLGI);
1125 set_intercept(svm, INTERCEPT_SKINIT);
1126 set_intercept(svm, INTERCEPT_WBINVD);
1127 set_intercept(svm, INTERCEPT_MONITOR);
1128 set_intercept(svm, INTERCEPT_MWAIT);
1129 set_intercept(svm, INTERCEPT_XSETBV);
1130
1131 control->iopm_base_pa = iopm_base;
1132 control->msrpm_base_pa = __pa(svm->msrpm);
1133 control->int_ctl = V_INTR_MASKING_MASK;
1134
1135 init_seg(&save->es);
1136 init_seg(&save->ss);
1137 init_seg(&save->ds);
1138 init_seg(&save->fs);
1139 init_seg(&save->gs);
1140
1141 save->cs.selector = 0xf000;
1142 save->cs.base = 0xffff0000;
1143 /* Executable/Readable Code Segment */
1144 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1145 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1146 save->cs.limit = 0xffff;
1147
1148 save->gdtr.limit = 0xffff;
1149 save->idtr.limit = 0xffff;
1150
1151 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1152 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1153
1154 svm_set_efer(&svm->vcpu, 0);
1155 save->dr6 = 0xffff0ff0;
1156 kvm_set_rflags(&svm->vcpu, 2);
1157 save->rip = 0x0000fff0;
1158 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1159
1160 /*
1161 * This is the guest-visible cr0 value.
1162 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1163 */
1164 svm->vcpu.arch.cr0 = 0;
1165 (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1166
1167 save->cr4 = X86_CR4_PAE;
1168 /* rdx = ?? */
1169
1170 if (npt_enabled) {
1171 /* Setup VMCB for Nested Paging */
1172 control->nested_ctl = 1;
1173 clr_intercept(svm, INTERCEPT_INVLPG);
1174 clr_exception_intercept(svm, PF_VECTOR);
1175 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1176 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1177 save->g_pat = 0x0007040600070406ULL;
1178 save->cr3 = 0;
1179 save->cr4 = 0;
1180 }
1181 svm->asid_generation = 0;
1182
1183 svm->nested.vmcb = 0;
1184 svm->vcpu.arch.hflags = 0;
1185
1186 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1187 control->pause_filter_count = 3000;
1188 set_intercept(svm, INTERCEPT_PAUSE);
1189 }
1190
1191 mark_all_dirty(svm->vmcb);
1192
1193 enable_gif(svm);
1194 }
1195
1196 static void svm_vcpu_reset(struct kvm_vcpu *vcpu)
1197 {
1198 struct vcpu_svm *svm = to_svm(vcpu);
1199 u32 dummy;
1200 u32 eax = 1;
1201
1202 init_vmcb(svm);
1203
1204 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1205 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1206 }
1207
1208 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1209 {
1210 struct vcpu_svm *svm;
1211 struct page *page;
1212 struct page *msrpm_pages;
1213 struct page *hsave_page;
1214 struct page *nested_msrpm_pages;
1215 int err;
1216
1217 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1218 if (!svm) {
1219 err = -ENOMEM;
1220 goto out;
1221 }
1222
1223 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1224
1225 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1226 if (err)
1227 goto free_svm;
1228
1229 err = -ENOMEM;
1230 page = alloc_page(GFP_KERNEL);
1231 if (!page)
1232 goto uninit;
1233
1234 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1235 if (!msrpm_pages)
1236 goto free_page1;
1237
1238 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1239 if (!nested_msrpm_pages)
1240 goto free_page2;
1241
1242 hsave_page = alloc_page(GFP_KERNEL);
1243 if (!hsave_page)
1244 goto free_page3;
1245
1246 svm->nested.hsave = page_address(hsave_page);
1247
1248 svm->msrpm = page_address(msrpm_pages);
1249 svm_vcpu_init_msrpm(svm->msrpm);
1250
1251 svm->nested.msrpm = page_address(nested_msrpm_pages);
1252 svm_vcpu_init_msrpm(svm->nested.msrpm);
1253
1254 svm->vmcb = page_address(page);
1255 clear_page(svm->vmcb);
1256 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1257 svm->asid_generation = 0;
1258 init_vmcb(svm);
1259
1260 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1261 if (kvm_vcpu_is_bsp(&svm->vcpu))
1262 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1263
1264 svm_init_osvw(&svm->vcpu);
1265
1266 return &svm->vcpu;
1267
1268 free_page3:
1269 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1270 free_page2:
1271 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1272 free_page1:
1273 __free_page(page);
1274 uninit:
1275 kvm_vcpu_uninit(&svm->vcpu);
1276 free_svm:
1277 kmem_cache_free(kvm_vcpu_cache, svm);
1278 out:
1279 return ERR_PTR(err);
1280 }
1281
1282 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1283 {
1284 struct vcpu_svm *svm = to_svm(vcpu);
1285
1286 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1287 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1288 __free_page(virt_to_page(svm->nested.hsave));
1289 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1290 kvm_vcpu_uninit(vcpu);
1291 kmem_cache_free(kvm_vcpu_cache, svm);
1292 }
1293
1294 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1295 {
1296 struct vcpu_svm *svm = to_svm(vcpu);
1297 int i;
1298
1299 if (unlikely(cpu != vcpu->cpu)) {
1300 svm->asid_generation = 0;
1301 mark_all_dirty(svm->vmcb);
1302 }
1303
1304 #ifdef CONFIG_X86_64
1305 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1306 #endif
1307 savesegment(fs, svm->host.fs);
1308 savesegment(gs, svm->host.gs);
1309 svm->host.ldt = kvm_read_ldt();
1310
1311 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1312 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1313
1314 if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1315 svm->tsc_ratio != __get_cpu_var(current_tsc_ratio)) {
1316 __get_cpu_var(current_tsc_ratio) = svm->tsc_ratio;
1317 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1318 }
1319 }
1320
1321 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1322 {
1323 struct vcpu_svm *svm = to_svm(vcpu);
1324 int i;
1325
1326 ++vcpu->stat.host_state_reload;
1327 kvm_load_ldt(svm->host.ldt);
1328 #ifdef CONFIG_X86_64
1329 loadsegment(fs, svm->host.fs);
1330 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1331 load_gs_index(svm->host.gs);
1332 #else
1333 #ifdef CONFIG_X86_32_LAZY_GS
1334 loadsegment(gs, svm->host.gs);
1335 #endif
1336 #endif
1337 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1338 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1339 }
1340
1341 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1342 {
1343 return to_svm(vcpu)->vmcb->save.rflags;
1344 }
1345
1346 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1347 {
1348 /*
1349 * Any change of EFLAGS.VM is accompained by a reload of SS
1350 * (caused by either a task switch or an inter-privilege IRET),
1351 * so we do not need to update the CPL here.
1352 */
1353 to_svm(vcpu)->vmcb->save.rflags = rflags;
1354 }
1355
1356 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1357 {
1358 switch (reg) {
1359 case VCPU_EXREG_PDPTR:
1360 BUG_ON(!npt_enabled);
1361 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1362 break;
1363 default:
1364 BUG();
1365 }
1366 }
1367
1368 static void svm_set_vintr(struct vcpu_svm *svm)
1369 {
1370 set_intercept(svm, INTERCEPT_VINTR);
1371 }
1372
1373 static void svm_clear_vintr(struct vcpu_svm *svm)
1374 {
1375 clr_intercept(svm, INTERCEPT_VINTR);
1376 }
1377
1378 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1379 {
1380 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1381
1382 switch (seg) {
1383 case VCPU_SREG_CS: return &save->cs;
1384 case VCPU_SREG_DS: return &save->ds;
1385 case VCPU_SREG_ES: return &save->es;
1386 case VCPU_SREG_FS: return &save->fs;
1387 case VCPU_SREG_GS: return &save->gs;
1388 case VCPU_SREG_SS: return &save->ss;
1389 case VCPU_SREG_TR: return &save->tr;
1390 case VCPU_SREG_LDTR: return &save->ldtr;
1391 }
1392 BUG();
1393 return NULL;
1394 }
1395
1396 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1397 {
1398 struct vmcb_seg *s = svm_seg(vcpu, seg);
1399
1400 return s->base;
1401 }
1402
1403 static void svm_get_segment(struct kvm_vcpu *vcpu,
1404 struct kvm_segment *var, int seg)
1405 {
1406 struct vmcb_seg *s = svm_seg(vcpu, seg);
1407
1408 var->base = s->base;
1409 var->limit = s->limit;
1410 var->selector = s->selector;
1411 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1412 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1413 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1414 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1415 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1416 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1417 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1418 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1419
1420 /*
1421 * AMD's VMCB does not have an explicit unusable field, so emulate it
1422 * for cross vendor migration purposes by "not present"
1423 */
1424 var->unusable = !var->present || (var->type == 0);
1425
1426 switch (seg) {
1427 case VCPU_SREG_CS:
1428 /*
1429 * SVM always stores 0 for the 'G' bit in the CS selector in
1430 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1431 * Intel's VMENTRY has a check on the 'G' bit.
1432 */
1433 var->g = s->limit > 0xfffff;
1434 break;
1435 case VCPU_SREG_TR:
1436 /*
1437 * Work around a bug where the busy flag in the tr selector
1438 * isn't exposed
1439 */
1440 var->type |= 0x2;
1441 break;
1442 case VCPU_SREG_DS:
1443 case VCPU_SREG_ES:
1444 case VCPU_SREG_FS:
1445 case VCPU_SREG_GS:
1446 /*
1447 * The accessed bit must always be set in the segment
1448 * descriptor cache, although it can be cleared in the
1449 * descriptor, the cached bit always remains at 1. Since
1450 * Intel has a check on this, set it here to support
1451 * cross-vendor migration.
1452 */
1453 if (!var->unusable)
1454 var->type |= 0x1;
1455 break;
1456 case VCPU_SREG_SS:
1457 /*
1458 * On AMD CPUs sometimes the DB bit in the segment
1459 * descriptor is left as 1, although the whole segment has
1460 * been made unusable. Clear it here to pass an Intel VMX
1461 * entry check when cross vendor migrating.
1462 */
1463 if (var->unusable)
1464 var->db = 0;
1465 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1466 break;
1467 }
1468 }
1469
1470 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1471 {
1472 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1473
1474 return save->cpl;
1475 }
1476
1477 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1478 {
1479 struct vcpu_svm *svm = to_svm(vcpu);
1480
1481 dt->size = svm->vmcb->save.idtr.limit;
1482 dt->address = svm->vmcb->save.idtr.base;
1483 }
1484
1485 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1486 {
1487 struct vcpu_svm *svm = to_svm(vcpu);
1488
1489 svm->vmcb->save.idtr.limit = dt->size;
1490 svm->vmcb->save.idtr.base = dt->address ;
1491 mark_dirty(svm->vmcb, VMCB_DT);
1492 }
1493
1494 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1495 {
1496 struct vcpu_svm *svm = to_svm(vcpu);
1497
1498 dt->size = svm->vmcb->save.gdtr.limit;
1499 dt->address = svm->vmcb->save.gdtr.base;
1500 }
1501
1502 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1503 {
1504 struct vcpu_svm *svm = to_svm(vcpu);
1505
1506 svm->vmcb->save.gdtr.limit = dt->size;
1507 svm->vmcb->save.gdtr.base = dt->address ;
1508 mark_dirty(svm->vmcb, VMCB_DT);
1509 }
1510
1511 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1512 {
1513 }
1514
1515 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1516 {
1517 }
1518
1519 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1520 {
1521 }
1522
1523 static void update_cr0_intercept(struct vcpu_svm *svm)
1524 {
1525 ulong gcr0 = svm->vcpu.arch.cr0;
1526 u64 *hcr0 = &svm->vmcb->save.cr0;
1527
1528 if (!svm->vcpu.fpu_active)
1529 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1530 else
1531 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1532 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1533
1534 mark_dirty(svm->vmcb, VMCB_CR);
1535
1536 if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1537 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1538 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1539 } else {
1540 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1541 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1542 }
1543 }
1544
1545 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1546 {
1547 struct vcpu_svm *svm = to_svm(vcpu);
1548
1549 #ifdef CONFIG_X86_64
1550 if (vcpu->arch.efer & EFER_LME) {
1551 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1552 vcpu->arch.efer |= EFER_LMA;
1553 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1554 }
1555
1556 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1557 vcpu->arch.efer &= ~EFER_LMA;
1558 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1559 }
1560 }
1561 #endif
1562 vcpu->arch.cr0 = cr0;
1563
1564 if (!npt_enabled)
1565 cr0 |= X86_CR0_PG | X86_CR0_WP;
1566
1567 if (!vcpu->fpu_active)
1568 cr0 |= X86_CR0_TS;
1569 /*
1570 * re-enable caching here because the QEMU bios
1571 * does not do it - this results in some delay at
1572 * reboot
1573 */
1574 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1575 svm->vmcb->save.cr0 = cr0;
1576 mark_dirty(svm->vmcb, VMCB_CR);
1577 update_cr0_intercept(svm);
1578 }
1579
1580 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1581 {
1582 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1583 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1584
1585 if (cr4 & X86_CR4_VMXE)
1586 return 1;
1587
1588 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1589 svm_flush_tlb(vcpu);
1590
1591 vcpu->arch.cr4 = cr4;
1592 if (!npt_enabled)
1593 cr4 |= X86_CR4_PAE;
1594 cr4 |= host_cr4_mce;
1595 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1596 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1597 return 0;
1598 }
1599
1600 static void svm_set_segment(struct kvm_vcpu *vcpu,
1601 struct kvm_segment *var, int seg)
1602 {
1603 struct vcpu_svm *svm = to_svm(vcpu);
1604 struct vmcb_seg *s = svm_seg(vcpu, seg);
1605
1606 s->base = var->base;
1607 s->limit = var->limit;
1608 s->selector = var->selector;
1609 if (var->unusable)
1610 s->attrib = 0;
1611 else {
1612 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1613 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1614 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1615 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1616 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1617 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1618 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1619 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1620 }
1621
1622 /*
1623 * This is always accurate, except if SYSRET returned to a segment
1624 * with SS.DPL != 3. Intel does not have this quirk, and always
1625 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1626 * would entail passing the CPL to userspace and back.
1627 */
1628 if (seg == VCPU_SREG_SS)
1629 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1630
1631 mark_dirty(svm->vmcb, VMCB_SEG);
1632 }
1633
1634 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1635 {
1636 struct vcpu_svm *svm = to_svm(vcpu);
1637
1638 clr_exception_intercept(svm, DB_VECTOR);
1639 clr_exception_intercept(svm, BP_VECTOR);
1640
1641 if (svm->nmi_singlestep)
1642 set_exception_intercept(svm, DB_VECTOR);
1643
1644 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1645 if (vcpu->guest_debug &
1646 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1647 set_exception_intercept(svm, DB_VECTOR);
1648 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1649 set_exception_intercept(svm, BP_VECTOR);
1650 } else
1651 vcpu->guest_debug = 0;
1652 }
1653
1654 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1655 {
1656 if (sd->next_asid > sd->max_asid) {
1657 ++sd->asid_generation;
1658 sd->next_asid = 1;
1659 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1660 }
1661
1662 svm->asid_generation = sd->asid_generation;
1663 svm->vmcb->control.asid = sd->next_asid++;
1664
1665 mark_dirty(svm->vmcb, VMCB_ASID);
1666 }
1667
1668 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1669 {
1670 return to_svm(vcpu)->vmcb->save.dr6;
1671 }
1672
1673 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1674 {
1675 struct vcpu_svm *svm = to_svm(vcpu);
1676
1677 svm->vmcb->save.dr6 = value;
1678 mark_dirty(svm->vmcb, VMCB_DR);
1679 }
1680
1681 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1682 {
1683 struct vcpu_svm *svm = to_svm(vcpu);
1684
1685 get_debugreg(vcpu->arch.db[0], 0);
1686 get_debugreg(vcpu->arch.db[1], 1);
1687 get_debugreg(vcpu->arch.db[2], 2);
1688 get_debugreg(vcpu->arch.db[3], 3);
1689 vcpu->arch.dr6 = svm_get_dr6(vcpu);
1690 vcpu->arch.dr7 = svm->vmcb->save.dr7;
1691
1692 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1693 set_dr_intercepts(svm);
1694 }
1695
1696 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1697 {
1698 struct vcpu_svm *svm = to_svm(vcpu);
1699
1700 svm->vmcb->save.dr7 = value;
1701 mark_dirty(svm->vmcb, VMCB_DR);
1702 }
1703
1704 static int pf_interception(struct vcpu_svm *svm)
1705 {
1706 u64 fault_address = svm->vmcb->control.exit_info_2;
1707 u32 error_code;
1708 int r = 1;
1709
1710 switch (svm->apf_reason) {
1711 default:
1712 error_code = svm->vmcb->control.exit_info_1;
1713
1714 trace_kvm_page_fault(fault_address, error_code);
1715 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1716 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1717 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1718 svm->vmcb->control.insn_bytes,
1719 svm->vmcb->control.insn_len);
1720 break;
1721 case KVM_PV_REASON_PAGE_NOT_PRESENT:
1722 svm->apf_reason = 0;
1723 local_irq_disable();
1724 kvm_async_pf_task_wait(fault_address);
1725 local_irq_enable();
1726 break;
1727 case KVM_PV_REASON_PAGE_READY:
1728 svm->apf_reason = 0;
1729 local_irq_disable();
1730 kvm_async_pf_task_wake(fault_address);
1731 local_irq_enable();
1732 break;
1733 }
1734 return r;
1735 }
1736
1737 static int db_interception(struct vcpu_svm *svm)
1738 {
1739 struct kvm_run *kvm_run = svm->vcpu.run;
1740
1741 if (!(svm->vcpu.guest_debug &
1742 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1743 !svm->nmi_singlestep) {
1744 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1745 return 1;
1746 }
1747
1748 if (svm->nmi_singlestep) {
1749 svm->nmi_singlestep = false;
1750 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1751 svm->vmcb->save.rflags &=
1752 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1753 update_db_bp_intercept(&svm->vcpu);
1754 }
1755
1756 if (svm->vcpu.guest_debug &
1757 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1758 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1759 kvm_run->debug.arch.pc =
1760 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1761 kvm_run->debug.arch.exception = DB_VECTOR;
1762 return 0;
1763 }
1764
1765 return 1;
1766 }
1767
1768 static int bp_interception(struct vcpu_svm *svm)
1769 {
1770 struct kvm_run *kvm_run = svm->vcpu.run;
1771
1772 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1773 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1774 kvm_run->debug.arch.exception = BP_VECTOR;
1775 return 0;
1776 }
1777
1778 static int ud_interception(struct vcpu_svm *svm)
1779 {
1780 int er;
1781
1782 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1783 if (er != EMULATE_DONE)
1784 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1785 return 1;
1786 }
1787
1788 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1789 {
1790 struct vcpu_svm *svm = to_svm(vcpu);
1791
1792 clr_exception_intercept(svm, NM_VECTOR);
1793
1794 svm->vcpu.fpu_active = 1;
1795 update_cr0_intercept(svm);
1796 }
1797
1798 static int nm_interception(struct vcpu_svm *svm)
1799 {
1800 svm_fpu_activate(&svm->vcpu);
1801 return 1;
1802 }
1803
1804 static bool is_erratum_383(void)
1805 {
1806 int err, i;
1807 u64 value;
1808
1809 if (!erratum_383_found)
1810 return false;
1811
1812 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1813 if (err)
1814 return false;
1815
1816 /* Bit 62 may or may not be set for this mce */
1817 value &= ~(1ULL << 62);
1818
1819 if (value != 0xb600000000010015ULL)
1820 return false;
1821
1822 /* Clear MCi_STATUS registers */
1823 for (i = 0; i < 6; ++i)
1824 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1825
1826 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1827 if (!err) {
1828 u32 low, high;
1829
1830 value &= ~(1ULL << 2);
1831 low = lower_32_bits(value);
1832 high = upper_32_bits(value);
1833
1834 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1835 }
1836
1837 /* Flush tlb to evict multi-match entries */
1838 __flush_tlb_all();
1839
1840 return true;
1841 }
1842
1843 static void svm_handle_mce(struct vcpu_svm *svm)
1844 {
1845 if (is_erratum_383()) {
1846 /*
1847 * Erratum 383 triggered. Guest state is corrupt so kill the
1848 * guest.
1849 */
1850 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1851
1852 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1853
1854 return;
1855 }
1856
1857 /*
1858 * On an #MC intercept the MCE handler is not called automatically in
1859 * the host. So do it by hand here.
1860 */
1861 asm volatile (
1862 "int $0x12\n");
1863 /* not sure if we ever come back to this point */
1864
1865 return;
1866 }
1867
1868 static int mc_interception(struct vcpu_svm *svm)
1869 {
1870 return 1;
1871 }
1872
1873 static int shutdown_interception(struct vcpu_svm *svm)
1874 {
1875 struct kvm_run *kvm_run = svm->vcpu.run;
1876
1877 /*
1878 * VMCB is undefined after a SHUTDOWN intercept
1879 * so reinitialize it.
1880 */
1881 clear_page(svm->vmcb);
1882 init_vmcb(svm);
1883
1884 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1885 return 0;
1886 }
1887
1888 static int io_interception(struct vcpu_svm *svm)
1889 {
1890 struct kvm_vcpu *vcpu = &svm->vcpu;
1891 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1892 int size, in, string;
1893 unsigned port;
1894
1895 ++svm->vcpu.stat.io_exits;
1896 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1897 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1898 if (string || in)
1899 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1900
1901 port = io_info >> 16;
1902 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1903 svm->next_rip = svm->vmcb->control.exit_info_2;
1904 skip_emulated_instruction(&svm->vcpu);
1905
1906 return kvm_fast_pio_out(vcpu, size, port);
1907 }
1908
1909 static int nmi_interception(struct vcpu_svm *svm)
1910 {
1911 return 1;
1912 }
1913
1914 static int intr_interception(struct vcpu_svm *svm)
1915 {
1916 ++svm->vcpu.stat.irq_exits;
1917 return 1;
1918 }
1919
1920 static int nop_on_interception(struct vcpu_svm *svm)
1921 {
1922 return 1;
1923 }
1924
1925 static int halt_interception(struct vcpu_svm *svm)
1926 {
1927 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1928 skip_emulated_instruction(&svm->vcpu);
1929 return kvm_emulate_halt(&svm->vcpu);
1930 }
1931
1932 static int vmmcall_interception(struct vcpu_svm *svm)
1933 {
1934 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1935 skip_emulated_instruction(&svm->vcpu);
1936 kvm_emulate_hypercall(&svm->vcpu);
1937 return 1;
1938 }
1939
1940 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1941 {
1942 struct vcpu_svm *svm = to_svm(vcpu);
1943
1944 return svm->nested.nested_cr3;
1945 }
1946
1947 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1948 {
1949 struct vcpu_svm *svm = to_svm(vcpu);
1950 u64 cr3 = svm->nested.nested_cr3;
1951 u64 pdpte;
1952 int ret;
1953
1954 ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1955 offset_in_page(cr3) + index * 8, 8);
1956 if (ret)
1957 return 0;
1958 return pdpte;
1959 }
1960
1961 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1962 unsigned long root)
1963 {
1964 struct vcpu_svm *svm = to_svm(vcpu);
1965
1966 svm->vmcb->control.nested_cr3 = root;
1967 mark_dirty(svm->vmcb, VMCB_NPT);
1968 svm_flush_tlb(vcpu);
1969 }
1970
1971 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1972 struct x86_exception *fault)
1973 {
1974 struct vcpu_svm *svm = to_svm(vcpu);
1975
1976 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1977 svm->vmcb->control.exit_code_hi = 0;
1978 svm->vmcb->control.exit_info_1 = fault->error_code;
1979 svm->vmcb->control.exit_info_2 = fault->address;
1980
1981 nested_svm_vmexit(svm);
1982 }
1983
1984 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1985 {
1986 kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1987
1988 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
1989 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
1990 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
1991 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1992 vcpu->arch.mmu.shadow_root_level = get_npt_level();
1993 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
1994 }
1995
1996 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1997 {
1998 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1999 }
2000
2001 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2002 {
2003 if (!(svm->vcpu.arch.efer & EFER_SVME)
2004 || !is_paging(&svm->vcpu)) {
2005 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2006 return 1;
2007 }
2008
2009 if (svm->vmcb->save.cpl) {
2010 kvm_inject_gp(&svm->vcpu, 0);
2011 return 1;
2012 }
2013
2014 return 0;
2015 }
2016
2017 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2018 bool has_error_code, u32 error_code)
2019 {
2020 int vmexit;
2021
2022 if (!is_guest_mode(&svm->vcpu))
2023 return 0;
2024
2025 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2026 svm->vmcb->control.exit_code_hi = 0;
2027 svm->vmcb->control.exit_info_1 = error_code;
2028 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2029
2030 vmexit = nested_svm_intercept(svm);
2031 if (vmexit == NESTED_EXIT_DONE)
2032 svm->nested.exit_required = true;
2033
2034 return vmexit;
2035 }
2036
2037 /* This function returns true if it is save to enable the irq window */
2038 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2039 {
2040 if (!is_guest_mode(&svm->vcpu))
2041 return true;
2042
2043 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2044 return true;
2045
2046 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2047 return false;
2048
2049 /*
2050 * if vmexit was already requested (by intercepted exception
2051 * for instance) do not overwrite it with "external interrupt"
2052 * vmexit.
2053 */
2054 if (svm->nested.exit_required)
2055 return false;
2056
2057 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2058 svm->vmcb->control.exit_info_1 = 0;
2059 svm->vmcb->control.exit_info_2 = 0;
2060
2061 if (svm->nested.intercept & 1ULL) {
2062 /*
2063 * The #vmexit can't be emulated here directly because this
2064 * code path runs with irqs and preemption disabled. A
2065 * #vmexit emulation might sleep. Only signal request for
2066 * the #vmexit here.
2067 */
2068 svm->nested.exit_required = true;
2069 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2070 return false;
2071 }
2072
2073 return true;
2074 }
2075
2076 /* This function returns true if it is save to enable the nmi window */
2077 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2078 {
2079 if (!is_guest_mode(&svm->vcpu))
2080 return true;
2081
2082 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2083 return true;
2084
2085 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2086 svm->nested.exit_required = true;
2087
2088 return false;
2089 }
2090
2091 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2092 {
2093 struct page *page;
2094
2095 might_sleep();
2096
2097 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2098 if (is_error_page(page))
2099 goto error;
2100
2101 *_page = page;
2102
2103 return kmap(page);
2104
2105 error:
2106 kvm_inject_gp(&svm->vcpu, 0);
2107
2108 return NULL;
2109 }
2110
2111 static void nested_svm_unmap(struct page *page)
2112 {
2113 kunmap(page);
2114 kvm_release_page_dirty(page);
2115 }
2116
2117 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2118 {
2119 unsigned port;
2120 u8 val, bit;
2121 u64 gpa;
2122
2123 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2124 return NESTED_EXIT_HOST;
2125
2126 port = svm->vmcb->control.exit_info_1 >> 16;
2127 gpa = svm->nested.vmcb_iopm + (port / 8);
2128 bit = port % 8;
2129 val = 0;
2130
2131 if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
2132 val &= (1 << bit);
2133
2134 return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2135 }
2136
2137 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2138 {
2139 u32 offset, msr, value;
2140 int write, mask;
2141
2142 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2143 return NESTED_EXIT_HOST;
2144
2145 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2146 offset = svm_msrpm_offset(msr);
2147 write = svm->vmcb->control.exit_info_1 & 1;
2148 mask = 1 << ((2 * (msr & 0xf)) + write);
2149
2150 if (offset == MSR_INVALID)
2151 return NESTED_EXIT_DONE;
2152
2153 /* Offset is in 32 bit units but need in 8 bit units */
2154 offset *= 4;
2155
2156 if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2157 return NESTED_EXIT_DONE;
2158
2159 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2160 }
2161
2162 static int nested_svm_exit_special(struct vcpu_svm *svm)
2163 {
2164 u32 exit_code = svm->vmcb->control.exit_code;
2165
2166 switch (exit_code) {
2167 case SVM_EXIT_INTR:
2168 case SVM_EXIT_NMI:
2169 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2170 return NESTED_EXIT_HOST;
2171 case SVM_EXIT_NPF:
2172 /* For now we are always handling NPFs when using them */
2173 if (npt_enabled)
2174 return NESTED_EXIT_HOST;
2175 break;
2176 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2177 /* When we're shadowing, trap PFs, but not async PF */
2178 if (!npt_enabled && svm->apf_reason == 0)
2179 return NESTED_EXIT_HOST;
2180 break;
2181 case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2182 nm_interception(svm);
2183 break;
2184 default:
2185 break;
2186 }
2187
2188 return NESTED_EXIT_CONTINUE;
2189 }
2190
2191 /*
2192 * If this function returns true, this #vmexit was already handled
2193 */
2194 static int nested_svm_intercept(struct vcpu_svm *svm)
2195 {
2196 u32 exit_code = svm->vmcb->control.exit_code;
2197 int vmexit = NESTED_EXIT_HOST;
2198
2199 switch (exit_code) {
2200 case SVM_EXIT_MSR:
2201 vmexit = nested_svm_exit_handled_msr(svm);
2202 break;
2203 case SVM_EXIT_IOIO:
2204 vmexit = nested_svm_intercept_ioio(svm);
2205 break;
2206 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2207 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2208 if (svm->nested.intercept_cr & bit)
2209 vmexit = NESTED_EXIT_DONE;
2210 break;
2211 }
2212 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2213 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2214 if (svm->nested.intercept_dr & bit)
2215 vmexit = NESTED_EXIT_DONE;
2216 break;
2217 }
2218 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2219 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2220 if (svm->nested.intercept_exceptions & excp_bits)
2221 vmexit = NESTED_EXIT_DONE;
2222 /* async page fault always cause vmexit */
2223 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2224 svm->apf_reason != 0)
2225 vmexit = NESTED_EXIT_DONE;
2226 break;
2227 }
2228 case SVM_EXIT_ERR: {
2229 vmexit = NESTED_EXIT_DONE;
2230 break;
2231 }
2232 default: {
2233 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2234 if (svm->nested.intercept & exit_bits)
2235 vmexit = NESTED_EXIT_DONE;
2236 }
2237 }
2238
2239 return vmexit;
2240 }
2241
2242 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2243 {
2244 int vmexit;
2245
2246 vmexit = nested_svm_intercept(svm);
2247
2248 if (vmexit == NESTED_EXIT_DONE)
2249 nested_svm_vmexit(svm);
2250
2251 return vmexit;
2252 }
2253
2254 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2255 {
2256 struct vmcb_control_area *dst = &dst_vmcb->control;
2257 struct vmcb_control_area *from = &from_vmcb->control;
2258
2259 dst->intercept_cr = from->intercept_cr;
2260 dst->intercept_dr = from->intercept_dr;
2261 dst->intercept_exceptions = from->intercept_exceptions;
2262 dst->intercept = from->intercept;
2263 dst->iopm_base_pa = from->iopm_base_pa;
2264 dst->msrpm_base_pa = from->msrpm_base_pa;
2265 dst->tsc_offset = from->tsc_offset;
2266 dst->asid = from->asid;
2267 dst->tlb_ctl = from->tlb_ctl;
2268 dst->int_ctl = from->int_ctl;
2269 dst->int_vector = from->int_vector;
2270 dst->int_state = from->int_state;
2271 dst->exit_code = from->exit_code;
2272 dst->exit_code_hi = from->exit_code_hi;
2273 dst->exit_info_1 = from->exit_info_1;
2274 dst->exit_info_2 = from->exit_info_2;
2275 dst->exit_int_info = from->exit_int_info;
2276 dst->exit_int_info_err = from->exit_int_info_err;
2277 dst->nested_ctl = from->nested_ctl;
2278 dst->event_inj = from->event_inj;
2279 dst->event_inj_err = from->event_inj_err;
2280 dst->nested_cr3 = from->nested_cr3;
2281 dst->lbr_ctl = from->lbr_ctl;
2282 }
2283
2284 static int nested_svm_vmexit(struct vcpu_svm *svm)
2285 {
2286 struct vmcb *nested_vmcb;
2287 struct vmcb *hsave = svm->nested.hsave;
2288 struct vmcb *vmcb = svm->vmcb;
2289 struct page *page;
2290
2291 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2292 vmcb->control.exit_info_1,
2293 vmcb->control.exit_info_2,
2294 vmcb->control.exit_int_info,
2295 vmcb->control.exit_int_info_err,
2296 KVM_ISA_SVM);
2297
2298 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2299 if (!nested_vmcb)
2300 return 1;
2301
2302 /* Exit Guest-Mode */
2303 leave_guest_mode(&svm->vcpu);
2304 svm->nested.vmcb = 0;
2305
2306 /* Give the current vmcb to the guest */
2307 disable_gif(svm);
2308
2309 nested_vmcb->save.es = vmcb->save.es;
2310 nested_vmcb->save.cs = vmcb->save.cs;
2311 nested_vmcb->save.ss = vmcb->save.ss;
2312 nested_vmcb->save.ds = vmcb->save.ds;
2313 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2314 nested_vmcb->save.idtr = vmcb->save.idtr;
2315 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2316 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2317 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2318 nested_vmcb->save.cr2 = vmcb->save.cr2;
2319 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2320 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2321 nested_vmcb->save.rip = vmcb->save.rip;
2322 nested_vmcb->save.rsp = vmcb->save.rsp;
2323 nested_vmcb->save.rax = vmcb->save.rax;
2324 nested_vmcb->save.dr7 = vmcb->save.dr7;
2325 nested_vmcb->save.dr6 = vmcb->save.dr6;
2326 nested_vmcb->save.cpl = vmcb->save.cpl;
2327
2328 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2329 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2330 nested_vmcb->control.int_state = vmcb->control.int_state;
2331 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2332 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2333 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2334 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2335 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2336 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2337 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2338
2339 /*
2340 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2341 * to make sure that we do not lose injected events. So check event_inj
2342 * here and copy it to exit_int_info if it is valid.
2343 * Exit_int_info and event_inj can't be both valid because the case
2344 * below only happens on a VMRUN instruction intercept which has
2345 * no valid exit_int_info set.
2346 */
2347 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2348 struct vmcb_control_area *nc = &nested_vmcb->control;
2349
2350 nc->exit_int_info = vmcb->control.event_inj;
2351 nc->exit_int_info_err = vmcb->control.event_inj_err;
2352 }
2353
2354 nested_vmcb->control.tlb_ctl = 0;
2355 nested_vmcb->control.event_inj = 0;
2356 nested_vmcb->control.event_inj_err = 0;
2357
2358 /* We always set V_INTR_MASKING and remember the old value in hflags */
2359 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2360 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2361
2362 /* Restore the original control entries */
2363 copy_vmcb_control_area(vmcb, hsave);
2364
2365 kvm_clear_exception_queue(&svm->vcpu);
2366 kvm_clear_interrupt_queue(&svm->vcpu);
2367
2368 svm->nested.nested_cr3 = 0;
2369
2370 /* Restore selected save entries */
2371 svm->vmcb->save.es = hsave->save.es;
2372 svm->vmcb->save.cs = hsave->save.cs;
2373 svm->vmcb->save.ss = hsave->save.ss;
2374 svm->vmcb->save.ds = hsave->save.ds;
2375 svm->vmcb->save.gdtr = hsave->save.gdtr;
2376 svm->vmcb->save.idtr = hsave->save.idtr;
2377 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2378 svm_set_efer(&svm->vcpu, hsave->save.efer);
2379 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2380 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2381 if (npt_enabled) {
2382 svm->vmcb->save.cr3 = hsave->save.cr3;
2383 svm->vcpu.arch.cr3 = hsave->save.cr3;
2384 } else {
2385 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2386 }
2387 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2388 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2389 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2390 svm->vmcb->save.dr7 = 0;
2391 svm->vmcb->save.cpl = 0;
2392 svm->vmcb->control.exit_int_info = 0;
2393
2394 mark_all_dirty(svm->vmcb);
2395
2396 nested_svm_unmap(page);
2397
2398 nested_svm_uninit_mmu_context(&svm->vcpu);
2399 kvm_mmu_reset_context(&svm->vcpu);
2400 kvm_mmu_load(&svm->vcpu);
2401
2402 return 0;
2403 }
2404
2405 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2406 {
2407 /*
2408 * This function merges the msr permission bitmaps of kvm and the
2409 * nested vmcb. It is optimized in that it only merges the parts where
2410 * the kvm msr permission bitmap may contain zero bits
2411 */
2412 int i;
2413
2414 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2415 return true;
2416
2417 for (i = 0; i < MSRPM_OFFSETS; i++) {
2418 u32 value, p;
2419 u64 offset;
2420
2421 if (msrpm_offsets[i] == 0xffffffff)
2422 break;
2423
2424 p = msrpm_offsets[i];
2425 offset = svm->nested.vmcb_msrpm + (p * 4);
2426
2427 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2428 return false;
2429
2430 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2431 }
2432
2433 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2434
2435 return true;
2436 }
2437
2438 static bool nested_vmcb_checks(struct vmcb *vmcb)
2439 {
2440 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2441 return false;
2442
2443 if (vmcb->control.asid == 0)
2444 return false;
2445
2446 if (vmcb->control.nested_ctl && !npt_enabled)
2447 return false;
2448
2449 return true;
2450 }
2451
2452 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2453 {
2454 struct vmcb *nested_vmcb;
2455 struct vmcb *hsave = svm->nested.hsave;
2456 struct vmcb *vmcb = svm->vmcb;
2457 struct page *page;
2458 u64 vmcb_gpa;
2459
2460 vmcb_gpa = svm->vmcb->save.rax;
2461
2462 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2463 if (!nested_vmcb)
2464 return false;
2465
2466 if (!nested_vmcb_checks(nested_vmcb)) {
2467 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
2468 nested_vmcb->control.exit_code_hi = 0;
2469 nested_vmcb->control.exit_info_1 = 0;
2470 nested_vmcb->control.exit_info_2 = 0;
2471
2472 nested_svm_unmap(page);
2473
2474 return false;
2475 }
2476
2477 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2478 nested_vmcb->save.rip,
2479 nested_vmcb->control.int_ctl,
2480 nested_vmcb->control.event_inj,
2481 nested_vmcb->control.nested_ctl);
2482
2483 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2484 nested_vmcb->control.intercept_cr >> 16,
2485 nested_vmcb->control.intercept_exceptions,
2486 nested_vmcb->control.intercept);
2487
2488 /* Clear internal status */
2489 kvm_clear_exception_queue(&svm->vcpu);
2490 kvm_clear_interrupt_queue(&svm->vcpu);
2491
2492 /*
2493 * Save the old vmcb, so we don't need to pick what we save, but can
2494 * restore everything when a VMEXIT occurs
2495 */
2496 hsave->save.es = vmcb->save.es;
2497 hsave->save.cs = vmcb->save.cs;
2498 hsave->save.ss = vmcb->save.ss;
2499 hsave->save.ds = vmcb->save.ds;
2500 hsave->save.gdtr = vmcb->save.gdtr;
2501 hsave->save.idtr = vmcb->save.idtr;
2502 hsave->save.efer = svm->vcpu.arch.efer;
2503 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
2504 hsave->save.cr4 = svm->vcpu.arch.cr4;
2505 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2506 hsave->save.rip = kvm_rip_read(&svm->vcpu);
2507 hsave->save.rsp = vmcb->save.rsp;
2508 hsave->save.rax = vmcb->save.rax;
2509 if (npt_enabled)
2510 hsave->save.cr3 = vmcb->save.cr3;
2511 else
2512 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
2513
2514 copy_vmcb_control_area(hsave, vmcb);
2515
2516 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2517 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2518 else
2519 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2520
2521 if (nested_vmcb->control.nested_ctl) {
2522 kvm_mmu_unload(&svm->vcpu);
2523 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2524 nested_svm_init_mmu_context(&svm->vcpu);
2525 }
2526
2527 /* Load the nested guest state */
2528 svm->vmcb->save.es = nested_vmcb->save.es;
2529 svm->vmcb->save.cs = nested_vmcb->save.cs;
2530 svm->vmcb->save.ss = nested_vmcb->save.ss;
2531 svm->vmcb->save.ds = nested_vmcb->save.ds;
2532 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2533 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2534 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2535 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2536 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2537 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2538 if (npt_enabled) {
2539 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2540 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2541 } else
2542 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2543
2544 /* Guest paging mode is active - reset mmu */
2545 kvm_mmu_reset_context(&svm->vcpu);
2546
2547 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2548 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2549 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2550 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2551
2552 /* In case we don't even reach vcpu_run, the fields are not updated */
2553 svm->vmcb->save.rax = nested_vmcb->save.rax;
2554 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2555 svm->vmcb->save.rip = nested_vmcb->save.rip;
2556 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2557 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2558 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2559
2560 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2561 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
2562
2563 /* cache intercepts */
2564 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
2565 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
2566 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2567 svm->nested.intercept = nested_vmcb->control.intercept;
2568
2569 svm_flush_tlb(&svm->vcpu);
2570 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2571 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2572 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2573 else
2574 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2575
2576 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2577 /* We only want the cr8 intercept bits of the guest */
2578 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2579 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2580 }
2581
2582 /* We don't want to see VMMCALLs from a nested guest */
2583 clr_intercept(svm, INTERCEPT_VMMCALL);
2584
2585 svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2586 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2587 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2588 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2589 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2590 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2591
2592 nested_svm_unmap(page);
2593
2594 /* Enter Guest-Mode */
2595 enter_guest_mode(&svm->vcpu);
2596
2597 /*
2598 * Merge guest and host intercepts - must be called with vcpu in
2599 * guest-mode to take affect here
2600 */
2601 recalc_intercepts(svm);
2602
2603 svm->nested.vmcb = vmcb_gpa;
2604
2605 enable_gif(svm);
2606
2607 mark_all_dirty(svm->vmcb);
2608
2609 return true;
2610 }
2611
2612 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2613 {
2614 to_vmcb->save.fs = from_vmcb->save.fs;
2615 to_vmcb->save.gs = from_vmcb->save.gs;
2616 to_vmcb->save.tr = from_vmcb->save.tr;
2617 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2618 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2619 to_vmcb->save.star = from_vmcb->save.star;
2620 to_vmcb->save.lstar = from_vmcb->save.lstar;
2621 to_vmcb->save.cstar = from_vmcb->save.cstar;
2622 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2623 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2624 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2625 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2626 }
2627
2628 static int vmload_interception(struct vcpu_svm *svm)
2629 {
2630 struct vmcb *nested_vmcb;
2631 struct page *page;
2632
2633 if (nested_svm_check_permissions(svm))
2634 return 1;
2635
2636 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2637 if (!nested_vmcb)
2638 return 1;
2639
2640 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2641 skip_emulated_instruction(&svm->vcpu);
2642
2643 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2644 nested_svm_unmap(page);
2645
2646 return 1;
2647 }
2648
2649 static int vmsave_interception(struct vcpu_svm *svm)
2650 {
2651 struct vmcb *nested_vmcb;
2652 struct page *page;
2653
2654 if (nested_svm_check_permissions(svm))
2655 return 1;
2656
2657 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2658 if (!nested_vmcb)
2659 return 1;
2660
2661 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2662 skip_emulated_instruction(&svm->vcpu);
2663
2664 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2665 nested_svm_unmap(page);
2666
2667 return 1;
2668 }
2669
2670 static int vmrun_interception(struct vcpu_svm *svm)
2671 {
2672 if (nested_svm_check_permissions(svm))
2673 return 1;
2674
2675 /* Save rip after vmrun instruction */
2676 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2677
2678 if (!nested_svm_vmrun(svm))
2679 return 1;
2680
2681 if (!nested_svm_vmrun_msrpm(svm))
2682 goto failed;
2683
2684 return 1;
2685
2686 failed:
2687
2688 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
2689 svm->vmcb->control.exit_code_hi = 0;
2690 svm->vmcb->control.exit_info_1 = 0;
2691 svm->vmcb->control.exit_info_2 = 0;
2692
2693 nested_svm_vmexit(svm);
2694
2695 return 1;
2696 }
2697
2698 static int stgi_interception(struct vcpu_svm *svm)
2699 {
2700 if (nested_svm_check_permissions(svm))
2701 return 1;
2702
2703 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2704 skip_emulated_instruction(&svm->vcpu);
2705 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2706
2707 enable_gif(svm);
2708
2709 return 1;
2710 }
2711
2712 static int clgi_interception(struct vcpu_svm *svm)
2713 {
2714 if (nested_svm_check_permissions(svm))
2715 return 1;
2716
2717 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2718 skip_emulated_instruction(&svm->vcpu);
2719
2720 disable_gif(svm);
2721
2722 /* After a CLGI no interrupts should come */
2723 svm_clear_vintr(svm);
2724 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2725
2726 mark_dirty(svm->vmcb, VMCB_INTR);
2727
2728 return 1;
2729 }
2730
2731 static int invlpga_interception(struct vcpu_svm *svm)
2732 {
2733 struct kvm_vcpu *vcpu = &svm->vcpu;
2734
2735 trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2736 vcpu->arch.regs[VCPU_REGS_RAX]);
2737
2738 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2739 kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2740
2741 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2742 skip_emulated_instruction(&svm->vcpu);
2743 return 1;
2744 }
2745
2746 static int skinit_interception(struct vcpu_svm *svm)
2747 {
2748 trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2749
2750 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2751 return 1;
2752 }
2753
2754 static int xsetbv_interception(struct vcpu_svm *svm)
2755 {
2756 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2757 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2758
2759 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2760 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2761 skip_emulated_instruction(&svm->vcpu);
2762 }
2763
2764 return 1;
2765 }
2766
2767 static int task_switch_interception(struct vcpu_svm *svm)
2768 {
2769 u16 tss_selector;
2770 int reason;
2771 int int_type = svm->vmcb->control.exit_int_info &
2772 SVM_EXITINTINFO_TYPE_MASK;
2773 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2774 uint32_t type =
2775 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2776 uint32_t idt_v =
2777 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2778 bool has_error_code = false;
2779 u32 error_code = 0;
2780
2781 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2782
2783 if (svm->vmcb->control.exit_info_2 &
2784 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2785 reason = TASK_SWITCH_IRET;
2786 else if (svm->vmcb->control.exit_info_2 &
2787 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2788 reason = TASK_SWITCH_JMP;
2789 else if (idt_v)
2790 reason = TASK_SWITCH_GATE;
2791 else
2792 reason = TASK_SWITCH_CALL;
2793
2794 if (reason == TASK_SWITCH_GATE) {
2795 switch (type) {
2796 case SVM_EXITINTINFO_TYPE_NMI:
2797 svm->vcpu.arch.nmi_injected = false;
2798 break;
2799 case SVM_EXITINTINFO_TYPE_EXEPT:
2800 if (svm->vmcb->control.exit_info_2 &
2801 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2802 has_error_code = true;
2803 error_code =
2804 (u32)svm->vmcb->control.exit_info_2;
2805 }
2806 kvm_clear_exception_queue(&svm->vcpu);
2807 break;
2808 case SVM_EXITINTINFO_TYPE_INTR:
2809 kvm_clear_interrupt_queue(&svm->vcpu);
2810 break;
2811 default:
2812 break;
2813 }
2814 }
2815
2816 if (reason != TASK_SWITCH_GATE ||
2817 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2818 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2819 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2820 skip_emulated_instruction(&svm->vcpu);
2821
2822 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2823 int_vec = -1;
2824
2825 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2826 has_error_code, error_code) == EMULATE_FAIL) {
2827 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2828 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2829 svm->vcpu.run->internal.ndata = 0;
2830 return 0;
2831 }
2832 return 1;
2833 }
2834
2835 static int cpuid_interception(struct vcpu_svm *svm)
2836 {
2837 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2838 kvm_emulate_cpuid(&svm->vcpu);
2839 return 1;
2840 }
2841
2842 static int iret_interception(struct vcpu_svm *svm)
2843 {
2844 ++svm->vcpu.stat.nmi_window_exits;
2845 clr_intercept(svm, INTERCEPT_IRET);
2846 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2847 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2848 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2849 return 1;
2850 }
2851
2852 static int invlpg_interception(struct vcpu_svm *svm)
2853 {
2854 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2855 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2856
2857 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2858 skip_emulated_instruction(&svm->vcpu);
2859 return 1;
2860 }
2861
2862 static int emulate_on_interception(struct vcpu_svm *svm)
2863 {
2864 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2865 }
2866
2867 static int rdpmc_interception(struct vcpu_svm *svm)
2868 {
2869 int err;
2870
2871 if (!static_cpu_has(X86_FEATURE_NRIPS))
2872 return emulate_on_interception(svm);
2873
2874 err = kvm_rdpmc(&svm->vcpu);
2875 kvm_complete_insn_gp(&svm->vcpu, err);
2876
2877 return 1;
2878 }
2879
2880 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2881 {
2882 unsigned long cr0 = svm->vcpu.arch.cr0;
2883 bool ret = false;
2884 u64 intercept;
2885
2886 intercept = svm->nested.intercept;
2887
2888 if (!is_guest_mode(&svm->vcpu) ||
2889 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2890 return false;
2891
2892 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2893 val &= ~SVM_CR0_SELECTIVE_MASK;
2894
2895 if (cr0 ^ val) {
2896 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2897 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2898 }
2899
2900 return ret;
2901 }
2902
2903 #define CR_VALID (1ULL << 63)
2904
2905 static int cr_interception(struct vcpu_svm *svm)
2906 {
2907 int reg, cr;
2908 unsigned long val;
2909 int err;
2910
2911 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2912 return emulate_on_interception(svm);
2913
2914 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2915 return emulate_on_interception(svm);
2916
2917 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2918 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2919
2920 err = 0;
2921 if (cr >= 16) { /* mov to cr */
2922 cr -= 16;
2923 val = kvm_register_read(&svm->vcpu, reg);
2924 switch (cr) {
2925 case 0:
2926 if (!check_selective_cr0_intercepted(svm, val))
2927 err = kvm_set_cr0(&svm->vcpu, val);
2928 else
2929 return 1;
2930
2931 break;
2932 case 3:
2933 err = kvm_set_cr3(&svm->vcpu, val);
2934 break;
2935 case 4:
2936 err = kvm_set_cr4(&svm->vcpu, val);
2937 break;
2938 case 8:
2939 err = kvm_set_cr8(&svm->vcpu, val);
2940 break;
2941 default:
2942 WARN(1, "unhandled write to CR%d", cr);
2943 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2944 return 1;
2945 }
2946 } else { /* mov from cr */
2947 switch (cr) {
2948 case 0:
2949 val = kvm_read_cr0(&svm->vcpu);
2950 break;
2951 case 2:
2952 val = svm->vcpu.arch.cr2;
2953 break;
2954 case 3:
2955 val = kvm_read_cr3(&svm->vcpu);
2956 break;
2957 case 4:
2958 val = kvm_read_cr4(&svm->vcpu);
2959 break;
2960 case 8:
2961 val = kvm_get_cr8(&svm->vcpu);
2962 break;
2963 default:
2964 WARN(1, "unhandled read from CR%d", cr);
2965 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2966 return 1;
2967 }
2968 kvm_register_write(&svm->vcpu, reg, val);
2969 }
2970 kvm_complete_insn_gp(&svm->vcpu, err);
2971
2972 return 1;
2973 }
2974
2975 static int dr_interception(struct vcpu_svm *svm)
2976 {
2977 int reg, dr;
2978 unsigned long val;
2979 int err;
2980
2981 if (svm->vcpu.guest_debug == 0) {
2982 /*
2983 * No more DR vmexits; force a reload of the debug registers
2984 * and reenter on this instruction. The next vmexit will
2985 * retrieve the full state of the debug registers.
2986 */
2987 clr_dr_intercepts(svm);
2988 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2989 return 1;
2990 }
2991
2992 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2993 return emulate_on_interception(svm);
2994
2995 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2996 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2997
2998 if (dr >= 16) { /* mov to DRn */
2999 val = kvm_register_read(&svm->vcpu, reg);
3000 kvm_set_dr(&svm->vcpu, dr - 16, val);
3001 } else {
3002 err = kvm_get_dr(&svm->vcpu, dr, &val);
3003 if (!err)
3004 kvm_register_write(&svm->vcpu, reg, val);
3005 }
3006
3007 skip_emulated_instruction(&svm->vcpu);
3008
3009 return 1;
3010 }
3011
3012 static int cr8_write_interception(struct vcpu_svm *svm)
3013 {
3014 struct kvm_run *kvm_run = svm->vcpu.run;
3015 int r;
3016
3017 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3018 /* instruction emulation calls kvm_set_cr8() */
3019 r = cr_interception(svm);
3020 if (irqchip_in_kernel(svm->vcpu.kvm))
3021 return r;
3022 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3023 return r;
3024 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3025 return 0;
3026 }
3027
3028 u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3029 {
3030 struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3031 return vmcb->control.tsc_offset +
3032 svm_scale_tsc(vcpu, host_tsc);
3033 }
3034
3035 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
3036 {
3037 struct vcpu_svm *svm = to_svm(vcpu);
3038
3039 switch (ecx) {
3040 case MSR_IA32_TSC: {
3041 *data = svm->vmcb->control.tsc_offset +
3042 svm_scale_tsc(vcpu, native_read_tsc());
3043
3044 break;
3045 }
3046 case MSR_STAR:
3047 *data = svm->vmcb->save.star;
3048 break;
3049 #ifdef CONFIG_X86_64
3050 case MSR_LSTAR:
3051 *data = svm->vmcb->save.lstar;
3052 break;
3053 case MSR_CSTAR:
3054 *data = svm->vmcb->save.cstar;
3055 break;
3056 case MSR_KERNEL_GS_BASE:
3057 *data = svm->vmcb->save.kernel_gs_base;
3058 break;
3059 case MSR_SYSCALL_MASK:
3060 *data = svm->vmcb->save.sfmask;
3061 break;
3062 #endif
3063 case MSR_IA32_SYSENTER_CS:
3064 *data = svm->vmcb->save.sysenter_cs;
3065 break;
3066 case MSR_IA32_SYSENTER_EIP:
3067 *data = svm->sysenter_eip;
3068 break;
3069 case MSR_IA32_SYSENTER_ESP:
3070 *data = svm->sysenter_esp;
3071 break;
3072 /*
3073 * Nobody will change the following 5 values in the VMCB so we can
3074 * safely return them on rdmsr. They will always be 0 until LBRV is
3075 * implemented.
3076 */
3077 case MSR_IA32_DEBUGCTLMSR:
3078 *data = svm->vmcb->save.dbgctl;
3079 break;
3080 case MSR_IA32_LASTBRANCHFROMIP:
3081 *data = svm->vmcb->save.br_from;
3082 break;
3083 case MSR_IA32_LASTBRANCHTOIP:
3084 *data = svm->vmcb->save.br_to;
3085 break;
3086 case MSR_IA32_LASTINTFROMIP:
3087 *data = svm->vmcb->save.last_excp_from;
3088 break;
3089 case MSR_IA32_LASTINTTOIP:
3090 *data = svm->vmcb->save.last_excp_to;
3091 break;
3092 case MSR_VM_HSAVE_PA:
3093 *data = svm->nested.hsave_msr;
3094 break;
3095 case MSR_VM_CR:
3096 *data = svm->nested.vm_cr_msr;
3097 break;
3098 case MSR_IA32_UCODE_REV:
3099 *data = 0x01000065;
3100 break;
3101 default:
3102 return kvm_get_msr_common(vcpu, ecx, data);
3103 }
3104 return 0;
3105 }
3106
3107 static int rdmsr_interception(struct vcpu_svm *svm)
3108 {
3109 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3110 u64 data;
3111
3112 if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3113 trace_kvm_msr_read_ex(ecx);
3114 kvm_inject_gp(&svm->vcpu, 0);
3115 } else {
3116 trace_kvm_msr_read(ecx, data);
3117
3118 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3119 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3120 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3121 skip_emulated_instruction(&svm->vcpu);
3122 }
3123 return 1;
3124 }
3125
3126 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3127 {
3128 struct vcpu_svm *svm = to_svm(vcpu);
3129 int svm_dis, chg_mask;
3130
3131 if (data & ~SVM_VM_CR_VALID_MASK)
3132 return 1;
3133
3134 chg_mask = SVM_VM_CR_VALID_MASK;
3135
3136 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3137 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3138
3139 svm->nested.vm_cr_msr &= ~chg_mask;
3140 svm->nested.vm_cr_msr |= (data & chg_mask);
3141
3142 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3143
3144 /* check for svm_disable while efer.svme is set */
3145 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3146 return 1;
3147
3148 return 0;
3149 }
3150
3151 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3152 {
3153 struct vcpu_svm *svm = to_svm(vcpu);
3154
3155 u32 ecx = msr->index;
3156 u64 data = msr->data;
3157 switch (ecx) {
3158 case MSR_IA32_TSC:
3159 kvm_write_tsc(vcpu, msr);
3160 break;
3161 case MSR_STAR:
3162 svm->vmcb->save.star = data;
3163 break;
3164 #ifdef CONFIG_X86_64
3165 case MSR_LSTAR:
3166 svm->vmcb->save.lstar = data;
3167 break;
3168 case MSR_CSTAR:
3169 svm->vmcb->save.cstar = data;
3170 break;
3171 case MSR_KERNEL_GS_BASE:
3172 svm->vmcb->save.kernel_gs_base = data;
3173 break;
3174 case MSR_SYSCALL_MASK:
3175 svm->vmcb->save.sfmask = data;
3176 break;
3177 #endif
3178 case MSR_IA32_SYSENTER_CS:
3179 svm->vmcb->save.sysenter_cs = data;
3180 break;
3181 case MSR_IA32_SYSENTER_EIP:
3182 svm->sysenter_eip = data;
3183 svm->vmcb->save.sysenter_eip = data;
3184 break;
3185 case MSR_IA32_SYSENTER_ESP:
3186 svm->sysenter_esp = data;
3187 svm->vmcb->save.sysenter_esp = data;
3188 break;
3189 case MSR_IA32_DEBUGCTLMSR:
3190 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3191 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3192 __func__, data);
3193 break;
3194 }
3195 if (data & DEBUGCTL_RESERVED_BITS)
3196 return 1;
3197
3198 svm->vmcb->save.dbgctl = data;
3199 mark_dirty(svm->vmcb, VMCB_LBR);
3200 if (data & (1ULL<<0))
3201 svm_enable_lbrv(svm);
3202 else
3203 svm_disable_lbrv(svm);
3204 break;
3205 case MSR_VM_HSAVE_PA:
3206 svm->nested.hsave_msr = data;
3207 break;
3208 case MSR_VM_CR:
3209 return svm_set_vm_cr(vcpu, data);
3210 case MSR_VM_IGNNE:
3211 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3212 break;
3213 default:
3214 return kvm_set_msr_common(vcpu, msr);
3215 }
3216 return 0;
3217 }
3218
3219 static int wrmsr_interception(struct vcpu_svm *svm)
3220 {
3221 struct msr_data msr;
3222 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3223 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3224 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3225
3226 msr.data = data;
3227 msr.index = ecx;
3228 msr.host_initiated = false;
3229
3230 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3231 if (svm_set_msr(&svm->vcpu, &msr)) {
3232 trace_kvm_msr_write_ex(ecx, data);
3233 kvm_inject_gp(&svm->vcpu, 0);
3234 } else {
3235 trace_kvm_msr_write(ecx, data);
3236 skip_emulated_instruction(&svm->vcpu);
3237 }
3238 return 1;
3239 }
3240
3241 static int msr_interception(struct vcpu_svm *svm)
3242 {
3243 if (svm->vmcb->control.exit_info_1)
3244 return wrmsr_interception(svm);
3245 else
3246 return rdmsr_interception(svm);
3247 }
3248
3249 static int interrupt_window_interception(struct vcpu_svm *svm)
3250 {
3251 struct kvm_run *kvm_run = svm->vcpu.run;
3252
3253 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3254 svm_clear_vintr(svm);
3255 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3256 mark_dirty(svm->vmcb, VMCB_INTR);
3257 ++svm->vcpu.stat.irq_window_exits;
3258 /*
3259 * If the user space waits to inject interrupts, exit as soon as
3260 * possible
3261 */
3262 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3263 kvm_run->request_interrupt_window &&
3264 !kvm_cpu_has_interrupt(&svm->vcpu)) {
3265 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3266 return 0;
3267 }
3268
3269 return 1;
3270 }
3271
3272 static int pause_interception(struct vcpu_svm *svm)
3273 {
3274 kvm_vcpu_on_spin(&(svm->vcpu));
3275 return 1;
3276 }
3277
3278 static int nop_interception(struct vcpu_svm *svm)
3279 {
3280 skip_emulated_instruction(&(svm->vcpu));
3281 return 1;
3282 }
3283
3284 static int monitor_interception(struct vcpu_svm *svm)
3285 {
3286 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3287 return nop_interception(svm);
3288 }
3289
3290 static int mwait_interception(struct vcpu_svm *svm)
3291 {
3292 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3293 return nop_interception(svm);
3294 }
3295
3296 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3297 [SVM_EXIT_READ_CR0] = cr_interception,
3298 [SVM_EXIT_READ_CR3] = cr_interception,
3299 [SVM_EXIT_READ_CR4] = cr_interception,
3300 [SVM_EXIT_READ_CR8] = cr_interception,
3301 [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
3302 [SVM_EXIT_WRITE_CR0] = cr_interception,
3303 [SVM_EXIT_WRITE_CR3] = cr_interception,
3304 [SVM_EXIT_WRITE_CR4] = cr_interception,
3305 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
3306 [SVM_EXIT_READ_DR0] = dr_interception,
3307 [SVM_EXIT_READ_DR1] = dr_interception,
3308 [SVM_EXIT_READ_DR2] = dr_interception,
3309 [SVM_EXIT_READ_DR3] = dr_interception,
3310 [SVM_EXIT_READ_DR4] = dr_interception,
3311 [SVM_EXIT_READ_DR5] = dr_interception,
3312 [SVM_EXIT_READ_DR6] = dr_interception,
3313 [SVM_EXIT_READ_DR7] = dr_interception,
3314 [SVM_EXIT_WRITE_DR0] = dr_interception,
3315 [SVM_EXIT_WRITE_DR1] = dr_interception,
3316 [SVM_EXIT_WRITE_DR2] = dr_interception,
3317 [SVM_EXIT_WRITE_DR3] = dr_interception,
3318 [SVM_EXIT_WRITE_DR4] = dr_interception,
3319 [SVM_EXIT_WRITE_DR5] = dr_interception,
3320 [SVM_EXIT_WRITE_DR6] = dr_interception,
3321 [SVM_EXIT_WRITE_DR7] = dr_interception,
3322 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
3323 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
3324 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
3325 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
3326 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
3327 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
3328 [SVM_EXIT_INTR] = intr_interception,
3329 [SVM_EXIT_NMI] = nmi_interception,
3330 [SVM_EXIT_SMI] = nop_on_interception,
3331 [SVM_EXIT_INIT] = nop_on_interception,
3332 [SVM_EXIT_VINTR] = interrupt_window_interception,
3333 [SVM_EXIT_RDPMC] = rdpmc_interception,
3334 [SVM_EXIT_CPUID] = cpuid_interception,
3335 [SVM_EXIT_IRET] = iret_interception,
3336 [SVM_EXIT_INVD] = emulate_on_interception,
3337 [SVM_EXIT_PAUSE] = pause_interception,
3338 [SVM_EXIT_HLT] = halt_interception,
3339 [SVM_EXIT_INVLPG] = invlpg_interception,
3340 [SVM_EXIT_INVLPGA] = invlpga_interception,
3341 [SVM_EXIT_IOIO] = io_interception,
3342 [SVM_EXIT_MSR] = msr_interception,
3343 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
3344 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
3345 [SVM_EXIT_VMRUN] = vmrun_interception,
3346 [SVM_EXIT_VMMCALL] = vmmcall_interception,
3347 [SVM_EXIT_VMLOAD] = vmload_interception,
3348 [SVM_EXIT_VMSAVE] = vmsave_interception,
3349 [SVM_EXIT_STGI] = stgi_interception,
3350 [SVM_EXIT_CLGI] = clgi_interception,
3351 [SVM_EXIT_SKINIT] = skinit_interception,
3352 [SVM_EXIT_WBINVD] = emulate_on_interception,
3353 [SVM_EXIT_MONITOR] = monitor_interception,
3354 [SVM_EXIT_MWAIT] = mwait_interception,
3355 [SVM_EXIT_XSETBV] = xsetbv_interception,
3356 [SVM_EXIT_NPF] = pf_interception,
3357 };
3358
3359 static void dump_vmcb(struct kvm_vcpu *vcpu)
3360 {
3361 struct vcpu_svm *svm = to_svm(vcpu);
3362 struct vmcb_control_area *control = &svm->vmcb->control;
3363 struct vmcb_save_area *save = &svm->vmcb->save;
3364
3365 pr_err("VMCB Control Area:\n");
3366 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3367 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3368 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3369 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3370 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3371 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3372 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3373 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3374 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3375 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3376 pr_err("%-20s%d\n", "asid:", control->asid);
3377 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3378 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3379 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3380 pr_err("%-20s%08x\n", "int_state:", control->int_state);
3381 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3382 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3383 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3384 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3385 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3386 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3387 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3388 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3389 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3390 pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3391 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3392 pr_err("VMCB State Save Area:\n");
3393 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3394 "es:",
3395 save->es.selector, save->es.attrib,
3396 save->es.limit, save->es.base);
3397 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3398 "cs:",
3399 save->cs.selector, save->cs.attrib,
3400 save->cs.limit, save->cs.base);
3401 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3402 "ss:",
3403 save->ss.selector, save->ss.attrib,
3404 save->ss.limit, save->ss.base);
3405 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3406 "ds:",
3407 save->ds.selector, save->ds.attrib,
3408 save->ds.limit, save->ds.base);
3409 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3410 "fs:",
3411 save->fs.selector, save->fs.attrib,
3412 save->fs.limit, save->fs.base);
3413 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3414 "gs:",
3415 save->gs.selector, save->gs.attrib,
3416 save->gs.limit, save->gs.base);
3417 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3418 "gdtr:",
3419 save->gdtr.selector, save->gdtr.attrib,
3420 save->gdtr.limit, save->gdtr.base);
3421 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3422 "ldtr:",
3423 save->ldtr.selector, save->ldtr.attrib,
3424 save->ldtr.limit, save->ldtr.base);
3425 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3426 "idtr:",
3427 save->idtr.selector, save->idtr.attrib,
3428 save->idtr.limit, save->idtr.base);
3429 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3430 "tr:",
3431 save->tr.selector, save->tr.attrib,
3432 save->tr.limit, save->tr.base);
3433 pr_err("cpl: %d efer: %016llx\n",
3434 save->cpl, save->efer);
3435 pr_err("%-15s %016llx %-13s %016llx\n",
3436 "cr0:", save->cr0, "cr2:", save->cr2);
3437 pr_err("%-15s %016llx %-13s %016llx\n",
3438 "cr3:", save->cr3, "cr4:", save->cr4);
3439 pr_err("%-15s %016llx %-13s %016llx\n",
3440 "dr6:", save->dr6, "dr7:", save->dr7);
3441 pr_err("%-15s %016llx %-13s %016llx\n",
3442 "rip:", save->rip, "rflags:", save->rflags);
3443 pr_err("%-15s %016llx %-13s %016llx\n",
3444 "rsp:", save->rsp, "rax:", save->rax);
3445 pr_err("%-15s %016llx %-13s %016llx\n",
3446 "star:", save->star, "lstar:", save->lstar);
3447 pr_err("%-15s %016llx %-13s %016llx\n",
3448 "cstar:", save->cstar, "sfmask:", save->sfmask);
3449 pr_err("%-15s %016llx %-13s %016llx\n",
3450 "kernel_gs_base:", save->kernel_gs_base,
3451 "sysenter_cs:", save->sysenter_cs);
3452 pr_err("%-15s %016llx %-13s %016llx\n",
3453 "sysenter_esp:", save->sysenter_esp,
3454 "sysenter_eip:", save->sysenter_eip);
3455 pr_err("%-15s %016llx %-13s %016llx\n",
3456 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3457 pr_err("%-15s %016llx %-13s %016llx\n",
3458 "br_from:", save->br_from, "br_to:", save->br_to);
3459 pr_err("%-15s %016llx %-13s %016llx\n",
3460 "excp_from:", save->last_excp_from,
3461 "excp_to:", save->last_excp_to);
3462 }
3463
3464 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3465 {
3466 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3467
3468 *info1 = control->exit_info_1;
3469 *info2 = control->exit_info_2;
3470 }
3471
3472 static int handle_exit(struct kvm_vcpu *vcpu)
3473 {
3474 struct vcpu_svm *svm = to_svm(vcpu);
3475 struct kvm_run *kvm_run = vcpu->run;
3476 u32 exit_code = svm->vmcb->control.exit_code;
3477
3478 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3479 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3480 if (npt_enabled)
3481 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3482
3483 if (unlikely(svm->nested.exit_required)) {
3484 nested_svm_vmexit(svm);
3485 svm->nested.exit_required = false;
3486
3487 return 1;
3488 }
3489
3490 if (is_guest_mode(vcpu)) {
3491 int vmexit;
3492
3493 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3494 svm->vmcb->control.exit_info_1,
3495 svm->vmcb->control.exit_info_2,
3496 svm->vmcb->control.exit_int_info,
3497 svm->vmcb->control.exit_int_info_err,
3498 KVM_ISA_SVM);
3499
3500 vmexit = nested_svm_exit_special(svm);
3501
3502 if (vmexit == NESTED_EXIT_CONTINUE)
3503 vmexit = nested_svm_exit_handled(svm);
3504
3505 if (vmexit == NESTED_EXIT_DONE)
3506 return 1;
3507 }
3508
3509 svm_complete_interrupts(svm);
3510
3511 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3512 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3513 kvm_run->fail_entry.hardware_entry_failure_reason
3514 = svm->vmcb->control.exit_code;
3515 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3516 dump_vmcb(vcpu);
3517 return 0;
3518 }
3519
3520 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3521 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3522 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3523 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3524 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3525 "exit_code 0x%x\n",
3526 __func__, svm->vmcb->control.exit_int_info,
3527 exit_code);
3528
3529 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3530 || !svm_exit_handlers[exit_code]) {
3531 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3532 kvm_run->hw.hardware_exit_reason = exit_code;
3533 return 0;
3534 }
3535
3536 return svm_exit_handlers[exit_code](svm);
3537 }
3538
3539 static void reload_tss(struct kvm_vcpu *vcpu)
3540 {
3541 int cpu = raw_smp_processor_id();
3542
3543 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3544 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3545 load_TR_desc();
3546 }
3547
3548 static void pre_svm_run(struct vcpu_svm *svm)
3549 {
3550 int cpu = raw_smp_processor_id();
3551
3552 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3553
3554 /* FIXME: handle wraparound of asid_generation */
3555 if (svm->asid_generation != sd->asid_generation)
3556 new_asid(svm, sd);
3557 }
3558
3559 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3560 {
3561 struct vcpu_svm *svm = to_svm(vcpu);
3562
3563 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3564 vcpu->arch.hflags |= HF_NMI_MASK;
3565 set_intercept(svm, INTERCEPT_IRET);
3566 ++vcpu->stat.nmi_injections;
3567 }
3568
3569 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3570 {
3571 struct vmcb_control_area *control;
3572
3573 control = &svm->vmcb->control;
3574 control->int_vector = irq;
3575 control->int_ctl &= ~V_INTR_PRIO_MASK;
3576 control->int_ctl |= V_IRQ_MASK |
3577 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3578 mark_dirty(svm->vmcb, VMCB_INTR);
3579 }
3580
3581 static void svm_set_irq(struct kvm_vcpu *vcpu)
3582 {
3583 struct vcpu_svm *svm = to_svm(vcpu);
3584
3585 BUG_ON(!(gif_set(svm)));
3586
3587 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3588 ++vcpu->stat.irq_injections;
3589
3590 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3591 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3592 }
3593
3594 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3595 {
3596 struct vcpu_svm *svm = to_svm(vcpu);
3597
3598 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3599 return;
3600
3601 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3602
3603 if (irr == -1)
3604 return;
3605
3606 if (tpr >= irr)
3607 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3608 }
3609
3610 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3611 {
3612 return;
3613 }
3614
3615 static int svm_vm_has_apicv(struct kvm *kvm)
3616 {
3617 return 0;
3618 }
3619
3620 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3621 {
3622 return;
3623 }
3624
3625 static void svm_hwapic_isr_update(struct kvm *kvm, int isr)
3626 {
3627 return;
3628 }
3629
3630 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3631 {
3632 return;
3633 }
3634
3635 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3636 {
3637 struct vcpu_svm *svm = to_svm(vcpu);
3638 struct vmcb *vmcb = svm->vmcb;
3639 int ret;
3640 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3641 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3642 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3643
3644 return ret;
3645 }
3646
3647 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3648 {
3649 struct vcpu_svm *svm = to_svm(vcpu);
3650
3651 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3652 }
3653
3654 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3655 {
3656 struct vcpu_svm *svm = to_svm(vcpu);
3657
3658 if (masked) {
3659 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3660 set_intercept(svm, INTERCEPT_IRET);
3661 } else {
3662 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3663 clr_intercept(svm, INTERCEPT_IRET);
3664 }
3665 }
3666
3667 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3668 {
3669 struct vcpu_svm *svm = to_svm(vcpu);
3670 struct vmcb *vmcb = svm->vmcb;
3671 int ret;
3672
3673 if (!gif_set(svm) ||
3674 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3675 return 0;
3676
3677 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3678
3679 if (is_guest_mode(vcpu))
3680 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3681
3682 return ret;
3683 }
3684
3685 static void enable_irq_window(struct kvm_vcpu *vcpu)
3686 {
3687 struct vcpu_svm *svm = to_svm(vcpu);
3688
3689 /*
3690 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3691 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3692 * get that intercept, this function will be called again though and
3693 * we'll get the vintr intercept.
3694 */
3695 if (gif_set(svm) && nested_svm_intr(svm)) {
3696 svm_set_vintr(svm);
3697 svm_inject_irq(svm, 0x0);
3698 }
3699 }
3700
3701 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3702 {
3703 struct vcpu_svm *svm = to_svm(vcpu);
3704
3705 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3706 == HF_NMI_MASK)
3707 return; /* IRET will cause a vm exit */
3708
3709 /*
3710 * Something prevents NMI from been injected. Single step over possible
3711 * problem (IRET or exception injection or interrupt shadow)
3712 */
3713 svm->nmi_singlestep = true;
3714 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3715 update_db_bp_intercept(vcpu);
3716 }
3717
3718 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3719 {
3720 return 0;
3721 }
3722
3723 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3724 {
3725 struct vcpu_svm *svm = to_svm(vcpu);
3726
3727 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3728 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3729 else
3730 svm->asid_generation--;
3731 }
3732
3733 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3734 {
3735 }
3736
3737 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3738 {
3739 struct vcpu_svm *svm = to_svm(vcpu);
3740
3741 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3742 return;
3743
3744 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3745 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3746 kvm_set_cr8(vcpu, cr8);
3747 }
3748 }
3749
3750 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3751 {
3752 struct vcpu_svm *svm = to_svm(vcpu);
3753 u64 cr8;
3754
3755 if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3756 return;
3757
3758 cr8 = kvm_get_cr8(vcpu);
3759 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3760 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3761 }
3762
3763 static void svm_complete_interrupts(struct vcpu_svm *svm)
3764 {
3765 u8 vector;
3766 int type;
3767 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3768 unsigned int3_injected = svm->int3_injected;
3769
3770 svm->int3_injected = 0;
3771
3772 /*
3773 * If we've made progress since setting HF_IRET_MASK, we've
3774 * executed an IRET and can allow NMI injection.
3775 */
3776 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3777 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3778 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3779 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3780 }
3781
3782 svm->vcpu.arch.nmi_injected = false;
3783 kvm_clear_exception_queue(&svm->vcpu);
3784 kvm_clear_interrupt_queue(&svm->vcpu);
3785
3786 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3787 return;
3788
3789 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3790
3791 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3792 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3793
3794 switch (type) {
3795 case SVM_EXITINTINFO_TYPE_NMI:
3796 svm->vcpu.arch.nmi_injected = true;
3797 break;
3798 case SVM_EXITINTINFO_TYPE_EXEPT:
3799 /*
3800 * In case of software exceptions, do not reinject the vector,
3801 * but re-execute the instruction instead. Rewind RIP first
3802 * if we emulated INT3 before.
3803 */
3804 if (kvm_exception_is_soft(vector)) {
3805 if (vector == BP_VECTOR && int3_injected &&
3806 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3807 kvm_rip_write(&svm->vcpu,
3808 kvm_rip_read(&svm->vcpu) -
3809 int3_injected);
3810 break;
3811 }
3812 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3813 u32 err = svm->vmcb->control.exit_int_info_err;
3814 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3815
3816 } else
3817 kvm_requeue_exception(&svm->vcpu, vector);
3818 break;
3819 case SVM_EXITINTINFO_TYPE_INTR:
3820 kvm_queue_interrupt(&svm->vcpu, vector, false);
3821 break;
3822 default:
3823 break;
3824 }
3825 }
3826
3827 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3828 {
3829 struct vcpu_svm *svm = to_svm(vcpu);
3830 struct vmcb_control_area *control = &svm->vmcb->control;
3831
3832 control->exit_int_info = control->event_inj;
3833 control->exit_int_info_err = control->event_inj_err;
3834 control->event_inj = 0;
3835 svm_complete_interrupts(svm);
3836 }
3837
3838 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3839 {
3840 struct vcpu_svm *svm = to_svm(vcpu);
3841
3842 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3843 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3844 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3845
3846 /*
3847 * A vmexit emulation is required before the vcpu can be executed
3848 * again.
3849 */
3850 if (unlikely(svm->nested.exit_required))
3851 return;
3852
3853 pre_svm_run(svm);
3854
3855 sync_lapic_to_cr8(vcpu);
3856
3857 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3858
3859 clgi();
3860
3861 local_irq_enable();
3862
3863 asm volatile (
3864 "push %%" _ASM_BP "; \n\t"
3865 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3866 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3867 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3868 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3869 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3870 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3871 #ifdef CONFIG_X86_64
3872 "mov %c[r8](%[svm]), %%r8 \n\t"
3873 "mov %c[r9](%[svm]), %%r9 \n\t"
3874 "mov %c[r10](%[svm]), %%r10 \n\t"
3875 "mov %c[r11](%[svm]), %%r11 \n\t"
3876 "mov %c[r12](%[svm]), %%r12 \n\t"
3877 "mov %c[r13](%[svm]), %%r13 \n\t"
3878 "mov %c[r14](%[svm]), %%r14 \n\t"
3879 "mov %c[r15](%[svm]), %%r15 \n\t"
3880 #endif
3881
3882 /* Enter guest mode */
3883 "push %%" _ASM_AX " \n\t"
3884 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3885 __ex(SVM_VMLOAD) "\n\t"
3886 __ex(SVM_VMRUN) "\n\t"
3887 __ex(SVM_VMSAVE) "\n\t"
3888 "pop %%" _ASM_AX " \n\t"
3889
3890 /* Save guest registers, load host registers */
3891 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3892 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3893 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3894 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3895 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3896 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3897 #ifdef CONFIG_X86_64
3898 "mov %%r8, %c[r8](%[svm]) \n\t"
3899 "mov %%r9, %c[r9](%[svm]) \n\t"
3900 "mov %%r10, %c[r10](%[svm]) \n\t"
3901 "mov %%r11, %c[r11](%[svm]) \n\t"
3902 "mov %%r12, %c[r12](%[svm]) \n\t"
3903 "mov %%r13, %c[r13](%[svm]) \n\t"
3904 "mov %%r14, %c[r14](%[svm]) \n\t"
3905 "mov %%r15, %c[r15](%[svm]) \n\t"
3906 #endif
3907 "pop %%" _ASM_BP
3908 :
3909 : [svm]"a"(svm),
3910 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3911 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3912 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3913 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3914 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3915 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3916 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3917 #ifdef CONFIG_X86_64
3918 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3919 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3920 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3921 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3922 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3923 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3924 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3925 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3926 #endif
3927 : "cc", "memory"
3928 #ifdef CONFIG_X86_64
3929 , "rbx", "rcx", "rdx", "rsi", "rdi"
3930 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3931 #else
3932 , "ebx", "ecx", "edx", "esi", "edi"
3933 #endif
3934 );
3935
3936 #ifdef CONFIG_X86_64
3937 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3938 #else
3939 loadsegment(fs, svm->host.fs);
3940 #ifndef CONFIG_X86_32_LAZY_GS
3941 loadsegment(gs, svm->host.gs);
3942 #endif
3943 #endif
3944
3945 reload_tss(vcpu);
3946
3947 local_irq_disable();
3948
3949 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3950 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3951 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3952 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3953
3954 trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3955
3956 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3957 kvm_before_handle_nmi(&svm->vcpu);
3958
3959 stgi();
3960
3961 /* Any pending NMI will happen here */
3962
3963 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3964 kvm_after_handle_nmi(&svm->vcpu);
3965
3966 sync_cr8_to_lapic(vcpu);
3967
3968 svm->next_rip = 0;
3969
3970 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3971
3972 /* if exit due to PF check for async PF */
3973 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3974 svm->apf_reason = kvm_read_and_reset_pf_reason();
3975
3976 if (npt_enabled) {
3977 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3978 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3979 }
3980
3981 /*
3982 * We need to handle MC intercepts here before the vcpu has a chance to
3983 * change the physical cpu
3984 */
3985 if (unlikely(svm->vmcb->control.exit_code ==
3986 SVM_EXIT_EXCP_BASE + MC_VECTOR))
3987 svm_handle_mce(svm);
3988
3989 mark_all_clean(svm->vmcb);
3990 }
3991
3992 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3993 {
3994 struct vcpu_svm *svm = to_svm(vcpu);
3995
3996 svm->vmcb->save.cr3 = root;
3997 mark_dirty(svm->vmcb, VMCB_CR);
3998 svm_flush_tlb(vcpu);
3999 }
4000
4001 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4002 {
4003 struct vcpu_svm *svm = to_svm(vcpu);
4004
4005 svm->vmcb->control.nested_cr3 = root;
4006 mark_dirty(svm->vmcb, VMCB_NPT);
4007
4008 /* Also sync guest cr3 here in case we live migrate */
4009 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4010 mark_dirty(svm->vmcb, VMCB_CR);
4011
4012 svm_flush_tlb(vcpu);
4013 }
4014
4015 static int is_disabled(void)
4016 {
4017 u64 vm_cr;
4018
4019 rdmsrl(MSR_VM_CR, vm_cr);
4020 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4021 return 1;
4022
4023 return 0;
4024 }
4025
4026 static void
4027 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4028 {
4029 /*
4030 * Patch in the VMMCALL instruction:
4031 */
4032 hypercall[0] = 0x0f;
4033 hypercall[1] = 0x01;
4034 hypercall[2] = 0xd9;
4035 }
4036
4037 static void svm_check_processor_compat(void *rtn)
4038 {
4039 *(int *)rtn = 0;
4040 }
4041
4042 static bool svm_cpu_has_accelerated_tpr(void)
4043 {
4044 return false;
4045 }
4046
4047 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4048 {
4049 return 0;
4050 }
4051
4052 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4053 {
4054 }
4055
4056 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4057 {
4058 switch (func) {
4059 case 0x80000001:
4060 if (nested)
4061 entry->ecx |= (1 << 2); /* Set SVM bit */
4062 break;
4063 case 0x8000000A:
4064 entry->eax = 1; /* SVM revision 1 */
4065 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4066 ASID emulation to nested SVM */
4067 entry->ecx = 0; /* Reserved */
4068 entry->edx = 0; /* Per default do not support any
4069 additional features */
4070
4071 /* Support next_rip if host supports it */
4072 if (boot_cpu_has(X86_FEATURE_NRIPS))
4073 entry->edx |= SVM_FEATURE_NRIP;
4074
4075 /* Support NPT for the guest if enabled */
4076 if (npt_enabled)
4077 entry->edx |= SVM_FEATURE_NPT;
4078
4079 break;
4080 }
4081 }
4082
4083 static int svm_get_lpage_level(void)
4084 {
4085 return PT_PDPE_LEVEL;
4086 }
4087
4088 static bool svm_rdtscp_supported(void)
4089 {
4090 return false;
4091 }
4092
4093 static bool svm_invpcid_supported(void)
4094 {
4095 return false;
4096 }
4097
4098 static bool svm_mpx_supported(void)
4099 {
4100 return false;
4101 }
4102
4103 static bool svm_has_wbinvd_exit(void)
4104 {
4105 return true;
4106 }
4107
4108 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4109 {
4110 struct vcpu_svm *svm = to_svm(vcpu);
4111
4112 set_exception_intercept(svm, NM_VECTOR);
4113 update_cr0_intercept(svm);
4114 }
4115
4116 #define PRE_EX(exit) { .exit_code = (exit), \
4117 .stage = X86_ICPT_PRE_EXCEPT, }
4118 #define POST_EX(exit) { .exit_code = (exit), \
4119 .stage = X86_ICPT_POST_EXCEPT, }
4120 #define POST_MEM(exit) { .exit_code = (exit), \
4121 .stage = X86_ICPT_POST_MEMACCESS, }
4122
4123 static const struct __x86_intercept {
4124 u32 exit_code;
4125 enum x86_intercept_stage stage;
4126 } x86_intercept_map[] = {
4127 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
4128 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
4129 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
4130 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
4131 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
4132 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
4133 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
4134 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
4135 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
4136 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
4137 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
4138 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
4139 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
4140 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
4141 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
4142 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
4143 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
4144 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
4145 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
4146 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
4147 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
4148 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
4149 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
4150 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
4151 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
4152 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
4153 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
4154 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
4155 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
4156 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
4157 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
4158 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
4159 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
4160 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
4161 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
4162 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
4163 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
4164 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
4165 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
4166 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
4167 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
4168 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
4169 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
4170 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
4171 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
4172 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
4173 };
4174
4175 #undef PRE_EX
4176 #undef POST_EX
4177 #undef POST_MEM
4178
4179 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4180 struct x86_instruction_info *info,
4181 enum x86_intercept_stage stage)
4182 {
4183 struct vcpu_svm *svm = to_svm(vcpu);
4184 int vmexit, ret = X86EMUL_CONTINUE;
4185 struct __x86_intercept icpt_info;
4186 struct vmcb *vmcb = svm->vmcb;
4187
4188 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4189 goto out;
4190
4191 icpt_info = x86_intercept_map[info->intercept];
4192
4193 if (stage != icpt_info.stage)
4194 goto out;
4195
4196 switch (icpt_info.exit_code) {
4197 case SVM_EXIT_READ_CR0:
4198 if (info->intercept == x86_intercept_cr_read)
4199 icpt_info.exit_code += info->modrm_reg;
4200 break;
4201 case SVM_EXIT_WRITE_CR0: {
4202 unsigned long cr0, val;
4203 u64 intercept;
4204
4205 if (info->intercept == x86_intercept_cr_write)
4206 icpt_info.exit_code += info->modrm_reg;
4207
4208 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0)
4209 break;
4210
4211 intercept = svm->nested.intercept;
4212
4213 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4214 break;
4215
4216 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4217 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
4218
4219 if (info->intercept == x86_intercept_lmsw) {
4220 cr0 &= 0xfUL;
4221 val &= 0xfUL;
4222 /* lmsw can't clear PE - catch this here */
4223 if (cr0 & X86_CR0_PE)
4224 val |= X86_CR0_PE;
4225 }
4226
4227 if (cr0 ^ val)
4228 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4229
4230 break;
4231 }
4232 case SVM_EXIT_READ_DR0:
4233 case SVM_EXIT_WRITE_DR0:
4234 icpt_info.exit_code += info->modrm_reg;
4235 break;
4236 case SVM_EXIT_MSR:
4237 if (info->intercept == x86_intercept_wrmsr)
4238 vmcb->control.exit_info_1 = 1;
4239 else
4240 vmcb->control.exit_info_1 = 0;
4241 break;
4242 case SVM_EXIT_PAUSE:
4243 /*
4244 * We get this for NOP only, but pause
4245 * is rep not, check this here
4246 */
4247 if (info->rep_prefix != REPE_PREFIX)
4248 goto out;
4249 case SVM_EXIT_IOIO: {
4250 u64 exit_info;
4251 u32 bytes;
4252
4253 exit_info = (vcpu->arch.regs[VCPU_REGS_RDX] & 0xffff) << 16;
4254
4255 if (info->intercept == x86_intercept_in ||
4256 info->intercept == x86_intercept_ins) {
4257 exit_info |= SVM_IOIO_TYPE_MASK;
4258 bytes = info->src_bytes;
4259 } else {
4260 bytes = info->dst_bytes;
4261 }
4262
4263 if (info->intercept == x86_intercept_outs ||
4264 info->intercept == x86_intercept_ins)
4265 exit_info |= SVM_IOIO_STR_MASK;
4266
4267 if (info->rep_prefix)
4268 exit_info |= SVM_IOIO_REP_MASK;
4269
4270 bytes = min(bytes, 4u);
4271
4272 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4273
4274 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4275
4276 vmcb->control.exit_info_1 = exit_info;
4277 vmcb->control.exit_info_2 = info->next_rip;
4278
4279 break;
4280 }
4281 default:
4282 break;
4283 }
4284
4285 vmcb->control.next_rip = info->next_rip;
4286 vmcb->control.exit_code = icpt_info.exit_code;
4287 vmexit = nested_svm_exit_handled(svm);
4288
4289 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4290 : X86EMUL_CONTINUE;
4291
4292 out:
4293 return ret;
4294 }
4295
4296 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4297 {
4298 local_irq_enable();
4299 }
4300
4301 static struct kvm_x86_ops svm_x86_ops = {
4302 .cpu_has_kvm_support = has_svm,
4303 .disabled_by_bios = is_disabled,
4304 .hardware_setup = svm_hardware_setup,
4305 .hardware_unsetup = svm_hardware_unsetup,
4306 .check_processor_compatibility = svm_check_processor_compat,
4307 .hardware_enable = svm_hardware_enable,
4308 .hardware_disable = svm_hardware_disable,
4309 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4310
4311 .vcpu_create = svm_create_vcpu,
4312 .vcpu_free = svm_free_vcpu,
4313 .vcpu_reset = svm_vcpu_reset,
4314
4315 .prepare_guest_switch = svm_prepare_guest_switch,
4316 .vcpu_load = svm_vcpu_load,
4317 .vcpu_put = svm_vcpu_put,
4318
4319 .update_db_bp_intercept = update_db_bp_intercept,
4320 .get_msr = svm_get_msr,
4321 .set_msr = svm_set_msr,
4322 .get_segment_base = svm_get_segment_base,
4323 .get_segment = svm_get_segment,
4324 .set_segment = svm_set_segment,
4325 .get_cpl = svm_get_cpl,
4326 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4327 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4328 .decache_cr3 = svm_decache_cr3,
4329 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4330 .set_cr0 = svm_set_cr0,
4331 .set_cr3 = svm_set_cr3,
4332 .set_cr4 = svm_set_cr4,
4333 .set_efer = svm_set_efer,
4334 .get_idt = svm_get_idt,
4335 .set_idt = svm_set_idt,
4336 .get_gdt = svm_get_gdt,
4337 .set_gdt = svm_set_gdt,
4338 .get_dr6 = svm_get_dr6,
4339 .set_dr6 = svm_set_dr6,
4340 .set_dr7 = svm_set_dr7,
4341 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4342 .cache_reg = svm_cache_reg,
4343 .get_rflags = svm_get_rflags,
4344 .set_rflags = svm_set_rflags,
4345 .fpu_activate = svm_fpu_activate,
4346 .fpu_deactivate = svm_fpu_deactivate,
4347
4348 .tlb_flush = svm_flush_tlb,
4349
4350 .run = svm_vcpu_run,
4351 .handle_exit = handle_exit,
4352 .skip_emulated_instruction = skip_emulated_instruction,
4353 .set_interrupt_shadow = svm_set_interrupt_shadow,
4354 .get_interrupt_shadow = svm_get_interrupt_shadow,
4355 .patch_hypercall = svm_patch_hypercall,
4356 .set_irq = svm_set_irq,
4357 .set_nmi = svm_inject_nmi,
4358 .queue_exception = svm_queue_exception,
4359 .cancel_injection = svm_cancel_injection,
4360 .interrupt_allowed = svm_interrupt_allowed,
4361 .nmi_allowed = svm_nmi_allowed,
4362 .get_nmi_mask = svm_get_nmi_mask,
4363 .set_nmi_mask = svm_set_nmi_mask,
4364 .enable_nmi_window = enable_nmi_window,
4365 .enable_irq_window = enable_irq_window,
4366 .update_cr8_intercept = update_cr8_intercept,
4367 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4368 .vm_has_apicv = svm_vm_has_apicv,
4369 .load_eoi_exitmap = svm_load_eoi_exitmap,
4370 .hwapic_isr_update = svm_hwapic_isr_update,
4371 .sync_pir_to_irr = svm_sync_pir_to_irr,
4372
4373 .set_tss_addr = svm_set_tss_addr,
4374 .get_tdp_level = get_npt_level,
4375 .get_mt_mask = svm_get_mt_mask,
4376
4377 .get_exit_info = svm_get_exit_info,
4378
4379 .get_lpage_level = svm_get_lpage_level,
4380
4381 .cpuid_update = svm_cpuid_update,
4382
4383 .rdtscp_supported = svm_rdtscp_supported,
4384 .invpcid_supported = svm_invpcid_supported,
4385 .mpx_supported = svm_mpx_supported,
4386
4387 .set_supported_cpuid = svm_set_supported_cpuid,
4388
4389 .has_wbinvd_exit = svm_has_wbinvd_exit,
4390
4391 .set_tsc_khz = svm_set_tsc_khz,
4392 .read_tsc_offset = svm_read_tsc_offset,
4393 .write_tsc_offset = svm_write_tsc_offset,
4394 .adjust_tsc_offset = svm_adjust_tsc_offset,
4395 .compute_tsc_offset = svm_compute_tsc_offset,
4396 .read_l1_tsc = svm_read_l1_tsc,
4397
4398 .set_tdp_cr3 = set_tdp_cr3,
4399
4400 .check_intercept = svm_check_intercept,
4401 .handle_external_intr = svm_handle_external_intr,
4402 };
4403
4404 static int __init svm_init(void)
4405 {
4406 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4407 __alignof__(struct vcpu_svm), THIS_MODULE);
4408 }
4409
4410 static void __exit svm_exit(void)
4411 {
4412 kvm_exit();
4413 }
4414
4415 module_init(svm_init)
4416 module_exit(svm_exit)
This page took 0.381621 seconds and 5 git commands to generate.