Merge branch 'for-rmk/samsung3' of git://git.fluff.org/bjdooks/linux into devel-stable
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <trace/events/kvm.h>
42 #undef TRACE_INCLUDE_FILE
43 #define CREATE_TRACE_POINTS
44 #include "trace.h"
45
46 #include <asm/debugreg.h>
47 #include <asm/uaccess.h>
48 #include <asm/msr.h>
49 #include <asm/desc.h>
50 #include <asm/mtrr.h>
51 #include <asm/mce.h>
52
53 #define MAX_IO_MSRS 256
54 #define CR0_RESERVED_BITS \
55 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
56 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
57 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
58 #define CR4_RESERVED_BITS \
59 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
60 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
61 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
62 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
63
64 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
65
66 #define KVM_MAX_MCE_BANKS 32
67 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
68
69 /* EFER defaults:
70 * - enable syscall per default because its emulated by KVM
71 * - enable LME and LMA per default on 64 bit KVM
72 */
73 #ifdef CONFIG_X86_64
74 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
75 #else
76 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
77 #endif
78
79 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
80 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
81
82 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
83 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
84 struct kvm_cpuid_entry2 __user *entries);
85
86 struct kvm_x86_ops *kvm_x86_ops;
87 EXPORT_SYMBOL_GPL(kvm_x86_ops);
88
89 int ignore_msrs = 0;
90 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
91
92 #define KVM_NR_SHARED_MSRS 16
93
94 struct kvm_shared_msrs_global {
95 int nr;
96 struct kvm_shared_msr {
97 u32 msr;
98 u64 value;
99 } msrs[KVM_NR_SHARED_MSRS];
100 };
101
102 struct kvm_shared_msrs {
103 struct user_return_notifier urn;
104 bool registered;
105 u64 current_value[KVM_NR_SHARED_MSRS];
106 };
107
108 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
109 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
110
111 struct kvm_stats_debugfs_item debugfs_entries[] = {
112 { "pf_fixed", VCPU_STAT(pf_fixed) },
113 { "pf_guest", VCPU_STAT(pf_guest) },
114 { "tlb_flush", VCPU_STAT(tlb_flush) },
115 { "invlpg", VCPU_STAT(invlpg) },
116 { "exits", VCPU_STAT(exits) },
117 { "io_exits", VCPU_STAT(io_exits) },
118 { "mmio_exits", VCPU_STAT(mmio_exits) },
119 { "signal_exits", VCPU_STAT(signal_exits) },
120 { "irq_window", VCPU_STAT(irq_window_exits) },
121 { "nmi_window", VCPU_STAT(nmi_window_exits) },
122 { "halt_exits", VCPU_STAT(halt_exits) },
123 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
124 { "hypercalls", VCPU_STAT(hypercalls) },
125 { "request_irq", VCPU_STAT(request_irq_exits) },
126 { "irq_exits", VCPU_STAT(irq_exits) },
127 { "host_state_reload", VCPU_STAT(host_state_reload) },
128 { "efer_reload", VCPU_STAT(efer_reload) },
129 { "fpu_reload", VCPU_STAT(fpu_reload) },
130 { "insn_emulation", VCPU_STAT(insn_emulation) },
131 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
132 { "irq_injections", VCPU_STAT(irq_injections) },
133 { "nmi_injections", VCPU_STAT(nmi_injections) },
134 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
135 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
136 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
137 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
138 { "mmu_flooded", VM_STAT(mmu_flooded) },
139 { "mmu_recycled", VM_STAT(mmu_recycled) },
140 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
141 { "mmu_unsync", VM_STAT(mmu_unsync) },
142 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
143 { "largepages", VM_STAT(lpages) },
144 { NULL }
145 };
146
147 static void kvm_on_user_return(struct user_return_notifier *urn)
148 {
149 unsigned slot;
150 struct kvm_shared_msr *global;
151 struct kvm_shared_msrs *locals
152 = container_of(urn, struct kvm_shared_msrs, urn);
153
154 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
155 global = &shared_msrs_global.msrs[slot];
156 if (global->value != locals->current_value[slot]) {
157 wrmsrl(global->msr, global->value);
158 locals->current_value[slot] = global->value;
159 }
160 }
161 locals->registered = false;
162 user_return_notifier_unregister(urn);
163 }
164
165 void kvm_define_shared_msr(unsigned slot, u32 msr)
166 {
167 int cpu;
168 u64 value;
169
170 if (slot >= shared_msrs_global.nr)
171 shared_msrs_global.nr = slot + 1;
172 shared_msrs_global.msrs[slot].msr = msr;
173 rdmsrl_safe(msr, &value);
174 shared_msrs_global.msrs[slot].value = value;
175 for_each_online_cpu(cpu)
176 per_cpu(shared_msrs, cpu).current_value[slot] = value;
177 }
178 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
179
180 static void kvm_shared_msr_cpu_online(void)
181 {
182 unsigned i;
183 struct kvm_shared_msrs *locals = &__get_cpu_var(shared_msrs);
184
185 for (i = 0; i < shared_msrs_global.nr; ++i)
186 locals->current_value[i] = shared_msrs_global.msrs[i].value;
187 }
188
189 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
190 {
191 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
192
193 if (((value ^ smsr->current_value[slot]) & mask) == 0)
194 return;
195 smsr->current_value[slot] = value;
196 wrmsrl(shared_msrs_global.msrs[slot].msr, value);
197 if (!smsr->registered) {
198 smsr->urn.on_user_return = kvm_on_user_return;
199 user_return_notifier_register(&smsr->urn);
200 smsr->registered = true;
201 }
202 }
203 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
204
205 static void drop_user_return_notifiers(void *ignore)
206 {
207 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
208
209 if (smsr->registered)
210 kvm_on_user_return(&smsr->urn);
211 }
212
213 unsigned long segment_base(u16 selector)
214 {
215 struct descriptor_table gdt;
216 struct desc_struct *d;
217 unsigned long table_base;
218 unsigned long v;
219
220 if (selector == 0)
221 return 0;
222
223 kvm_get_gdt(&gdt);
224 table_base = gdt.base;
225
226 if (selector & 4) { /* from ldt */
227 u16 ldt_selector = kvm_read_ldt();
228
229 table_base = segment_base(ldt_selector);
230 }
231 d = (struct desc_struct *)(table_base + (selector & ~7));
232 v = get_desc_base(d);
233 #ifdef CONFIG_X86_64
234 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
235 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
236 #endif
237 return v;
238 }
239 EXPORT_SYMBOL_GPL(segment_base);
240
241 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
242 {
243 if (irqchip_in_kernel(vcpu->kvm))
244 return vcpu->arch.apic_base;
245 else
246 return vcpu->arch.apic_base;
247 }
248 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
249
250 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
251 {
252 /* TODO: reserve bits check */
253 if (irqchip_in_kernel(vcpu->kvm))
254 kvm_lapic_set_base(vcpu, data);
255 else
256 vcpu->arch.apic_base = data;
257 }
258 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
259
260 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
261 {
262 WARN_ON(vcpu->arch.exception.pending);
263 vcpu->arch.exception.pending = true;
264 vcpu->arch.exception.has_error_code = false;
265 vcpu->arch.exception.nr = nr;
266 }
267 EXPORT_SYMBOL_GPL(kvm_queue_exception);
268
269 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
270 u32 error_code)
271 {
272 ++vcpu->stat.pf_guest;
273
274 if (vcpu->arch.exception.pending) {
275 switch(vcpu->arch.exception.nr) {
276 case DF_VECTOR:
277 /* triple fault -> shutdown */
278 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
279 return;
280 case PF_VECTOR:
281 vcpu->arch.exception.nr = DF_VECTOR;
282 vcpu->arch.exception.error_code = 0;
283 return;
284 default:
285 /* replace previous exception with a new one in a hope
286 that instruction re-execution will regenerate lost
287 exception */
288 vcpu->arch.exception.pending = false;
289 break;
290 }
291 }
292 vcpu->arch.cr2 = addr;
293 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
294 }
295
296 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
297 {
298 vcpu->arch.nmi_pending = 1;
299 }
300 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
301
302 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
303 {
304 WARN_ON(vcpu->arch.exception.pending);
305 vcpu->arch.exception.pending = true;
306 vcpu->arch.exception.has_error_code = true;
307 vcpu->arch.exception.nr = nr;
308 vcpu->arch.exception.error_code = error_code;
309 }
310 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
311
312 /*
313 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
314 * a #GP and return false.
315 */
316 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
317 {
318 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
319 return true;
320 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
321 return false;
322 }
323 EXPORT_SYMBOL_GPL(kvm_require_cpl);
324
325 /*
326 * Load the pae pdptrs. Return true is they are all valid.
327 */
328 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
329 {
330 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
331 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
332 int i;
333 int ret;
334 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
335
336 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
337 offset * sizeof(u64), sizeof(pdpte));
338 if (ret < 0) {
339 ret = 0;
340 goto out;
341 }
342 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
343 if (is_present_gpte(pdpte[i]) &&
344 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
345 ret = 0;
346 goto out;
347 }
348 }
349 ret = 1;
350
351 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
352 __set_bit(VCPU_EXREG_PDPTR,
353 (unsigned long *)&vcpu->arch.regs_avail);
354 __set_bit(VCPU_EXREG_PDPTR,
355 (unsigned long *)&vcpu->arch.regs_dirty);
356 out:
357
358 return ret;
359 }
360 EXPORT_SYMBOL_GPL(load_pdptrs);
361
362 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
363 {
364 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
365 bool changed = true;
366 int r;
367
368 if (is_long_mode(vcpu) || !is_pae(vcpu))
369 return false;
370
371 if (!test_bit(VCPU_EXREG_PDPTR,
372 (unsigned long *)&vcpu->arch.regs_avail))
373 return true;
374
375 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
376 if (r < 0)
377 goto out;
378 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
379 out:
380
381 return changed;
382 }
383
384 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
385 {
386 if (cr0 & CR0_RESERVED_BITS) {
387 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
388 cr0, vcpu->arch.cr0);
389 kvm_inject_gp(vcpu, 0);
390 return;
391 }
392
393 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
394 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
395 kvm_inject_gp(vcpu, 0);
396 return;
397 }
398
399 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
400 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
401 "and a clear PE flag\n");
402 kvm_inject_gp(vcpu, 0);
403 return;
404 }
405
406 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
407 #ifdef CONFIG_X86_64
408 if ((vcpu->arch.shadow_efer & EFER_LME)) {
409 int cs_db, cs_l;
410
411 if (!is_pae(vcpu)) {
412 printk(KERN_DEBUG "set_cr0: #GP, start paging "
413 "in long mode while PAE is disabled\n");
414 kvm_inject_gp(vcpu, 0);
415 return;
416 }
417 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
418 if (cs_l) {
419 printk(KERN_DEBUG "set_cr0: #GP, start paging "
420 "in long mode while CS.L == 1\n");
421 kvm_inject_gp(vcpu, 0);
422 return;
423
424 }
425 } else
426 #endif
427 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
428 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
429 "reserved bits\n");
430 kvm_inject_gp(vcpu, 0);
431 return;
432 }
433
434 }
435
436 kvm_x86_ops->set_cr0(vcpu, cr0);
437 vcpu->arch.cr0 = cr0;
438
439 kvm_mmu_reset_context(vcpu);
440 return;
441 }
442 EXPORT_SYMBOL_GPL(kvm_set_cr0);
443
444 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
445 {
446 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
447 }
448 EXPORT_SYMBOL_GPL(kvm_lmsw);
449
450 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
451 {
452 unsigned long old_cr4 = vcpu->arch.cr4;
453 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
454
455 if (cr4 & CR4_RESERVED_BITS) {
456 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
457 kvm_inject_gp(vcpu, 0);
458 return;
459 }
460
461 if (is_long_mode(vcpu)) {
462 if (!(cr4 & X86_CR4_PAE)) {
463 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
464 "in long mode\n");
465 kvm_inject_gp(vcpu, 0);
466 return;
467 }
468 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
469 && ((cr4 ^ old_cr4) & pdptr_bits)
470 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
471 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
472 kvm_inject_gp(vcpu, 0);
473 return;
474 }
475
476 if (cr4 & X86_CR4_VMXE) {
477 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
478 kvm_inject_gp(vcpu, 0);
479 return;
480 }
481 kvm_x86_ops->set_cr4(vcpu, cr4);
482 vcpu->arch.cr4 = cr4;
483 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
484 kvm_mmu_reset_context(vcpu);
485 }
486 EXPORT_SYMBOL_GPL(kvm_set_cr4);
487
488 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
489 {
490 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
491 kvm_mmu_sync_roots(vcpu);
492 kvm_mmu_flush_tlb(vcpu);
493 return;
494 }
495
496 if (is_long_mode(vcpu)) {
497 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
498 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
499 kvm_inject_gp(vcpu, 0);
500 return;
501 }
502 } else {
503 if (is_pae(vcpu)) {
504 if (cr3 & CR3_PAE_RESERVED_BITS) {
505 printk(KERN_DEBUG
506 "set_cr3: #GP, reserved bits\n");
507 kvm_inject_gp(vcpu, 0);
508 return;
509 }
510 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
511 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
512 "reserved bits\n");
513 kvm_inject_gp(vcpu, 0);
514 return;
515 }
516 }
517 /*
518 * We don't check reserved bits in nonpae mode, because
519 * this isn't enforced, and VMware depends on this.
520 */
521 }
522
523 /*
524 * Does the new cr3 value map to physical memory? (Note, we
525 * catch an invalid cr3 even in real-mode, because it would
526 * cause trouble later on when we turn on paging anyway.)
527 *
528 * A real CPU would silently accept an invalid cr3 and would
529 * attempt to use it - with largely undefined (and often hard
530 * to debug) behavior on the guest side.
531 */
532 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
533 kvm_inject_gp(vcpu, 0);
534 else {
535 vcpu->arch.cr3 = cr3;
536 vcpu->arch.mmu.new_cr3(vcpu);
537 }
538 }
539 EXPORT_SYMBOL_GPL(kvm_set_cr3);
540
541 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
542 {
543 if (cr8 & CR8_RESERVED_BITS) {
544 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
545 kvm_inject_gp(vcpu, 0);
546 return;
547 }
548 if (irqchip_in_kernel(vcpu->kvm))
549 kvm_lapic_set_tpr(vcpu, cr8);
550 else
551 vcpu->arch.cr8 = cr8;
552 }
553 EXPORT_SYMBOL_GPL(kvm_set_cr8);
554
555 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
556 {
557 if (irqchip_in_kernel(vcpu->kvm))
558 return kvm_lapic_get_cr8(vcpu);
559 else
560 return vcpu->arch.cr8;
561 }
562 EXPORT_SYMBOL_GPL(kvm_get_cr8);
563
564 static inline u32 bit(int bitno)
565 {
566 return 1 << (bitno & 31);
567 }
568
569 /*
570 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
571 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
572 *
573 * This list is modified at module load time to reflect the
574 * capabilities of the host cpu. This capabilities test skips MSRs that are
575 * kvm-specific. Those are put in the beginning of the list.
576 */
577
578 #define KVM_SAVE_MSRS_BEGIN 2
579 static u32 msrs_to_save[] = {
580 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
581 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
582 MSR_K6_STAR,
583 #ifdef CONFIG_X86_64
584 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
585 #endif
586 MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
587 };
588
589 static unsigned num_msrs_to_save;
590
591 static u32 emulated_msrs[] = {
592 MSR_IA32_MISC_ENABLE,
593 };
594
595 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
596 {
597 if (efer & efer_reserved_bits) {
598 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
599 efer);
600 kvm_inject_gp(vcpu, 0);
601 return;
602 }
603
604 if (is_paging(vcpu)
605 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
606 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
607 kvm_inject_gp(vcpu, 0);
608 return;
609 }
610
611 if (efer & EFER_FFXSR) {
612 struct kvm_cpuid_entry2 *feat;
613
614 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
615 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
616 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
617 kvm_inject_gp(vcpu, 0);
618 return;
619 }
620 }
621
622 if (efer & EFER_SVME) {
623 struct kvm_cpuid_entry2 *feat;
624
625 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
626 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
627 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
628 kvm_inject_gp(vcpu, 0);
629 return;
630 }
631 }
632
633 kvm_x86_ops->set_efer(vcpu, efer);
634
635 efer &= ~EFER_LMA;
636 efer |= vcpu->arch.shadow_efer & EFER_LMA;
637
638 vcpu->arch.shadow_efer = efer;
639
640 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
641 kvm_mmu_reset_context(vcpu);
642 }
643
644 void kvm_enable_efer_bits(u64 mask)
645 {
646 efer_reserved_bits &= ~mask;
647 }
648 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
649
650
651 /*
652 * Writes msr value into into the appropriate "register".
653 * Returns 0 on success, non-0 otherwise.
654 * Assumes vcpu_load() was already called.
655 */
656 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
657 {
658 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
659 }
660
661 /*
662 * Adapt set_msr() to msr_io()'s calling convention
663 */
664 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
665 {
666 return kvm_set_msr(vcpu, index, *data);
667 }
668
669 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
670 {
671 static int version;
672 struct pvclock_wall_clock wc;
673 struct timespec now, sys, boot;
674
675 if (!wall_clock)
676 return;
677
678 version++;
679
680 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
681
682 /*
683 * The guest calculates current wall clock time by adding
684 * system time (updated by kvm_write_guest_time below) to the
685 * wall clock specified here. guest system time equals host
686 * system time for us, thus we must fill in host boot time here.
687 */
688 now = current_kernel_time();
689 ktime_get_ts(&sys);
690 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
691
692 wc.sec = boot.tv_sec;
693 wc.nsec = boot.tv_nsec;
694 wc.version = version;
695
696 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
697
698 version++;
699 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
700 }
701
702 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
703 {
704 uint32_t quotient, remainder;
705
706 /* Don't try to replace with do_div(), this one calculates
707 * "(dividend << 32) / divisor" */
708 __asm__ ( "divl %4"
709 : "=a" (quotient), "=d" (remainder)
710 : "0" (0), "1" (dividend), "r" (divisor) );
711 return quotient;
712 }
713
714 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
715 {
716 uint64_t nsecs = 1000000000LL;
717 int32_t shift = 0;
718 uint64_t tps64;
719 uint32_t tps32;
720
721 tps64 = tsc_khz * 1000LL;
722 while (tps64 > nsecs*2) {
723 tps64 >>= 1;
724 shift--;
725 }
726
727 tps32 = (uint32_t)tps64;
728 while (tps32 <= (uint32_t)nsecs) {
729 tps32 <<= 1;
730 shift++;
731 }
732
733 hv_clock->tsc_shift = shift;
734 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
735
736 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
737 __func__, tsc_khz, hv_clock->tsc_shift,
738 hv_clock->tsc_to_system_mul);
739 }
740
741 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
742
743 static void kvm_write_guest_time(struct kvm_vcpu *v)
744 {
745 struct timespec ts;
746 unsigned long flags;
747 struct kvm_vcpu_arch *vcpu = &v->arch;
748 void *shared_kaddr;
749 unsigned long this_tsc_khz;
750
751 if ((!vcpu->time_page))
752 return;
753
754 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
755 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
756 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
757 vcpu->hv_clock_tsc_khz = this_tsc_khz;
758 }
759 put_cpu_var(cpu_tsc_khz);
760
761 /* Keep irq disabled to prevent changes to the clock */
762 local_irq_save(flags);
763 kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
764 ktime_get_ts(&ts);
765 local_irq_restore(flags);
766
767 /* With all the info we got, fill in the values */
768
769 vcpu->hv_clock.system_time = ts.tv_nsec +
770 (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
771
772 /*
773 * The interface expects us to write an even number signaling that the
774 * update is finished. Since the guest won't see the intermediate
775 * state, we just increase by 2 at the end.
776 */
777 vcpu->hv_clock.version += 2;
778
779 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
780
781 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
782 sizeof(vcpu->hv_clock));
783
784 kunmap_atomic(shared_kaddr, KM_USER0);
785
786 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
787 }
788
789 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
790 {
791 struct kvm_vcpu_arch *vcpu = &v->arch;
792
793 if (!vcpu->time_page)
794 return 0;
795 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
796 return 1;
797 }
798
799 static bool msr_mtrr_valid(unsigned msr)
800 {
801 switch (msr) {
802 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
803 case MSR_MTRRfix64K_00000:
804 case MSR_MTRRfix16K_80000:
805 case MSR_MTRRfix16K_A0000:
806 case MSR_MTRRfix4K_C0000:
807 case MSR_MTRRfix4K_C8000:
808 case MSR_MTRRfix4K_D0000:
809 case MSR_MTRRfix4K_D8000:
810 case MSR_MTRRfix4K_E0000:
811 case MSR_MTRRfix4K_E8000:
812 case MSR_MTRRfix4K_F0000:
813 case MSR_MTRRfix4K_F8000:
814 case MSR_MTRRdefType:
815 case MSR_IA32_CR_PAT:
816 return true;
817 case 0x2f8:
818 return true;
819 }
820 return false;
821 }
822
823 static bool valid_pat_type(unsigned t)
824 {
825 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
826 }
827
828 static bool valid_mtrr_type(unsigned t)
829 {
830 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
831 }
832
833 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
834 {
835 int i;
836
837 if (!msr_mtrr_valid(msr))
838 return false;
839
840 if (msr == MSR_IA32_CR_PAT) {
841 for (i = 0; i < 8; i++)
842 if (!valid_pat_type((data >> (i * 8)) & 0xff))
843 return false;
844 return true;
845 } else if (msr == MSR_MTRRdefType) {
846 if (data & ~0xcff)
847 return false;
848 return valid_mtrr_type(data & 0xff);
849 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
850 for (i = 0; i < 8 ; i++)
851 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
852 return false;
853 return true;
854 }
855
856 /* variable MTRRs */
857 return valid_mtrr_type(data & 0xff);
858 }
859
860 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
861 {
862 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
863
864 if (!mtrr_valid(vcpu, msr, data))
865 return 1;
866
867 if (msr == MSR_MTRRdefType) {
868 vcpu->arch.mtrr_state.def_type = data;
869 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
870 } else if (msr == MSR_MTRRfix64K_00000)
871 p[0] = data;
872 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
873 p[1 + msr - MSR_MTRRfix16K_80000] = data;
874 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
875 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
876 else if (msr == MSR_IA32_CR_PAT)
877 vcpu->arch.pat = data;
878 else { /* Variable MTRRs */
879 int idx, is_mtrr_mask;
880 u64 *pt;
881
882 idx = (msr - 0x200) / 2;
883 is_mtrr_mask = msr - 0x200 - 2 * idx;
884 if (!is_mtrr_mask)
885 pt =
886 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
887 else
888 pt =
889 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
890 *pt = data;
891 }
892
893 kvm_mmu_reset_context(vcpu);
894 return 0;
895 }
896
897 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
898 {
899 u64 mcg_cap = vcpu->arch.mcg_cap;
900 unsigned bank_num = mcg_cap & 0xff;
901
902 switch (msr) {
903 case MSR_IA32_MCG_STATUS:
904 vcpu->arch.mcg_status = data;
905 break;
906 case MSR_IA32_MCG_CTL:
907 if (!(mcg_cap & MCG_CTL_P))
908 return 1;
909 if (data != 0 && data != ~(u64)0)
910 return -1;
911 vcpu->arch.mcg_ctl = data;
912 break;
913 default:
914 if (msr >= MSR_IA32_MC0_CTL &&
915 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
916 u32 offset = msr - MSR_IA32_MC0_CTL;
917 /* only 0 or all 1s can be written to IA32_MCi_CTL */
918 if ((offset & 0x3) == 0 &&
919 data != 0 && data != ~(u64)0)
920 return -1;
921 vcpu->arch.mce_banks[offset] = data;
922 break;
923 }
924 return 1;
925 }
926 return 0;
927 }
928
929 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
930 {
931 struct kvm *kvm = vcpu->kvm;
932 int lm = is_long_mode(vcpu);
933 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
934 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
935 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
936 : kvm->arch.xen_hvm_config.blob_size_32;
937 u32 page_num = data & ~PAGE_MASK;
938 u64 page_addr = data & PAGE_MASK;
939 u8 *page;
940 int r;
941
942 r = -E2BIG;
943 if (page_num >= blob_size)
944 goto out;
945 r = -ENOMEM;
946 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
947 if (!page)
948 goto out;
949 r = -EFAULT;
950 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
951 goto out_free;
952 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
953 goto out_free;
954 r = 0;
955 out_free:
956 kfree(page);
957 out:
958 return r;
959 }
960
961 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
962 {
963 switch (msr) {
964 case MSR_EFER:
965 set_efer(vcpu, data);
966 break;
967 case MSR_K7_HWCR:
968 data &= ~(u64)0x40; /* ignore flush filter disable */
969 if (data != 0) {
970 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
971 data);
972 return 1;
973 }
974 break;
975 case MSR_FAM10H_MMIO_CONF_BASE:
976 if (data != 0) {
977 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
978 "0x%llx\n", data);
979 return 1;
980 }
981 break;
982 case MSR_AMD64_NB_CFG:
983 break;
984 case MSR_IA32_DEBUGCTLMSR:
985 if (!data) {
986 /* We support the non-activated case already */
987 break;
988 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
989 /* Values other than LBR and BTF are vendor-specific,
990 thus reserved and should throw a #GP */
991 return 1;
992 }
993 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
994 __func__, data);
995 break;
996 case MSR_IA32_UCODE_REV:
997 case MSR_IA32_UCODE_WRITE:
998 case MSR_VM_HSAVE_PA:
999 case MSR_AMD64_PATCH_LOADER:
1000 break;
1001 case 0x200 ... 0x2ff:
1002 return set_msr_mtrr(vcpu, msr, data);
1003 case MSR_IA32_APICBASE:
1004 kvm_set_apic_base(vcpu, data);
1005 break;
1006 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1007 return kvm_x2apic_msr_write(vcpu, msr, data);
1008 case MSR_IA32_MISC_ENABLE:
1009 vcpu->arch.ia32_misc_enable_msr = data;
1010 break;
1011 case MSR_KVM_WALL_CLOCK:
1012 vcpu->kvm->arch.wall_clock = data;
1013 kvm_write_wall_clock(vcpu->kvm, data);
1014 break;
1015 case MSR_KVM_SYSTEM_TIME: {
1016 if (vcpu->arch.time_page) {
1017 kvm_release_page_dirty(vcpu->arch.time_page);
1018 vcpu->arch.time_page = NULL;
1019 }
1020
1021 vcpu->arch.time = data;
1022
1023 /* we verify if the enable bit is set... */
1024 if (!(data & 1))
1025 break;
1026
1027 /* ...but clean it before doing the actual write */
1028 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1029
1030 vcpu->arch.time_page =
1031 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1032
1033 if (is_error_page(vcpu->arch.time_page)) {
1034 kvm_release_page_clean(vcpu->arch.time_page);
1035 vcpu->arch.time_page = NULL;
1036 }
1037
1038 kvm_request_guest_time_update(vcpu);
1039 break;
1040 }
1041 case MSR_IA32_MCG_CTL:
1042 case MSR_IA32_MCG_STATUS:
1043 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1044 return set_msr_mce(vcpu, msr, data);
1045
1046 /* Performance counters are not protected by a CPUID bit,
1047 * so we should check all of them in the generic path for the sake of
1048 * cross vendor migration.
1049 * Writing a zero into the event select MSRs disables them,
1050 * which we perfectly emulate ;-). Any other value should be at least
1051 * reported, some guests depend on them.
1052 */
1053 case MSR_P6_EVNTSEL0:
1054 case MSR_P6_EVNTSEL1:
1055 case MSR_K7_EVNTSEL0:
1056 case MSR_K7_EVNTSEL1:
1057 case MSR_K7_EVNTSEL2:
1058 case MSR_K7_EVNTSEL3:
1059 if (data != 0)
1060 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1061 "0x%x data 0x%llx\n", msr, data);
1062 break;
1063 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1064 * so we ignore writes to make it happy.
1065 */
1066 case MSR_P6_PERFCTR0:
1067 case MSR_P6_PERFCTR1:
1068 case MSR_K7_PERFCTR0:
1069 case MSR_K7_PERFCTR1:
1070 case MSR_K7_PERFCTR2:
1071 case MSR_K7_PERFCTR3:
1072 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1073 "0x%x data 0x%llx\n", msr, data);
1074 break;
1075 default:
1076 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1077 return xen_hvm_config(vcpu, data);
1078 if (!ignore_msrs) {
1079 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1080 msr, data);
1081 return 1;
1082 } else {
1083 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1084 msr, data);
1085 break;
1086 }
1087 }
1088 return 0;
1089 }
1090 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1091
1092
1093 /*
1094 * Reads an msr value (of 'msr_index') into 'pdata'.
1095 * Returns 0 on success, non-0 otherwise.
1096 * Assumes vcpu_load() was already called.
1097 */
1098 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1099 {
1100 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1101 }
1102
1103 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1104 {
1105 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1106
1107 if (!msr_mtrr_valid(msr))
1108 return 1;
1109
1110 if (msr == MSR_MTRRdefType)
1111 *pdata = vcpu->arch.mtrr_state.def_type +
1112 (vcpu->arch.mtrr_state.enabled << 10);
1113 else if (msr == MSR_MTRRfix64K_00000)
1114 *pdata = p[0];
1115 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1116 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1117 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1118 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1119 else if (msr == MSR_IA32_CR_PAT)
1120 *pdata = vcpu->arch.pat;
1121 else { /* Variable MTRRs */
1122 int idx, is_mtrr_mask;
1123 u64 *pt;
1124
1125 idx = (msr - 0x200) / 2;
1126 is_mtrr_mask = msr - 0x200 - 2 * idx;
1127 if (!is_mtrr_mask)
1128 pt =
1129 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1130 else
1131 pt =
1132 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1133 *pdata = *pt;
1134 }
1135
1136 return 0;
1137 }
1138
1139 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1140 {
1141 u64 data;
1142 u64 mcg_cap = vcpu->arch.mcg_cap;
1143 unsigned bank_num = mcg_cap & 0xff;
1144
1145 switch (msr) {
1146 case MSR_IA32_P5_MC_ADDR:
1147 case MSR_IA32_P5_MC_TYPE:
1148 data = 0;
1149 break;
1150 case MSR_IA32_MCG_CAP:
1151 data = vcpu->arch.mcg_cap;
1152 break;
1153 case MSR_IA32_MCG_CTL:
1154 if (!(mcg_cap & MCG_CTL_P))
1155 return 1;
1156 data = vcpu->arch.mcg_ctl;
1157 break;
1158 case MSR_IA32_MCG_STATUS:
1159 data = vcpu->arch.mcg_status;
1160 break;
1161 default:
1162 if (msr >= MSR_IA32_MC0_CTL &&
1163 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1164 u32 offset = msr - MSR_IA32_MC0_CTL;
1165 data = vcpu->arch.mce_banks[offset];
1166 break;
1167 }
1168 return 1;
1169 }
1170 *pdata = data;
1171 return 0;
1172 }
1173
1174 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1175 {
1176 u64 data;
1177
1178 switch (msr) {
1179 case MSR_IA32_PLATFORM_ID:
1180 case MSR_IA32_UCODE_REV:
1181 case MSR_IA32_EBL_CR_POWERON:
1182 case MSR_IA32_DEBUGCTLMSR:
1183 case MSR_IA32_LASTBRANCHFROMIP:
1184 case MSR_IA32_LASTBRANCHTOIP:
1185 case MSR_IA32_LASTINTFROMIP:
1186 case MSR_IA32_LASTINTTOIP:
1187 case MSR_K8_SYSCFG:
1188 case MSR_K7_HWCR:
1189 case MSR_VM_HSAVE_PA:
1190 case MSR_P6_PERFCTR0:
1191 case MSR_P6_PERFCTR1:
1192 case MSR_P6_EVNTSEL0:
1193 case MSR_P6_EVNTSEL1:
1194 case MSR_K7_EVNTSEL0:
1195 case MSR_K7_PERFCTR0:
1196 case MSR_K8_INT_PENDING_MSG:
1197 case MSR_AMD64_NB_CFG:
1198 case MSR_FAM10H_MMIO_CONF_BASE:
1199 data = 0;
1200 break;
1201 case MSR_MTRRcap:
1202 data = 0x500 | KVM_NR_VAR_MTRR;
1203 break;
1204 case 0x200 ... 0x2ff:
1205 return get_msr_mtrr(vcpu, msr, pdata);
1206 case 0xcd: /* fsb frequency */
1207 data = 3;
1208 break;
1209 case MSR_IA32_APICBASE:
1210 data = kvm_get_apic_base(vcpu);
1211 break;
1212 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1213 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1214 break;
1215 case MSR_IA32_MISC_ENABLE:
1216 data = vcpu->arch.ia32_misc_enable_msr;
1217 break;
1218 case MSR_IA32_PERF_STATUS:
1219 /* TSC increment by tick */
1220 data = 1000ULL;
1221 /* CPU multiplier */
1222 data |= (((uint64_t)4ULL) << 40);
1223 break;
1224 case MSR_EFER:
1225 data = vcpu->arch.shadow_efer;
1226 break;
1227 case MSR_KVM_WALL_CLOCK:
1228 data = vcpu->kvm->arch.wall_clock;
1229 break;
1230 case MSR_KVM_SYSTEM_TIME:
1231 data = vcpu->arch.time;
1232 break;
1233 case MSR_IA32_P5_MC_ADDR:
1234 case MSR_IA32_P5_MC_TYPE:
1235 case MSR_IA32_MCG_CAP:
1236 case MSR_IA32_MCG_CTL:
1237 case MSR_IA32_MCG_STATUS:
1238 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1239 return get_msr_mce(vcpu, msr, pdata);
1240 default:
1241 if (!ignore_msrs) {
1242 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1243 return 1;
1244 } else {
1245 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1246 data = 0;
1247 }
1248 break;
1249 }
1250 *pdata = data;
1251 return 0;
1252 }
1253 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1254
1255 /*
1256 * Read or write a bunch of msrs. All parameters are kernel addresses.
1257 *
1258 * @return number of msrs set successfully.
1259 */
1260 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1261 struct kvm_msr_entry *entries,
1262 int (*do_msr)(struct kvm_vcpu *vcpu,
1263 unsigned index, u64 *data))
1264 {
1265 int i;
1266
1267 vcpu_load(vcpu);
1268
1269 down_read(&vcpu->kvm->slots_lock);
1270 for (i = 0; i < msrs->nmsrs; ++i)
1271 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1272 break;
1273 up_read(&vcpu->kvm->slots_lock);
1274
1275 vcpu_put(vcpu);
1276
1277 return i;
1278 }
1279
1280 /*
1281 * Read or write a bunch of msrs. Parameters are user addresses.
1282 *
1283 * @return number of msrs set successfully.
1284 */
1285 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1286 int (*do_msr)(struct kvm_vcpu *vcpu,
1287 unsigned index, u64 *data),
1288 int writeback)
1289 {
1290 struct kvm_msrs msrs;
1291 struct kvm_msr_entry *entries;
1292 int r, n;
1293 unsigned size;
1294
1295 r = -EFAULT;
1296 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1297 goto out;
1298
1299 r = -E2BIG;
1300 if (msrs.nmsrs >= MAX_IO_MSRS)
1301 goto out;
1302
1303 r = -ENOMEM;
1304 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1305 entries = vmalloc(size);
1306 if (!entries)
1307 goto out;
1308
1309 r = -EFAULT;
1310 if (copy_from_user(entries, user_msrs->entries, size))
1311 goto out_free;
1312
1313 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1314 if (r < 0)
1315 goto out_free;
1316
1317 r = -EFAULT;
1318 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1319 goto out_free;
1320
1321 r = n;
1322
1323 out_free:
1324 vfree(entries);
1325 out:
1326 return r;
1327 }
1328
1329 int kvm_dev_ioctl_check_extension(long ext)
1330 {
1331 int r;
1332
1333 switch (ext) {
1334 case KVM_CAP_IRQCHIP:
1335 case KVM_CAP_HLT:
1336 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1337 case KVM_CAP_SET_TSS_ADDR:
1338 case KVM_CAP_EXT_CPUID:
1339 case KVM_CAP_CLOCKSOURCE:
1340 case KVM_CAP_PIT:
1341 case KVM_CAP_NOP_IO_DELAY:
1342 case KVM_CAP_MP_STATE:
1343 case KVM_CAP_SYNC_MMU:
1344 case KVM_CAP_REINJECT_CONTROL:
1345 case KVM_CAP_IRQ_INJECT_STATUS:
1346 case KVM_CAP_ASSIGN_DEV_IRQ:
1347 case KVM_CAP_IRQFD:
1348 case KVM_CAP_IOEVENTFD:
1349 case KVM_CAP_PIT2:
1350 case KVM_CAP_PIT_STATE2:
1351 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1352 case KVM_CAP_XEN_HVM:
1353 case KVM_CAP_ADJUST_CLOCK:
1354 case KVM_CAP_VCPU_EVENTS:
1355 r = 1;
1356 break;
1357 case KVM_CAP_COALESCED_MMIO:
1358 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1359 break;
1360 case KVM_CAP_VAPIC:
1361 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1362 break;
1363 case KVM_CAP_NR_VCPUS:
1364 r = KVM_MAX_VCPUS;
1365 break;
1366 case KVM_CAP_NR_MEMSLOTS:
1367 r = KVM_MEMORY_SLOTS;
1368 break;
1369 case KVM_CAP_PV_MMU: /* obsolete */
1370 r = 0;
1371 break;
1372 case KVM_CAP_IOMMU:
1373 r = iommu_found();
1374 break;
1375 case KVM_CAP_MCE:
1376 r = KVM_MAX_MCE_BANKS;
1377 break;
1378 default:
1379 r = 0;
1380 break;
1381 }
1382 return r;
1383
1384 }
1385
1386 long kvm_arch_dev_ioctl(struct file *filp,
1387 unsigned int ioctl, unsigned long arg)
1388 {
1389 void __user *argp = (void __user *)arg;
1390 long r;
1391
1392 switch (ioctl) {
1393 case KVM_GET_MSR_INDEX_LIST: {
1394 struct kvm_msr_list __user *user_msr_list = argp;
1395 struct kvm_msr_list msr_list;
1396 unsigned n;
1397
1398 r = -EFAULT;
1399 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1400 goto out;
1401 n = msr_list.nmsrs;
1402 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1403 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1404 goto out;
1405 r = -E2BIG;
1406 if (n < msr_list.nmsrs)
1407 goto out;
1408 r = -EFAULT;
1409 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1410 num_msrs_to_save * sizeof(u32)))
1411 goto out;
1412 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1413 &emulated_msrs,
1414 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1415 goto out;
1416 r = 0;
1417 break;
1418 }
1419 case KVM_GET_SUPPORTED_CPUID: {
1420 struct kvm_cpuid2 __user *cpuid_arg = argp;
1421 struct kvm_cpuid2 cpuid;
1422
1423 r = -EFAULT;
1424 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1425 goto out;
1426 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1427 cpuid_arg->entries);
1428 if (r)
1429 goto out;
1430
1431 r = -EFAULT;
1432 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1433 goto out;
1434 r = 0;
1435 break;
1436 }
1437 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1438 u64 mce_cap;
1439
1440 mce_cap = KVM_MCE_CAP_SUPPORTED;
1441 r = -EFAULT;
1442 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1443 goto out;
1444 r = 0;
1445 break;
1446 }
1447 default:
1448 r = -EINVAL;
1449 }
1450 out:
1451 return r;
1452 }
1453
1454 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1455 {
1456 kvm_x86_ops->vcpu_load(vcpu, cpu);
1457 if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1458 unsigned long khz = cpufreq_quick_get(cpu);
1459 if (!khz)
1460 khz = tsc_khz;
1461 per_cpu(cpu_tsc_khz, cpu) = khz;
1462 }
1463 kvm_request_guest_time_update(vcpu);
1464 }
1465
1466 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1467 {
1468 kvm_x86_ops->vcpu_put(vcpu);
1469 kvm_put_guest_fpu(vcpu);
1470 }
1471
1472 static int is_efer_nx(void)
1473 {
1474 unsigned long long efer = 0;
1475
1476 rdmsrl_safe(MSR_EFER, &efer);
1477 return efer & EFER_NX;
1478 }
1479
1480 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1481 {
1482 int i;
1483 struct kvm_cpuid_entry2 *e, *entry;
1484
1485 entry = NULL;
1486 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1487 e = &vcpu->arch.cpuid_entries[i];
1488 if (e->function == 0x80000001) {
1489 entry = e;
1490 break;
1491 }
1492 }
1493 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1494 entry->edx &= ~(1 << 20);
1495 printk(KERN_INFO "kvm: guest NX capability removed\n");
1496 }
1497 }
1498
1499 /* when an old userspace process fills a new kernel module */
1500 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1501 struct kvm_cpuid *cpuid,
1502 struct kvm_cpuid_entry __user *entries)
1503 {
1504 int r, i;
1505 struct kvm_cpuid_entry *cpuid_entries;
1506
1507 r = -E2BIG;
1508 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1509 goto out;
1510 r = -ENOMEM;
1511 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1512 if (!cpuid_entries)
1513 goto out;
1514 r = -EFAULT;
1515 if (copy_from_user(cpuid_entries, entries,
1516 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1517 goto out_free;
1518 for (i = 0; i < cpuid->nent; i++) {
1519 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1520 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1521 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1522 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1523 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1524 vcpu->arch.cpuid_entries[i].index = 0;
1525 vcpu->arch.cpuid_entries[i].flags = 0;
1526 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1527 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1528 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1529 }
1530 vcpu->arch.cpuid_nent = cpuid->nent;
1531 cpuid_fix_nx_cap(vcpu);
1532 r = 0;
1533 kvm_apic_set_version(vcpu);
1534
1535 out_free:
1536 vfree(cpuid_entries);
1537 out:
1538 return r;
1539 }
1540
1541 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1542 struct kvm_cpuid2 *cpuid,
1543 struct kvm_cpuid_entry2 __user *entries)
1544 {
1545 int r;
1546
1547 r = -E2BIG;
1548 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1549 goto out;
1550 r = -EFAULT;
1551 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1552 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1553 goto out;
1554 vcpu->arch.cpuid_nent = cpuid->nent;
1555 kvm_apic_set_version(vcpu);
1556 return 0;
1557
1558 out:
1559 return r;
1560 }
1561
1562 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1563 struct kvm_cpuid2 *cpuid,
1564 struct kvm_cpuid_entry2 __user *entries)
1565 {
1566 int r;
1567
1568 r = -E2BIG;
1569 if (cpuid->nent < vcpu->arch.cpuid_nent)
1570 goto out;
1571 r = -EFAULT;
1572 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1573 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1574 goto out;
1575 return 0;
1576
1577 out:
1578 cpuid->nent = vcpu->arch.cpuid_nent;
1579 return r;
1580 }
1581
1582 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1583 u32 index)
1584 {
1585 entry->function = function;
1586 entry->index = index;
1587 cpuid_count(entry->function, entry->index,
1588 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1589 entry->flags = 0;
1590 }
1591
1592 #define F(x) bit(X86_FEATURE_##x)
1593
1594 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1595 u32 index, int *nent, int maxnent)
1596 {
1597 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1598 unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
1599 #ifdef CONFIG_X86_64
1600 unsigned f_lm = F(LM);
1601 #else
1602 unsigned f_lm = 0;
1603 #endif
1604
1605 /* cpuid 1.edx */
1606 const u32 kvm_supported_word0_x86_features =
1607 F(FPU) | F(VME) | F(DE) | F(PSE) |
1608 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1609 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1610 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1611 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1612 0 /* Reserved, DS, ACPI */ | F(MMX) |
1613 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1614 0 /* HTT, TM, Reserved, PBE */;
1615 /* cpuid 0x80000001.edx */
1616 const u32 kvm_supported_word1_x86_features =
1617 F(FPU) | F(VME) | F(DE) | F(PSE) |
1618 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1619 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1620 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1621 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1622 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1623 F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
1624 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1625 /* cpuid 1.ecx */
1626 const u32 kvm_supported_word4_x86_features =
1627 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1628 0 /* DS-CPL, VMX, SMX, EST */ |
1629 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1630 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1631 0 /* Reserved, DCA */ | F(XMM4_1) |
1632 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1633 0 /* Reserved, XSAVE, OSXSAVE */;
1634 /* cpuid 0x80000001.ecx */
1635 const u32 kvm_supported_word6_x86_features =
1636 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1637 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1638 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1639 0 /* SKINIT */ | 0 /* WDT */;
1640
1641 /* all calls to cpuid_count() should be made on the same cpu */
1642 get_cpu();
1643 do_cpuid_1_ent(entry, function, index);
1644 ++*nent;
1645
1646 switch (function) {
1647 case 0:
1648 entry->eax = min(entry->eax, (u32)0xb);
1649 break;
1650 case 1:
1651 entry->edx &= kvm_supported_word0_x86_features;
1652 entry->ecx &= kvm_supported_word4_x86_features;
1653 /* we support x2apic emulation even if host does not support
1654 * it since we emulate x2apic in software */
1655 entry->ecx |= F(X2APIC);
1656 break;
1657 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1658 * may return different values. This forces us to get_cpu() before
1659 * issuing the first command, and also to emulate this annoying behavior
1660 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1661 case 2: {
1662 int t, times = entry->eax & 0xff;
1663
1664 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1665 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1666 for (t = 1; t < times && *nent < maxnent; ++t) {
1667 do_cpuid_1_ent(&entry[t], function, 0);
1668 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1669 ++*nent;
1670 }
1671 break;
1672 }
1673 /* function 4 and 0xb have additional index. */
1674 case 4: {
1675 int i, cache_type;
1676
1677 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1678 /* read more entries until cache_type is zero */
1679 for (i = 1; *nent < maxnent; ++i) {
1680 cache_type = entry[i - 1].eax & 0x1f;
1681 if (!cache_type)
1682 break;
1683 do_cpuid_1_ent(&entry[i], function, i);
1684 entry[i].flags |=
1685 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1686 ++*nent;
1687 }
1688 break;
1689 }
1690 case 0xb: {
1691 int i, level_type;
1692
1693 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1694 /* read more entries until level_type is zero */
1695 for (i = 1; *nent < maxnent; ++i) {
1696 level_type = entry[i - 1].ecx & 0xff00;
1697 if (!level_type)
1698 break;
1699 do_cpuid_1_ent(&entry[i], function, i);
1700 entry[i].flags |=
1701 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1702 ++*nent;
1703 }
1704 break;
1705 }
1706 case 0x80000000:
1707 entry->eax = min(entry->eax, 0x8000001a);
1708 break;
1709 case 0x80000001:
1710 entry->edx &= kvm_supported_word1_x86_features;
1711 entry->ecx &= kvm_supported_word6_x86_features;
1712 break;
1713 }
1714 put_cpu();
1715 }
1716
1717 #undef F
1718
1719 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1720 struct kvm_cpuid_entry2 __user *entries)
1721 {
1722 struct kvm_cpuid_entry2 *cpuid_entries;
1723 int limit, nent = 0, r = -E2BIG;
1724 u32 func;
1725
1726 if (cpuid->nent < 1)
1727 goto out;
1728 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1729 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1730 r = -ENOMEM;
1731 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1732 if (!cpuid_entries)
1733 goto out;
1734
1735 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1736 limit = cpuid_entries[0].eax;
1737 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1738 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1739 &nent, cpuid->nent);
1740 r = -E2BIG;
1741 if (nent >= cpuid->nent)
1742 goto out_free;
1743
1744 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1745 limit = cpuid_entries[nent - 1].eax;
1746 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1747 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1748 &nent, cpuid->nent);
1749 r = -E2BIG;
1750 if (nent >= cpuid->nent)
1751 goto out_free;
1752
1753 r = -EFAULT;
1754 if (copy_to_user(entries, cpuid_entries,
1755 nent * sizeof(struct kvm_cpuid_entry2)))
1756 goto out_free;
1757 cpuid->nent = nent;
1758 r = 0;
1759
1760 out_free:
1761 vfree(cpuid_entries);
1762 out:
1763 return r;
1764 }
1765
1766 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1767 struct kvm_lapic_state *s)
1768 {
1769 vcpu_load(vcpu);
1770 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1771 vcpu_put(vcpu);
1772
1773 return 0;
1774 }
1775
1776 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1777 struct kvm_lapic_state *s)
1778 {
1779 vcpu_load(vcpu);
1780 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1781 kvm_apic_post_state_restore(vcpu);
1782 update_cr8_intercept(vcpu);
1783 vcpu_put(vcpu);
1784
1785 return 0;
1786 }
1787
1788 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1789 struct kvm_interrupt *irq)
1790 {
1791 if (irq->irq < 0 || irq->irq >= 256)
1792 return -EINVAL;
1793 if (irqchip_in_kernel(vcpu->kvm))
1794 return -ENXIO;
1795 vcpu_load(vcpu);
1796
1797 kvm_queue_interrupt(vcpu, irq->irq, false);
1798
1799 vcpu_put(vcpu);
1800
1801 return 0;
1802 }
1803
1804 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1805 {
1806 vcpu_load(vcpu);
1807 kvm_inject_nmi(vcpu);
1808 vcpu_put(vcpu);
1809
1810 return 0;
1811 }
1812
1813 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1814 struct kvm_tpr_access_ctl *tac)
1815 {
1816 if (tac->flags)
1817 return -EINVAL;
1818 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1819 return 0;
1820 }
1821
1822 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1823 u64 mcg_cap)
1824 {
1825 int r;
1826 unsigned bank_num = mcg_cap & 0xff, bank;
1827
1828 r = -EINVAL;
1829 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
1830 goto out;
1831 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1832 goto out;
1833 r = 0;
1834 vcpu->arch.mcg_cap = mcg_cap;
1835 /* Init IA32_MCG_CTL to all 1s */
1836 if (mcg_cap & MCG_CTL_P)
1837 vcpu->arch.mcg_ctl = ~(u64)0;
1838 /* Init IA32_MCi_CTL to all 1s */
1839 for (bank = 0; bank < bank_num; bank++)
1840 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1841 out:
1842 return r;
1843 }
1844
1845 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1846 struct kvm_x86_mce *mce)
1847 {
1848 u64 mcg_cap = vcpu->arch.mcg_cap;
1849 unsigned bank_num = mcg_cap & 0xff;
1850 u64 *banks = vcpu->arch.mce_banks;
1851
1852 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1853 return -EINVAL;
1854 /*
1855 * if IA32_MCG_CTL is not all 1s, the uncorrected error
1856 * reporting is disabled
1857 */
1858 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1859 vcpu->arch.mcg_ctl != ~(u64)0)
1860 return 0;
1861 banks += 4 * mce->bank;
1862 /*
1863 * if IA32_MCi_CTL is not all 1s, the uncorrected error
1864 * reporting is disabled for the bank
1865 */
1866 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1867 return 0;
1868 if (mce->status & MCI_STATUS_UC) {
1869 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1870 !(vcpu->arch.cr4 & X86_CR4_MCE)) {
1871 printk(KERN_DEBUG "kvm: set_mce: "
1872 "injects mce exception while "
1873 "previous one is in progress!\n");
1874 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1875 return 0;
1876 }
1877 if (banks[1] & MCI_STATUS_VAL)
1878 mce->status |= MCI_STATUS_OVER;
1879 banks[2] = mce->addr;
1880 banks[3] = mce->misc;
1881 vcpu->arch.mcg_status = mce->mcg_status;
1882 banks[1] = mce->status;
1883 kvm_queue_exception(vcpu, MC_VECTOR);
1884 } else if (!(banks[1] & MCI_STATUS_VAL)
1885 || !(banks[1] & MCI_STATUS_UC)) {
1886 if (banks[1] & MCI_STATUS_VAL)
1887 mce->status |= MCI_STATUS_OVER;
1888 banks[2] = mce->addr;
1889 banks[3] = mce->misc;
1890 banks[1] = mce->status;
1891 } else
1892 banks[1] |= MCI_STATUS_OVER;
1893 return 0;
1894 }
1895
1896 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
1897 struct kvm_vcpu_events *events)
1898 {
1899 vcpu_load(vcpu);
1900
1901 events->exception.injected = vcpu->arch.exception.pending;
1902 events->exception.nr = vcpu->arch.exception.nr;
1903 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
1904 events->exception.error_code = vcpu->arch.exception.error_code;
1905
1906 events->interrupt.injected = vcpu->arch.interrupt.pending;
1907 events->interrupt.nr = vcpu->arch.interrupt.nr;
1908 events->interrupt.soft = vcpu->arch.interrupt.soft;
1909
1910 events->nmi.injected = vcpu->arch.nmi_injected;
1911 events->nmi.pending = vcpu->arch.nmi_pending;
1912 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
1913
1914 events->sipi_vector = vcpu->arch.sipi_vector;
1915
1916 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
1917 | KVM_VCPUEVENT_VALID_SIPI_VECTOR);
1918
1919 vcpu_put(vcpu);
1920 }
1921
1922 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
1923 struct kvm_vcpu_events *events)
1924 {
1925 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
1926 | KVM_VCPUEVENT_VALID_SIPI_VECTOR))
1927 return -EINVAL;
1928
1929 vcpu_load(vcpu);
1930
1931 vcpu->arch.exception.pending = events->exception.injected;
1932 vcpu->arch.exception.nr = events->exception.nr;
1933 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
1934 vcpu->arch.exception.error_code = events->exception.error_code;
1935
1936 vcpu->arch.interrupt.pending = events->interrupt.injected;
1937 vcpu->arch.interrupt.nr = events->interrupt.nr;
1938 vcpu->arch.interrupt.soft = events->interrupt.soft;
1939 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
1940 kvm_pic_clear_isr_ack(vcpu->kvm);
1941
1942 vcpu->arch.nmi_injected = events->nmi.injected;
1943 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
1944 vcpu->arch.nmi_pending = events->nmi.pending;
1945 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
1946
1947 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
1948 vcpu->arch.sipi_vector = events->sipi_vector;
1949
1950 vcpu_put(vcpu);
1951
1952 return 0;
1953 }
1954
1955 long kvm_arch_vcpu_ioctl(struct file *filp,
1956 unsigned int ioctl, unsigned long arg)
1957 {
1958 struct kvm_vcpu *vcpu = filp->private_data;
1959 void __user *argp = (void __user *)arg;
1960 int r;
1961 struct kvm_lapic_state *lapic = NULL;
1962
1963 switch (ioctl) {
1964 case KVM_GET_LAPIC: {
1965 r = -EINVAL;
1966 if (!vcpu->arch.apic)
1967 goto out;
1968 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1969
1970 r = -ENOMEM;
1971 if (!lapic)
1972 goto out;
1973 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1974 if (r)
1975 goto out;
1976 r = -EFAULT;
1977 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1978 goto out;
1979 r = 0;
1980 break;
1981 }
1982 case KVM_SET_LAPIC: {
1983 r = -EINVAL;
1984 if (!vcpu->arch.apic)
1985 goto out;
1986 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1987 r = -ENOMEM;
1988 if (!lapic)
1989 goto out;
1990 r = -EFAULT;
1991 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1992 goto out;
1993 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1994 if (r)
1995 goto out;
1996 r = 0;
1997 break;
1998 }
1999 case KVM_INTERRUPT: {
2000 struct kvm_interrupt irq;
2001
2002 r = -EFAULT;
2003 if (copy_from_user(&irq, argp, sizeof irq))
2004 goto out;
2005 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2006 if (r)
2007 goto out;
2008 r = 0;
2009 break;
2010 }
2011 case KVM_NMI: {
2012 r = kvm_vcpu_ioctl_nmi(vcpu);
2013 if (r)
2014 goto out;
2015 r = 0;
2016 break;
2017 }
2018 case KVM_SET_CPUID: {
2019 struct kvm_cpuid __user *cpuid_arg = argp;
2020 struct kvm_cpuid cpuid;
2021
2022 r = -EFAULT;
2023 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2024 goto out;
2025 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2026 if (r)
2027 goto out;
2028 break;
2029 }
2030 case KVM_SET_CPUID2: {
2031 struct kvm_cpuid2 __user *cpuid_arg = argp;
2032 struct kvm_cpuid2 cpuid;
2033
2034 r = -EFAULT;
2035 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2036 goto out;
2037 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2038 cpuid_arg->entries);
2039 if (r)
2040 goto out;
2041 break;
2042 }
2043 case KVM_GET_CPUID2: {
2044 struct kvm_cpuid2 __user *cpuid_arg = argp;
2045 struct kvm_cpuid2 cpuid;
2046
2047 r = -EFAULT;
2048 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2049 goto out;
2050 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2051 cpuid_arg->entries);
2052 if (r)
2053 goto out;
2054 r = -EFAULT;
2055 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2056 goto out;
2057 r = 0;
2058 break;
2059 }
2060 case KVM_GET_MSRS:
2061 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2062 break;
2063 case KVM_SET_MSRS:
2064 r = msr_io(vcpu, argp, do_set_msr, 0);
2065 break;
2066 case KVM_TPR_ACCESS_REPORTING: {
2067 struct kvm_tpr_access_ctl tac;
2068
2069 r = -EFAULT;
2070 if (copy_from_user(&tac, argp, sizeof tac))
2071 goto out;
2072 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2073 if (r)
2074 goto out;
2075 r = -EFAULT;
2076 if (copy_to_user(argp, &tac, sizeof tac))
2077 goto out;
2078 r = 0;
2079 break;
2080 };
2081 case KVM_SET_VAPIC_ADDR: {
2082 struct kvm_vapic_addr va;
2083
2084 r = -EINVAL;
2085 if (!irqchip_in_kernel(vcpu->kvm))
2086 goto out;
2087 r = -EFAULT;
2088 if (copy_from_user(&va, argp, sizeof va))
2089 goto out;
2090 r = 0;
2091 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2092 break;
2093 }
2094 case KVM_X86_SETUP_MCE: {
2095 u64 mcg_cap;
2096
2097 r = -EFAULT;
2098 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2099 goto out;
2100 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2101 break;
2102 }
2103 case KVM_X86_SET_MCE: {
2104 struct kvm_x86_mce mce;
2105
2106 r = -EFAULT;
2107 if (copy_from_user(&mce, argp, sizeof mce))
2108 goto out;
2109 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2110 break;
2111 }
2112 case KVM_GET_VCPU_EVENTS: {
2113 struct kvm_vcpu_events events;
2114
2115 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2116
2117 r = -EFAULT;
2118 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2119 break;
2120 r = 0;
2121 break;
2122 }
2123 case KVM_SET_VCPU_EVENTS: {
2124 struct kvm_vcpu_events events;
2125
2126 r = -EFAULT;
2127 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2128 break;
2129
2130 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2131 break;
2132 }
2133 default:
2134 r = -EINVAL;
2135 }
2136 out:
2137 kfree(lapic);
2138 return r;
2139 }
2140
2141 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2142 {
2143 int ret;
2144
2145 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2146 return -1;
2147 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2148 return ret;
2149 }
2150
2151 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2152 u64 ident_addr)
2153 {
2154 kvm->arch.ept_identity_map_addr = ident_addr;
2155 return 0;
2156 }
2157
2158 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2159 u32 kvm_nr_mmu_pages)
2160 {
2161 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2162 return -EINVAL;
2163
2164 down_write(&kvm->slots_lock);
2165 spin_lock(&kvm->mmu_lock);
2166
2167 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2168 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2169
2170 spin_unlock(&kvm->mmu_lock);
2171 up_write(&kvm->slots_lock);
2172 return 0;
2173 }
2174
2175 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2176 {
2177 return kvm->arch.n_alloc_mmu_pages;
2178 }
2179
2180 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2181 {
2182 int i;
2183 struct kvm_mem_alias *alias;
2184
2185 for (i = 0; i < kvm->arch.naliases; ++i) {
2186 alias = &kvm->arch.aliases[i];
2187 if (gfn >= alias->base_gfn
2188 && gfn < alias->base_gfn + alias->npages)
2189 return alias->target_gfn + gfn - alias->base_gfn;
2190 }
2191 return gfn;
2192 }
2193
2194 /*
2195 * Set a new alias region. Aliases map a portion of physical memory into
2196 * another portion. This is useful for memory windows, for example the PC
2197 * VGA region.
2198 */
2199 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2200 struct kvm_memory_alias *alias)
2201 {
2202 int r, n;
2203 struct kvm_mem_alias *p;
2204
2205 r = -EINVAL;
2206 /* General sanity checks */
2207 if (alias->memory_size & (PAGE_SIZE - 1))
2208 goto out;
2209 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2210 goto out;
2211 if (alias->slot >= KVM_ALIAS_SLOTS)
2212 goto out;
2213 if (alias->guest_phys_addr + alias->memory_size
2214 < alias->guest_phys_addr)
2215 goto out;
2216 if (alias->target_phys_addr + alias->memory_size
2217 < alias->target_phys_addr)
2218 goto out;
2219
2220 down_write(&kvm->slots_lock);
2221 spin_lock(&kvm->mmu_lock);
2222
2223 p = &kvm->arch.aliases[alias->slot];
2224 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2225 p->npages = alias->memory_size >> PAGE_SHIFT;
2226 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2227
2228 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2229 if (kvm->arch.aliases[n - 1].npages)
2230 break;
2231 kvm->arch.naliases = n;
2232
2233 spin_unlock(&kvm->mmu_lock);
2234 kvm_mmu_zap_all(kvm);
2235
2236 up_write(&kvm->slots_lock);
2237
2238 return 0;
2239
2240 out:
2241 return r;
2242 }
2243
2244 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2245 {
2246 int r;
2247
2248 r = 0;
2249 switch (chip->chip_id) {
2250 case KVM_IRQCHIP_PIC_MASTER:
2251 memcpy(&chip->chip.pic,
2252 &pic_irqchip(kvm)->pics[0],
2253 sizeof(struct kvm_pic_state));
2254 break;
2255 case KVM_IRQCHIP_PIC_SLAVE:
2256 memcpy(&chip->chip.pic,
2257 &pic_irqchip(kvm)->pics[1],
2258 sizeof(struct kvm_pic_state));
2259 break;
2260 case KVM_IRQCHIP_IOAPIC:
2261 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2262 break;
2263 default:
2264 r = -EINVAL;
2265 break;
2266 }
2267 return r;
2268 }
2269
2270 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2271 {
2272 int r;
2273
2274 r = 0;
2275 switch (chip->chip_id) {
2276 case KVM_IRQCHIP_PIC_MASTER:
2277 spin_lock(&pic_irqchip(kvm)->lock);
2278 memcpy(&pic_irqchip(kvm)->pics[0],
2279 &chip->chip.pic,
2280 sizeof(struct kvm_pic_state));
2281 spin_unlock(&pic_irqchip(kvm)->lock);
2282 break;
2283 case KVM_IRQCHIP_PIC_SLAVE:
2284 spin_lock(&pic_irqchip(kvm)->lock);
2285 memcpy(&pic_irqchip(kvm)->pics[1],
2286 &chip->chip.pic,
2287 sizeof(struct kvm_pic_state));
2288 spin_unlock(&pic_irqchip(kvm)->lock);
2289 break;
2290 case KVM_IRQCHIP_IOAPIC:
2291 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2292 break;
2293 default:
2294 r = -EINVAL;
2295 break;
2296 }
2297 kvm_pic_update_irq(pic_irqchip(kvm));
2298 return r;
2299 }
2300
2301 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2302 {
2303 int r = 0;
2304
2305 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2306 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2307 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2308 return r;
2309 }
2310
2311 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2312 {
2313 int r = 0;
2314
2315 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2316 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2317 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2318 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2319 return r;
2320 }
2321
2322 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2323 {
2324 int r = 0;
2325
2326 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2327 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2328 sizeof(ps->channels));
2329 ps->flags = kvm->arch.vpit->pit_state.flags;
2330 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2331 return r;
2332 }
2333
2334 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2335 {
2336 int r = 0, start = 0;
2337 u32 prev_legacy, cur_legacy;
2338 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2339 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2340 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2341 if (!prev_legacy && cur_legacy)
2342 start = 1;
2343 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2344 sizeof(kvm->arch.vpit->pit_state.channels));
2345 kvm->arch.vpit->pit_state.flags = ps->flags;
2346 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2347 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2348 return r;
2349 }
2350
2351 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2352 struct kvm_reinject_control *control)
2353 {
2354 if (!kvm->arch.vpit)
2355 return -ENXIO;
2356 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2357 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2358 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2359 return 0;
2360 }
2361
2362 /*
2363 * Get (and clear) the dirty memory log for a memory slot.
2364 */
2365 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2366 struct kvm_dirty_log *log)
2367 {
2368 int r;
2369 int n;
2370 struct kvm_memory_slot *memslot;
2371 int is_dirty = 0;
2372
2373 down_write(&kvm->slots_lock);
2374
2375 r = kvm_get_dirty_log(kvm, log, &is_dirty);
2376 if (r)
2377 goto out;
2378
2379 /* If nothing is dirty, don't bother messing with page tables. */
2380 if (is_dirty) {
2381 spin_lock(&kvm->mmu_lock);
2382 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2383 spin_unlock(&kvm->mmu_lock);
2384 memslot = &kvm->memslots[log->slot];
2385 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2386 memset(memslot->dirty_bitmap, 0, n);
2387 }
2388 r = 0;
2389 out:
2390 up_write(&kvm->slots_lock);
2391 return r;
2392 }
2393
2394 long kvm_arch_vm_ioctl(struct file *filp,
2395 unsigned int ioctl, unsigned long arg)
2396 {
2397 struct kvm *kvm = filp->private_data;
2398 void __user *argp = (void __user *)arg;
2399 int r = -ENOTTY;
2400 /*
2401 * This union makes it completely explicit to gcc-3.x
2402 * that these two variables' stack usage should be
2403 * combined, not added together.
2404 */
2405 union {
2406 struct kvm_pit_state ps;
2407 struct kvm_pit_state2 ps2;
2408 struct kvm_memory_alias alias;
2409 struct kvm_pit_config pit_config;
2410 } u;
2411
2412 switch (ioctl) {
2413 case KVM_SET_TSS_ADDR:
2414 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2415 if (r < 0)
2416 goto out;
2417 break;
2418 case KVM_SET_IDENTITY_MAP_ADDR: {
2419 u64 ident_addr;
2420
2421 r = -EFAULT;
2422 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2423 goto out;
2424 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2425 if (r < 0)
2426 goto out;
2427 break;
2428 }
2429 case KVM_SET_MEMORY_REGION: {
2430 struct kvm_memory_region kvm_mem;
2431 struct kvm_userspace_memory_region kvm_userspace_mem;
2432
2433 r = -EFAULT;
2434 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2435 goto out;
2436 kvm_userspace_mem.slot = kvm_mem.slot;
2437 kvm_userspace_mem.flags = kvm_mem.flags;
2438 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2439 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2440 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2441 if (r)
2442 goto out;
2443 break;
2444 }
2445 case KVM_SET_NR_MMU_PAGES:
2446 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2447 if (r)
2448 goto out;
2449 break;
2450 case KVM_GET_NR_MMU_PAGES:
2451 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2452 break;
2453 case KVM_SET_MEMORY_ALIAS:
2454 r = -EFAULT;
2455 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2456 goto out;
2457 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2458 if (r)
2459 goto out;
2460 break;
2461 case KVM_CREATE_IRQCHIP: {
2462 struct kvm_pic *vpic;
2463
2464 mutex_lock(&kvm->lock);
2465 r = -EEXIST;
2466 if (kvm->arch.vpic)
2467 goto create_irqchip_unlock;
2468 r = -ENOMEM;
2469 vpic = kvm_create_pic(kvm);
2470 if (vpic) {
2471 r = kvm_ioapic_init(kvm);
2472 if (r) {
2473 kfree(vpic);
2474 goto create_irqchip_unlock;
2475 }
2476 } else
2477 goto create_irqchip_unlock;
2478 smp_wmb();
2479 kvm->arch.vpic = vpic;
2480 smp_wmb();
2481 r = kvm_setup_default_irq_routing(kvm);
2482 if (r) {
2483 mutex_lock(&kvm->irq_lock);
2484 kfree(kvm->arch.vpic);
2485 kfree(kvm->arch.vioapic);
2486 kvm->arch.vpic = NULL;
2487 kvm->arch.vioapic = NULL;
2488 mutex_unlock(&kvm->irq_lock);
2489 }
2490 create_irqchip_unlock:
2491 mutex_unlock(&kvm->lock);
2492 break;
2493 }
2494 case KVM_CREATE_PIT:
2495 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2496 goto create_pit;
2497 case KVM_CREATE_PIT2:
2498 r = -EFAULT;
2499 if (copy_from_user(&u.pit_config, argp,
2500 sizeof(struct kvm_pit_config)))
2501 goto out;
2502 create_pit:
2503 down_write(&kvm->slots_lock);
2504 r = -EEXIST;
2505 if (kvm->arch.vpit)
2506 goto create_pit_unlock;
2507 r = -ENOMEM;
2508 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2509 if (kvm->arch.vpit)
2510 r = 0;
2511 create_pit_unlock:
2512 up_write(&kvm->slots_lock);
2513 break;
2514 case KVM_IRQ_LINE_STATUS:
2515 case KVM_IRQ_LINE: {
2516 struct kvm_irq_level irq_event;
2517
2518 r = -EFAULT;
2519 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2520 goto out;
2521 if (irqchip_in_kernel(kvm)) {
2522 __s32 status;
2523 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2524 irq_event.irq, irq_event.level);
2525 if (ioctl == KVM_IRQ_LINE_STATUS) {
2526 irq_event.status = status;
2527 if (copy_to_user(argp, &irq_event,
2528 sizeof irq_event))
2529 goto out;
2530 }
2531 r = 0;
2532 }
2533 break;
2534 }
2535 case KVM_GET_IRQCHIP: {
2536 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2537 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2538
2539 r = -ENOMEM;
2540 if (!chip)
2541 goto out;
2542 r = -EFAULT;
2543 if (copy_from_user(chip, argp, sizeof *chip))
2544 goto get_irqchip_out;
2545 r = -ENXIO;
2546 if (!irqchip_in_kernel(kvm))
2547 goto get_irqchip_out;
2548 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2549 if (r)
2550 goto get_irqchip_out;
2551 r = -EFAULT;
2552 if (copy_to_user(argp, chip, sizeof *chip))
2553 goto get_irqchip_out;
2554 r = 0;
2555 get_irqchip_out:
2556 kfree(chip);
2557 if (r)
2558 goto out;
2559 break;
2560 }
2561 case KVM_SET_IRQCHIP: {
2562 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2563 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2564
2565 r = -ENOMEM;
2566 if (!chip)
2567 goto out;
2568 r = -EFAULT;
2569 if (copy_from_user(chip, argp, sizeof *chip))
2570 goto set_irqchip_out;
2571 r = -ENXIO;
2572 if (!irqchip_in_kernel(kvm))
2573 goto set_irqchip_out;
2574 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2575 if (r)
2576 goto set_irqchip_out;
2577 r = 0;
2578 set_irqchip_out:
2579 kfree(chip);
2580 if (r)
2581 goto out;
2582 break;
2583 }
2584 case KVM_GET_PIT: {
2585 r = -EFAULT;
2586 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2587 goto out;
2588 r = -ENXIO;
2589 if (!kvm->arch.vpit)
2590 goto out;
2591 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2592 if (r)
2593 goto out;
2594 r = -EFAULT;
2595 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2596 goto out;
2597 r = 0;
2598 break;
2599 }
2600 case KVM_SET_PIT: {
2601 r = -EFAULT;
2602 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2603 goto out;
2604 r = -ENXIO;
2605 if (!kvm->arch.vpit)
2606 goto out;
2607 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2608 if (r)
2609 goto out;
2610 r = 0;
2611 break;
2612 }
2613 case KVM_GET_PIT2: {
2614 r = -ENXIO;
2615 if (!kvm->arch.vpit)
2616 goto out;
2617 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2618 if (r)
2619 goto out;
2620 r = -EFAULT;
2621 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2622 goto out;
2623 r = 0;
2624 break;
2625 }
2626 case KVM_SET_PIT2: {
2627 r = -EFAULT;
2628 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2629 goto out;
2630 r = -ENXIO;
2631 if (!kvm->arch.vpit)
2632 goto out;
2633 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2634 if (r)
2635 goto out;
2636 r = 0;
2637 break;
2638 }
2639 case KVM_REINJECT_CONTROL: {
2640 struct kvm_reinject_control control;
2641 r = -EFAULT;
2642 if (copy_from_user(&control, argp, sizeof(control)))
2643 goto out;
2644 r = kvm_vm_ioctl_reinject(kvm, &control);
2645 if (r)
2646 goto out;
2647 r = 0;
2648 break;
2649 }
2650 case KVM_XEN_HVM_CONFIG: {
2651 r = -EFAULT;
2652 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
2653 sizeof(struct kvm_xen_hvm_config)))
2654 goto out;
2655 r = -EINVAL;
2656 if (kvm->arch.xen_hvm_config.flags)
2657 goto out;
2658 r = 0;
2659 break;
2660 }
2661 case KVM_SET_CLOCK: {
2662 struct timespec now;
2663 struct kvm_clock_data user_ns;
2664 u64 now_ns;
2665 s64 delta;
2666
2667 r = -EFAULT;
2668 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
2669 goto out;
2670
2671 r = -EINVAL;
2672 if (user_ns.flags)
2673 goto out;
2674
2675 r = 0;
2676 ktime_get_ts(&now);
2677 now_ns = timespec_to_ns(&now);
2678 delta = user_ns.clock - now_ns;
2679 kvm->arch.kvmclock_offset = delta;
2680 break;
2681 }
2682 case KVM_GET_CLOCK: {
2683 struct timespec now;
2684 struct kvm_clock_data user_ns;
2685 u64 now_ns;
2686
2687 ktime_get_ts(&now);
2688 now_ns = timespec_to_ns(&now);
2689 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
2690 user_ns.flags = 0;
2691
2692 r = -EFAULT;
2693 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
2694 goto out;
2695 r = 0;
2696 break;
2697 }
2698
2699 default:
2700 ;
2701 }
2702 out:
2703 return r;
2704 }
2705
2706 static void kvm_init_msr_list(void)
2707 {
2708 u32 dummy[2];
2709 unsigned i, j;
2710
2711 /* skip the first msrs in the list. KVM-specific */
2712 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
2713 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2714 continue;
2715 if (j < i)
2716 msrs_to_save[j] = msrs_to_save[i];
2717 j++;
2718 }
2719 num_msrs_to_save = j;
2720 }
2721
2722 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
2723 const void *v)
2724 {
2725 if (vcpu->arch.apic &&
2726 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
2727 return 0;
2728
2729 return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
2730 }
2731
2732 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
2733 {
2734 if (vcpu->arch.apic &&
2735 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
2736 return 0;
2737
2738 return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
2739 }
2740
2741 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2742 struct kvm_vcpu *vcpu)
2743 {
2744 void *data = val;
2745 int r = X86EMUL_CONTINUE;
2746
2747 while (bytes) {
2748 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2749 unsigned offset = addr & (PAGE_SIZE-1);
2750 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2751 int ret;
2752
2753 if (gpa == UNMAPPED_GVA) {
2754 r = X86EMUL_PROPAGATE_FAULT;
2755 goto out;
2756 }
2757 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2758 if (ret < 0) {
2759 r = X86EMUL_UNHANDLEABLE;
2760 goto out;
2761 }
2762
2763 bytes -= toread;
2764 data += toread;
2765 addr += toread;
2766 }
2767 out:
2768 return r;
2769 }
2770
2771 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2772 struct kvm_vcpu *vcpu)
2773 {
2774 void *data = val;
2775 int r = X86EMUL_CONTINUE;
2776
2777 while (bytes) {
2778 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2779 unsigned offset = addr & (PAGE_SIZE-1);
2780 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2781 int ret;
2782
2783 if (gpa == UNMAPPED_GVA) {
2784 r = X86EMUL_PROPAGATE_FAULT;
2785 goto out;
2786 }
2787 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2788 if (ret < 0) {
2789 r = X86EMUL_UNHANDLEABLE;
2790 goto out;
2791 }
2792
2793 bytes -= towrite;
2794 data += towrite;
2795 addr += towrite;
2796 }
2797 out:
2798 return r;
2799 }
2800
2801
2802 static int emulator_read_emulated(unsigned long addr,
2803 void *val,
2804 unsigned int bytes,
2805 struct kvm_vcpu *vcpu)
2806 {
2807 gpa_t gpa;
2808
2809 if (vcpu->mmio_read_completed) {
2810 memcpy(val, vcpu->mmio_data, bytes);
2811 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
2812 vcpu->mmio_phys_addr, *(u64 *)val);
2813 vcpu->mmio_read_completed = 0;
2814 return X86EMUL_CONTINUE;
2815 }
2816
2817 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2818
2819 /* For APIC access vmexit */
2820 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2821 goto mmio;
2822
2823 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2824 == X86EMUL_CONTINUE)
2825 return X86EMUL_CONTINUE;
2826 if (gpa == UNMAPPED_GVA)
2827 return X86EMUL_PROPAGATE_FAULT;
2828
2829 mmio:
2830 /*
2831 * Is this MMIO handled locally?
2832 */
2833 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
2834 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
2835 return X86EMUL_CONTINUE;
2836 }
2837
2838 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
2839
2840 vcpu->mmio_needed = 1;
2841 vcpu->mmio_phys_addr = gpa;
2842 vcpu->mmio_size = bytes;
2843 vcpu->mmio_is_write = 0;
2844
2845 return X86EMUL_UNHANDLEABLE;
2846 }
2847
2848 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2849 const void *val, int bytes)
2850 {
2851 int ret;
2852
2853 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2854 if (ret < 0)
2855 return 0;
2856 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2857 return 1;
2858 }
2859
2860 static int emulator_write_emulated_onepage(unsigned long addr,
2861 const void *val,
2862 unsigned int bytes,
2863 struct kvm_vcpu *vcpu)
2864 {
2865 gpa_t gpa;
2866
2867 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2868
2869 if (gpa == UNMAPPED_GVA) {
2870 kvm_inject_page_fault(vcpu, addr, 2);
2871 return X86EMUL_PROPAGATE_FAULT;
2872 }
2873
2874 /* For APIC access vmexit */
2875 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2876 goto mmio;
2877
2878 if (emulator_write_phys(vcpu, gpa, val, bytes))
2879 return X86EMUL_CONTINUE;
2880
2881 mmio:
2882 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
2883 /*
2884 * Is this MMIO handled locally?
2885 */
2886 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
2887 return X86EMUL_CONTINUE;
2888
2889 vcpu->mmio_needed = 1;
2890 vcpu->mmio_phys_addr = gpa;
2891 vcpu->mmio_size = bytes;
2892 vcpu->mmio_is_write = 1;
2893 memcpy(vcpu->mmio_data, val, bytes);
2894
2895 return X86EMUL_CONTINUE;
2896 }
2897
2898 int emulator_write_emulated(unsigned long addr,
2899 const void *val,
2900 unsigned int bytes,
2901 struct kvm_vcpu *vcpu)
2902 {
2903 /* Crossing a page boundary? */
2904 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2905 int rc, now;
2906
2907 now = -addr & ~PAGE_MASK;
2908 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2909 if (rc != X86EMUL_CONTINUE)
2910 return rc;
2911 addr += now;
2912 val += now;
2913 bytes -= now;
2914 }
2915 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2916 }
2917 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2918
2919 static int emulator_cmpxchg_emulated(unsigned long addr,
2920 const void *old,
2921 const void *new,
2922 unsigned int bytes,
2923 struct kvm_vcpu *vcpu)
2924 {
2925 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
2926 #ifndef CONFIG_X86_64
2927 /* guests cmpxchg8b have to be emulated atomically */
2928 if (bytes == 8) {
2929 gpa_t gpa;
2930 struct page *page;
2931 char *kaddr;
2932 u64 val;
2933
2934 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2935
2936 if (gpa == UNMAPPED_GVA ||
2937 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2938 goto emul_write;
2939
2940 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2941 goto emul_write;
2942
2943 val = *(u64 *)new;
2944
2945 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2946
2947 kaddr = kmap_atomic(page, KM_USER0);
2948 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2949 kunmap_atomic(kaddr, KM_USER0);
2950 kvm_release_page_dirty(page);
2951 }
2952 emul_write:
2953 #endif
2954
2955 return emulator_write_emulated(addr, new, bytes, vcpu);
2956 }
2957
2958 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2959 {
2960 return kvm_x86_ops->get_segment_base(vcpu, seg);
2961 }
2962
2963 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2964 {
2965 kvm_mmu_invlpg(vcpu, address);
2966 return X86EMUL_CONTINUE;
2967 }
2968
2969 int emulate_clts(struct kvm_vcpu *vcpu)
2970 {
2971 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2972 return X86EMUL_CONTINUE;
2973 }
2974
2975 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2976 {
2977 struct kvm_vcpu *vcpu = ctxt->vcpu;
2978
2979 switch (dr) {
2980 case 0 ... 3:
2981 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2982 return X86EMUL_CONTINUE;
2983 default:
2984 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2985 return X86EMUL_UNHANDLEABLE;
2986 }
2987 }
2988
2989 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2990 {
2991 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2992 int exception;
2993
2994 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2995 if (exception) {
2996 /* FIXME: better handling */
2997 return X86EMUL_UNHANDLEABLE;
2998 }
2999 return X86EMUL_CONTINUE;
3000 }
3001
3002 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
3003 {
3004 u8 opcodes[4];
3005 unsigned long rip = kvm_rip_read(vcpu);
3006 unsigned long rip_linear;
3007
3008 if (!printk_ratelimit())
3009 return;
3010
3011 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
3012
3013 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
3014
3015 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
3016 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
3017 }
3018 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
3019
3020 static struct x86_emulate_ops emulate_ops = {
3021 .read_std = kvm_read_guest_virt,
3022 .read_emulated = emulator_read_emulated,
3023 .write_emulated = emulator_write_emulated,
3024 .cmpxchg_emulated = emulator_cmpxchg_emulated,
3025 };
3026
3027 static void cache_all_regs(struct kvm_vcpu *vcpu)
3028 {
3029 kvm_register_read(vcpu, VCPU_REGS_RAX);
3030 kvm_register_read(vcpu, VCPU_REGS_RSP);
3031 kvm_register_read(vcpu, VCPU_REGS_RIP);
3032 vcpu->arch.regs_dirty = ~0;
3033 }
3034
3035 int emulate_instruction(struct kvm_vcpu *vcpu,
3036 unsigned long cr2,
3037 u16 error_code,
3038 int emulation_type)
3039 {
3040 int r, shadow_mask;
3041 struct decode_cache *c;
3042 struct kvm_run *run = vcpu->run;
3043
3044 kvm_clear_exception_queue(vcpu);
3045 vcpu->arch.mmio_fault_cr2 = cr2;
3046 /*
3047 * TODO: fix emulate.c to use guest_read/write_register
3048 * instead of direct ->regs accesses, can save hundred cycles
3049 * on Intel for instructions that don't read/change RSP, for
3050 * for example.
3051 */
3052 cache_all_regs(vcpu);
3053
3054 vcpu->mmio_is_write = 0;
3055 vcpu->arch.pio.string = 0;
3056
3057 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3058 int cs_db, cs_l;
3059 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3060
3061 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3062 vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
3063 vcpu->arch.emulate_ctxt.mode =
3064 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3065 ? X86EMUL_MODE_REAL : cs_l
3066 ? X86EMUL_MODE_PROT64 : cs_db
3067 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3068
3069 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3070
3071 /* Only allow emulation of specific instructions on #UD
3072 * (namely VMMCALL, sysenter, sysexit, syscall)*/
3073 c = &vcpu->arch.emulate_ctxt.decode;
3074 if (emulation_type & EMULTYPE_TRAP_UD) {
3075 if (!c->twobyte)
3076 return EMULATE_FAIL;
3077 switch (c->b) {
3078 case 0x01: /* VMMCALL */
3079 if (c->modrm_mod != 3 || c->modrm_rm != 1)
3080 return EMULATE_FAIL;
3081 break;
3082 case 0x34: /* sysenter */
3083 case 0x35: /* sysexit */
3084 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3085 return EMULATE_FAIL;
3086 break;
3087 case 0x05: /* syscall */
3088 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3089 return EMULATE_FAIL;
3090 break;
3091 default:
3092 return EMULATE_FAIL;
3093 }
3094
3095 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3096 return EMULATE_FAIL;
3097 }
3098
3099 ++vcpu->stat.insn_emulation;
3100 if (r) {
3101 ++vcpu->stat.insn_emulation_fail;
3102 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3103 return EMULATE_DONE;
3104 return EMULATE_FAIL;
3105 }
3106 }
3107
3108 if (emulation_type & EMULTYPE_SKIP) {
3109 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3110 return EMULATE_DONE;
3111 }
3112
3113 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3114 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3115
3116 if (r == 0)
3117 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3118
3119 if (vcpu->arch.pio.string)
3120 return EMULATE_DO_MMIO;
3121
3122 if ((r || vcpu->mmio_is_write) && run) {
3123 run->exit_reason = KVM_EXIT_MMIO;
3124 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3125 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3126 run->mmio.len = vcpu->mmio_size;
3127 run->mmio.is_write = vcpu->mmio_is_write;
3128 }
3129
3130 if (r) {
3131 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3132 return EMULATE_DONE;
3133 if (!vcpu->mmio_needed) {
3134 kvm_report_emulation_failure(vcpu, "mmio");
3135 return EMULATE_FAIL;
3136 }
3137 return EMULATE_DO_MMIO;
3138 }
3139
3140 kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
3141
3142 if (vcpu->mmio_is_write) {
3143 vcpu->mmio_needed = 0;
3144 return EMULATE_DO_MMIO;
3145 }
3146
3147 return EMULATE_DONE;
3148 }
3149 EXPORT_SYMBOL_GPL(emulate_instruction);
3150
3151 static int pio_copy_data(struct kvm_vcpu *vcpu)
3152 {
3153 void *p = vcpu->arch.pio_data;
3154 gva_t q = vcpu->arch.pio.guest_gva;
3155 unsigned bytes;
3156 int ret;
3157
3158 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
3159 if (vcpu->arch.pio.in)
3160 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
3161 else
3162 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
3163 return ret;
3164 }
3165
3166 int complete_pio(struct kvm_vcpu *vcpu)
3167 {
3168 struct kvm_pio_request *io = &vcpu->arch.pio;
3169 long delta;
3170 int r;
3171 unsigned long val;
3172
3173 if (!io->string) {
3174 if (io->in) {
3175 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3176 memcpy(&val, vcpu->arch.pio_data, io->size);
3177 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
3178 }
3179 } else {
3180 if (io->in) {
3181 r = pio_copy_data(vcpu);
3182 if (r)
3183 return r;
3184 }
3185
3186 delta = 1;
3187 if (io->rep) {
3188 delta *= io->cur_count;
3189 /*
3190 * The size of the register should really depend on
3191 * current address size.
3192 */
3193 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
3194 val -= delta;
3195 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
3196 }
3197 if (io->down)
3198 delta = -delta;
3199 delta *= io->size;
3200 if (io->in) {
3201 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
3202 val += delta;
3203 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
3204 } else {
3205 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
3206 val += delta;
3207 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
3208 }
3209 }
3210
3211 io->count -= io->cur_count;
3212 io->cur_count = 0;
3213
3214 return 0;
3215 }
3216
3217 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3218 {
3219 /* TODO: String I/O for in kernel device */
3220 int r;
3221
3222 if (vcpu->arch.pio.in)
3223 r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
3224 vcpu->arch.pio.size, pd);
3225 else
3226 r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
3227 vcpu->arch.pio.size, pd);
3228 return r;
3229 }
3230
3231 static int pio_string_write(struct kvm_vcpu *vcpu)
3232 {
3233 struct kvm_pio_request *io = &vcpu->arch.pio;
3234 void *pd = vcpu->arch.pio_data;
3235 int i, r = 0;
3236
3237 for (i = 0; i < io->cur_count; i++) {
3238 if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
3239 io->port, io->size, pd)) {
3240 r = -EOPNOTSUPP;
3241 break;
3242 }
3243 pd += io->size;
3244 }
3245 return r;
3246 }
3247
3248 int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
3249 {
3250 unsigned long val;
3251
3252 vcpu->run->exit_reason = KVM_EXIT_IO;
3253 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3254 vcpu->run->io.size = vcpu->arch.pio.size = size;
3255 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3256 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
3257 vcpu->run->io.port = vcpu->arch.pio.port = port;
3258 vcpu->arch.pio.in = in;
3259 vcpu->arch.pio.string = 0;
3260 vcpu->arch.pio.down = 0;
3261 vcpu->arch.pio.rep = 0;
3262
3263 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3264 size, 1);
3265
3266 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3267 memcpy(vcpu->arch.pio_data, &val, 4);
3268
3269 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3270 complete_pio(vcpu);
3271 return 1;
3272 }
3273 return 0;
3274 }
3275 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3276
3277 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
3278 int size, unsigned long count, int down,
3279 gva_t address, int rep, unsigned port)
3280 {
3281 unsigned now, in_page;
3282 int ret = 0;
3283
3284 vcpu->run->exit_reason = KVM_EXIT_IO;
3285 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3286 vcpu->run->io.size = vcpu->arch.pio.size = size;
3287 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3288 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3289 vcpu->run->io.port = vcpu->arch.pio.port = port;
3290 vcpu->arch.pio.in = in;
3291 vcpu->arch.pio.string = 1;
3292 vcpu->arch.pio.down = down;
3293 vcpu->arch.pio.rep = rep;
3294
3295 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3296 size, count);
3297
3298 if (!count) {
3299 kvm_x86_ops->skip_emulated_instruction(vcpu);
3300 return 1;
3301 }
3302
3303 if (!down)
3304 in_page = PAGE_SIZE - offset_in_page(address);
3305 else
3306 in_page = offset_in_page(address) + size;
3307 now = min(count, (unsigned long)in_page / size);
3308 if (!now)
3309 now = 1;
3310 if (down) {
3311 /*
3312 * String I/O in reverse. Yuck. Kill the guest, fix later.
3313 */
3314 pr_unimpl(vcpu, "guest string pio down\n");
3315 kvm_inject_gp(vcpu, 0);
3316 return 1;
3317 }
3318 vcpu->run->io.count = now;
3319 vcpu->arch.pio.cur_count = now;
3320
3321 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3322 kvm_x86_ops->skip_emulated_instruction(vcpu);
3323
3324 vcpu->arch.pio.guest_gva = address;
3325
3326 if (!vcpu->arch.pio.in) {
3327 /* string PIO write */
3328 ret = pio_copy_data(vcpu);
3329 if (ret == X86EMUL_PROPAGATE_FAULT) {
3330 kvm_inject_gp(vcpu, 0);
3331 return 1;
3332 }
3333 if (ret == 0 && !pio_string_write(vcpu)) {
3334 complete_pio(vcpu);
3335 if (vcpu->arch.pio.count == 0)
3336 ret = 1;
3337 }
3338 }
3339 /* no string PIO read support yet */
3340
3341 return ret;
3342 }
3343 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3344
3345 static void bounce_off(void *info)
3346 {
3347 /* nothing */
3348 }
3349
3350 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3351 void *data)
3352 {
3353 struct cpufreq_freqs *freq = data;
3354 struct kvm *kvm;
3355 struct kvm_vcpu *vcpu;
3356 int i, send_ipi = 0;
3357
3358 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3359 return 0;
3360 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3361 return 0;
3362 per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3363
3364 spin_lock(&kvm_lock);
3365 list_for_each_entry(kvm, &vm_list, vm_list) {
3366 kvm_for_each_vcpu(i, vcpu, kvm) {
3367 if (vcpu->cpu != freq->cpu)
3368 continue;
3369 if (!kvm_request_guest_time_update(vcpu))
3370 continue;
3371 if (vcpu->cpu != smp_processor_id())
3372 send_ipi++;
3373 }
3374 }
3375 spin_unlock(&kvm_lock);
3376
3377 if (freq->old < freq->new && send_ipi) {
3378 /*
3379 * We upscale the frequency. Must make the guest
3380 * doesn't see old kvmclock values while running with
3381 * the new frequency, otherwise we risk the guest sees
3382 * time go backwards.
3383 *
3384 * In case we update the frequency for another cpu
3385 * (which might be in guest context) send an interrupt
3386 * to kick the cpu out of guest context. Next time
3387 * guest context is entered kvmclock will be updated,
3388 * so the guest will not see stale values.
3389 */
3390 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3391 }
3392 return 0;
3393 }
3394
3395 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3396 .notifier_call = kvmclock_cpufreq_notifier
3397 };
3398
3399 static void kvm_timer_init(void)
3400 {
3401 int cpu;
3402
3403 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3404 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3405 CPUFREQ_TRANSITION_NOTIFIER);
3406 for_each_online_cpu(cpu) {
3407 unsigned long khz = cpufreq_get(cpu);
3408 if (!khz)
3409 khz = tsc_khz;
3410 per_cpu(cpu_tsc_khz, cpu) = khz;
3411 }
3412 } else {
3413 for_each_possible_cpu(cpu)
3414 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3415 }
3416 }
3417
3418 int kvm_arch_init(void *opaque)
3419 {
3420 int r;
3421 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3422
3423 if (kvm_x86_ops) {
3424 printk(KERN_ERR "kvm: already loaded the other module\n");
3425 r = -EEXIST;
3426 goto out;
3427 }
3428
3429 if (!ops->cpu_has_kvm_support()) {
3430 printk(KERN_ERR "kvm: no hardware support\n");
3431 r = -EOPNOTSUPP;
3432 goto out;
3433 }
3434 if (ops->disabled_by_bios()) {
3435 printk(KERN_ERR "kvm: disabled by bios\n");
3436 r = -EOPNOTSUPP;
3437 goto out;
3438 }
3439
3440 r = kvm_mmu_module_init();
3441 if (r)
3442 goto out;
3443
3444 kvm_init_msr_list();
3445
3446 kvm_x86_ops = ops;
3447 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3448 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3449 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3450 PT_DIRTY_MASK, PT64_NX_MASK, 0);
3451
3452 kvm_timer_init();
3453
3454 return 0;
3455
3456 out:
3457 return r;
3458 }
3459
3460 void kvm_arch_exit(void)
3461 {
3462 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3463 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3464 CPUFREQ_TRANSITION_NOTIFIER);
3465 kvm_x86_ops = NULL;
3466 kvm_mmu_module_exit();
3467 }
3468
3469 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3470 {
3471 ++vcpu->stat.halt_exits;
3472 if (irqchip_in_kernel(vcpu->kvm)) {
3473 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3474 return 1;
3475 } else {
3476 vcpu->run->exit_reason = KVM_EXIT_HLT;
3477 return 0;
3478 }
3479 }
3480 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3481
3482 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3483 unsigned long a1)
3484 {
3485 if (is_long_mode(vcpu))
3486 return a0;
3487 else
3488 return a0 | ((gpa_t)a1 << 32);
3489 }
3490
3491 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3492 {
3493 unsigned long nr, a0, a1, a2, a3, ret;
3494 int r = 1;
3495
3496 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3497 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3498 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3499 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3500 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3501
3502 trace_kvm_hypercall(nr, a0, a1, a2, a3);
3503
3504 if (!is_long_mode(vcpu)) {
3505 nr &= 0xFFFFFFFF;
3506 a0 &= 0xFFFFFFFF;
3507 a1 &= 0xFFFFFFFF;
3508 a2 &= 0xFFFFFFFF;
3509 a3 &= 0xFFFFFFFF;
3510 }
3511
3512 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3513 ret = -KVM_EPERM;
3514 goto out;
3515 }
3516
3517 switch (nr) {
3518 case KVM_HC_VAPIC_POLL_IRQ:
3519 ret = 0;
3520 break;
3521 case KVM_HC_MMU_OP:
3522 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3523 break;
3524 default:
3525 ret = -KVM_ENOSYS;
3526 break;
3527 }
3528 out:
3529 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3530 ++vcpu->stat.hypercalls;
3531 return r;
3532 }
3533 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3534
3535 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3536 {
3537 char instruction[3];
3538 int ret = 0;
3539 unsigned long rip = kvm_rip_read(vcpu);
3540
3541
3542 /*
3543 * Blow out the MMU to ensure that no other VCPU has an active mapping
3544 * to ensure that the updated hypercall appears atomically across all
3545 * VCPUs.
3546 */
3547 kvm_mmu_zap_all(vcpu->kvm);
3548
3549 kvm_x86_ops->patch_hypercall(vcpu, instruction);
3550 if (emulator_write_emulated(rip, instruction, 3, vcpu)
3551 != X86EMUL_CONTINUE)
3552 ret = -EFAULT;
3553
3554 return ret;
3555 }
3556
3557 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3558 {
3559 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3560 }
3561
3562 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3563 {
3564 struct descriptor_table dt = { limit, base };
3565
3566 kvm_x86_ops->set_gdt(vcpu, &dt);
3567 }
3568
3569 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3570 {
3571 struct descriptor_table dt = { limit, base };
3572
3573 kvm_x86_ops->set_idt(vcpu, &dt);
3574 }
3575
3576 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3577 unsigned long *rflags)
3578 {
3579 kvm_lmsw(vcpu, msw);
3580 *rflags = kvm_get_rflags(vcpu);
3581 }
3582
3583 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3584 {
3585 unsigned long value;
3586
3587 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3588 switch (cr) {
3589 case 0:
3590 value = vcpu->arch.cr0;
3591 break;
3592 case 2:
3593 value = vcpu->arch.cr2;
3594 break;
3595 case 3:
3596 value = vcpu->arch.cr3;
3597 break;
3598 case 4:
3599 value = vcpu->arch.cr4;
3600 break;
3601 case 8:
3602 value = kvm_get_cr8(vcpu);
3603 break;
3604 default:
3605 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3606 return 0;
3607 }
3608
3609 return value;
3610 }
3611
3612 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3613 unsigned long *rflags)
3614 {
3615 switch (cr) {
3616 case 0:
3617 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3618 *rflags = kvm_get_rflags(vcpu);
3619 break;
3620 case 2:
3621 vcpu->arch.cr2 = val;
3622 break;
3623 case 3:
3624 kvm_set_cr3(vcpu, val);
3625 break;
3626 case 4:
3627 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3628 break;
3629 case 8:
3630 kvm_set_cr8(vcpu, val & 0xfUL);
3631 break;
3632 default:
3633 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3634 }
3635 }
3636
3637 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3638 {
3639 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3640 int j, nent = vcpu->arch.cpuid_nent;
3641
3642 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3643 /* when no next entry is found, the current entry[i] is reselected */
3644 for (j = i + 1; ; j = (j + 1) % nent) {
3645 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3646 if (ej->function == e->function) {
3647 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3648 return j;
3649 }
3650 }
3651 return 0; /* silence gcc, even though control never reaches here */
3652 }
3653
3654 /* find an entry with matching function, matching index (if needed), and that
3655 * should be read next (if it's stateful) */
3656 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3657 u32 function, u32 index)
3658 {
3659 if (e->function != function)
3660 return 0;
3661 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3662 return 0;
3663 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3664 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3665 return 0;
3666 return 1;
3667 }
3668
3669 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3670 u32 function, u32 index)
3671 {
3672 int i;
3673 struct kvm_cpuid_entry2 *best = NULL;
3674
3675 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3676 struct kvm_cpuid_entry2 *e;
3677
3678 e = &vcpu->arch.cpuid_entries[i];
3679 if (is_matching_cpuid_entry(e, function, index)) {
3680 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3681 move_to_next_stateful_cpuid_entry(vcpu, i);
3682 best = e;
3683 break;
3684 }
3685 /*
3686 * Both basic or both extended?
3687 */
3688 if (((e->function ^ function) & 0x80000000) == 0)
3689 if (!best || e->function > best->function)
3690 best = e;
3691 }
3692 return best;
3693 }
3694
3695 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3696 {
3697 struct kvm_cpuid_entry2 *best;
3698
3699 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3700 if (best)
3701 return best->eax & 0xff;
3702 return 36;
3703 }
3704
3705 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3706 {
3707 u32 function, index;
3708 struct kvm_cpuid_entry2 *best;
3709
3710 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3711 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3712 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3713 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3714 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3715 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3716 best = kvm_find_cpuid_entry(vcpu, function, index);
3717 if (best) {
3718 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3719 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3720 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3721 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3722 }
3723 kvm_x86_ops->skip_emulated_instruction(vcpu);
3724 trace_kvm_cpuid(function,
3725 kvm_register_read(vcpu, VCPU_REGS_RAX),
3726 kvm_register_read(vcpu, VCPU_REGS_RBX),
3727 kvm_register_read(vcpu, VCPU_REGS_RCX),
3728 kvm_register_read(vcpu, VCPU_REGS_RDX));
3729 }
3730 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3731
3732 /*
3733 * Check if userspace requested an interrupt window, and that the
3734 * interrupt window is open.
3735 *
3736 * No need to exit to userspace if we already have an interrupt queued.
3737 */
3738 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
3739 {
3740 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3741 vcpu->run->request_interrupt_window &&
3742 kvm_arch_interrupt_allowed(vcpu));
3743 }
3744
3745 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
3746 {
3747 struct kvm_run *kvm_run = vcpu->run;
3748
3749 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3750 kvm_run->cr8 = kvm_get_cr8(vcpu);
3751 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3752 if (irqchip_in_kernel(vcpu->kvm))
3753 kvm_run->ready_for_interrupt_injection = 1;
3754 else
3755 kvm_run->ready_for_interrupt_injection =
3756 kvm_arch_interrupt_allowed(vcpu) &&
3757 !kvm_cpu_has_interrupt(vcpu) &&
3758 !kvm_event_needs_reinjection(vcpu);
3759 }
3760
3761 static void vapic_enter(struct kvm_vcpu *vcpu)
3762 {
3763 struct kvm_lapic *apic = vcpu->arch.apic;
3764 struct page *page;
3765
3766 if (!apic || !apic->vapic_addr)
3767 return;
3768
3769 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3770
3771 vcpu->arch.apic->vapic_page = page;
3772 }
3773
3774 static void vapic_exit(struct kvm_vcpu *vcpu)
3775 {
3776 struct kvm_lapic *apic = vcpu->arch.apic;
3777
3778 if (!apic || !apic->vapic_addr)
3779 return;
3780
3781 down_read(&vcpu->kvm->slots_lock);
3782 kvm_release_page_dirty(apic->vapic_page);
3783 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3784 up_read(&vcpu->kvm->slots_lock);
3785 }
3786
3787 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3788 {
3789 int max_irr, tpr;
3790
3791 if (!kvm_x86_ops->update_cr8_intercept)
3792 return;
3793
3794 if (!vcpu->arch.apic)
3795 return;
3796
3797 if (!vcpu->arch.apic->vapic_addr)
3798 max_irr = kvm_lapic_find_highest_irr(vcpu);
3799 else
3800 max_irr = -1;
3801
3802 if (max_irr != -1)
3803 max_irr >>= 4;
3804
3805 tpr = kvm_lapic_get_cr8(vcpu);
3806
3807 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3808 }
3809
3810 static void inject_pending_event(struct kvm_vcpu *vcpu)
3811 {
3812 /* try to reinject previous events if any */
3813 if (vcpu->arch.exception.pending) {
3814 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
3815 vcpu->arch.exception.has_error_code,
3816 vcpu->arch.exception.error_code);
3817 return;
3818 }
3819
3820 if (vcpu->arch.nmi_injected) {
3821 kvm_x86_ops->set_nmi(vcpu);
3822 return;
3823 }
3824
3825 if (vcpu->arch.interrupt.pending) {
3826 kvm_x86_ops->set_irq(vcpu);
3827 return;
3828 }
3829
3830 /* try to inject new event if pending */
3831 if (vcpu->arch.nmi_pending) {
3832 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3833 vcpu->arch.nmi_pending = false;
3834 vcpu->arch.nmi_injected = true;
3835 kvm_x86_ops->set_nmi(vcpu);
3836 }
3837 } else if (kvm_cpu_has_interrupt(vcpu)) {
3838 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3839 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3840 false);
3841 kvm_x86_ops->set_irq(vcpu);
3842 }
3843 }
3844 }
3845
3846 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
3847 {
3848 int r;
3849 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3850 vcpu->run->request_interrupt_window;
3851
3852 if (vcpu->requests)
3853 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3854 kvm_mmu_unload(vcpu);
3855
3856 r = kvm_mmu_reload(vcpu);
3857 if (unlikely(r))
3858 goto out;
3859
3860 if (vcpu->requests) {
3861 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3862 __kvm_migrate_timers(vcpu);
3863 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3864 kvm_write_guest_time(vcpu);
3865 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3866 kvm_mmu_sync_roots(vcpu);
3867 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3868 kvm_x86_ops->tlb_flush(vcpu);
3869 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3870 &vcpu->requests)) {
3871 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
3872 r = 0;
3873 goto out;
3874 }
3875 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3876 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3877 r = 0;
3878 goto out;
3879 }
3880 }
3881
3882 preempt_disable();
3883
3884 kvm_x86_ops->prepare_guest_switch(vcpu);
3885 kvm_load_guest_fpu(vcpu);
3886
3887 local_irq_disable();
3888
3889 clear_bit(KVM_REQ_KICK, &vcpu->requests);
3890 smp_mb__after_clear_bit();
3891
3892 if (vcpu->requests || need_resched() || signal_pending(current)) {
3893 set_bit(KVM_REQ_KICK, &vcpu->requests);
3894 local_irq_enable();
3895 preempt_enable();
3896 r = 1;
3897 goto out;
3898 }
3899
3900 inject_pending_event(vcpu);
3901
3902 /* enable NMI/IRQ window open exits if needed */
3903 if (vcpu->arch.nmi_pending)
3904 kvm_x86_ops->enable_nmi_window(vcpu);
3905 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3906 kvm_x86_ops->enable_irq_window(vcpu);
3907
3908 if (kvm_lapic_enabled(vcpu)) {
3909 update_cr8_intercept(vcpu);
3910 kvm_lapic_sync_to_vapic(vcpu);
3911 }
3912
3913 up_read(&vcpu->kvm->slots_lock);
3914
3915 kvm_guest_enter();
3916
3917 if (unlikely(vcpu->arch.switch_db_regs)) {
3918 set_debugreg(0, 7);
3919 set_debugreg(vcpu->arch.eff_db[0], 0);
3920 set_debugreg(vcpu->arch.eff_db[1], 1);
3921 set_debugreg(vcpu->arch.eff_db[2], 2);
3922 set_debugreg(vcpu->arch.eff_db[3], 3);
3923 }
3924
3925 trace_kvm_entry(vcpu->vcpu_id);
3926 kvm_x86_ops->run(vcpu);
3927
3928 /*
3929 * If the guest has used debug registers, at least dr7
3930 * will be disabled while returning to the host.
3931 * If we don't have active breakpoints in the host, we don't
3932 * care about the messed up debug address registers. But if
3933 * we have some of them active, restore the old state.
3934 */
3935 if (hw_breakpoint_active())
3936 hw_breakpoint_restore();
3937
3938 set_bit(KVM_REQ_KICK, &vcpu->requests);
3939 local_irq_enable();
3940
3941 ++vcpu->stat.exits;
3942
3943 /*
3944 * We must have an instruction between local_irq_enable() and
3945 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3946 * the interrupt shadow. The stat.exits increment will do nicely.
3947 * But we need to prevent reordering, hence this barrier():
3948 */
3949 barrier();
3950
3951 kvm_guest_exit();
3952
3953 preempt_enable();
3954
3955 down_read(&vcpu->kvm->slots_lock);
3956
3957 /*
3958 * Profile KVM exit RIPs:
3959 */
3960 if (unlikely(prof_on == KVM_PROFILING)) {
3961 unsigned long rip = kvm_rip_read(vcpu);
3962 profile_hit(KVM_PROFILING, (void *)rip);
3963 }
3964
3965
3966 kvm_lapic_sync_from_vapic(vcpu);
3967
3968 r = kvm_x86_ops->handle_exit(vcpu);
3969 out:
3970 return r;
3971 }
3972
3973
3974 static int __vcpu_run(struct kvm_vcpu *vcpu)
3975 {
3976 int r;
3977
3978 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3979 pr_debug("vcpu %d received sipi with vector # %x\n",
3980 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3981 kvm_lapic_reset(vcpu);
3982 r = kvm_arch_vcpu_reset(vcpu);
3983 if (r)
3984 return r;
3985 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3986 }
3987
3988 down_read(&vcpu->kvm->slots_lock);
3989 vapic_enter(vcpu);
3990
3991 r = 1;
3992 while (r > 0) {
3993 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3994 r = vcpu_enter_guest(vcpu);
3995 else {
3996 up_read(&vcpu->kvm->slots_lock);
3997 kvm_vcpu_block(vcpu);
3998 down_read(&vcpu->kvm->slots_lock);
3999 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4000 {
4001 switch(vcpu->arch.mp_state) {
4002 case KVM_MP_STATE_HALTED:
4003 vcpu->arch.mp_state =
4004 KVM_MP_STATE_RUNNABLE;
4005 case KVM_MP_STATE_RUNNABLE:
4006 break;
4007 case KVM_MP_STATE_SIPI_RECEIVED:
4008 default:
4009 r = -EINTR;
4010 break;
4011 }
4012 }
4013 }
4014
4015 if (r <= 0)
4016 break;
4017
4018 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4019 if (kvm_cpu_has_pending_timer(vcpu))
4020 kvm_inject_pending_timer_irqs(vcpu);
4021
4022 if (dm_request_for_irq_injection(vcpu)) {
4023 r = -EINTR;
4024 vcpu->run->exit_reason = KVM_EXIT_INTR;
4025 ++vcpu->stat.request_irq_exits;
4026 }
4027 if (signal_pending(current)) {
4028 r = -EINTR;
4029 vcpu->run->exit_reason = KVM_EXIT_INTR;
4030 ++vcpu->stat.signal_exits;
4031 }
4032 if (need_resched()) {
4033 up_read(&vcpu->kvm->slots_lock);
4034 kvm_resched(vcpu);
4035 down_read(&vcpu->kvm->slots_lock);
4036 }
4037 }
4038
4039 up_read(&vcpu->kvm->slots_lock);
4040 post_kvm_run_save(vcpu);
4041
4042 vapic_exit(vcpu);
4043
4044 return r;
4045 }
4046
4047 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4048 {
4049 int r;
4050 sigset_t sigsaved;
4051
4052 vcpu_load(vcpu);
4053
4054 if (vcpu->sigset_active)
4055 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4056
4057 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4058 kvm_vcpu_block(vcpu);
4059 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4060 r = -EAGAIN;
4061 goto out;
4062 }
4063
4064 /* re-sync apic's tpr */
4065 if (!irqchip_in_kernel(vcpu->kvm))
4066 kvm_set_cr8(vcpu, kvm_run->cr8);
4067
4068 if (vcpu->arch.pio.cur_count) {
4069 r = complete_pio(vcpu);
4070 if (r)
4071 goto out;
4072 }
4073 if (vcpu->mmio_needed) {
4074 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4075 vcpu->mmio_read_completed = 1;
4076 vcpu->mmio_needed = 0;
4077
4078 down_read(&vcpu->kvm->slots_lock);
4079 r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
4080 EMULTYPE_NO_DECODE);
4081 up_read(&vcpu->kvm->slots_lock);
4082 if (r == EMULATE_DO_MMIO) {
4083 /*
4084 * Read-modify-write. Back to userspace.
4085 */
4086 r = 0;
4087 goto out;
4088 }
4089 }
4090 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4091 kvm_register_write(vcpu, VCPU_REGS_RAX,
4092 kvm_run->hypercall.ret);
4093
4094 r = __vcpu_run(vcpu);
4095
4096 out:
4097 if (vcpu->sigset_active)
4098 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4099
4100 vcpu_put(vcpu);
4101 return r;
4102 }
4103
4104 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4105 {
4106 vcpu_load(vcpu);
4107
4108 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4109 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4110 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4111 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4112 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4113 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4114 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4115 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4116 #ifdef CONFIG_X86_64
4117 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4118 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4119 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4120 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4121 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4122 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4123 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4124 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4125 #endif
4126
4127 regs->rip = kvm_rip_read(vcpu);
4128 regs->rflags = kvm_get_rflags(vcpu);
4129
4130 vcpu_put(vcpu);
4131
4132 return 0;
4133 }
4134
4135 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4136 {
4137 vcpu_load(vcpu);
4138
4139 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4140 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4141 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4142 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4143 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4144 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4145 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4146 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4147 #ifdef CONFIG_X86_64
4148 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4149 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4150 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4151 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4152 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4153 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4154 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4155 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4156 #endif
4157
4158 kvm_rip_write(vcpu, regs->rip);
4159 kvm_set_rflags(vcpu, regs->rflags);
4160
4161 vcpu->arch.exception.pending = false;
4162
4163 vcpu_put(vcpu);
4164
4165 return 0;
4166 }
4167
4168 void kvm_get_segment(struct kvm_vcpu *vcpu,
4169 struct kvm_segment *var, int seg)
4170 {
4171 kvm_x86_ops->get_segment(vcpu, var, seg);
4172 }
4173
4174 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4175 {
4176 struct kvm_segment cs;
4177
4178 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4179 *db = cs.db;
4180 *l = cs.l;
4181 }
4182 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4183
4184 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4185 struct kvm_sregs *sregs)
4186 {
4187 struct descriptor_table dt;
4188
4189 vcpu_load(vcpu);
4190
4191 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4192 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4193 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4194 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4195 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4196 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4197
4198 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4199 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4200
4201 kvm_x86_ops->get_idt(vcpu, &dt);
4202 sregs->idt.limit = dt.limit;
4203 sregs->idt.base = dt.base;
4204 kvm_x86_ops->get_gdt(vcpu, &dt);
4205 sregs->gdt.limit = dt.limit;
4206 sregs->gdt.base = dt.base;
4207
4208 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4209 sregs->cr0 = vcpu->arch.cr0;
4210 sregs->cr2 = vcpu->arch.cr2;
4211 sregs->cr3 = vcpu->arch.cr3;
4212 sregs->cr4 = vcpu->arch.cr4;
4213 sregs->cr8 = kvm_get_cr8(vcpu);
4214 sregs->efer = vcpu->arch.shadow_efer;
4215 sregs->apic_base = kvm_get_apic_base(vcpu);
4216
4217 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4218
4219 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4220 set_bit(vcpu->arch.interrupt.nr,
4221 (unsigned long *)sregs->interrupt_bitmap);
4222
4223 vcpu_put(vcpu);
4224
4225 return 0;
4226 }
4227
4228 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4229 struct kvm_mp_state *mp_state)
4230 {
4231 vcpu_load(vcpu);
4232 mp_state->mp_state = vcpu->arch.mp_state;
4233 vcpu_put(vcpu);
4234 return 0;
4235 }
4236
4237 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4238 struct kvm_mp_state *mp_state)
4239 {
4240 vcpu_load(vcpu);
4241 vcpu->arch.mp_state = mp_state->mp_state;
4242 vcpu_put(vcpu);
4243 return 0;
4244 }
4245
4246 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4247 struct kvm_segment *var, int seg)
4248 {
4249 kvm_x86_ops->set_segment(vcpu, var, seg);
4250 }
4251
4252 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
4253 struct kvm_segment *kvm_desct)
4254 {
4255 kvm_desct->base = get_desc_base(seg_desc);
4256 kvm_desct->limit = get_desc_limit(seg_desc);
4257 if (seg_desc->g) {
4258 kvm_desct->limit <<= 12;
4259 kvm_desct->limit |= 0xfff;
4260 }
4261 kvm_desct->selector = selector;
4262 kvm_desct->type = seg_desc->type;
4263 kvm_desct->present = seg_desc->p;
4264 kvm_desct->dpl = seg_desc->dpl;
4265 kvm_desct->db = seg_desc->d;
4266 kvm_desct->s = seg_desc->s;
4267 kvm_desct->l = seg_desc->l;
4268 kvm_desct->g = seg_desc->g;
4269 kvm_desct->avl = seg_desc->avl;
4270 if (!selector)
4271 kvm_desct->unusable = 1;
4272 else
4273 kvm_desct->unusable = 0;
4274 kvm_desct->padding = 0;
4275 }
4276
4277 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4278 u16 selector,
4279 struct descriptor_table *dtable)
4280 {
4281 if (selector & 1 << 2) {
4282 struct kvm_segment kvm_seg;
4283
4284 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4285
4286 if (kvm_seg.unusable)
4287 dtable->limit = 0;
4288 else
4289 dtable->limit = kvm_seg.limit;
4290 dtable->base = kvm_seg.base;
4291 }
4292 else
4293 kvm_x86_ops->get_gdt(vcpu, dtable);
4294 }
4295
4296 /* allowed just for 8 bytes segments */
4297 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4298 struct desc_struct *seg_desc)
4299 {
4300 struct descriptor_table dtable;
4301 u16 index = selector >> 3;
4302
4303 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4304
4305 if (dtable.limit < index * 8 + 7) {
4306 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4307 return 1;
4308 }
4309 return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4310 }
4311
4312 /* allowed just for 8 bytes segments */
4313 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4314 struct desc_struct *seg_desc)
4315 {
4316 struct descriptor_table dtable;
4317 u16 index = selector >> 3;
4318
4319 get_segment_descriptor_dtable(vcpu, selector, &dtable);
4320
4321 if (dtable.limit < index * 8 + 7)
4322 return 1;
4323 return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4324 }
4325
4326 static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
4327 struct desc_struct *seg_desc)
4328 {
4329 u32 base_addr = get_desc_base(seg_desc);
4330
4331 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4332 }
4333
4334 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4335 {
4336 struct kvm_segment kvm_seg;
4337
4338 kvm_get_segment(vcpu, &kvm_seg, seg);
4339 return kvm_seg.selector;
4340 }
4341
4342 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
4343 u16 selector,
4344 struct kvm_segment *kvm_seg)
4345 {
4346 struct desc_struct seg_desc;
4347
4348 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4349 return 1;
4350 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
4351 return 0;
4352 }
4353
4354 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4355 {
4356 struct kvm_segment segvar = {
4357 .base = selector << 4,
4358 .limit = 0xffff,
4359 .selector = selector,
4360 .type = 3,
4361 .present = 1,
4362 .dpl = 3,
4363 .db = 0,
4364 .s = 1,
4365 .l = 0,
4366 .g = 0,
4367 .avl = 0,
4368 .unusable = 0,
4369 };
4370 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4371 return 0;
4372 }
4373
4374 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4375 {
4376 return (seg != VCPU_SREG_LDTR) &&
4377 (seg != VCPU_SREG_TR) &&
4378 (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
4379 }
4380
4381 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4382 int type_bits, int seg)
4383 {
4384 struct kvm_segment kvm_seg;
4385
4386 if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
4387 return kvm_load_realmode_segment(vcpu, selector, seg);
4388 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4389 return 1;
4390 kvm_seg.type |= type_bits;
4391
4392 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4393 seg != VCPU_SREG_LDTR)
4394 if (!kvm_seg.s)
4395 kvm_seg.unusable = 1;
4396
4397 kvm_set_segment(vcpu, &kvm_seg, seg);
4398 return 0;
4399 }
4400
4401 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4402 struct tss_segment_32 *tss)
4403 {
4404 tss->cr3 = vcpu->arch.cr3;
4405 tss->eip = kvm_rip_read(vcpu);
4406 tss->eflags = kvm_get_rflags(vcpu);
4407 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4408 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4409 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4410 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4411 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4412 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4413 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4414 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4415 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4416 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4417 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4418 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4419 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4420 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4421 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4422 }
4423
4424 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4425 struct tss_segment_32 *tss)
4426 {
4427 kvm_set_cr3(vcpu, tss->cr3);
4428
4429 kvm_rip_write(vcpu, tss->eip);
4430 kvm_set_rflags(vcpu, tss->eflags | 2);
4431
4432 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4433 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4434 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4435 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4436 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4437 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4438 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4439 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4440
4441 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4442 return 1;
4443
4444 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4445 return 1;
4446
4447 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4448 return 1;
4449
4450 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4451 return 1;
4452
4453 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4454 return 1;
4455
4456 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4457 return 1;
4458
4459 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4460 return 1;
4461 return 0;
4462 }
4463
4464 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4465 struct tss_segment_16 *tss)
4466 {
4467 tss->ip = kvm_rip_read(vcpu);
4468 tss->flag = kvm_get_rflags(vcpu);
4469 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4470 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4471 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4472 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4473 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4474 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4475 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4476 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4477
4478 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4479 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4480 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4481 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4482 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4483 }
4484
4485 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4486 struct tss_segment_16 *tss)
4487 {
4488 kvm_rip_write(vcpu, tss->ip);
4489 kvm_set_rflags(vcpu, tss->flag | 2);
4490 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4491 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4492 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4493 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4494 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4495 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4496 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4497 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4498
4499 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4500 return 1;
4501
4502 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4503 return 1;
4504
4505 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4506 return 1;
4507
4508 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4509 return 1;
4510
4511 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4512 return 1;
4513 return 0;
4514 }
4515
4516 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4517 u16 old_tss_sel, u32 old_tss_base,
4518 struct desc_struct *nseg_desc)
4519 {
4520 struct tss_segment_16 tss_segment_16;
4521 int ret = 0;
4522
4523 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4524 sizeof tss_segment_16))
4525 goto out;
4526
4527 save_state_to_tss16(vcpu, &tss_segment_16);
4528
4529 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4530 sizeof tss_segment_16))
4531 goto out;
4532
4533 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4534 &tss_segment_16, sizeof tss_segment_16))
4535 goto out;
4536
4537 if (old_tss_sel != 0xffff) {
4538 tss_segment_16.prev_task_link = old_tss_sel;
4539
4540 if (kvm_write_guest(vcpu->kvm,
4541 get_tss_base_addr(vcpu, nseg_desc),
4542 &tss_segment_16.prev_task_link,
4543 sizeof tss_segment_16.prev_task_link))
4544 goto out;
4545 }
4546
4547 if (load_state_from_tss16(vcpu, &tss_segment_16))
4548 goto out;
4549
4550 ret = 1;
4551 out:
4552 return ret;
4553 }
4554
4555 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4556 u16 old_tss_sel, u32 old_tss_base,
4557 struct desc_struct *nseg_desc)
4558 {
4559 struct tss_segment_32 tss_segment_32;
4560 int ret = 0;
4561
4562 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4563 sizeof tss_segment_32))
4564 goto out;
4565
4566 save_state_to_tss32(vcpu, &tss_segment_32);
4567
4568 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4569 sizeof tss_segment_32))
4570 goto out;
4571
4572 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4573 &tss_segment_32, sizeof tss_segment_32))
4574 goto out;
4575
4576 if (old_tss_sel != 0xffff) {
4577 tss_segment_32.prev_task_link = old_tss_sel;
4578
4579 if (kvm_write_guest(vcpu->kvm,
4580 get_tss_base_addr(vcpu, nseg_desc),
4581 &tss_segment_32.prev_task_link,
4582 sizeof tss_segment_32.prev_task_link))
4583 goto out;
4584 }
4585
4586 if (load_state_from_tss32(vcpu, &tss_segment_32))
4587 goto out;
4588
4589 ret = 1;
4590 out:
4591 return ret;
4592 }
4593
4594 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4595 {
4596 struct kvm_segment tr_seg;
4597 struct desc_struct cseg_desc;
4598 struct desc_struct nseg_desc;
4599 int ret = 0;
4600 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4601 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4602
4603 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4604
4605 /* FIXME: Handle errors. Failure to read either TSS or their
4606 * descriptors should generate a pagefault.
4607 */
4608 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4609 goto out;
4610
4611 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4612 goto out;
4613
4614 if (reason != TASK_SWITCH_IRET) {
4615 int cpl;
4616
4617 cpl = kvm_x86_ops->get_cpl(vcpu);
4618 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4619 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4620 return 1;
4621 }
4622 }
4623
4624 if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
4625 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4626 return 1;
4627 }
4628
4629 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4630 cseg_desc.type &= ~(1 << 1); //clear the B flag
4631 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4632 }
4633
4634 if (reason == TASK_SWITCH_IRET) {
4635 u32 eflags = kvm_get_rflags(vcpu);
4636 kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4637 }
4638
4639 /* set back link to prev task only if NT bit is set in eflags
4640 note that old_tss_sel is not used afetr this point */
4641 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4642 old_tss_sel = 0xffff;
4643
4644 if (nseg_desc.type & 8)
4645 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4646 old_tss_base, &nseg_desc);
4647 else
4648 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4649 old_tss_base, &nseg_desc);
4650
4651 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4652 u32 eflags = kvm_get_rflags(vcpu);
4653 kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4654 }
4655
4656 if (reason != TASK_SWITCH_IRET) {
4657 nseg_desc.type |= (1 << 1);
4658 save_guest_segment_descriptor(vcpu, tss_selector,
4659 &nseg_desc);
4660 }
4661
4662 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4663 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4664 tr_seg.type = 11;
4665 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4666 out:
4667 return ret;
4668 }
4669 EXPORT_SYMBOL_GPL(kvm_task_switch);
4670
4671 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4672 struct kvm_sregs *sregs)
4673 {
4674 int mmu_reset_needed = 0;
4675 int pending_vec, max_bits;
4676 struct descriptor_table dt;
4677
4678 vcpu_load(vcpu);
4679
4680 dt.limit = sregs->idt.limit;
4681 dt.base = sregs->idt.base;
4682 kvm_x86_ops->set_idt(vcpu, &dt);
4683 dt.limit = sregs->gdt.limit;
4684 dt.base = sregs->gdt.base;
4685 kvm_x86_ops->set_gdt(vcpu, &dt);
4686
4687 vcpu->arch.cr2 = sregs->cr2;
4688 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4689 vcpu->arch.cr3 = sregs->cr3;
4690
4691 kvm_set_cr8(vcpu, sregs->cr8);
4692
4693 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4694 kvm_x86_ops->set_efer(vcpu, sregs->efer);
4695 kvm_set_apic_base(vcpu, sregs->apic_base);
4696
4697 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4698
4699 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4700 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4701 vcpu->arch.cr0 = sregs->cr0;
4702
4703 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4704 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4705 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
4706 load_pdptrs(vcpu, vcpu->arch.cr3);
4707 mmu_reset_needed = 1;
4708 }
4709
4710 if (mmu_reset_needed)
4711 kvm_mmu_reset_context(vcpu);
4712
4713 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4714 pending_vec = find_first_bit(
4715 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4716 if (pending_vec < max_bits) {
4717 kvm_queue_interrupt(vcpu, pending_vec, false);
4718 pr_debug("Set back pending irq %d\n", pending_vec);
4719 if (irqchip_in_kernel(vcpu->kvm))
4720 kvm_pic_clear_isr_ack(vcpu->kvm);
4721 }
4722
4723 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4724 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4725 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4726 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4727 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4728 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4729
4730 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4731 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4732
4733 update_cr8_intercept(vcpu);
4734
4735 /* Older userspace won't unhalt the vcpu on reset. */
4736 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4737 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4738 !(vcpu->arch.cr0 & X86_CR0_PE))
4739 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4740
4741 vcpu_put(vcpu);
4742
4743 return 0;
4744 }
4745
4746 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4747 struct kvm_guest_debug *dbg)
4748 {
4749 unsigned long rflags;
4750 int i, r;
4751
4752 vcpu_load(vcpu);
4753
4754 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
4755 r = -EBUSY;
4756 if (vcpu->arch.exception.pending)
4757 goto unlock_out;
4758 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4759 kvm_queue_exception(vcpu, DB_VECTOR);
4760 else
4761 kvm_queue_exception(vcpu, BP_VECTOR);
4762 }
4763
4764 /*
4765 * Read rflags as long as potentially injected trace flags are still
4766 * filtered out.
4767 */
4768 rflags = kvm_get_rflags(vcpu);
4769
4770 vcpu->guest_debug = dbg->control;
4771 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
4772 vcpu->guest_debug = 0;
4773
4774 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4775 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4776 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4777 vcpu->arch.switch_db_regs =
4778 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4779 } else {
4780 for (i = 0; i < KVM_NR_DB_REGS; i++)
4781 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4782 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4783 }
4784
4785 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
4786 vcpu->arch.singlestep_cs =
4787 get_segment_selector(vcpu, VCPU_SREG_CS);
4788 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
4789 }
4790
4791 /*
4792 * Trigger an rflags update that will inject or remove the trace
4793 * flags.
4794 */
4795 kvm_set_rflags(vcpu, rflags);
4796
4797 kvm_x86_ops->set_guest_debug(vcpu, dbg);
4798
4799 r = 0;
4800
4801 unlock_out:
4802 vcpu_put(vcpu);
4803
4804 return r;
4805 }
4806
4807 /*
4808 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4809 * we have asm/x86/processor.h
4810 */
4811 struct fxsave {
4812 u16 cwd;
4813 u16 swd;
4814 u16 twd;
4815 u16 fop;
4816 u64 rip;
4817 u64 rdp;
4818 u32 mxcsr;
4819 u32 mxcsr_mask;
4820 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4821 #ifdef CONFIG_X86_64
4822 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4823 #else
4824 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4825 #endif
4826 };
4827
4828 /*
4829 * Translate a guest virtual address to a guest physical address.
4830 */
4831 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4832 struct kvm_translation *tr)
4833 {
4834 unsigned long vaddr = tr->linear_address;
4835 gpa_t gpa;
4836
4837 vcpu_load(vcpu);
4838 down_read(&vcpu->kvm->slots_lock);
4839 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4840 up_read(&vcpu->kvm->slots_lock);
4841 tr->physical_address = gpa;
4842 tr->valid = gpa != UNMAPPED_GVA;
4843 tr->writeable = 1;
4844 tr->usermode = 0;
4845 vcpu_put(vcpu);
4846
4847 return 0;
4848 }
4849
4850 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4851 {
4852 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4853
4854 vcpu_load(vcpu);
4855
4856 memcpy(fpu->fpr, fxsave->st_space, 128);
4857 fpu->fcw = fxsave->cwd;
4858 fpu->fsw = fxsave->swd;
4859 fpu->ftwx = fxsave->twd;
4860 fpu->last_opcode = fxsave->fop;
4861 fpu->last_ip = fxsave->rip;
4862 fpu->last_dp = fxsave->rdp;
4863 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4864
4865 vcpu_put(vcpu);
4866
4867 return 0;
4868 }
4869
4870 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4871 {
4872 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4873
4874 vcpu_load(vcpu);
4875
4876 memcpy(fxsave->st_space, fpu->fpr, 128);
4877 fxsave->cwd = fpu->fcw;
4878 fxsave->swd = fpu->fsw;
4879 fxsave->twd = fpu->ftwx;
4880 fxsave->fop = fpu->last_opcode;
4881 fxsave->rip = fpu->last_ip;
4882 fxsave->rdp = fpu->last_dp;
4883 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4884
4885 vcpu_put(vcpu);
4886
4887 return 0;
4888 }
4889
4890 void fx_init(struct kvm_vcpu *vcpu)
4891 {
4892 unsigned after_mxcsr_mask;
4893
4894 /*
4895 * Touch the fpu the first time in non atomic context as if
4896 * this is the first fpu instruction the exception handler
4897 * will fire before the instruction returns and it'll have to
4898 * allocate ram with GFP_KERNEL.
4899 */
4900 if (!used_math())
4901 kvm_fx_save(&vcpu->arch.host_fx_image);
4902
4903 /* Initialize guest FPU by resetting ours and saving into guest's */
4904 preempt_disable();
4905 kvm_fx_save(&vcpu->arch.host_fx_image);
4906 kvm_fx_finit();
4907 kvm_fx_save(&vcpu->arch.guest_fx_image);
4908 kvm_fx_restore(&vcpu->arch.host_fx_image);
4909 preempt_enable();
4910
4911 vcpu->arch.cr0 |= X86_CR0_ET;
4912 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4913 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4914 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4915 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4916 }
4917 EXPORT_SYMBOL_GPL(fx_init);
4918
4919 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4920 {
4921 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4922 return;
4923
4924 vcpu->guest_fpu_loaded = 1;
4925 kvm_fx_save(&vcpu->arch.host_fx_image);
4926 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4927 }
4928 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4929
4930 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4931 {
4932 if (!vcpu->guest_fpu_loaded)
4933 return;
4934
4935 vcpu->guest_fpu_loaded = 0;
4936 kvm_fx_save(&vcpu->arch.guest_fx_image);
4937 kvm_fx_restore(&vcpu->arch.host_fx_image);
4938 ++vcpu->stat.fpu_reload;
4939 }
4940 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4941
4942 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4943 {
4944 if (vcpu->arch.time_page) {
4945 kvm_release_page_dirty(vcpu->arch.time_page);
4946 vcpu->arch.time_page = NULL;
4947 }
4948
4949 kvm_x86_ops->vcpu_free(vcpu);
4950 }
4951
4952 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4953 unsigned int id)
4954 {
4955 return kvm_x86_ops->vcpu_create(kvm, id);
4956 }
4957
4958 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4959 {
4960 int r;
4961
4962 /* We do fxsave: this must be aligned. */
4963 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4964
4965 vcpu->arch.mtrr_state.have_fixed = 1;
4966 vcpu_load(vcpu);
4967 r = kvm_arch_vcpu_reset(vcpu);
4968 if (r == 0)
4969 r = kvm_mmu_setup(vcpu);
4970 vcpu_put(vcpu);
4971 if (r < 0)
4972 goto free_vcpu;
4973
4974 return 0;
4975 free_vcpu:
4976 kvm_x86_ops->vcpu_free(vcpu);
4977 return r;
4978 }
4979
4980 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4981 {
4982 vcpu_load(vcpu);
4983 kvm_mmu_unload(vcpu);
4984 vcpu_put(vcpu);
4985
4986 kvm_x86_ops->vcpu_free(vcpu);
4987 }
4988
4989 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4990 {
4991 vcpu->arch.nmi_pending = false;
4992 vcpu->arch.nmi_injected = false;
4993
4994 vcpu->arch.switch_db_regs = 0;
4995 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4996 vcpu->arch.dr6 = DR6_FIXED_1;
4997 vcpu->arch.dr7 = DR7_FIXED_1;
4998
4999 return kvm_x86_ops->vcpu_reset(vcpu);
5000 }
5001
5002 int kvm_arch_hardware_enable(void *garbage)
5003 {
5004 /*
5005 * Since this may be called from a hotplug notifcation,
5006 * we can't get the CPU frequency directly.
5007 */
5008 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5009 int cpu = raw_smp_processor_id();
5010 per_cpu(cpu_tsc_khz, cpu) = 0;
5011 }
5012
5013 kvm_shared_msr_cpu_online();
5014
5015 return kvm_x86_ops->hardware_enable(garbage);
5016 }
5017
5018 void kvm_arch_hardware_disable(void *garbage)
5019 {
5020 kvm_x86_ops->hardware_disable(garbage);
5021 drop_user_return_notifiers(garbage);
5022 }
5023
5024 int kvm_arch_hardware_setup(void)
5025 {
5026 return kvm_x86_ops->hardware_setup();
5027 }
5028
5029 void kvm_arch_hardware_unsetup(void)
5030 {
5031 kvm_x86_ops->hardware_unsetup();
5032 }
5033
5034 void kvm_arch_check_processor_compat(void *rtn)
5035 {
5036 kvm_x86_ops->check_processor_compatibility(rtn);
5037 }
5038
5039 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5040 {
5041 struct page *page;
5042 struct kvm *kvm;
5043 int r;
5044
5045 BUG_ON(vcpu->kvm == NULL);
5046 kvm = vcpu->kvm;
5047
5048 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5049 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5050 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5051 else
5052 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5053
5054 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5055 if (!page) {
5056 r = -ENOMEM;
5057 goto fail;
5058 }
5059 vcpu->arch.pio_data = page_address(page);
5060
5061 r = kvm_mmu_create(vcpu);
5062 if (r < 0)
5063 goto fail_free_pio_data;
5064
5065 if (irqchip_in_kernel(kvm)) {
5066 r = kvm_create_lapic(vcpu);
5067 if (r < 0)
5068 goto fail_mmu_destroy;
5069 }
5070
5071 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5072 GFP_KERNEL);
5073 if (!vcpu->arch.mce_banks) {
5074 r = -ENOMEM;
5075 goto fail_mmu_destroy;
5076 }
5077 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5078
5079 return 0;
5080
5081 fail_mmu_destroy:
5082 kvm_mmu_destroy(vcpu);
5083 fail_free_pio_data:
5084 free_page((unsigned long)vcpu->arch.pio_data);
5085 fail:
5086 return r;
5087 }
5088
5089 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5090 {
5091 kvm_free_lapic(vcpu);
5092 down_read(&vcpu->kvm->slots_lock);
5093 kvm_mmu_destroy(vcpu);
5094 up_read(&vcpu->kvm->slots_lock);
5095 free_page((unsigned long)vcpu->arch.pio_data);
5096 }
5097
5098 struct kvm *kvm_arch_create_vm(void)
5099 {
5100 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5101
5102 if (!kvm)
5103 return ERR_PTR(-ENOMEM);
5104
5105 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5106 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5107
5108 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5109 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5110
5111 rdtscll(kvm->arch.vm_init_tsc);
5112
5113 return kvm;
5114 }
5115
5116 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5117 {
5118 vcpu_load(vcpu);
5119 kvm_mmu_unload(vcpu);
5120 vcpu_put(vcpu);
5121 }
5122
5123 static void kvm_free_vcpus(struct kvm *kvm)
5124 {
5125 unsigned int i;
5126 struct kvm_vcpu *vcpu;
5127
5128 /*
5129 * Unpin any mmu pages first.
5130 */
5131 kvm_for_each_vcpu(i, vcpu, kvm)
5132 kvm_unload_vcpu_mmu(vcpu);
5133 kvm_for_each_vcpu(i, vcpu, kvm)
5134 kvm_arch_vcpu_free(vcpu);
5135
5136 mutex_lock(&kvm->lock);
5137 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5138 kvm->vcpus[i] = NULL;
5139
5140 atomic_set(&kvm->online_vcpus, 0);
5141 mutex_unlock(&kvm->lock);
5142 }
5143
5144 void kvm_arch_sync_events(struct kvm *kvm)
5145 {
5146 kvm_free_all_assigned_devices(kvm);
5147 }
5148
5149 void kvm_arch_destroy_vm(struct kvm *kvm)
5150 {
5151 kvm_iommu_unmap_guest(kvm);
5152 kvm_free_pit(kvm);
5153 kfree(kvm->arch.vpic);
5154 kfree(kvm->arch.vioapic);
5155 kvm_free_vcpus(kvm);
5156 kvm_free_physmem(kvm);
5157 if (kvm->arch.apic_access_page)
5158 put_page(kvm->arch.apic_access_page);
5159 if (kvm->arch.ept_identity_pagetable)
5160 put_page(kvm->arch.ept_identity_pagetable);
5161 kfree(kvm);
5162 }
5163
5164 int kvm_arch_set_memory_region(struct kvm *kvm,
5165 struct kvm_userspace_memory_region *mem,
5166 struct kvm_memory_slot old,
5167 int user_alloc)
5168 {
5169 int npages = mem->memory_size >> PAGE_SHIFT;
5170 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
5171
5172 /*To keep backward compatibility with older userspace,
5173 *x86 needs to hanlde !user_alloc case.
5174 */
5175 if (!user_alloc) {
5176 if (npages && !old.rmap) {
5177 unsigned long userspace_addr;
5178
5179 down_write(&current->mm->mmap_sem);
5180 userspace_addr = do_mmap(NULL, 0,
5181 npages * PAGE_SIZE,
5182 PROT_READ | PROT_WRITE,
5183 MAP_PRIVATE | MAP_ANONYMOUS,
5184 0);
5185 up_write(&current->mm->mmap_sem);
5186
5187 if (IS_ERR((void *)userspace_addr))
5188 return PTR_ERR((void *)userspace_addr);
5189
5190 /* set userspace_addr atomically for kvm_hva_to_rmapp */
5191 spin_lock(&kvm->mmu_lock);
5192 memslot->userspace_addr = userspace_addr;
5193 spin_unlock(&kvm->mmu_lock);
5194 } else {
5195 if (!old.user_alloc && old.rmap) {
5196 int ret;
5197
5198 down_write(&current->mm->mmap_sem);
5199 ret = do_munmap(current->mm, old.userspace_addr,
5200 old.npages * PAGE_SIZE);
5201 up_write(&current->mm->mmap_sem);
5202 if (ret < 0)
5203 printk(KERN_WARNING
5204 "kvm_vm_ioctl_set_memory_region: "
5205 "failed to munmap memory\n");
5206 }
5207 }
5208 }
5209
5210 spin_lock(&kvm->mmu_lock);
5211 if (!kvm->arch.n_requested_mmu_pages) {
5212 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5213 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5214 }
5215
5216 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5217 spin_unlock(&kvm->mmu_lock);
5218
5219 return 0;
5220 }
5221
5222 void kvm_arch_flush_shadow(struct kvm *kvm)
5223 {
5224 kvm_mmu_zap_all(kvm);
5225 kvm_reload_remote_mmus(kvm);
5226 }
5227
5228 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5229 {
5230 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5231 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5232 || vcpu->arch.nmi_pending ||
5233 (kvm_arch_interrupt_allowed(vcpu) &&
5234 kvm_cpu_has_interrupt(vcpu));
5235 }
5236
5237 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5238 {
5239 int me;
5240 int cpu = vcpu->cpu;
5241
5242 if (waitqueue_active(&vcpu->wq)) {
5243 wake_up_interruptible(&vcpu->wq);
5244 ++vcpu->stat.halt_wakeup;
5245 }
5246
5247 me = get_cpu();
5248 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5249 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5250 smp_send_reschedule(cpu);
5251 put_cpu();
5252 }
5253
5254 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5255 {
5256 return kvm_x86_ops->interrupt_allowed(vcpu);
5257 }
5258
5259 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5260 {
5261 unsigned long rflags;
5262
5263 rflags = kvm_x86_ops->get_rflags(vcpu);
5264 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5265 rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
5266 return rflags;
5267 }
5268 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5269
5270 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5271 {
5272 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5273 vcpu->arch.singlestep_cs ==
5274 get_segment_selector(vcpu, VCPU_SREG_CS) &&
5275 vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
5276 rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
5277 kvm_x86_ops->set_rflags(vcpu, rflags);
5278 }
5279 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5280
5281 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5282 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5283 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5284 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5285 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5286 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5287 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5288 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5289 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5290 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5291 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
This page took 0.248097 seconds and 5 git commands to generate.