de0931cb3f58c01a447e80f7fd7a7f797140b8bf
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75 * - enable syscall per default because its emulated by KVM
76 * - enable LME and LMA per default on 64 bit KVM
77 */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 unsigned int min_timer_period_us = 500;
98 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
99
100 bool kvm_has_tsc_control;
101 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
102 u32 kvm_max_guest_tsc_khz;
103 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
104
105 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
106 static u32 tsc_tolerance_ppm = 250;
107 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
108
109 #define KVM_NR_SHARED_MSRS 16
110
111 struct kvm_shared_msrs_global {
112 int nr;
113 u32 msrs[KVM_NR_SHARED_MSRS];
114 };
115
116 struct kvm_shared_msrs {
117 struct user_return_notifier urn;
118 bool registered;
119 struct kvm_shared_msr_values {
120 u64 host;
121 u64 curr;
122 } values[KVM_NR_SHARED_MSRS];
123 };
124
125 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
126 static struct kvm_shared_msrs __percpu *shared_msrs;
127
128 struct kvm_stats_debugfs_item debugfs_entries[] = {
129 { "pf_fixed", VCPU_STAT(pf_fixed) },
130 { "pf_guest", VCPU_STAT(pf_guest) },
131 { "tlb_flush", VCPU_STAT(tlb_flush) },
132 { "invlpg", VCPU_STAT(invlpg) },
133 { "exits", VCPU_STAT(exits) },
134 { "io_exits", VCPU_STAT(io_exits) },
135 { "mmio_exits", VCPU_STAT(mmio_exits) },
136 { "signal_exits", VCPU_STAT(signal_exits) },
137 { "irq_window", VCPU_STAT(irq_window_exits) },
138 { "nmi_window", VCPU_STAT(nmi_window_exits) },
139 { "halt_exits", VCPU_STAT(halt_exits) },
140 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
141 { "hypercalls", VCPU_STAT(hypercalls) },
142 { "request_irq", VCPU_STAT(request_irq_exits) },
143 { "irq_exits", VCPU_STAT(irq_exits) },
144 { "host_state_reload", VCPU_STAT(host_state_reload) },
145 { "efer_reload", VCPU_STAT(efer_reload) },
146 { "fpu_reload", VCPU_STAT(fpu_reload) },
147 { "insn_emulation", VCPU_STAT(insn_emulation) },
148 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
149 { "irq_injections", VCPU_STAT(irq_injections) },
150 { "nmi_injections", VCPU_STAT(nmi_injections) },
151 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
152 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
153 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
154 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
155 { "mmu_flooded", VM_STAT(mmu_flooded) },
156 { "mmu_recycled", VM_STAT(mmu_recycled) },
157 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
158 { "mmu_unsync", VM_STAT(mmu_unsync) },
159 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
160 { "largepages", VM_STAT(lpages) },
161 { NULL }
162 };
163
164 u64 __read_mostly host_xcr0;
165
166 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
167
168 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
169 {
170 int i;
171 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
172 vcpu->arch.apf.gfns[i] = ~0;
173 }
174
175 static void kvm_on_user_return(struct user_return_notifier *urn)
176 {
177 unsigned slot;
178 struct kvm_shared_msrs *locals
179 = container_of(urn, struct kvm_shared_msrs, urn);
180 struct kvm_shared_msr_values *values;
181
182 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
183 values = &locals->values[slot];
184 if (values->host != values->curr) {
185 wrmsrl(shared_msrs_global.msrs[slot], values->host);
186 values->curr = values->host;
187 }
188 }
189 locals->registered = false;
190 user_return_notifier_unregister(urn);
191 }
192
193 static void shared_msr_update(unsigned slot, u32 msr)
194 {
195 u64 value;
196 unsigned int cpu = smp_processor_id();
197 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
198
199 /* only read, and nobody should modify it at this time,
200 * so don't need lock */
201 if (slot >= shared_msrs_global.nr) {
202 printk(KERN_ERR "kvm: invalid MSR slot!");
203 return;
204 }
205 rdmsrl_safe(msr, &value);
206 smsr->values[slot].host = value;
207 smsr->values[slot].curr = value;
208 }
209
210 void kvm_define_shared_msr(unsigned slot, u32 msr)
211 {
212 if (slot >= shared_msrs_global.nr)
213 shared_msrs_global.nr = slot + 1;
214 shared_msrs_global.msrs[slot] = msr;
215 /* we need ensured the shared_msr_global have been updated */
216 smp_wmb();
217 }
218 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
219
220 static void kvm_shared_msr_cpu_online(void)
221 {
222 unsigned i;
223
224 for (i = 0; i < shared_msrs_global.nr; ++i)
225 shared_msr_update(i, shared_msrs_global.msrs[i]);
226 }
227
228 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
229 {
230 unsigned int cpu = smp_processor_id();
231 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
232
233 if (((value ^ smsr->values[slot].curr) & mask) == 0)
234 return;
235 smsr->values[slot].curr = value;
236 wrmsrl(shared_msrs_global.msrs[slot], value);
237 if (!smsr->registered) {
238 smsr->urn.on_user_return = kvm_on_user_return;
239 user_return_notifier_register(&smsr->urn);
240 smsr->registered = true;
241 }
242 }
243 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
244
245 static void drop_user_return_notifiers(void *ignore)
246 {
247 unsigned int cpu = smp_processor_id();
248 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
249
250 if (smsr->registered)
251 kvm_on_user_return(&smsr->urn);
252 }
253
254 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
255 {
256 return vcpu->arch.apic_base;
257 }
258 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
259
260 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
261 {
262 u64 old_state = vcpu->arch.apic_base &
263 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
264 u64 new_state = msr_info->data &
265 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
266 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
267 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
268
269 if (!msr_info->host_initiated &&
270 ((msr_info->data & reserved_bits) != 0 ||
271 new_state == X2APIC_ENABLE ||
272 (new_state == MSR_IA32_APICBASE_ENABLE &&
273 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
274 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
275 old_state == 0)))
276 return 1;
277
278 kvm_lapic_set_base(vcpu, msr_info->data);
279 return 0;
280 }
281 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
282
283 asmlinkage void kvm_spurious_fault(void)
284 {
285 /* Fault while not rebooting. We want the trace. */
286 BUG();
287 }
288 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
289
290 #define EXCPT_BENIGN 0
291 #define EXCPT_CONTRIBUTORY 1
292 #define EXCPT_PF 2
293
294 static int exception_class(int vector)
295 {
296 switch (vector) {
297 case PF_VECTOR:
298 return EXCPT_PF;
299 case DE_VECTOR:
300 case TS_VECTOR:
301 case NP_VECTOR:
302 case SS_VECTOR:
303 case GP_VECTOR:
304 return EXCPT_CONTRIBUTORY;
305 default:
306 break;
307 }
308 return EXCPT_BENIGN;
309 }
310
311 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
312 unsigned nr, bool has_error, u32 error_code,
313 bool reinject)
314 {
315 u32 prev_nr;
316 int class1, class2;
317
318 kvm_make_request(KVM_REQ_EVENT, vcpu);
319
320 if (!vcpu->arch.exception.pending) {
321 queue:
322 vcpu->arch.exception.pending = true;
323 vcpu->arch.exception.has_error_code = has_error;
324 vcpu->arch.exception.nr = nr;
325 vcpu->arch.exception.error_code = error_code;
326 vcpu->arch.exception.reinject = reinject;
327 return;
328 }
329
330 /* to check exception */
331 prev_nr = vcpu->arch.exception.nr;
332 if (prev_nr == DF_VECTOR) {
333 /* triple fault -> shutdown */
334 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
335 return;
336 }
337 class1 = exception_class(prev_nr);
338 class2 = exception_class(nr);
339 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
340 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
341 /* generate double fault per SDM Table 5-5 */
342 vcpu->arch.exception.pending = true;
343 vcpu->arch.exception.has_error_code = true;
344 vcpu->arch.exception.nr = DF_VECTOR;
345 vcpu->arch.exception.error_code = 0;
346 } else
347 /* replace previous exception with a new one in a hope
348 that instruction re-execution will regenerate lost
349 exception */
350 goto queue;
351 }
352
353 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
354 {
355 kvm_multiple_exception(vcpu, nr, false, 0, false);
356 }
357 EXPORT_SYMBOL_GPL(kvm_queue_exception);
358
359 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
360 {
361 kvm_multiple_exception(vcpu, nr, false, 0, true);
362 }
363 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
364
365 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
366 {
367 if (err)
368 kvm_inject_gp(vcpu, 0);
369 else
370 kvm_x86_ops->skip_emulated_instruction(vcpu);
371 }
372 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
373
374 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
375 {
376 ++vcpu->stat.pf_guest;
377 vcpu->arch.cr2 = fault->address;
378 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
379 }
380 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
381
382 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
383 {
384 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
385 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
386 else
387 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
388 }
389
390 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
391 {
392 atomic_inc(&vcpu->arch.nmi_queued);
393 kvm_make_request(KVM_REQ_NMI, vcpu);
394 }
395 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
396
397 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
398 {
399 kvm_multiple_exception(vcpu, nr, true, error_code, false);
400 }
401 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
402
403 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
404 {
405 kvm_multiple_exception(vcpu, nr, true, error_code, true);
406 }
407 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
408
409 /*
410 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
411 * a #GP and return false.
412 */
413 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
414 {
415 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
416 return true;
417 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
418 return false;
419 }
420 EXPORT_SYMBOL_GPL(kvm_require_cpl);
421
422 /*
423 * This function will be used to read from the physical memory of the currently
424 * running guest. The difference to kvm_read_guest_page is that this function
425 * can read from guest physical or from the guest's guest physical memory.
426 */
427 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
428 gfn_t ngfn, void *data, int offset, int len,
429 u32 access)
430 {
431 gfn_t real_gfn;
432 gpa_t ngpa;
433
434 ngpa = gfn_to_gpa(ngfn);
435 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
436 if (real_gfn == UNMAPPED_GVA)
437 return -EFAULT;
438
439 real_gfn = gpa_to_gfn(real_gfn);
440
441 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
442 }
443 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
444
445 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
446 void *data, int offset, int len, u32 access)
447 {
448 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
449 data, offset, len, access);
450 }
451
452 /*
453 * Load the pae pdptrs. Return true is they are all valid.
454 */
455 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
456 {
457 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
458 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
459 int i;
460 int ret;
461 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
462
463 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
464 offset * sizeof(u64), sizeof(pdpte),
465 PFERR_USER_MASK|PFERR_WRITE_MASK);
466 if (ret < 0) {
467 ret = 0;
468 goto out;
469 }
470 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
471 if (is_present_gpte(pdpte[i]) &&
472 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
473 ret = 0;
474 goto out;
475 }
476 }
477 ret = 1;
478
479 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
480 __set_bit(VCPU_EXREG_PDPTR,
481 (unsigned long *)&vcpu->arch.regs_avail);
482 __set_bit(VCPU_EXREG_PDPTR,
483 (unsigned long *)&vcpu->arch.regs_dirty);
484 out:
485
486 return ret;
487 }
488 EXPORT_SYMBOL_GPL(load_pdptrs);
489
490 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
491 {
492 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
493 bool changed = true;
494 int offset;
495 gfn_t gfn;
496 int r;
497
498 if (is_long_mode(vcpu) || !is_pae(vcpu))
499 return false;
500
501 if (!test_bit(VCPU_EXREG_PDPTR,
502 (unsigned long *)&vcpu->arch.regs_avail))
503 return true;
504
505 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
506 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
507 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
508 PFERR_USER_MASK | PFERR_WRITE_MASK);
509 if (r < 0)
510 goto out;
511 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
512 out:
513
514 return changed;
515 }
516
517 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
518 {
519 unsigned long old_cr0 = kvm_read_cr0(vcpu);
520 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
521 X86_CR0_CD | X86_CR0_NW;
522
523 cr0 |= X86_CR0_ET;
524
525 #ifdef CONFIG_X86_64
526 if (cr0 & 0xffffffff00000000UL)
527 return 1;
528 #endif
529
530 cr0 &= ~CR0_RESERVED_BITS;
531
532 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
533 return 1;
534
535 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
536 return 1;
537
538 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
539 #ifdef CONFIG_X86_64
540 if ((vcpu->arch.efer & EFER_LME)) {
541 int cs_db, cs_l;
542
543 if (!is_pae(vcpu))
544 return 1;
545 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
546 if (cs_l)
547 return 1;
548 } else
549 #endif
550 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
551 kvm_read_cr3(vcpu)))
552 return 1;
553 }
554
555 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
556 return 1;
557
558 kvm_x86_ops->set_cr0(vcpu, cr0);
559
560 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
561 kvm_clear_async_pf_completion_queue(vcpu);
562 kvm_async_pf_hash_reset(vcpu);
563 }
564
565 if ((cr0 ^ old_cr0) & update_bits)
566 kvm_mmu_reset_context(vcpu);
567 return 0;
568 }
569 EXPORT_SYMBOL_GPL(kvm_set_cr0);
570
571 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
572 {
573 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
574 }
575 EXPORT_SYMBOL_GPL(kvm_lmsw);
576
577 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
578 {
579 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
580 !vcpu->guest_xcr0_loaded) {
581 /* kvm_set_xcr() also depends on this */
582 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
583 vcpu->guest_xcr0_loaded = 1;
584 }
585 }
586
587 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
588 {
589 if (vcpu->guest_xcr0_loaded) {
590 if (vcpu->arch.xcr0 != host_xcr0)
591 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
592 vcpu->guest_xcr0_loaded = 0;
593 }
594 }
595
596 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
597 {
598 u64 xcr0 = xcr;
599 u64 old_xcr0 = vcpu->arch.xcr0;
600 u64 valid_bits;
601
602 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
603 if (index != XCR_XFEATURE_ENABLED_MASK)
604 return 1;
605 if (!(xcr0 & XSTATE_FP))
606 return 1;
607 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
608 return 1;
609
610 /*
611 * Do not allow the guest to set bits that we do not support
612 * saving. However, xcr0 bit 0 is always set, even if the
613 * emulated CPU does not support XSAVE (see fx_init).
614 */
615 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
616 if (xcr0 & ~valid_bits)
617 return 1;
618
619 if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
620 return 1;
621
622 kvm_put_guest_xcr0(vcpu);
623 vcpu->arch.xcr0 = xcr0;
624
625 if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
626 kvm_update_cpuid(vcpu);
627 return 0;
628 }
629
630 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
631 {
632 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
633 __kvm_set_xcr(vcpu, index, xcr)) {
634 kvm_inject_gp(vcpu, 0);
635 return 1;
636 }
637 return 0;
638 }
639 EXPORT_SYMBOL_GPL(kvm_set_xcr);
640
641 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
642 {
643 unsigned long old_cr4 = kvm_read_cr4(vcpu);
644 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
645 X86_CR4_PAE | X86_CR4_SMEP;
646 if (cr4 & CR4_RESERVED_BITS)
647 return 1;
648
649 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
650 return 1;
651
652 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
653 return 1;
654
655 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
656 return 1;
657
658 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
659 return 1;
660
661 if (is_long_mode(vcpu)) {
662 if (!(cr4 & X86_CR4_PAE))
663 return 1;
664 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
665 && ((cr4 ^ old_cr4) & pdptr_bits)
666 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
667 kvm_read_cr3(vcpu)))
668 return 1;
669
670 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
671 if (!guest_cpuid_has_pcid(vcpu))
672 return 1;
673
674 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
675 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
676 return 1;
677 }
678
679 if (kvm_x86_ops->set_cr4(vcpu, cr4))
680 return 1;
681
682 if (((cr4 ^ old_cr4) & pdptr_bits) ||
683 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
684 kvm_mmu_reset_context(vcpu);
685
686 if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
687 update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
688
689 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
690 kvm_update_cpuid(vcpu);
691
692 return 0;
693 }
694 EXPORT_SYMBOL_GPL(kvm_set_cr4);
695
696 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
697 {
698 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
699 kvm_mmu_sync_roots(vcpu);
700 kvm_mmu_flush_tlb(vcpu);
701 return 0;
702 }
703
704 if (is_long_mode(vcpu) && (cr3 & CR3_L_MODE_RESERVED_BITS))
705 return 1;
706 if (is_pae(vcpu) && is_paging(vcpu) &&
707 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
708 return 1;
709
710 vcpu->arch.cr3 = cr3;
711 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
712 kvm_mmu_new_cr3(vcpu);
713 return 0;
714 }
715 EXPORT_SYMBOL_GPL(kvm_set_cr3);
716
717 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
718 {
719 if (cr8 & CR8_RESERVED_BITS)
720 return 1;
721 if (irqchip_in_kernel(vcpu->kvm))
722 kvm_lapic_set_tpr(vcpu, cr8);
723 else
724 vcpu->arch.cr8 = cr8;
725 return 0;
726 }
727 EXPORT_SYMBOL_GPL(kvm_set_cr8);
728
729 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
730 {
731 if (irqchip_in_kernel(vcpu->kvm))
732 return kvm_lapic_get_cr8(vcpu);
733 else
734 return vcpu->arch.cr8;
735 }
736 EXPORT_SYMBOL_GPL(kvm_get_cr8);
737
738 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
739 {
740 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
741 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
742 }
743
744 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
745 {
746 unsigned long dr7;
747
748 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
749 dr7 = vcpu->arch.guest_debug_dr7;
750 else
751 dr7 = vcpu->arch.dr7;
752 kvm_x86_ops->set_dr7(vcpu, dr7);
753 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
754 if (dr7 & DR7_BP_EN_MASK)
755 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
756 }
757
758 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
759 {
760 switch (dr) {
761 case 0 ... 3:
762 vcpu->arch.db[dr] = val;
763 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
764 vcpu->arch.eff_db[dr] = val;
765 break;
766 case 4:
767 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
768 return 1; /* #UD */
769 /* fall through */
770 case 6:
771 if (val & 0xffffffff00000000ULL)
772 return -1; /* #GP */
773 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
774 kvm_update_dr6(vcpu);
775 break;
776 case 5:
777 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
778 return 1; /* #UD */
779 /* fall through */
780 default: /* 7 */
781 if (val & 0xffffffff00000000ULL)
782 return -1; /* #GP */
783 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
784 kvm_update_dr7(vcpu);
785 break;
786 }
787
788 return 0;
789 }
790
791 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
792 {
793 int res;
794
795 res = __kvm_set_dr(vcpu, dr, val);
796 if (res > 0)
797 kvm_queue_exception(vcpu, UD_VECTOR);
798 else if (res < 0)
799 kvm_inject_gp(vcpu, 0);
800
801 return res;
802 }
803 EXPORT_SYMBOL_GPL(kvm_set_dr);
804
805 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
806 {
807 switch (dr) {
808 case 0 ... 3:
809 *val = vcpu->arch.db[dr];
810 break;
811 case 4:
812 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
813 return 1;
814 /* fall through */
815 case 6:
816 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
817 *val = vcpu->arch.dr6;
818 else
819 *val = kvm_x86_ops->get_dr6(vcpu);
820 break;
821 case 5:
822 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
823 return 1;
824 /* fall through */
825 default: /* 7 */
826 *val = vcpu->arch.dr7;
827 break;
828 }
829
830 return 0;
831 }
832
833 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
834 {
835 if (_kvm_get_dr(vcpu, dr, val)) {
836 kvm_queue_exception(vcpu, UD_VECTOR);
837 return 1;
838 }
839 return 0;
840 }
841 EXPORT_SYMBOL_GPL(kvm_get_dr);
842
843 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
844 {
845 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
846 u64 data;
847 int err;
848
849 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
850 if (err)
851 return err;
852 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
853 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
854 return err;
855 }
856 EXPORT_SYMBOL_GPL(kvm_rdpmc);
857
858 /*
859 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
860 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
861 *
862 * This list is modified at module load time to reflect the
863 * capabilities of the host cpu. This capabilities test skips MSRs that are
864 * kvm-specific. Those are put in the beginning of the list.
865 */
866
867 #define KVM_SAVE_MSRS_BEGIN 12
868 static u32 msrs_to_save[] = {
869 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
870 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
871 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
872 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
873 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
874 MSR_KVM_PV_EOI_EN,
875 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
876 MSR_STAR,
877 #ifdef CONFIG_X86_64
878 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
879 #endif
880 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
881 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
882 };
883
884 static unsigned num_msrs_to_save;
885
886 static const u32 emulated_msrs[] = {
887 MSR_IA32_TSC_ADJUST,
888 MSR_IA32_TSCDEADLINE,
889 MSR_IA32_MISC_ENABLE,
890 MSR_IA32_MCG_STATUS,
891 MSR_IA32_MCG_CTL,
892 };
893
894 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
895 {
896 if (efer & efer_reserved_bits)
897 return false;
898
899 if (efer & EFER_FFXSR) {
900 struct kvm_cpuid_entry2 *feat;
901
902 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
903 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
904 return false;
905 }
906
907 if (efer & EFER_SVME) {
908 struct kvm_cpuid_entry2 *feat;
909
910 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
911 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
912 return false;
913 }
914
915 return true;
916 }
917 EXPORT_SYMBOL_GPL(kvm_valid_efer);
918
919 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
920 {
921 u64 old_efer = vcpu->arch.efer;
922
923 if (!kvm_valid_efer(vcpu, efer))
924 return 1;
925
926 if (is_paging(vcpu)
927 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
928 return 1;
929
930 efer &= ~EFER_LMA;
931 efer |= vcpu->arch.efer & EFER_LMA;
932
933 kvm_x86_ops->set_efer(vcpu, efer);
934
935 /* Update reserved bits */
936 if ((efer ^ old_efer) & EFER_NX)
937 kvm_mmu_reset_context(vcpu);
938
939 return 0;
940 }
941
942 void kvm_enable_efer_bits(u64 mask)
943 {
944 efer_reserved_bits &= ~mask;
945 }
946 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
947
948
949 /*
950 * Writes msr value into into the appropriate "register".
951 * Returns 0 on success, non-0 otherwise.
952 * Assumes vcpu_load() was already called.
953 */
954 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
955 {
956 return kvm_x86_ops->set_msr(vcpu, msr);
957 }
958
959 /*
960 * Adapt set_msr() to msr_io()'s calling convention
961 */
962 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
963 {
964 struct msr_data msr;
965
966 msr.data = *data;
967 msr.index = index;
968 msr.host_initiated = true;
969 return kvm_set_msr(vcpu, &msr);
970 }
971
972 #ifdef CONFIG_X86_64
973 struct pvclock_gtod_data {
974 seqcount_t seq;
975
976 struct { /* extract of a clocksource struct */
977 int vclock_mode;
978 cycle_t cycle_last;
979 cycle_t mask;
980 u32 mult;
981 u32 shift;
982 } clock;
983
984 /* open coded 'struct timespec' */
985 u64 monotonic_time_snsec;
986 time_t monotonic_time_sec;
987 };
988
989 static struct pvclock_gtod_data pvclock_gtod_data;
990
991 static void update_pvclock_gtod(struct timekeeper *tk)
992 {
993 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
994
995 write_seqcount_begin(&vdata->seq);
996
997 /* copy pvclock gtod data */
998 vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode;
999 vdata->clock.cycle_last = tk->clock->cycle_last;
1000 vdata->clock.mask = tk->clock->mask;
1001 vdata->clock.mult = tk->mult;
1002 vdata->clock.shift = tk->shift;
1003
1004 vdata->monotonic_time_sec = tk->xtime_sec
1005 + tk->wall_to_monotonic.tv_sec;
1006 vdata->monotonic_time_snsec = tk->xtime_nsec
1007 + (tk->wall_to_monotonic.tv_nsec
1008 << tk->shift);
1009 while (vdata->monotonic_time_snsec >=
1010 (((u64)NSEC_PER_SEC) << tk->shift)) {
1011 vdata->monotonic_time_snsec -=
1012 ((u64)NSEC_PER_SEC) << tk->shift;
1013 vdata->monotonic_time_sec++;
1014 }
1015
1016 write_seqcount_end(&vdata->seq);
1017 }
1018 #endif
1019
1020
1021 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1022 {
1023 int version;
1024 int r;
1025 struct pvclock_wall_clock wc;
1026 struct timespec boot;
1027
1028 if (!wall_clock)
1029 return;
1030
1031 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1032 if (r)
1033 return;
1034
1035 if (version & 1)
1036 ++version; /* first time write, random junk */
1037
1038 ++version;
1039
1040 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1041
1042 /*
1043 * The guest calculates current wall clock time by adding
1044 * system time (updated by kvm_guest_time_update below) to the
1045 * wall clock specified here. guest system time equals host
1046 * system time for us, thus we must fill in host boot time here.
1047 */
1048 getboottime(&boot);
1049
1050 if (kvm->arch.kvmclock_offset) {
1051 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1052 boot = timespec_sub(boot, ts);
1053 }
1054 wc.sec = boot.tv_sec;
1055 wc.nsec = boot.tv_nsec;
1056 wc.version = version;
1057
1058 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1059
1060 version++;
1061 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1062 }
1063
1064 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1065 {
1066 uint32_t quotient, remainder;
1067
1068 /* Don't try to replace with do_div(), this one calculates
1069 * "(dividend << 32) / divisor" */
1070 __asm__ ( "divl %4"
1071 : "=a" (quotient), "=d" (remainder)
1072 : "0" (0), "1" (dividend), "r" (divisor) );
1073 return quotient;
1074 }
1075
1076 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1077 s8 *pshift, u32 *pmultiplier)
1078 {
1079 uint64_t scaled64;
1080 int32_t shift = 0;
1081 uint64_t tps64;
1082 uint32_t tps32;
1083
1084 tps64 = base_khz * 1000LL;
1085 scaled64 = scaled_khz * 1000LL;
1086 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1087 tps64 >>= 1;
1088 shift--;
1089 }
1090
1091 tps32 = (uint32_t)tps64;
1092 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1093 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1094 scaled64 >>= 1;
1095 else
1096 tps32 <<= 1;
1097 shift++;
1098 }
1099
1100 *pshift = shift;
1101 *pmultiplier = div_frac(scaled64, tps32);
1102
1103 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1104 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1105 }
1106
1107 static inline u64 get_kernel_ns(void)
1108 {
1109 struct timespec ts;
1110
1111 ktime_get_ts(&ts);
1112 monotonic_to_bootbased(&ts);
1113 return timespec_to_ns(&ts);
1114 }
1115
1116 #ifdef CONFIG_X86_64
1117 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1118 #endif
1119
1120 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1121 unsigned long max_tsc_khz;
1122
1123 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1124 {
1125 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1126 vcpu->arch.virtual_tsc_shift);
1127 }
1128
1129 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1130 {
1131 u64 v = (u64)khz * (1000000 + ppm);
1132 do_div(v, 1000000);
1133 return v;
1134 }
1135
1136 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1137 {
1138 u32 thresh_lo, thresh_hi;
1139 int use_scaling = 0;
1140
1141 /* tsc_khz can be zero if TSC calibration fails */
1142 if (this_tsc_khz == 0)
1143 return;
1144
1145 /* Compute a scale to convert nanoseconds in TSC cycles */
1146 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1147 &vcpu->arch.virtual_tsc_shift,
1148 &vcpu->arch.virtual_tsc_mult);
1149 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1150
1151 /*
1152 * Compute the variation in TSC rate which is acceptable
1153 * within the range of tolerance and decide if the
1154 * rate being applied is within that bounds of the hardware
1155 * rate. If so, no scaling or compensation need be done.
1156 */
1157 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1158 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1159 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1160 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1161 use_scaling = 1;
1162 }
1163 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1164 }
1165
1166 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1167 {
1168 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1169 vcpu->arch.virtual_tsc_mult,
1170 vcpu->arch.virtual_tsc_shift);
1171 tsc += vcpu->arch.this_tsc_write;
1172 return tsc;
1173 }
1174
1175 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1176 {
1177 #ifdef CONFIG_X86_64
1178 bool vcpus_matched;
1179 bool do_request = false;
1180 struct kvm_arch *ka = &vcpu->kvm->arch;
1181 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1182
1183 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1184 atomic_read(&vcpu->kvm->online_vcpus));
1185
1186 if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1187 if (!ka->use_master_clock)
1188 do_request = 1;
1189
1190 if (!vcpus_matched && ka->use_master_clock)
1191 do_request = 1;
1192
1193 if (do_request)
1194 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1195
1196 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1197 atomic_read(&vcpu->kvm->online_vcpus),
1198 ka->use_master_clock, gtod->clock.vclock_mode);
1199 #endif
1200 }
1201
1202 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1203 {
1204 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1205 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1206 }
1207
1208 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1209 {
1210 struct kvm *kvm = vcpu->kvm;
1211 u64 offset, ns, elapsed;
1212 unsigned long flags;
1213 s64 usdiff;
1214 bool matched;
1215 u64 data = msr->data;
1216
1217 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1218 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1219 ns = get_kernel_ns();
1220 elapsed = ns - kvm->arch.last_tsc_nsec;
1221
1222 if (vcpu->arch.virtual_tsc_khz) {
1223 int faulted = 0;
1224
1225 /* n.b - signed multiplication and division required */
1226 usdiff = data - kvm->arch.last_tsc_write;
1227 #ifdef CONFIG_X86_64
1228 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1229 #else
1230 /* do_div() only does unsigned */
1231 asm("1: idivl %[divisor]\n"
1232 "2: xor %%edx, %%edx\n"
1233 " movl $0, %[faulted]\n"
1234 "3:\n"
1235 ".section .fixup,\"ax\"\n"
1236 "4: movl $1, %[faulted]\n"
1237 " jmp 3b\n"
1238 ".previous\n"
1239
1240 _ASM_EXTABLE(1b, 4b)
1241
1242 : "=A"(usdiff), [faulted] "=r" (faulted)
1243 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1244
1245 #endif
1246 do_div(elapsed, 1000);
1247 usdiff -= elapsed;
1248 if (usdiff < 0)
1249 usdiff = -usdiff;
1250
1251 /* idivl overflow => difference is larger than USEC_PER_SEC */
1252 if (faulted)
1253 usdiff = USEC_PER_SEC;
1254 } else
1255 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1256
1257 /*
1258 * Special case: TSC write with a small delta (1 second) of virtual
1259 * cycle time against real time is interpreted as an attempt to
1260 * synchronize the CPU.
1261 *
1262 * For a reliable TSC, we can match TSC offsets, and for an unstable
1263 * TSC, we add elapsed time in this computation. We could let the
1264 * compensation code attempt to catch up if we fall behind, but
1265 * it's better to try to match offsets from the beginning.
1266 */
1267 if (usdiff < USEC_PER_SEC &&
1268 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1269 if (!check_tsc_unstable()) {
1270 offset = kvm->arch.cur_tsc_offset;
1271 pr_debug("kvm: matched tsc offset for %llu\n", data);
1272 } else {
1273 u64 delta = nsec_to_cycles(vcpu, elapsed);
1274 data += delta;
1275 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1276 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1277 }
1278 matched = true;
1279 } else {
1280 /*
1281 * We split periods of matched TSC writes into generations.
1282 * For each generation, we track the original measured
1283 * nanosecond time, offset, and write, so if TSCs are in
1284 * sync, we can match exact offset, and if not, we can match
1285 * exact software computation in compute_guest_tsc()
1286 *
1287 * These values are tracked in kvm->arch.cur_xxx variables.
1288 */
1289 kvm->arch.cur_tsc_generation++;
1290 kvm->arch.cur_tsc_nsec = ns;
1291 kvm->arch.cur_tsc_write = data;
1292 kvm->arch.cur_tsc_offset = offset;
1293 matched = false;
1294 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1295 kvm->arch.cur_tsc_generation, data);
1296 }
1297
1298 /*
1299 * We also track th most recent recorded KHZ, write and time to
1300 * allow the matching interval to be extended at each write.
1301 */
1302 kvm->arch.last_tsc_nsec = ns;
1303 kvm->arch.last_tsc_write = data;
1304 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1305
1306 vcpu->arch.last_guest_tsc = data;
1307
1308 /* Keep track of which generation this VCPU has synchronized to */
1309 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1310 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1311 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1312
1313 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1314 update_ia32_tsc_adjust_msr(vcpu, offset);
1315 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1316 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1317
1318 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1319 if (matched)
1320 kvm->arch.nr_vcpus_matched_tsc++;
1321 else
1322 kvm->arch.nr_vcpus_matched_tsc = 0;
1323
1324 kvm_track_tsc_matching(vcpu);
1325 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1326 }
1327
1328 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1329
1330 #ifdef CONFIG_X86_64
1331
1332 static cycle_t read_tsc(void)
1333 {
1334 cycle_t ret;
1335 u64 last;
1336
1337 /*
1338 * Empirically, a fence (of type that depends on the CPU)
1339 * before rdtsc is enough to ensure that rdtsc is ordered
1340 * with respect to loads. The various CPU manuals are unclear
1341 * as to whether rdtsc can be reordered with later loads,
1342 * but no one has ever seen it happen.
1343 */
1344 rdtsc_barrier();
1345 ret = (cycle_t)vget_cycles();
1346
1347 last = pvclock_gtod_data.clock.cycle_last;
1348
1349 if (likely(ret >= last))
1350 return ret;
1351
1352 /*
1353 * GCC likes to generate cmov here, but this branch is extremely
1354 * predictable (it's just a funciton of time and the likely is
1355 * very likely) and there's a data dependence, so force GCC
1356 * to generate a branch instead. I don't barrier() because
1357 * we don't actually need a barrier, and if this function
1358 * ever gets inlined it will generate worse code.
1359 */
1360 asm volatile ("");
1361 return last;
1362 }
1363
1364 static inline u64 vgettsc(cycle_t *cycle_now)
1365 {
1366 long v;
1367 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1368
1369 *cycle_now = read_tsc();
1370
1371 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1372 return v * gtod->clock.mult;
1373 }
1374
1375 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1376 {
1377 unsigned long seq;
1378 u64 ns;
1379 int mode;
1380 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1381
1382 ts->tv_nsec = 0;
1383 do {
1384 seq = read_seqcount_begin(&gtod->seq);
1385 mode = gtod->clock.vclock_mode;
1386 ts->tv_sec = gtod->monotonic_time_sec;
1387 ns = gtod->monotonic_time_snsec;
1388 ns += vgettsc(cycle_now);
1389 ns >>= gtod->clock.shift;
1390 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1391 timespec_add_ns(ts, ns);
1392
1393 return mode;
1394 }
1395
1396 /* returns true if host is using tsc clocksource */
1397 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1398 {
1399 struct timespec ts;
1400
1401 /* checked again under seqlock below */
1402 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1403 return false;
1404
1405 if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1406 return false;
1407
1408 monotonic_to_bootbased(&ts);
1409 *kernel_ns = timespec_to_ns(&ts);
1410
1411 return true;
1412 }
1413 #endif
1414
1415 /*
1416 *
1417 * Assuming a stable TSC across physical CPUS, and a stable TSC
1418 * across virtual CPUs, the following condition is possible.
1419 * Each numbered line represents an event visible to both
1420 * CPUs at the next numbered event.
1421 *
1422 * "timespecX" represents host monotonic time. "tscX" represents
1423 * RDTSC value.
1424 *
1425 * VCPU0 on CPU0 | VCPU1 on CPU1
1426 *
1427 * 1. read timespec0,tsc0
1428 * 2. | timespec1 = timespec0 + N
1429 * | tsc1 = tsc0 + M
1430 * 3. transition to guest | transition to guest
1431 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1432 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1433 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1434 *
1435 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1436 *
1437 * - ret0 < ret1
1438 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1439 * ...
1440 * - 0 < N - M => M < N
1441 *
1442 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1443 * always the case (the difference between two distinct xtime instances
1444 * might be smaller then the difference between corresponding TSC reads,
1445 * when updating guest vcpus pvclock areas).
1446 *
1447 * To avoid that problem, do not allow visibility of distinct
1448 * system_timestamp/tsc_timestamp values simultaneously: use a master
1449 * copy of host monotonic time values. Update that master copy
1450 * in lockstep.
1451 *
1452 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1453 *
1454 */
1455
1456 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1457 {
1458 #ifdef CONFIG_X86_64
1459 struct kvm_arch *ka = &kvm->arch;
1460 int vclock_mode;
1461 bool host_tsc_clocksource, vcpus_matched;
1462
1463 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1464 atomic_read(&kvm->online_vcpus));
1465
1466 /*
1467 * If the host uses TSC clock, then passthrough TSC as stable
1468 * to the guest.
1469 */
1470 host_tsc_clocksource = kvm_get_time_and_clockread(
1471 &ka->master_kernel_ns,
1472 &ka->master_cycle_now);
1473
1474 ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1475
1476 if (ka->use_master_clock)
1477 atomic_set(&kvm_guest_has_master_clock, 1);
1478
1479 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1480 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1481 vcpus_matched);
1482 #endif
1483 }
1484
1485 static void kvm_gen_update_masterclock(struct kvm *kvm)
1486 {
1487 #ifdef CONFIG_X86_64
1488 int i;
1489 struct kvm_vcpu *vcpu;
1490 struct kvm_arch *ka = &kvm->arch;
1491
1492 spin_lock(&ka->pvclock_gtod_sync_lock);
1493 kvm_make_mclock_inprogress_request(kvm);
1494 /* no guest entries from this point */
1495 pvclock_update_vm_gtod_copy(kvm);
1496
1497 kvm_for_each_vcpu(i, vcpu, kvm)
1498 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1499
1500 /* guest entries allowed */
1501 kvm_for_each_vcpu(i, vcpu, kvm)
1502 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1503
1504 spin_unlock(&ka->pvclock_gtod_sync_lock);
1505 #endif
1506 }
1507
1508 static int kvm_guest_time_update(struct kvm_vcpu *v)
1509 {
1510 unsigned long flags, this_tsc_khz;
1511 struct kvm_vcpu_arch *vcpu = &v->arch;
1512 struct kvm_arch *ka = &v->kvm->arch;
1513 s64 kernel_ns;
1514 u64 tsc_timestamp, host_tsc;
1515 struct pvclock_vcpu_time_info guest_hv_clock;
1516 u8 pvclock_flags;
1517 bool use_master_clock;
1518
1519 kernel_ns = 0;
1520 host_tsc = 0;
1521
1522 /*
1523 * If the host uses TSC clock, then passthrough TSC as stable
1524 * to the guest.
1525 */
1526 spin_lock(&ka->pvclock_gtod_sync_lock);
1527 use_master_clock = ka->use_master_clock;
1528 if (use_master_clock) {
1529 host_tsc = ka->master_cycle_now;
1530 kernel_ns = ka->master_kernel_ns;
1531 }
1532 spin_unlock(&ka->pvclock_gtod_sync_lock);
1533
1534 /* Keep irq disabled to prevent changes to the clock */
1535 local_irq_save(flags);
1536 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1537 if (unlikely(this_tsc_khz == 0)) {
1538 local_irq_restore(flags);
1539 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1540 return 1;
1541 }
1542 if (!use_master_clock) {
1543 host_tsc = native_read_tsc();
1544 kernel_ns = get_kernel_ns();
1545 }
1546
1547 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1548
1549 /*
1550 * We may have to catch up the TSC to match elapsed wall clock
1551 * time for two reasons, even if kvmclock is used.
1552 * 1) CPU could have been running below the maximum TSC rate
1553 * 2) Broken TSC compensation resets the base at each VCPU
1554 * entry to avoid unknown leaps of TSC even when running
1555 * again on the same CPU. This may cause apparent elapsed
1556 * time to disappear, and the guest to stand still or run
1557 * very slowly.
1558 */
1559 if (vcpu->tsc_catchup) {
1560 u64 tsc = compute_guest_tsc(v, kernel_ns);
1561 if (tsc > tsc_timestamp) {
1562 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1563 tsc_timestamp = tsc;
1564 }
1565 }
1566
1567 local_irq_restore(flags);
1568
1569 if (!vcpu->pv_time_enabled)
1570 return 0;
1571
1572 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1573 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1574 &vcpu->hv_clock.tsc_shift,
1575 &vcpu->hv_clock.tsc_to_system_mul);
1576 vcpu->hw_tsc_khz = this_tsc_khz;
1577 }
1578
1579 /* With all the info we got, fill in the values */
1580 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1581 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1582 vcpu->last_guest_tsc = tsc_timestamp;
1583
1584 /*
1585 * The interface expects us to write an even number signaling that the
1586 * update is finished. Since the guest won't see the intermediate
1587 * state, we just increase by 2 at the end.
1588 */
1589 vcpu->hv_clock.version += 2;
1590
1591 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1592 &guest_hv_clock, sizeof(guest_hv_clock))))
1593 return 0;
1594
1595 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1596 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1597
1598 if (vcpu->pvclock_set_guest_stopped_request) {
1599 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1600 vcpu->pvclock_set_guest_stopped_request = false;
1601 }
1602
1603 /* If the host uses TSC clocksource, then it is stable */
1604 if (use_master_clock)
1605 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1606
1607 vcpu->hv_clock.flags = pvclock_flags;
1608
1609 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1610 &vcpu->hv_clock,
1611 sizeof(vcpu->hv_clock));
1612 return 0;
1613 }
1614
1615 /*
1616 * kvmclock updates which are isolated to a given vcpu, such as
1617 * vcpu->cpu migration, should not allow system_timestamp from
1618 * the rest of the vcpus to remain static. Otherwise ntp frequency
1619 * correction applies to one vcpu's system_timestamp but not
1620 * the others.
1621 *
1622 * So in those cases, request a kvmclock update for all vcpus.
1623 * We need to rate-limit these requests though, as they can
1624 * considerably slow guests that have a large number of vcpus.
1625 * The time for a remote vcpu to update its kvmclock is bound
1626 * by the delay we use to rate-limit the updates.
1627 */
1628
1629 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1630
1631 static void kvmclock_update_fn(struct work_struct *work)
1632 {
1633 int i;
1634 struct delayed_work *dwork = to_delayed_work(work);
1635 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1636 kvmclock_update_work);
1637 struct kvm *kvm = container_of(ka, struct kvm, arch);
1638 struct kvm_vcpu *vcpu;
1639
1640 kvm_for_each_vcpu(i, vcpu, kvm) {
1641 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1642 kvm_vcpu_kick(vcpu);
1643 }
1644 }
1645
1646 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1647 {
1648 struct kvm *kvm = v->kvm;
1649
1650 set_bit(KVM_REQ_CLOCK_UPDATE, &v->requests);
1651 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1652 KVMCLOCK_UPDATE_DELAY);
1653 }
1654
1655 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1656
1657 static void kvmclock_sync_fn(struct work_struct *work)
1658 {
1659 struct delayed_work *dwork = to_delayed_work(work);
1660 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1661 kvmclock_sync_work);
1662 struct kvm *kvm = container_of(ka, struct kvm, arch);
1663
1664 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1665 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1666 KVMCLOCK_SYNC_PERIOD);
1667 }
1668
1669 static bool msr_mtrr_valid(unsigned msr)
1670 {
1671 switch (msr) {
1672 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1673 case MSR_MTRRfix64K_00000:
1674 case MSR_MTRRfix16K_80000:
1675 case MSR_MTRRfix16K_A0000:
1676 case MSR_MTRRfix4K_C0000:
1677 case MSR_MTRRfix4K_C8000:
1678 case MSR_MTRRfix4K_D0000:
1679 case MSR_MTRRfix4K_D8000:
1680 case MSR_MTRRfix4K_E0000:
1681 case MSR_MTRRfix4K_E8000:
1682 case MSR_MTRRfix4K_F0000:
1683 case MSR_MTRRfix4K_F8000:
1684 case MSR_MTRRdefType:
1685 case MSR_IA32_CR_PAT:
1686 return true;
1687 case 0x2f8:
1688 return true;
1689 }
1690 return false;
1691 }
1692
1693 static bool valid_pat_type(unsigned t)
1694 {
1695 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1696 }
1697
1698 static bool valid_mtrr_type(unsigned t)
1699 {
1700 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1701 }
1702
1703 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1704 {
1705 int i;
1706
1707 if (!msr_mtrr_valid(msr))
1708 return false;
1709
1710 if (msr == MSR_IA32_CR_PAT) {
1711 for (i = 0; i < 8; i++)
1712 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1713 return false;
1714 return true;
1715 } else if (msr == MSR_MTRRdefType) {
1716 if (data & ~0xcff)
1717 return false;
1718 return valid_mtrr_type(data & 0xff);
1719 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1720 for (i = 0; i < 8 ; i++)
1721 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1722 return false;
1723 return true;
1724 }
1725
1726 /* variable MTRRs */
1727 return valid_mtrr_type(data & 0xff);
1728 }
1729
1730 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1731 {
1732 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1733
1734 if (!mtrr_valid(vcpu, msr, data))
1735 return 1;
1736
1737 if (msr == MSR_MTRRdefType) {
1738 vcpu->arch.mtrr_state.def_type = data;
1739 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1740 } else if (msr == MSR_MTRRfix64K_00000)
1741 p[0] = data;
1742 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1743 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1744 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1745 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1746 else if (msr == MSR_IA32_CR_PAT)
1747 vcpu->arch.pat = data;
1748 else { /* Variable MTRRs */
1749 int idx, is_mtrr_mask;
1750 u64 *pt;
1751
1752 idx = (msr - 0x200) / 2;
1753 is_mtrr_mask = msr - 0x200 - 2 * idx;
1754 if (!is_mtrr_mask)
1755 pt =
1756 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1757 else
1758 pt =
1759 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1760 *pt = data;
1761 }
1762
1763 kvm_mmu_reset_context(vcpu);
1764 return 0;
1765 }
1766
1767 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1768 {
1769 u64 mcg_cap = vcpu->arch.mcg_cap;
1770 unsigned bank_num = mcg_cap & 0xff;
1771
1772 switch (msr) {
1773 case MSR_IA32_MCG_STATUS:
1774 vcpu->arch.mcg_status = data;
1775 break;
1776 case MSR_IA32_MCG_CTL:
1777 if (!(mcg_cap & MCG_CTL_P))
1778 return 1;
1779 if (data != 0 && data != ~(u64)0)
1780 return -1;
1781 vcpu->arch.mcg_ctl = data;
1782 break;
1783 default:
1784 if (msr >= MSR_IA32_MC0_CTL &&
1785 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1786 u32 offset = msr - MSR_IA32_MC0_CTL;
1787 /* only 0 or all 1s can be written to IA32_MCi_CTL
1788 * some Linux kernels though clear bit 10 in bank 4 to
1789 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1790 * this to avoid an uncatched #GP in the guest
1791 */
1792 if ((offset & 0x3) == 0 &&
1793 data != 0 && (data | (1 << 10)) != ~(u64)0)
1794 return -1;
1795 vcpu->arch.mce_banks[offset] = data;
1796 break;
1797 }
1798 return 1;
1799 }
1800 return 0;
1801 }
1802
1803 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1804 {
1805 struct kvm *kvm = vcpu->kvm;
1806 int lm = is_long_mode(vcpu);
1807 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1808 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1809 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1810 : kvm->arch.xen_hvm_config.blob_size_32;
1811 u32 page_num = data & ~PAGE_MASK;
1812 u64 page_addr = data & PAGE_MASK;
1813 u8 *page;
1814 int r;
1815
1816 r = -E2BIG;
1817 if (page_num >= blob_size)
1818 goto out;
1819 r = -ENOMEM;
1820 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1821 if (IS_ERR(page)) {
1822 r = PTR_ERR(page);
1823 goto out;
1824 }
1825 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1826 goto out_free;
1827 r = 0;
1828 out_free:
1829 kfree(page);
1830 out:
1831 return r;
1832 }
1833
1834 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1835 {
1836 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1837 }
1838
1839 static bool kvm_hv_msr_partition_wide(u32 msr)
1840 {
1841 bool r = false;
1842 switch (msr) {
1843 case HV_X64_MSR_GUEST_OS_ID:
1844 case HV_X64_MSR_HYPERCALL:
1845 case HV_X64_MSR_REFERENCE_TSC:
1846 case HV_X64_MSR_TIME_REF_COUNT:
1847 r = true;
1848 break;
1849 }
1850
1851 return r;
1852 }
1853
1854 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1855 {
1856 struct kvm *kvm = vcpu->kvm;
1857
1858 switch (msr) {
1859 case HV_X64_MSR_GUEST_OS_ID:
1860 kvm->arch.hv_guest_os_id = data;
1861 /* setting guest os id to zero disables hypercall page */
1862 if (!kvm->arch.hv_guest_os_id)
1863 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1864 break;
1865 case HV_X64_MSR_HYPERCALL: {
1866 u64 gfn;
1867 unsigned long addr;
1868 u8 instructions[4];
1869
1870 /* if guest os id is not set hypercall should remain disabled */
1871 if (!kvm->arch.hv_guest_os_id)
1872 break;
1873 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1874 kvm->arch.hv_hypercall = data;
1875 break;
1876 }
1877 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1878 addr = gfn_to_hva(kvm, gfn);
1879 if (kvm_is_error_hva(addr))
1880 return 1;
1881 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1882 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1883 if (__copy_to_user((void __user *)addr, instructions, 4))
1884 return 1;
1885 kvm->arch.hv_hypercall = data;
1886 mark_page_dirty(kvm, gfn);
1887 break;
1888 }
1889 case HV_X64_MSR_REFERENCE_TSC: {
1890 u64 gfn;
1891 HV_REFERENCE_TSC_PAGE tsc_ref;
1892 memset(&tsc_ref, 0, sizeof(tsc_ref));
1893 kvm->arch.hv_tsc_page = data;
1894 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1895 break;
1896 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1897 if (kvm_write_guest(kvm, data,
1898 &tsc_ref, sizeof(tsc_ref)))
1899 return 1;
1900 mark_page_dirty(kvm, gfn);
1901 break;
1902 }
1903 default:
1904 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1905 "data 0x%llx\n", msr, data);
1906 return 1;
1907 }
1908 return 0;
1909 }
1910
1911 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1912 {
1913 switch (msr) {
1914 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1915 u64 gfn;
1916 unsigned long addr;
1917
1918 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1919 vcpu->arch.hv_vapic = data;
1920 break;
1921 }
1922 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1923 addr = gfn_to_hva(vcpu->kvm, gfn);
1924 if (kvm_is_error_hva(addr))
1925 return 1;
1926 if (__clear_user((void __user *)addr, PAGE_SIZE))
1927 return 1;
1928 vcpu->arch.hv_vapic = data;
1929 mark_page_dirty(vcpu->kvm, gfn);
1930 break;
1931 }
1932 case HV_X64_MSR_EOI:
1933 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1934 case HV_X64_MSR_ICR:
1935 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1936 case HV_X64_MSR_TPR:
1937 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1938 default:
1939 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1940 "data 0x%llx\n", msr, data);
1941 return 1;
1942 }
1943
1944 return 0;
1945 }
1946
1947 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1948 {
1949 gpa_t gpa = data & ~0x3f;
1950
1951 /* Bits 2:5 are reserved, Should be zero */
1952 if (data & 0x3c)
1953 return 1;
1954
1955 vcpu->arch.apf.msr_val = data;
1956
1957 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1958 kvm_clear_async_pf_completion_queue(vcpu);
1959 kvm_async_pf_hash_reset(vcpu);
1960 return 0;
1961 }
1962
1963 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1964 sizeof(u32)))
1965 return 1;
1966
1967 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1968 kvm_async_pf_wakeup_all(vcpu);
1969 return 0;
1970 }
1971
1972 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1973 {
1974 vcpu->arch.pv_time_enabled = false;
1975 }
1976
1977 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1978 {
1979 u64 delta;
1980
1981 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1982 return;
1983
1984 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1985 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1986 vcpu->arch.st.accum_steal = delta;
1987 }
1988
1989 static void record_steal_time(struct kvm_vcpu *vcpu)
1990 {
1991 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1992 return;
1993
1994 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1995 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1996 return;
1997
1998 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1999 vcpu->arch.st.steal.version += 2;
2000 vcpu->arch.st.accum_steal = 0;
2001
2002 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2003 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2004 }
2005
2006 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2007 {
2008 bool pr = false;
2009 u32 msr = msr_info->index;
2010 u64 data = msr_info->data;
2011
2012 switch (msr) {
2013 case MSR_AMD64_NB_CFG:
2014 case MSR_IA32_UCODE_REV:
2015 case MSR_IA32_UCODE_WRITE:
2016 case MSR_VM_HSAVE_PA:
2017 case MSR_AMD64_PATCH_LOADER:
2018 case MSR_AMD64_BU_CFG2:
2019 break;
2020
2021 case MSR_EFER:
2022 return set_efer(vcpu, data);
2023 case MSR_K7_HWCR:
2024 data &= ~(u64)0x40; /* ignore flush filter disable */
2025 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2026 data &= ~(u64)0x8; /* ignore TLB cache disable */
2027 if (data != 0) {
2028 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2029 data);
2030 return 1;
2031 }
2032 break;
2033 case MSR_FAM10H_MMIO_CONF_BASE:
2034 if (data != 0) {
2035 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2036 "0x%llx\n", data);
2037 return 1;
2038 }
2039 break;
2040 case MSR_IA32_DEBUGCTLMSR:
2041 if (!data) {
2042 /* We support the non-activated case already */
2043 break;
2044 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2045 /* Values other than LBR and BTF are vendor-specific,
2046 thus reserved and should throw a #GP */
2047 return 1;
2048 }
2049 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2050 __func__, data);
2051 break;
2052 case 0x200 ... 0x2ff:
2053 return set_msr_mtrr(vcpu, msr, data);
2054 case MSR_IA32_APICBASE:
2055 return kvm_set_apic_base(vcpu, msr_info);
2056 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2057 return kvm_x2apic_msr_write(vcpu, msr, data);
2058 case MSR_IA32_TSCDEADLINE:
2059 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2060 break;
2061 case MSR_IA32_TSC_ADJUST:
2062 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2063 if (!msr_info->host_initiated) {
2064 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2065 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2066 }
2067 vcpu->arch.ia32_tsc_adjust_msr = data;
2068 }
2069 break;
2070 case MSR_IA32_MISC_ENABLE:
2071 vcpu->arch.ia32_misc_enable_msr = data;
2072 break;
2073 case MSR_KVM_WALL_CLOCK_NEW:
2074 case MSR_KVM_WALL_CLOCK:
2075 vcpu->kvm->arch.wall_clock = data;
2076 kvm_write_wall_clock(vcpu->kvm, data);
2077 break;
2078 case MSR_KVM_SYSTEM_TIME_NEW:
2079 case MSR_KVM_SYSTEM_TIME: {
2080 u64 gpa_offset;
2081 kvmclock_reset(vcpu);
2082
2083 vcpu->arch.time = data;
2084 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2085
2086 /* we verify if the enable bit is set... */
2087 if (!(data & 1))
2088 break;
2089
2090 gpa_offset = data & ~(PAGE_MASK | 1);
2091
2092 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2093 &vcpu->arch.pv_time, data & ~1ULL,
2094 sizeof(struct pvclock_vcpu_time_info)))
2095 vcpu->arch.pv_time_enabled = false;
2096 else
2097 vcpu->arch.pv_time_enabled = true;
2098
2099 break;
2100 }
2101 case MSR_KVM_ASYNC_PF_EN:
2102 if (kvm_pv_enable_async_pf(vcpu, data))
2103 return 1;
2104 break;
2105 case MSR_KVM_STEAL_TIME:
2106
2107 if (unlikely(!sched_info_on()))
2108 return 1;
2109
2110 if (data & KVM_STEAL_RESERVED_MASK)
2111 return 1;
2112
2113 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2114 data & KVM_STEAL_VALID_BITS,
2115 sizeof(struct kvm_steal_time)))
2116 return 1;
2117
2118 vcpu->arch.st.msr_val = data;
2119
2120 if (!(data & KVM_MSR_ENABLED))
2121 break;
2122
2123 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2124
2125 preempt_disable();
2126 accumulate_steal_time(vcpu);
2127 preempt_enable();
2128
2129 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2130
2131 break;
2132 case MSR_KVM_PV_EOI_EN:
2133 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2134 return 1;
2135 break;
2136
2137 case MSR_IA32_MCG_CTL:
2138 case MSR_IA32_MCG_STATUS:
2139 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2140 return set_msr_mce(vcpu, msr, data);
2141
2142 /* Performance counters are not protected by a CPUID bit,
2143 * so we should check all of them in the generic path for the sake of
2144 * cross vendor migration.
2145 * Writing a zero into the event select MSRs disables them,
2146 * which we perfectly emulate ;-). Any other value should be at least
2147 * reported, some guests depend on them.
2148 */
2149 case MSR_K7_EVNTSEL0:
2150 case MSR_K7_EVNTSEL1:
2151 case MSR_K7_EVNTSEL2:
2152 case MSR_K7_EVNTSEL3:
2153 if (data != 0)
2154 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2155 "0x%x data 0x%llx\n", msr, data);
2156 break;
2157 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2158 * so we ignore writes to make it happy.
2159 */
2160 case MSR_K7_PERFCTR0:
2161 case MSR_K7_PERFCTR1:
2162 case MSR_K7_PERFCTR2:
2163 case MSR_K7_PERFCTR3:
2164 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2165 "0x%x data 0x%llx\n", msr, data);
2166 break;
2167 case MSR_P6_PERFCTR0:
2168 case MSR_P6_PERFCTR1:
2169 pr = true;
2170 case MSR_P6_EVNTSEL0:
2171 case MSR_P6_EVNTSEL1:
2172 if (kvm_pmu_msr(vcpu, msr))
2173 return kvm_pmu_set_msr(vcpu, msr_info);
2174
2175 if (pr || data != 0)
2176 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2177 "0x%x data 0x%llx\n", msr, data);
2178 break;
2179 case MSR_K7_CLK_CTL:
2180 /*
2181 * Ignore all writes to this no longer documented MSR.
2182 * Writes are only relevant for old K7 processors,
2183 * all pre-dating SVM, but a recommended workaround from
2184 * AMD for these chips. It is possible to specify the
2185 * affected processor models on the command line, hence
2186 * the need to ignore the workaround.
2187 */
2188 break;
2189 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2190 if (kvm_hv_msr_partition_wide(msr)) {
2191 int r;
2192 mutex_lock(&vcpu->kvm->lock);
2193 r = set_msr_hyperv_pw(vcpu, msr, data);
2194 mutex_unlock(&vcpu->kvm->lock);
2195 return r;
2196 } else
2197 return set_msr_hyperv(vcpu, msr, data);
2198 break;
2199 case MSR_IA32_BBL_CR_CTL3:
2200 /* Drop writes to this legacy MSR -- see rdmsr
2201 * counterpart for further detail.
2202 */
2203 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2204 break;
2205 case MSR_AMD64_OSVW_ID_LENGTH:
2206 if (!guest_cpuid_has_osvw(vcpu))
2207 return 1;
2208 vcpu->arch.osvw.length = data;
2209 break;
2210 case MSR_AMD64_OSVW_STATUS:
2211 if (!guest_cpuid_has_osvw(vcpu))
2212 return 1;
2213 vcpu->arch.osvw.status = data;
2214 break;
2215 default:
2216 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2217 return xen_hvm_config(vcpu, data);
2218 if (kvm_pmu_msr(vcpu, msr))
2219 return kvm_pmu_set_msr(vcpu, msr_info);
2220 if (!ignore_msrs) {
2221 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2222 msr, data);
2223 return 1;
2224 } else {
2225 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2226 msr, data);
2227 break;
2228 }
2229 }
2230 return 0;
2231 }
2232 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2233
2234
2235 /*
2236 * Reads an msr value (of 'msr_index') into 'pdata'.
2237 * Returns 0 on success, non-0 otherwise.
2238 * Assumes vcpu_load() was already called.
2239 */
2240 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2241 {
2242 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2243 }
2244
2245 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2246 {
2247 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2248
2249 if (!msr_mtrr_valid(msr))
2250 return 1;
2251
2252 if (msr == MSR_MTRRdefType)
2253 *pdata = vcpu->arch.mtrr_state.def_type +
2254 (vcpu->arch.mtrr_state.enabled << 10);
2255 else if (msr == MSR_MTRRfix64K_00000)
2256 *pdata = p[0];
2257 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2258 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2259 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2260 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2261 else if (msr == MSR_IA32_CR_PAT)
2262 *pdata = vcpu->arch.pat;
2263 else { /* Variable MTRRs */
2264 int idx, is_mtrr_mask;
2265 u64 *pt;
2266
2267 idx = (msr - 0x200) / 2;
2268 is_mtrr_mask = msr - 0x200 - 2 * idx;
2269 if (!is_mtrr_mask)
2270 pt =
2271 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2272 else
2273 pt =
2274 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2275 *pdata = *pt;
2276 }
2277
2278 return 0;
2279 }
2280
2281 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2282 {
2283 u64 data;
2284 u64 mcg_cap = vcpu->arch.mcg_cap;
2285 unsigned bank_num = mcg_cap & 0xff;
2286
2287 switch (msr) {
2288 case MSR_IA32_P5_MC_ADDR:
2289 case MSR_IA32_P5_MC_TYPE:
2290 data = 0;
2291 break;
2292 case MSR_IA32_MCG_CAP:
2293 data = vcpu->arch.mcg_cap;
2294 break;
2295 case MSR_IA32_MCG_CTL:
2296 if (!(mcg_cap & MCG_CTL_P))
2297 return 1;
2298 data = vcpu->arch.mcg_ctl;
2299 break;
2300 case MSR_IA32_MCG_STATUS:
2301 data = vcpu->arch.mcg_status;
2302 break;
2303 default:
2304 if (msr >= MSR_IA32_MC0_CTL &&
2305 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2306 u32 offset = msr - MSR_IA32_MC0_CTL;
2307 data = vcpu->arch.mce_banks[offset];
2308 break;
2309 }
2310 return 1;
2311 }
2312 *pdata = data;
2313 return 0;
2314 }
2315
2316 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2317 {
2318 u64 data = 0;
2319 struct kvm *kvm = vcpu->kvm;
2320
2321 switch (msr) {
2322 case HV_X64_MSR_GUEST_OS_ID:
2323 data = kvm->arch.hv_guest_os_id;
2324 break;
2325 case HV_X64_MSR_HYPERCALL:
2326 data = kvm->arch.hv_hypercall;
2327 break;
2328 case HV_X64_MSR_TIME_REF_COUNT: {
2329 data =
2330 div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2331 break;
2332 }
2333 case HV_X64_MSR_REFERENCE_TSC:
2334 data = kvm->arch.hv_tsc_page;
2335 break;
2336 default:
2337 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2338 return 1;
2339 }
2340
2341 *pdata = data;
2342 return 0;
2343 }
2344
2345 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2346 {
2347 u64 data = 0;
2348
2349 switch (msr) {
2350 case HV_X64_MSR_VP_INDEX: {
2351 int r;
2352 struct kvm_vcpu *v;
2353 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2354 if (v == vcpu) {
2355 data = r;
2356 break;
2357 }
2358 }
2359 break;
2360 }
2361 case HV_X64_MSR_EOI:
2362 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2363 case HV_X64_MSR_ICR:
2364 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2365 case HV_X64_MSR_TPR:
2366 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2367 case HV_X64_MSR_APIC_ASSIST_PAGE:
2368 data = vcpu->arch.hv_vapic;
2369 break;
2370 default:
2371 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2372 return 1;
2373 }
2374 *pdata = data;
2375 return 0;
2376 }
2377
2378 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2379 {
2380 u64 data;
2381
2382 switch (msr) {
2383 case MSR_IA32_PLATFORM_ID:
2384 case MSR_IA32_EBL_CR_POWERON:
2385 case MSR_IA32_DEBUGCTLMSR:
2386 case MSR_IA32_LASTBRANCHFROMIP:
2387 case MSR_IA32_LASTBRANCHTOIP:
2388 case MSR_IA32_LASTINTFROMIP:
2389 case MSR_IA32_LASTINTTOIP:
2390 case MSR_K8_SYSCFG:
2391 case MSR_K7_HWCR:
2392 case MSR_VM_HSAVE_PA:
2393 case MSR_K7_EVNTSEL0:
2394 case MSR_K7_PERFCTR0:
2395 case MSR_K8_INT_PENDING_MSG:
2396 case MSR_AMD64_NB_CFG:
2397 case MSR_FAM10H_MMIO_CONF_BASE:
2398 case MSR_AMD64_BU_CFG2:
2399 data = 0;
2400 break;
2401 case MSR_P6_PERFCTR0:
2402 case MSR_P6_PERFCTR1:
2403 case MSR_P6_EVNTSEL0:
2404 case MSR_P6_EVNTSEL1:
2405 if (kvm_pmu_msr(vcpu, msr))
2406 return kvm_pmu_get_msr(vcpu, msr, pdata);
2407 data = 0;
2408 break;
2409 case MSR_IA32_UCODE_REV:
2410 data = 0x100000000ULL;
2411 break;
2412 case MSR_MTRRcap:
2413 data = 0x500 | KVM_NR_VAR_MTRR;
2414 break;
2415 case 0x200 ... 0x2ff:
2416 return get_msr_mtrr(vcpu, msr, pdata);
2417 case 0xcd: /* fsb frequency */
2418 data = 3;
2419 break;
2420 /*
2421 * MSR_EBC_FREQUENCY_ID
2422 * Conservative value valid for even the basic CPU models.
2423 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2424 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2425 * and 266MHz for model 3, or 4. Set Core Clock
2426 * Frequency to System Bus Frequency Ratio to 1 (bits
2427 * 31:24) even though these are only valid for CPU
2428 * models > 2, however guests may end up dividing or
2429 * multiplying by zero otherwise.
2430 */
2431 case MSR_EBC_FREQUENCY_ID:
2432 data = 1 << 24;
2433 break;
2434 case MSR_IA32_APICBASE:
2435 data = kvm_get_apic_base(vcpu);
2436 break;
2437 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2438 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2439 break;
2440 case MSR_IA32_TSCDEADLINE:
2441 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2442 break;
2443 case MSR_IA32_TSC_ADJUST:
2444 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2445 break;
2446 case MSR_IA32_MISC_ENABLE:
2447 data = vcpu->arch.ia32_misc_enable_msr;
2448 break;
2449 case MSR_IA32_PERF_STATUS:
2450 /* TSC increment by tick */
2451 data = 1000ULL;
2452 /* CPU multiplier */
2453 data |= (((uint64_t)4ULL) << 40);
2454 break;
2455 case MSR_EFER:
2456 data = vcpu->arch.efer;
2457 break;
2458 case MSR_KVM_WALL_CLOCK:
2459 case MSR_KVM_WALL_CLOCK_NEW:
2460 data = vcpu->kvm->arch.wall_clock;
2461 break;
2462 case MSR_KVM_SYSTEM_TIME:
2463 case MSR_KVM_SYSTEM_TIME_NEW:
2464 data = vcpu->arch.time;
2465 break;
2466 case MSR_KVM_ASYNC_PF_EN:
2467 data = vcpu->arch.apf.msr_val;
2468 break;
2469 case MSR_KVM_STEAL_TIME:
2470 data = vcpu->arch.st.msr_val;
2471 break;
2472 case MSR_KVM_PV_EOI_EN:
2473 data = vcpu->arch.pv_eoi.msr_val;
2474 break;
2475 case MSR_IA32_P5_MC_ADDR:
2476 case MSR_IA32_P5_MC_TYPE:
2477 case MSR_IA32_MCG_CAP:
2478 case MSR_IA32_MCG_CTL:
2479 case MSR_IA32_MCG_STATUS:
2480 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2481 return get_msr_mce(vcpu, msr, pdata);
2482 case MSR_K7_CLK_CTL:
2483 /*
2484 * Provide expected ramp-up count for K7. All other
2485 * are set to zero, indicating minimum divisors for
2486 * every field.
2487 *
2488 * This prevents guest kernels on AMD host with CPU
2489 * type 6, model 8 and higher from exploding due to
2490 * the rdmsr failing.
2491 */
2492 data = 0x20000000;
2493 break;
2494 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2495 if (kvm_hv_msr_partition_wide(msr)) {
2496 int r;
2497 mutex_lock(&vcpu->kvm->lock);
2498 r = get_msr_hyperv_pw(vcpu, msr, pdata);
2499 mutex_unlock(&vcpu->kvm->lock);
2500 return r;
2501 } else
2502 return get_msr_hyperv(vcpu, msr, pdata);
2503 break;
2504 case MSR_IA32_BBL_CR_CTL3:
2505 /* This legacy MSR exists but isn't fully documented in current
2506 * silicon. It is however accessed by winxp in very narrow
2507 * scenarios where it sets bit #19, itself documented as
2508 * a "reserved" bit. Best effort attempt to source coherent
2509 * read data here should the balance of the register be
2510 * interpreted by the guest:
2511 *
2512 * L2 cache control register 3: 64GB range, 256KB size,
2513 * enabled, latency 0x1, configured
2514 */
2515 data = 0xbe702111;
2516 break;
2517 case MSR_AMD64_OSVW_ID_LENGTH:
2518 if (!guest_cpuid_has_osvw(vcpu))
2519 return 1;
2520 data = vcpu->arch.osvw.length;
2521 break;
2522 case MSR_AMD64_OSVW_STATUS:
2523 if (!guest_cpuid_has_osvw(vcpu))
2524 return 1;
2525 data = vcpu->arch.osvw.status;
2526 break;
2527 default:
2528 if (kvm_pmu_msr(vcpu, msr))
2529 return kvm_pmu_get_msr(vcpu, msr, pdata);
2530 if (!ignore_msrs) {
2531 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2532 return 1;
2533 } else {
2534 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2535 data = 0;
2536 }
2537 break;
2538 }
2539 *pdata = data;
2540 return 0;
2541 }
2542 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2543
2544 /*
2545 * Read or write a bunch of msrs. All parameters are kernel addresses.
2546 *
2547 * @return number of msrs set successfully.
2548 */
2549 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2550 struct kvm_msr_entry *entries,
2551 int (*do_msr)(struct kvm_vcpu *vcpu,
2552 unsigned index, u64 *data))
2553 {
2554 int i, idx;
2555
2556 idx = srcu_read_lock(&vcpu->kvm->srcu);
2557 for (i = 0; i < msrs->nmsrs; ++i)
2558 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2559 break;
2560 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2561
2562 return i;
2563 }
2564
2565 /*
2566 * Read or write a bunch of msrs. Parameters are user addresses.
2567 *
2568 * @return number of msrs set successfully.
2569 */
2570 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2571 int (*do_msr)(struct kvm_vcpu *vcpu,
2572 unsigned index, u64 *data),
2573 int writeback)
2574 {
2575 struct kvm_msrs msrs;
2576 struct kvm_msr_entry *entries;
2577 int r, n;
2578 unsigned size;
2579
2580 r = -EFAULT;
2581 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2582 goto out;
2583
2584 r = -E2BIG;
2585 if (msrs.nmsrs >= MAX_IO_MSRS)
2586 goto out;
2587
2588 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2589 entries = memdup_user(user_msrs->entries, size);
2590 if (IS_ERR(entries)) {
2591 r = PTR_ERR(entries);
2592 goto out;
2593 }
2594
2595 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2596 if (r < 0)
2597 goto out_free;
2598
2599 r = -EFAULT;
2600 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2601 goto out_free;
2602
2603 r = n;
2604
2605 out_free:
2606 kfree(entries);
2607 out:
2608 return r;
2609 }
2610
2611 int kvm_dev_ioctl_check_extension(long ext)
2612 {
2613 int r;
2614
2615 switch (ext) {
2616 case KVM_CAP_IRQCHIP:
2617 case KVM_CAP_HLT:
2618 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2619 case KVM_CAP_SET_TSS_ADDR:
2620 case KVM_CAP_EXT_CPUID:
2621 case KVM_CAP_EXT_EMUL_CPUID:
2622 case KVM_CAP_CLOCKSOURCE:
2623 case KVM_CAP_PIT:
2624 case KVM_CAP_NOP_IO_DELAY:
2625 case KVM_CAP_MP_STATE:
2626 case KVM_CAP_SYNC_MMU:
2627 case KVM_CAP_USER_NMI:
2628 case KVM_CAP_REINJECT_CONTROL:
2629 case KVM_CAP_IRQ_INJECT_STATUS:
2630 case KVM_CAP_IRQFD:
2631 case KVM_CAP_IOEVENTFD:
2632 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2633 case KVM_CAP_PIT2:
2634 case KVM_CAP_PIT_STATE2:
2635 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2636 case KVM_CAP_XEN_HVM:
2637 case KVM_CAP_ADJUST_CLOCK:
2638 case KVM_CAP_VCPU_EVENTS:
2639 case KVM_CAP_HYPERV:
2640 case KVM_CAP_HYPERV_VAPIC:
2641 case KVM_CAP_HYPERV_SPIN:
2642 case KVM_CAP_PCI_SEGMENT:
2643 case KVM_CAP_DEBUGREGS:
2644 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2645 case KVM_CAP_XSAVE:
2646 case KVM_CAP_ASYNC_PF:
2647 case KVM_CAP_GET_TSC_KHZ:
2648 case KVM_CAP_KVMCLOCK_CTRL:
2649 case KVM_CAP_READONLY_MEM:
2650 case KVM_CAP_HYPERV_TIME:
2651 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2652 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2653 case KVM_CAP_ASSIGN_DEV_IRQ:
2654 case KVM_CAP_PCI_2_3:
2655 #endif
2656 r = 1;
2657 break;
2658 case KVM_CAP_COALESCED_MMIO:
2659 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2660 break;
2661 case KVM_CAP_VAPIC:
2662 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2663 break;
2664 case KVM_CAP_NR_VCPUS:
2665 r = KVM_SOFT_MAX_VCPUS;
2666 break;
2667 case KVM_CAP_MAX_VCPUS:
2668 r = KVM_MAX_VCPUS;
2669 break;
2670 case KVM_CAP_NR_MEMSLOTS:
2671 r = KVM_USER_MEM_SLOTS;
2672 break;
2673 case KVM_CAP_PV_MMU: /* obsolete */
2674 r = 0;
2675 break;
2676 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2677 case KVM_CAP_IOMMU:
2678 r = iommu_present(&pci_bus_type);
2679 break;
2680 #endif
2681 case KVM_CAP_MCE:
2682 r = KVM_MAX_MCE_BANKS;
2683 break;
2684 case KVM_CAP_XCRS:
2685 r = cpu_has_xsave;
2686 break;
2687 case KVM_CAP_TSC_CONTROL:
2688 r = kvm_has_tsc_control;
2689 break;
2690 case KVM_CAP_TSC_DEADLINE_TIMER:
2691 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2692 break;
2693 default:
2694 r = 0;
2695 break;
2696 }
2697 return r;
2698
2699 }
2700
2701 long kvm_arch_dev_ioctl(struct file *filp,
2702 unsigned int ioctl, unsigned long arg)
2703 {
2704 void __user *argp = (void __user *)arg;
2705 long r;
2706
2707 switch (ioctl) {
2708 case KVM_GET_MSR_INDEX_LIST: {
2709 struct kvm_msr_list __user *user_msr_list = argp;
2710 struct kvm_msr_list msr_list;
2711 unsigned n;
2712
2713 r = -EFAULT;
2714 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2715 goto out;
2716 n = msr_list.nmsrs;
2717 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2718 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2719 goto out;
2720 r = -E2BIG;
2721 if (n < msr_list.nmsrs)
2722 goto out;
2723 r = -EFAULT;
2724 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2725 num_msrs_to_save * sizeof(u32)))
2726 goto out;
2727 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2728 &emulated_msrs,
2729 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2730 goto out;
2731 r = 0;
2732 break;
2733 }
2734 case KVM_GET_SUPPORTED_CPUID:
2735 case KVM_GET_EMULATED_CPUID: {
2736 struct kvm_cpuid2 __user *cpuid_arg = argp;
2737 struct kvm_cpuid2 cpuid;
2738
2739 r = -EFAULT;
2740 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2741 goto out;
2742
2743 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2744 ioctl);
2745 if (r)
2746 goto out;
2747
2748 r = -EFAULT;
2749 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2750 goto out;
2751 r = 0;
2752 break;
2753 }
2754 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2755 u64 mce_cap;
2756
2757 mce_cap = KVM_MCE_CAP_SUPPORTED;
2758 r = -EFAULT;
2759 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2760 goto out;
2761 r = 0;
2762 break;
2763 }
2764 default:
2765 r = -EINVAL;
2766 }
2767 out:
2768 return r;
2769 }
2770
2771 static void wbinvd_ipi(void *garbage)
2772 {
2773 wbinvd();
2774 }
2775
2776 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2777 {
2778 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2779 }
2780
2781 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2782 {
2783 /* Address WBINVD may be executed by guest */
2784 if (need_emulate_wbinvd(vcpu)) {
2785 if (kvm_x86_ops->has_wbinvd_exit())
2786 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2787 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2788 smp_call_function_single(vcpu->cpu,
2789 wbinvd_ipi, NULL, 1);
2790 }
2791
2792 kvm_x86_ops->vcpu_load(vcpu, cpu);
2793
2794 /* Apply any externally detected TSC adjustments (due to suspend) */
2795 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2796 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2797 vcpu->arch.tsc_offset_adjustment = 0;
2798 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2799 }
2800
2801 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2802 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2803 native_read_tsc() - vcpu->arch.last_host_tsc;
2804 if (tsc_delta < 0)
2805 mark_tsc_unstable("KVM discovered backwards TSC");
2806 if (check_tsc_unstable()) {
2807 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2808 vcpu->arch.last_guest_tsc);
2809 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2810 vcpu->arch.tsc_catchup = 1;
2811 }
2812 /*
2813 * On a host with synchronized TSC, there is no need to update
2814 * kvmclock on vcpu->cpu migration
2815 */
2816 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2817 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2818 if (vcpu->cpu != cpu)
2819 kvm_migrate_timers(vcpu);
2820 vcpu->cpu = cpu;
2821 }
2822
2823 accumulate_steal_time(vcpu);
2824 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2825 }
2826
2827 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2828 {
2829 kvm_x86_ops->vcpu_put(vcpu);
2830 kvm_put_guest_fpu(vcpu);
2831 vcpu->arch.last_host_tsc = native_read_tsc();
2832 }
2833
2834 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2835 struct kvm_lapic_state *s)
2836 {
2837 kvm_x86_ops->sync_pir_to_irr(vcpu);
2838 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2839
2840 return 0;
2841 }
2842
2843 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2844 struct kvm_lapic_state *s)
2845 {
2846 kvm_apic_post_state_restore(vcpu, s);
2847 update_cr8_intercept(vcpu);
2848
2849 return 0;
2850 }
2851
2852 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2853 struct kvm_interrupt *irq)
2854 {
2855 if (irq->irq >= KVM_NR_INTERRUPTS)
2856 return -EINVAL;
2857 if (irqchip_in_kernel(vcpu->kvm))
2858 return -ENXIO;
2859
2860 kvm_queue_interrupt(vcpu, irq->irq, false);
2861 kvm_make_request(KVM_REQ_EVENT, vcpu);
2862
2863 return 0;
2864 }
2865
2866 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2867 {
2868 kvm_inject_nmi(vcpu);
2869
2870 return 0;
2871 }
2872
2873 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2874 struct kvm_tpr_access_ctl *tac)
2875 {
2876 if (tac->flags)
2877 return -EINVAL;
2878 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2879 return 0;
2880 }
2881
2882 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2883 u64 mcg_cap)
2884 {
2885 int r;
2886 unsigned bank_num = mcg_cap & 0xff, bank;
2887
2888 r = -EINVAL;
2889 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2890 goto out;
2891 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2892 goto out;
2893 r = 0;
2894 vcpu->arch.mcg_cap = mcg_cap;
2895 /* Init IA32_MCG_CTL to all 1s */
2896 if (mcg_cap & MCG_CTL_P)
2897 vcpu->arch.mcg_ctl = ~(u64)0;
2898 /* Init IA32_MCi_CTL to all 1s */
2899 for (bank = 0; bank < bank_num; bank++)
2900 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2901 out:
2902 return r;
2903 }
2904
2905 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2906 struct kvm_x86_mce *mce)
2907 {
2908 u64 mcg_cap = vcpu->arch.mcg_cap;
2909 unsigned bank_num = mcg_cap & 0xff;
2910 u64 *banks = vcpu->arch.mce_banks;
2911
2912 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2913 return -EINVAL;
2914 /*
2915 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2916 * reporting is disabled
2917 */
2918 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2919 vcpu->arch.mcg_ctl != ~(u64)0)
2920 return 0;
2921 banks += 4 * mce->bank;
2922 /*
2923 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2924 * reporting is disabled for the bank
2925 */
2926 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2927 return 0;
2928 if (mce->status & MCI_STATUS_UC) {
2929 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2930 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2931 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2932 return 0;
2933 }
2934 if (banks[1] & MCI_STATUS_VAL)
2935 mce->status |= MCI_STATUS_OVER;
2936 banks[2] = mce->addr;
2937 banks[3] = mce->misc;
2938 vcpu->arch.mcg_status = mce->mcg_status;
2939 banks[1] = mce->status;
2940 kvm_queue_exception(vcpu, MC_VECTOR);
2941 } else if (!(banks[1] & MCI_STATUS_VAL)
2942 || !(banks[1] & MCI_STATUS_UC)) {
2943 if (banks[1] & MCI_STATUS_VAL)
2944 mce->status |= MCI_STATUS_OVER;
2945 banks[2] = mce->addr;
2946 banks[3] = mce->misc;
2947 banks[1] = mce->status;
2948 } else
2949 banks[1] |= MCI_STATUS_OVER;
2950 return 0;
2951 }
2952
2953 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2954 struct kvm_vcpu_events *events)
2955 {
2956 process_nmi(vcpu);
2957 events->exception.injected =
2958 vcpu->arch.exception.pending &&
2959 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2960 events->exception.nr = vcpu->arch.exception.nr;
2961 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2962 events->exception.pad = 0;
2963 events->exception.error_code = vcpu->arch.exception.error_code;
2964
2965 events->interrupt.injected =
2966 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2967 events->interrupt.nr = vcpu->arch.interrupt.nr;
2968 events->interrupt.soft = 0;
2969 events->interrupt.shadow =
2970 kvm_x86_ops->get_interrupt_shadow(vcpu,
2971 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2972
2973 events->nmi.injected = vcpu->arch.nmi_injected;
2974 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2975 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2976 events->nmi.pad = 0;
2977
2978 events->sipi_vector = 0; /* never valid when reporting to user space */
2979
2980 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2981 | KVM_VCPUEVENT_VALID_SHADOW);
2982 memset(&events->reserved, 0, sizeof(events->reserved));
2983 }
2984
2985 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2986 struct kvm_vcpu_events *events)
2987 {
2988 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2989 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2990 | KVM_VCPUEVENT_VALID_SHADOW))
2991 return -EINVAL;
2992
2993 process_nmi(vcpu);
2994 vcpu->arch.exception.pending = events->exception.injected;
2995 vcpu->arch.exception.nr = events->exception.nr;
2996 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2997 vcpu->arch.exception.error_code = events->exception.error_code;
2998
2999 vcpu->arch.interrupt.pending = events->interrupt.injected;
3000 vcpu->arch.interrupt.nr = events->interrupt.nr;
3001 vcpu->arch.interrupt.soft = events->interrupt.soft;
3002 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3003 kvm_x86_ops->set_interrupt_shadow(vcpu,
3004 events->interrupt.shadow);
3005
3006 vcpu->arch.nmi_injected = events->nmi.injected;
3007 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3008 vcpu->arch.nmi_pending = events->nmi.pending;
3009 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3010
3011 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3012 kvm_vcpu_has_lapic(vcpu))
3013 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3014
3015 kvm_make_request(KVM_REQ_EVENT, vcpu);
3016
3017 return 0;
3018 }
3019
3020 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3021 struct kvm_debugregs *dbgregs)
3022 {
3023 unsigned long val;
3024
3025 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3026 _kvm_get_dr(vcpu, 6, &val);
3027 dbgregs->dr6 = val;
3028 dbgregs->dr7 = vcpu->arch.dr7;
3029 dbgregs->flags = 0;
3030 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3031 }
3032
3033 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3034 struct kvm_debugregs *dbgregs)
3035 {
3036 if (dbgregs->flags)
3037 return -EINVAL;
3038
3039 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3040 vcpu->arch.dr6 = dbgregs->dr6;
3041 kvm_update_dr6(vcpu);
3042 vcpu->arch.dr7 = dbgregs->dr7;
3043 kvm_update_dr7(vcpu);
3044
3045 return 0;
3046 }
3047
3048 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3049 struct kvm_xsave *guest_xsave)
3050 {
3051 if (cpu_has_xsave) {
3052 memcpy(guest_xsave->region,
3053 &vcpu->arch.guest_fpu.state->xsave,
3054 vcpu->arch.guest_xstate_size);
3055 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
3056 vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
3057 } else {
3058 memcpy(guest_xsave->region,
3059 &vcpu->arch.guest_fpu.state->fxsave,
3060 sizeof(struct i387_fxsave_struct));
3061 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3062 XSTATE_FPSSE;
3063 }
3064 }
3065
3066 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3067 struct kvm_xsave *guest_xsave)
3068 {
3069 u64 xstate_bv =
3070 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3071
3072 if (cpu_has_xsave) {
3073 /*
3074 * Here we allow setting states that are not present in
3075 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3076 * with old userspace.
3077 */
3078 if (xstate_bv & ~kvm_supported_xcr0())
3079 return -EINVAL;
3080 memcpy(&vcpu->arch.guest_fpu.state->xsave,
3081 guest_xsave->region, vcpu->arch.guest_xstate_size);
3082 } else {
3083 if (xstate_bv & ~XSTATE_FPSSE)
3084 return -EINVAL;
3085 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3086 guest_xsave->region, sizeof(struct i387_fxsave_struct));
3087 }
3088 return 0;
3089 }
3090
3091 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3092 struct kvm_xcrs *guest_xcrs)
3093 {
3094 if (!cpu_has_xsave) {
3095 guest_xcrs->nr_xcrs = 0;
3096 return;
3097 }
3098
3099 guest_xcrs->nr_xcrs = 1;
3100 guest_xcrs->flags = 0;
3101 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3102 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3103 }
3104
3105 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3106 struct kvm_xcrs *guest_xcrs)
3107 {
3108 int i, r = 0;
3109
3110 if (!cpu_has_xsave)
3111 return -EINVAL;
3112
3113 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3114 return -EINVAL;
3115
3116 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3117 /* Only support XCR0 currently */
3118 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3119 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3120 guest_xcrs->xcrs[i].value);
3121 break;
3122 }
3123 if (r)
3124 r = -EINVAL;
3125 return r;
3126 }
3127
3128 /*
3129 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3130 * stopped by the hypervisor. This function will be called from the host only.
3131 * EINVAL is returned when the host attempts to set the flag for a guest that
3132 * does not support pv clocks.
3133 */
3134 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3135 {
3136 if (!vcpu->arch.pv_time_enabled)
3137 return -EINVAL;
3138 vcpu->arch.pvclock_set_guest_stopped_request = true;
3139 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3140 return 0;
3141 }
3142
3143 long kvm_arch_vcpu_ioctl(struct file *filp,
3144 unsigned int ioctl, unsigned long arg)
3145 {
3146 struct kvm_vcpu *vcpu = filp->private_data;
3147 void __user *argp = (void __user *)arg;
3148 int r;
3149 union {
3150 struct kvm_lapic_state *lapic;
3151 struct kvm_xsave *xsave;
3152 struct kvm_xcrs *xcrs;
3153 void *buffer;
3154 } u;
3155
3156 u.buffer = NULL;
3157 switch (ioctl) {
3158 case KVM_GET_LAPIC: {
3159 r = -EINVAL;
3160 if (!vcpu->arch.apic)
3161 goto out;
3162 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3163
3164 r = -ENOMEM;
3165 if (!u.lapic)
3166 goto out;
3167 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3168 if (r)
3169 goto out;
3170 r = -EFAULT;
3171 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3172 goto out;
3173 r = 0;
3174 break;
3175 }
3176 case KVM_SET_LAPIC: {
3177 r = -EINVAL;
3178 if (!vcpu->arch.apic)
3179 goto out;
3180 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3181 if (IS_ERR(u.lapic))
3182 return PTR_ERR(u.lapic);
3183
3184 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3185 break;
3186 }
3187 case KVM_INTERRUPT: {
3188 struct kvm_interrupt irq;
3189
3190 r = -EFAULT;
3191 if (copy_from_user(&irq, argp, sizeof irq))
3192 goto out;
3193 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3194 break;
3195 }
3196 case KVM_NMI: {
3197 r = kvm_vcpu_ioctl_nmi(vcpu);
3198 break;
3199 }
3200 case KVM_SET_CPUID: {
3201 struct kvm_cpuid __user *cpuid_arg = argp;
3202 struct kvm_cpuid cpuid;
3203
3204 r = -EFAULT;
3205 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3206 goto out;
3207 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3208 break;
3209 }
3210 case KVM_SET_CPUID2: {
3211 struct kvm_cpuid2 __user *cpuid_arg = argp;
3212 struct kvm_cpuid2 cpuid;
3213
3214 r = -EFAULT;
3215 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3216 goto out;
3217 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3218 cpuid_arg->entries);
3219 break;
3220 }
3221 case KVM_GET_CPUID2: {
3222 struct kvm_cpuid2 __user *cpuid_arg = argp;
3223 struct kvm_cpuid2 cpuid;
3224
3225 r = -EFAULT;
3226 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3227 goto out;
3228 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3229 cpuid_arg->entries);
3230 if (r)
3231 goto out;
3232 r = -EFAULT;
3233 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3234 goto out;
3235 r = 0;
3236 break;
3237 }
3238 case KVM_GET_MSRS:
3239 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3240 break;
3241 case KVM_SET_MSRS:
3242 r = msr_io(vcpu, argp, do_set_msr, 0);
3243 break;
3244 case KVM_TPR_ACCESS_REPORTING: {
3245 struct kvm_tpr_access_ctl tac;
3246
3247 r = -EFAULT;
3248 if (copy_from_user(&tac, argp, sizeof tac))
3249 goto out;
3250 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3251 if (r)
3252 goto out;
3253 r = -EFAULT;
3254 if (copy_to_user(argp, &tac, sizeof tac))
3255 goto out;
3256 r = 0;
3257 break;
3258 };
3259 case KVM_SET_VAPIC_ADDR: {
3260 struct kvm_vapic_addr va;
3261
3262 r = -EINVAL;
3263 if (!irqchip_in_kernel(vcpu->kvm))
3264 goto out;
3265 r = -EFAULT;
3266 if (copy_from_user(&va, argp, sizeof va))
3267 goto out;
3268 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3269 break;
3270 }
3271 case KVM_X86_SETUP_MCE: {
3272 u64 mcg_cap;
3273
3274 r = -EFAULT;
3275 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3276 goto out;
3277 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3278 break;
3279 }
3280 case KVM_X86_SET_MCE: {
3281 struct kvm_x86_mce mce;
3282
3283 r = -EFAULT;
3284 if (copy_from_user(&mce, argp, sizeof mce))
3285 goto out;
3286 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3287 break;
3288 }
3289 case KVM_GET_VCPU_EVENTS: {
3290 struct kvm_vcpu_events events;
3291
3292 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3293
3294 r = -EFAULT;
3295 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3296 break;
3297 r = 0;
3298 break;
3299 }
3300 case KVM_SET_VCPU_EVENTS: {
3301 struct kvm_vcpu_events events;
3302
3303 r = -EFAULT;
3304 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3305 break;
3306
3307 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3308 break;
3309 }
3310 case KVM_GET_DEBUGREGS: {
3311 struct kvm_debugregs dbgregs;
3312
3313 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3314
3315 r = -EFAULT;
3316 if (copy_to_user(argp, &dbgregs,
3317 sizeof(struct kvm_debugregs)))
3318 break;
3319 r = 0;
3320 break;
3321 }
3322 case KVM_SET_DEBUGREGS: {
3323 struct kvm_debugregs dbgregs;
3324
3325 r = -EFAULT;
3326 if (copy_from_user(&dbgregs, argp,
3327 sizeof(struct kvm_debugregs)))
3328 break;
3329
3330 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3331 break;
3332 }
3333 case KVM_GET_XSAVE: {
3334 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3335 r = -ENOMEM;
3336 if (!u.xsave)
3337 break;
3338
3339 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3340
3341 r = -EFAULT;
3342 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3343 break;
3344 r = 0;
3345 break;
3346 }
3347 case KVM_SET_XSAVE: {
3348 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3349 if (IS_ERR(u.xsave))
3350 return PTR_ERR(u.xsave);
3351
3352 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3353 break;
3354 }
3355 case KVM_GET_XCRS: {
3356 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3357 r = -ENOMEM;
3358 if (!u.xcrs)
3359 break;
3360
3361 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3362
3363 r = -EFAULT;
3364 if (copy_to_user(argp, u.xcrs,
3365 sizeof(struct kvm_xcrs)))
3366 break;
3367 r = 0;
3368 break;
3369 }
3370 case KVM_SET_XCRS: {
3371 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3372 if (IS_ERR(u.xcrs))
3373 return PTR_ERR(u.xcrs);
3374
3375 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3376 break;
3377 }
3378 case KVM_SET_TSC_KHZ: {
3379 u32 user_tsc_khz;
3380
3381 r = -EINVAL;
3382 user_tsc_khz = (u32)arg;
3383
3384 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3385 goto out;
3386
3387 if (user_tsc_khz == 0)
3388 user_tsc_khz = tsc_khz;
3389
3390 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3391
3392 r = 0;
3393 goto out;
3394 }
3395 case KVM_GET_TSC_KHZ: {
3396 r = vcpu->arch.virtual_tsc_khz;
3397 goto out;
3398 }
3399 case KVM_KVMCLOCK_CTRL: {
3400 r = kvm_set_guest_paused(vcpu);
3401 goto out;
3402 }
3403 default:
3404 r = -EINVAL;
3405 }
3406 out:
3407 kfree(u.buffer);
3408 return r;
3409 }
3410
3411 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3412 {
3413 return VM_FAULT_SIGBUS;
3414 }
3415
3416 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3417 {
3418 int ret;
3419
3420 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3421 return -EINVAL;
3422 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3423 return ret;
3424 }
3425
3426 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3427 u64 ident_addr)
3428 {
3429 kvm->arch.ept_identity_map_addr = ident_addr;
3430 return 0;
3431 }
3432
3433 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3434 u32 kvm_nr_mmu_pages)
3435 {
3436 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3437 return -EINVAL;
3438
3439 mutex_lock(&kvm->slots_lock);
3440
3441 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3442 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3443
3444 mutex_unlock(&kvm->slots_lock);
3445 return 0;
3446 }
3447
3448 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3449 {
3450 return kvm->arch.n_max_mmu_pages;
3451 }
3452
3453 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3454 {
3455 int r;
3456
3457 r = 0;
3458 switch (chip->chip_id) {
3459 case KVM_IRQCHIP_PIC_MASTER:
3460 memcpy(&chip->chip.pic,
3461 &pic_irqchip(kvm)->pics[0],
3462 sizeof(struct kvm_pic_state));
3463 break;
3464 case KVM_IRQCHIP_PIC_SLAVE:
3465 memcpy(&chip->chip.pic,
3466 &pic_irqchip(kvm)->pics[1],
3467 sizeof(struct kvm_pic_state));
3468 break;
3469 case KVM_IRQCHIP_IOAPIC:
3470 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3471 break;
3472 default:
3473 r = -EINVAL;
3474 break;
3475 }
3476 return r;
3477 }
3478
3479 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3480 {
3481 int r;
3482
3483 r = 0;
3484 switch (chip->chip_id) {
3485 case KVM_IRQCHIP_PIC_MASTER:
3486 spin_lock(&pic_irqchip(kvm)->lock);
3487 memcpy(&pic_irqchip(kvm)->pics[0],
3488 &chip->chip.pic,
3489 sizeof(struct kvm_pic_state));
3490 spin_unlock(&pic_irqchip(kvm)->lock);
3491 break;
3492 case KVM_IRQCHIP_PIC_SLAVE:
3493 spin_lock(&pic_irqchip(kvm)->lock);
3494 memcpy(&pic_irqchip(kvm)->pics[1],
3495 &chip->chip.pic,
3496 sizeof(struct kvm_pic_state));
3497 spin_unlock(&pic_irqchip(kvm)->lock);
3498 break;
3499 case KVM_IRQCHIP_IOAPIC:
3500 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3501 break;
3502 default:
3503 r = -EINVAL;
3504 break;
3505 }
3506 kvm_pic_update_irq(pic_irqchip(kvm));
3507 return r;
3508 }
3509
3510 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3511 {
3512 int r = 0;
3513
3514 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3515 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3516 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3517 return r;
3518 }
3519
3520 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3521 {
3522 int r = 0;
3523
3524 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3525 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3526 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3527 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3528 return r;
3529 }
3530
3531 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3532 {
3533 int r = 0;
3534
3535 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3536 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3537 sizeof(ps->channels));
3538 ps->flags = kvm->arch.vpit->pit_state.flags;
3539 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3540 memset(&ps->reserved, 0, sizeof(ps->reserved));
3541 return r;
3542 }
3543
3544 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3545 {
3546 int r = 0, start = 0;
3547 u32 prev_legacy, cur_legacy;
3548 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3549 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3550 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3551 if (!prev_legacy && cur_legacy)
3552 start = 1;
3553 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3554 sizeof(kvm->arch.vpit->pit_state.channels));
3555 kvm->arch.vpit->pit_state.flags = ps->flags;
3556 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3557 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3558 return r;
3559 }
3560
3561 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3562 struct kvm_reinject_control *control)
3563 {
3564 if (!kvm->arch.vpit)
3565 return -ENXIO;
3566 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3567 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3568 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3569 return 0;
3570 }
3571
3572 /**
3573 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3574 * @kvm: kvm instance
3575 * @log: slot id and address to which we copy the log
3576 *
3577 * We need to keep it in mind that VCPU threads can write to the bitmap
3578 * concurrently. So, to avoid losing data, we keep the following order for
3579 * each bit:
3580 *
3581 * 1. Take a snapshot of the bit and clear it if needed.
3582 * 2. Write protect the corresponding page.
3583 * 3. Flush TLB's if needed.
3584 * 4. Copy the snapshot to the userspace.
3585 *
3586 * Between 2 and 3, the guest may write to the page using the remaining TLB
3587 * entry. This is not a problem because the page will be reported dirty at
3588 * step 4 using the snapshot taken before and step 3 ensures that successive
3589 * writes will be logged for the next call.
3590 */
3591 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3592 {
3593 int r;
3594 struct kvm_memory_slot *memslot;
3595 unsigned long n, i;
3596 unsigned long *dirty_bitmap;
3597 unsigned long *dirty_bitmap_buffer;
3598 bool is_dirty = false;
3599
3600 mutex_lock(&kvm->slots_lock);
3601
3602 r = -EINVAL;
3603 if (log->slot >= KVM_USER_MEM_SLOTS)
3604 goto out;
3605
3606 memslot = id_to_memslot(kvm->memslots, log->slot);
3607
3608 dirty_bitmap = memslot->dirty_bitmap;
3609 r = -ENOENT;
3610 if (!dirty_bitmap)
3611 goto out;
3612
3613 n = kvm_dirty_bitmap_bytes(memslot);
3614
3615 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3616 memset(dirty_bitmap_buffer, 0, n);
3617
3618 spin_lock(&kvm->mmu_lock);
3619
3620 for (i = 0; i < n / sizeof(long); i++) {
3621 unsigned long mask;
3622 gfn_t offset;
3623
3624 if (!dirty_bitmap[i])
3625 continue;
3626
3627 is_dirty = true;
3628
3629 mask = xchg(&dirty_bitmap[i], 0);
3630 dirty_bitmap_buffer[i] = mask;
3631
3632 offset = i * BITS_PER_LONG;
3633 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3634 }
3635
3636 spin_unlock(&kvm->mmu_lock);
3637
3638 /* See the comments in kvm_mmu_slot_remove_write_access(). */
3639 lockdep_assert_held(&kvm->slots_lock);
3640
3641 /*
3642 * All the TLBs can be flushed out of mmu lock, see the comments in
3643 * kvm_mmu_slot_remove_write_access().
3644 */
3645 if (is_dirty)
3646 kvm_flush_remote_tlbs(kvm);
3647
3648 r = -EFAULT;
3649 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3650 goto out;
3651
3652 r = 0;
3653 out:
3654 mutex_unlock(&kvm->slots_lock);
3655 return r;
3656 }
3657
3658 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3659 bool line_status)
3660 {
3661 if (!irqchip_in_kernel(kvm))
3662 return -ENXIO;
3663
3664 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3665 irq_event->irq, irq_event->level,
3666 line_status);
3667 return 0;
3668 }
3669
3670 long kvm_arch_vm_ioctl(struct file *filp,
3671 unsigned int ioctl, unsigned long arg)
3672 {
3673 struct kvm *kvm = filp->private_data;
3674 void __user *argp = (void __user *)arg;
3675 int r = -ENOTTY;
3676 /*
3677 * This union makes it completely explicit to gcc-3.x
3678 * that these two variables' stack usage should be
3679 * combined, not added together.
3680 */
3681 union {
3682 struct kvm_pit_state ps;
3683 struct kvm_pit_state2 ps2;
3684 struct kvm_pit_config pit_config;
3685 } u;
3686
3687 switch (ioctl) {
3688 case KVM_SET_TSS_ADDR:
3689 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3690 break;
3691 case KVM_SET_IDENTITY_MAP_ADDR: {
3692 u64 ident_addr;
3693
3694 r = -EFAULT;
3695 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3696 goto out;
3697 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3698 break;
3699 }
3700 case KVM_SET_NR_MMU_PAGES:
3701 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3702 break;
3703 case KVM_GET_NR_MMU_PAGES:
3704 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3705 break;
3706 case KVM_CREATE_IRQCHIP: {
3707 struct kvm_pic *vpic;
3708
3709 mutex_lock(&kvm->lock);
3710 r = -EEXIST;
3711 if (kvm->arch.vpic)
3712 goto create_irqchip_unlock;
3713 r = -EINVAL;
3714 if (atomic_read(&kvm->online_vcpus))
3715 goto create_irqchip_unlock;
3716 r = -ENOMEM;
3717 vpic = kvm_create_pic(kvm);
3718 if (vpic) {
3719 r = kvm_ioapic_init(kvm);
3720 if (r) {
3721 mutex_lock(&kvm->slots_lock);
3722 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3723 &vpic->dev_master);
3724 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3725 &vpic->dev_slave);
3726 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3727 &vpic->dev_eclr);
3728 mutex_unlock(&kvm->slots_lock);
3729 kfree(vpic);
3730 goto create_irqchip_unlock;
3731 }
3732 } else
3733 goto create_irqchip_unlock;
3734 smp_wmb();
3735 kvm->arch.vpic = vpic;
3736 smp_wmb();
3737 r = kvm_setup_default_irq_routing(kvm);
3738 if (r) {
3739 mutex_lock(&kvm->slots_lock);
3740 mutex_lock(&kvm->irq_lock);
3741 kvm_ioapic_destroy(kvm);
3742 kvm_destroy_pic(kvm);
3743 mutex_unlock(&kvm->irq_lock);
3744 mutex_unlock(&kvm->slots_lock);
3745 }
3746 create_irqchip_unlock:
3747 mutex_unlock(&kvm->lock);
3748 break;
3749 }
3750 case KVM_CREATE_PIT:
3751 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3752 goto create_pit;
3753 case KVM_CREATE_PIT2:
3754 r = -EFAULT;
3755 if (copy_from_user(&u.pit_config, argp,
3756 sizeof(struct kvm_pit_config)))
3757 goto out;
3758 create_pit:
3759 mutex_lock(&kvm->slots_lock);
3760 r = -EEXIST;
3761 if (kvm->arch.vpit)
3762 goto create_pit_unlock;
3763 r = -ENOMEM;
3764 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3765 if (kvm->arch.vpit)
3766 r = 0;
3767 create_pit_unlock:
3768 mutex_unlock(&kvm->slots_lock);
3769 break;
3770 case KVM_GET_IRQCHIP: {
3771 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3772 struct kvm_irqchip *chip;
3773
3774 chip = memdup_user(argp, sizeof(*chip));
3775 if (IS_ERR(chip)) {
3776 r = PTR_ERR(chip);
3777 goto out;
3778 }
3779
3780 r = -ENXIO;
3781 if (!irqchip_in_kernel(kvm))
3782 goto get_irqchip_out;
3783 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3784 if (r)
3785 goto get_irqchip_out;
3786 r = -EFAULT;
3787 if (copy_to_user(argp, chip, sizeof *chip))
3788 goto get_irqchip_out;
3789 r = 0;
3790 get_irqchip_out:
3791 kfree(chip);
3792 break;
3793 }
3794 case KVM_SET_IRQCHIP: {
3795 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3796 struct kvm_irqchip *chip;
3797
3798 chip = memdup_user(argp, sizeof(*chip));
3799 if (IS_ERR(chip)) {
3800 r = PTR_ERR(chip);
3801 goto out;
3802 }
3803
3804 r = -ENXIO;
3805 if (!irqchip_in_kernel(kvm))
3806 goto set_irqchip_out;
3807 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3808 if (r)
3809 goto set_irqchip_out;
3810 r = 0;
3811 set_irqchip_out:
3812 kfree(chip);
3813 break;
3814 }
3815 case KVM_GET_PIT: {
3816 r = -EFAULT;
3817 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3818 goto out;
3819 r = -ENXIO;
3820 if (!kvm->arch.vpit)
3821 goto out;
3822 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3823 if (r)
3824 goto out;
3825 r = -EFAULT;
3826 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3827 goto out;
3828 r = 0;
3829 break;
3830 }
3831 case KVM_SET_PIT: {
3832 r = -EFAULT;
3833 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3834 goto out;
3835 r = -ENXIO;
3836 if (!kvm->arch.vpit)
3837 goto out;
3838 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3839 break;
3840 }
3841 case KVM_GET_PIT2: {
3842 r = -ENXIO;
3843 if (!kvm->arch.vpit)
3844 goto out;
3845 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3846 if (r)
3847 goto out;
3848 r = -EFAULT;
3849 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3850 goto out;
3851 r = 0;
3852 break;
3853 }
3854 case KVM_SET_PIT2: {
3855 r = -EFAULT;
3856 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3857 goto out;
3858 r = -ENXIO;
3859 if (!kvm->arch.vpit)
3860 goto out;
3861 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3862 break;
3863 }
3864 case KVM_REINJECT_CONTROL: {
3865 struct kvm_reinject_control control;
3866 r = -EFAULT;
3867 if (copy_from_user(&control, argp, sizeof(control)))
3868 goto out;
3869 r = kvm_vm_ioctl_reinject(kvm, &control);
3870 break;
3871 }
3872 case KVM_XEN_HVM_CONFIG: {
3873 r = -EFAULT;
3874 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3875 sizeof(struct kvm_xen_hvm_config)))
3876 goto out;
3877 r = -EINVAL;
3878 if (kvm->arch.xen_hvm_config.flags)
3879 goto out;
3880 r = 0;
3881 break;
3882 }
3883 case KVM_SET_CLOCK: {
3884 struct kvm_clock_data user_ns;
3885 u64 now_ns;
3886 s64 delta;
3887
3888 r = -EFAULT;
3889 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3890 goto out;
3891
3892 r = -EINVAL;
3893 if (user_ns.flags)
3894 goto out;
3895
3896 r = 0;
3897 local_irq_disable();
3898 now_ns = get_kernel_ns();
3899 delta = user_ns.clock - now_ns;
3900 local_irq_enable();
3901 kvm->arch.kvmclock_offset = delta;
3902 kvm_gen_update_masterclock(kvm);
3903 break;
3904 }
3905 case KVM_GET_CLOCK: {
3906 struct kvm_clock_data user_ns;
3907 u64 now_ns;
3908
3909 local_irq_disable();
3910 now_ns = get_kernel_ns();
3911 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3912 local_irq_enable();
3913 user_ns.flags = 0;
3914 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3915
3916 r = -EFAULT;
3917 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3918 goto out;
3919 r = 0;
3920 break;
3921 }
3922
3923 default:
3924 ;
3925 }
3926 out:
3927 return r;
3928 }
3929
3930 static void kvm_init_msr_list(void)
3931 {
3932 u32 dummy[2];
3933 unsigned i, j;
3934
3935 /* skip the first msrs in the list. KVM-specific */
3936 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3937 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3938 continue;
3939
3940 /*
3941 * Even MSRs that are valid in the host may not be exposed
3942 * to the guests in some cases. We could work around this
3943 * in VMX with the generic MSR save/load machinery, but it
3944 * is not really worthwhile since it will really only
3945 * happen with nested virtualization.
3946 */
3947 switch (msrs_to_save[i]) {
3948 case MSR_IA32_BNDCFGS:
3949 if (!kvm_x86_ops->mpx_supported())
3950 continue;
3951 break;
3952 default:
3953 break;
3954 }
3955
3956 if (j < i)
3957 msrs_to_save[j] = msrs_to_save[i];
3958 j++;
3959 }
3960 num_msrs_to_save = j;
3961 }
3962
3963 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3964 const void *v)
3965 {
3966 int handled = 0;
3967 int n;
3968
3969 do {
3970 n = min(len, 8);
3971 if (!(vcpu->arch.apic &&
3972 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3973 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3974 break;
3975 handled += n;
3976 addr += n;
3977 len -= n;
3978 v += n;
3979 } while (len);
3980
3981 return handled;
3982 }
3983
3984 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3985 {
3986 int handled = 0;
3987 int n;
3988
3989 do {
3990 n = min(len, 8);
3991 if (!(vcpu->arch.apic &&
3992 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3993 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3994 break;
3995 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3996 handled += n;
3997 addr += n;
3998 len -= n;
3999 v += n;
4000 } while (len);
4001
4002 return handled;
4003 }
4004
4005 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4006 struct kvm_segment *var, int seg)
4007 {
4008 kvm_x86_ops->set_segment(vcpu, var, seg);
4009 }
4010
4011 void kvm_get_segment(struct kvm_vcpu *vcpu,
4012 struct kvm_segment *var, int seg)
4013 {
4014 kvm_x86_ops->get_segment(vcpu, var, seg);
4015 }
4016
4017 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
4018 {
4019 gpa_t t_gpa;
4020 struct x86_exception exception;
4021
4022 BUG_ON(!mmu_is_nested(vcpu));
4023
4024 /* NPT walks are always user-walks */
4025 access |= PFERR_USER_MASK;
4026 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
4027
4028 return t_gpa;
4029 }
4030
4031 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4032 struct x86_exception *exception)
4033 {
4034 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4035 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4036 }
4037
4038 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4039 struct x86_exception *exception)
4040 {
4041 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4042 access |= PFERR_FETCH_MASK;
4043 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4044 }
4045
4046 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4047 struct x86_exception *exception)
4048 {
4049 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4050 access |= PFERR_WRITE_MASK;
4051 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4052 }
4053
4054 /* uses this to access any guest's mapped memory without checking CPL */
4055 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4056 struct x86_exception *exception)
4057 {
4058 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4059 }
4060
4061 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4062 struct kvm_vcpu *vcpu, u32 access,
4063 struct x86_exception *exception)
4064 {
4065 void *data = val;
4066 int r = X86EMUL_CONTINUE;
4067
4068 while (bytes) {
4069 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4070 exception);
4071 unsigned offset = addr & (PAGE_SIZE-1);
4072 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4073 int ret;
4074
4075 if (gpa == UNMAPPED_GVA)
4076 return X86EMUL_PROPAGATE_FAULT;
4077 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
4078 if (ret < 0) {
4079 r = X86EMUL_IO_NEEDED;
4080 goto out;
4081 }
4082
4083 bytes -= toread;
4084 data += toread;
4085 addr += toread;
4086 }
4087 out:
4088 return r;
4089 }
4090
4091 /* used for instruction fetching */
4092 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4093 gva_t addr, void *val, unsigned int bytes,
4094 struct x86_exception *exception)
4095 {
4096 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4097 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4098
4099 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
4100 access | PFERR_FETCH_MASK,
4101 exception);
4102 }
4103
4104 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4105 gva_t addr, void *val, unsigned int bytes,
4106 struct x86_exception *exception)
4107 {
4108 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4109 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4110
4111 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4112 exception);
4113 }
4114 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4115
4116 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4117 gva_t addr, void *val, unsigned int bytes,
4118 struct x86_exception *exception)
4119 {
4120 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4121 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4122 }
4123
4124 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4125 gva_t addr, void *val,
4126 unsigned int bytes,
4127 struct x86_exception *exception)
4128 {
4129 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4130 void *data = val;
4131 int r = X86EMUL_CONTINUE;
4132
4133 while (bytes) {
4134 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4135 PFERR_WRITE_MASK,
4136 exception);
4137 unsigned offset = addr & (PAGE_SIZE-1);
4138 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4139 int ret;
4140
4141 if (gpa == UNMAPPED_GVA)
4142 return X86EMUL_PROPAGATE_FAULT;
4143 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4144 if (ret < 0) {
4145 r = X86EMUL_IO_NEEDED;
4146 goto out;
4147 }
4148
4149 bytes -= towrite;
4150 data += towrite;
4151 addr += towrite;
4152 }
4153 out:
4154 return r;
4155 }
4156 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4157
4158 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4159 gpa_t *gpa, struct x86_exception *exception,
4160 bool write)
4161 {
4162 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4163 | (write ? PFERR_WRITE_MASK : 0);
4164
4165 if (vcpu_match_mmio_gva(vcpu, gva)
4166 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4167 vcpu->arch.access, access)) {
4168 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4169 (gva & (PAGE_SIZE - 1));
4170 trace_vcpu_match_mmio(gva, *gpa, write, false);
4171 return 1;
4172 }
4173
4174 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4175
4176 if (*gpa == UNMAPPED_GVA)
4177 return -1;
4178
4179 /* For APIC access vmexit */
4180 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4181 return 1;
4182
4183 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4184 trace_vcpu_match_mmio(gva, *gpa, write, true);
4185 return 1;
4186 }
4187
4188 return 0;
4189 }
4190
4191 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4192 const void *val, int bytes)
4193 {
4194 int ret;
4195
4196 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4197 if (ret < 0)
4198 return 0;
4199 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4200 return 1;
4201 }
4202
4203 struct read_write_emulator_ops {
4204 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4205 int bytes);
4206 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4207 void *val, int bytes);
4208 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4209 int bytes, void *val);
4210 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4211 void *val, int bytes);
4212 bool write;
4213 };
4214
4215 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4216 {
4217 if (vcpu->mmio_read_completed) {
4218 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4219 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4220 vcpu->mmio_read_completed = 0;
4221 return 1;
4222 }
4223
4224 return 0;
4225 }
4226
4227 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4228 void *val, int bytes)
4229 {
4230 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4231 }
4232
4233 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4234 void *val, int bytes)
4235 {
4236 return emulator_write_phys(vcpu, gpa, val, bytes);
4237 }
4238
4239 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4240 {
4241 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4242 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4243 }
4244
4245 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4246 void *val, int bytes)
4247 {
4248 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4249 return X86EMUL_IO_NEEDED;
4250 }
4251
4252 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4253 void *val, int bytes)
4254 {
4255 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4256
4257 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4258 return X86EMUL_CONTINUE;
4259 }
4260
4261 static const struct read_write_emulator_ops read_emultor = {
4262 .read_write_prepare = read_prepare,
4263 .read_write_emulate = read_emulate,
4264 .read_write_mmio = vcpu_mmio_read,
4265 .read_write_exit_mmio = read_exit_mmio,
4266 };
4267
4268 static const struct read_write_emulator_ops write_emultor = {
4269 .read_write_emulate = write_emulate,
4270 .read_write_mmio = write_mmio,
4271 .read_write_exit_mmio = write_exit_mmio,
4272 .write = true,
4273 };
4274
4275 static int emulator_read_write_onepage(unsigned long addr, void *val,
4276 unsigned int bytes,
4277 struct x86_exception *exception,
4278 struct kvm_vcpu *vcpu,
4279 const struct read_write_emulator_ops *ops)
4280 {
4281 gpa_t gpa;
4282 int handled, ret;
4283 bool write = ops->write;
4284 struct kvm_mmio_fragment *frag;
4285
4286 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4287
4288 if (ret < 0)
4289 return X86EMUL_PROPAGATE_FAULT;
4290
4291 /* For APIC access vmexit */
4292 if (ret)
4293 goto mmio;
4294
4295 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4296 return X86EMUL_CONTINUE;
4297
4298 mmio:
4299 /*
4300 * Is this MMIO handled locally?
4301 */
4302 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4303 if (handled == bytes)
4304 return X86EMUL_CONTINUE;
4305
4306 gpa += handled;
4307 bytes -= handled;
4308 val += handled;
4309
4310 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4311 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4312 frag->gpa = gpa;
4313 frag->data = val;
4314 frag->len = bytes;
4315 return X86EMUL_CONTINUE;
4316 }
4317
4318 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4319 void *val, unsigned int bytes,
4320 struct x86_exception *exception,
4321 const struct read_write_emulator_ops *ops)
4322 {
4323 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4324 gpa_t gpa;
4325 int rc;
4326
4327 if (ops->read_write_prepare &&
4328 ops->read_write_prepare(vcpu, val, bytes))
4329 return X86EMUL_CONTINUE;
4330
4331 vcpu->mmio_nr_fragments = 0;
4332
4333 /* Crossing a page boundary? */
4334 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4335 int now;
4336
4337 now = -addr & ~PAGE_MASK;
4338 rc = emulator_read_write_onepage(addr, val, now, exception,
4339 vcpu, ops);
4340
4341 if (rc != X86EMUL_CONTINUE)
4342 return rc;
4343 addr += now;
4344 val += now;
4345 bytes -= now;
4346 }
4347
4348 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4349 vcpu, ops);
4350 if (rc != X86EMUL_CONTINUE)
4351 return rc;
4352
4353 if (!vcpu->mmio_nr_fragments)
4354 return rc;
4355
4356 gpa = vcpu->mmio_fragments[0].gpa;
4357
4358 vcpu->mmio_needed = 1;
4359 vcpu->mmio_cur_fragment = 0;
4360
4361 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4362 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4363 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4364 vcpu->run->mmio.phys_addr = gpa;
4365
4366 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4367 }
4368
4369 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4370 unsigned long addr,
4371 void *val,
4372 unsigned int bytes,
4373 struct x86_exception *exception)
4374 {
4375 return emulator_read_write(ctxt, addr, val, bytes,
4376 exception, &read_emultor);
4377 }
4378
4379 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4380 unsigned long addr,
4381 const void *val,
4382 unsigned int bytes,
4383 struct x86_exception *exception)
4384 {
4385 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4386 exception, &write_emultor);
4387 }
4388
4389 #define CMPXCHG_TYPE(t, ptr, old, new) \
4390 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4391
4392 #ifdef CONFIG_X86_64
4393 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4394 #else
4395 # define CMPXCHG64(ptr, old, new) \
4396 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4397 #endif
4398
4399 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4400 unsigned long addr,
4401 const void *old,
4402 const void *new,
4403 unsigned int bytes,
4404 struct x86_exception *exception)
4405 {
4406 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4407 gpa_t gpa;
4408 struct page *page;
4409 char *kaddr;
4410 bool exchanged;
4411
4412 /* guests cmpxchg8b have to be emulated atomically */
4413 if (bytes > 8 || (bytes & (bytes - 1)))
4414 goto emul_write;
4415
4416 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4417
4418 if (gpa == UNMAPPED_GVA ||
4419 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4420 goto emul_write;
4421
4422 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4423 goto emul_write;
4424
4425 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4426 if (is_error_page(page))
4427 goto emul_write;
4428
4429 kaddr = kmap_atomic(page);
4430 kaddr += offset_in_page(gpa);
4431 switch (bytes) {
4432 case 1:
4433 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4434 break;
4435 case 2:
4436 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4437 break;
4438 case 4:
4439 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4440 break;
4441 case 8:
4442 exchanged = CMPXCHG64(kaddr, old, new);
4443 break;
4444 default:
4445 BUG();
4446 }
4447 kunmap_atomic(kaddr);
4448 kvm_release_page_dirty(page);
4449
4450 if (!exchanged)
4451 return X86EMUL_CMPXCHG_FAILED;
4452
4453 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4454 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4455
4456 return X86EMUL_CONTINUE;
4457
4458 emul_write:
4459 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4460
4461 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4462 }
4463
4464 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4465 {
4466 /* TODO: String I/O for in kernel device */
4467 int r;
4468
4469 if (vcpu->arch.pio.in)
4470 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4471 vcpu->arch.pio.size, pd);
4472 else
4473 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4474 vcpu->arch.pio.port, vcpu->arch.pio.size,
4475 pd);
4476 return r;
4477 }
4478
4479 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4480 unsigned short port, void *val,
4481 unsigned int count, bool in)
4482 {
4483 vcpu->arch.pio.port = port;
4484 vcpu->arch.pio.in = in;
4485 vcpu->arch.pio.count = count;
4486 vcpu->arch.pio.size = size;
4487
4488 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4489 vcpu->arch.pio.count = 0;
4490 return 1;
4491 }
4492
4493 vcpu->run->exit_reason = KVM_EXIT_IO;
4494 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4495 vcpu->run->io.size = size;
4496 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4497 vcpu->run->io.count = count;
4498 vcpu->run->io.port = port;
4499
4500 return 0;
4501 }
4502
4503 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4504 int size, unsigned short port, void *val,
4505 unsigned int count)
4506 {
4507 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4508 int ret;
4509
4510 if (vcpu->arch.pio.count)
4511 goto data_avail;
4512
4513 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4514 if (ret) {
4515 data_avail:
4516 memcpy(val, vcpu->arch.pio_data, size * count);
4517 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4518 vcpu->arch.pio.count = 0;
4519 return 1;
4520 }
4521
4522 return 0;
4523 }
4524
4525 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4526 int size, unsigned short port,
4527 const void *val, unsigned int count)
4528 {
4529 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4530
4531 memcpy(vcpu->arch.pio_data, val, size * count);
4532 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4533 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4534 }
4535
4536 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4537 {
4538 return kvm_x86_ops->get_segment_base(vcpu, seg);
4539 }
4540
4541 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4542 {
4543 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4544 }
4545
4546 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4547 {
4548 if (!need_emulate_wbinvd(vcpu))
4549 return X86EMUL_CONTINUE;
4550
4551 if (kvm_x86_ops->has_wbinvd_exit()) {
4552 int cpu = get_cpu();
4553
4554 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4555 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4556 wbinvd_ipi, NULL, 1);
4557 put_cpu();
4558 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4559 } else
4560 wbinvd();
4561 return X86EMUL_CONTINUE;
4562 }
4563 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4564
4565 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4566 {
4567 kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4568 }
4569
4570 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4571 {
4572 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4573 }
4574
4575 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4576 {
4577
4578 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4579 }
4580
4581 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4582 {
4583 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4584 }
4585
4586 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4587 {
4588 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4589 unsigned long value;
4590
4591 switch (cr) {
4592 case 0:
4593 value = kvm_read_cr0(vcpu);
4594 break;
4595 case 2:
4596 value = vcpu->arch.cr2;
4597 break;
4598 case 3:
4599 value = kvm_read_cr3(vcpu);
4600 break;
4601 case 4:
4602 value = kvm_read_cr4(vcpu);
4603 break;
4604 case 8:
4605 value = kvm_get_cr8(vcpu);
4606 break;
4607 default:
4608 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4609 return 0;
4610 }
4611
4612 return value;
4613 }
4614
4615 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4616 {
4617 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4618 int res = 0;
4619
4620 switch (cr) {
4621 case 0:
4622 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4623 break;
4624 case 2:
4625 vcpu->arch.cr2 = val;
4626 break;
4627 case 3:
4628 res = kvm_set_cr3(vcpu, val);
4629 break;
4630 case 4:
4631 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4632 break;
4633 case 8:
4634 res = kvm_set_cr8(vcpu, val);
4635 break;
4636 default:
4637 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4638 res = -1;
4639 }
4640
4641 return res;
4642 }
4643
4644 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4645 {
4646 kvm_set_rflags(emul_to_vcpu(ctxt), val);
4647 }
4648
4649 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4650 {
4651 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4652 }
4653
4654 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4655 {
4656 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4657 }
4658
4659 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4660 {
4661 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4662 }
4663
4664 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4665 {
4666 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4667 }
4668
4669 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4670 {
4671 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4672 }
4673
4674 static unsigned long emulator_get_cached_segment_base(
4675 struct x86_emulate_ctxt *ctxt, int seg)
4676 {
4677 return get_segment_base(emul_to_vcpu(ctxt), seg);
4678 }
4679
4680 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4681 struct desc_struct *desc, u32 *base3,
4682 int seg)
4683 {
4684 struct kvm_segment var;
4685
4686 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4687 *selector = var.selector;
4688
4689 if (var.unusable) {
4690 memset(desc, 0, sizeof(*desc));
4691 return false;
4692 }
4693
4694 if (var.g)
4695 var.limit >>= 12;
4696 set_desc_limit(desc, var.limit);
4697 set_desc_base(desc, (unsigned long)var.base);
4698 #ifdef CONFIG_X86_64
4699 if (base3)
4700 *base3 = var.base >> 32;
4701 #endif
4702 desc->type = var.type;
4703 desc->s = var.s;
4704 desc->dpl = var.dpl;
4705 desc->p = var.present;
4706 desc->avl = var.avl;
4707 desc->l = var.l;
4708 desc->d = var.db;
4709 desc->g = var.g;
4710
4711 return true;
4712 }
4713
4714 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4715 struct desc_struct *desc, u32 base3,
4716 int seg)
4717 {
4718 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4719 struct kvm_segment var;
4720
4721 var.selector = selector;
4722 var.base = get_desc_base(desc);
4723 #ifdef CONFIG_X86_64
4724 var.base |= ((u64)base3) << 32;
4725 #endif
4726 var.limit = get_desc_limit(desc);
4727 if (desc->g)
4728 var.limit = (var.limit << 12) | 0xfff;
4729 var.type = desc->type;
4730 var.present = desc->p;
4731 var.dpl = desc->dpl;
4732 var.db = desc->d;
4733 var.s = desc->s;
4734 var.l = desc->l;
4735 var.g = desc->g;
4736 var.avl = desc->avl;
4737 var.present = desc->p;
4738 var.unusable = !var.present;
4739 var.padding = 0;
4740
4741 kvm_set_segment(vcpu, &var, seg);
4742 return;
4743 }
4744
4745 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4746 u32 msr_index, u64 *pdata)
4747 {
4748 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4749 }
4750
4751 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4752 u32 msr_index, u64 data)
4753 {
4754 struct msr_data msr;
4755
4756 msr.data = data;
4757 msr.index = msr_index;
4758 msr.host_initiated = false;
4759 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4760 }
4761
4762 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4763 u32 pmc, u64 *pdata)
4764 {
4765 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4766 }
4767
4768 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4769 {
4770 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4771 }
4772
4773 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4774 {
4775 preempt_disable();
4776 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4777 /*
4778 * CR0.TS may reference the host fpu state, not the guest fpu state,
4779 * so it may be clear at this point.
4780 */
4781 clts();
4782 }
4783
4784 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4785 {
4786 preempt_enable();
4787 }
4788
4789 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4790 struct x86_instruction_info *info,
4791 enum x86_intercept_stage stage)
4792 {
4793 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4794 }
4795
4796 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4797 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4798 {
4799 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4800 }
4801
4802 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4803 {
4804 return kvm_register_read(emul_to_vcpu(ctxt), reg);
4805 }
4806
4807 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4808 {
4809 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4810 }
4811
4812 static const struct x86_emulate_ops emulate_ops = {
4813 .read_gpr = emulator_read_gpr,
4814 .write_gpr = emulator_write_gpr,
4815 .read_std = kvm_read_guest_virt_system,
4816 .write_std = kvm_write_guest_virt_system,
4817 .fetch = kvm_fetch_guest_virt,
4818 .read_emulated = emulator_read_emulated,
4819 .write_emulated = emulator_write_emulated,
4820 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4821 .invlpg = emulator_invlpg,
4822 .pio_in_emulated = emulator_pio_in_emulated,
4823 .pio_out_emulated = emulator_pio_out_emulated,
4824 .get_segment = emulator_get_segment,
4825 .set_segment = emulator_set_segment,
4826 .get_cached_segment_base = emulator_get_cached_segment_base,
4827 .get_gdt = emulator_get_gdt,
4828 .get_idt = emulator_get_idt,
4829 .set_gdt = emulator_set_gdt,
4830 .set_idt = emulator_set_idt,
4831 .get_cr = emulator_get_cr,
4832 .set_cr = emulator_set_cr,
4833 .set_rflags = emulator_set_rflags,
4834 .cpl = emulator_get_cpl,
4835 .get_dr = emulator_get_dr,
4836 .set_dr = emulator_set_dr,
4837 .set_msr = emulator_set_msr,
4838 .get_msr = emulator_get_msr,
4839 .read_pmc = emulator_read_pmc,
4840 .halt = emulator_halt,
4841 .wbinvd = emulator_wbinvd,
4842 .fix_hypercall = emulator_fix_hypercall,
4843 .get_fpu = emulator_get_fpu,
4844 .put_fpu = emulator_put_fpu,
4845 .intercept = emulator_intercept,
4846 .get_cpuid = emulator_get_cpuid,
4847 };
4848
4849 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4850 {
4851 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4852 /*
4853 * an sti; sti; sequence only disable interrupts for the first
4854 * instruction. So, if the last instruction, be it emulated or
4855 * not, left the system with the INT_STI flag enabled, it
4856 * means that the last instruction is an sti. We should not
4857 * leave the flag on in this case. The same goes for mov ss
4858 */
4859 if (!(int_shadow & mask))
4860 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4861 }
4862
4863 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4864 {
4865 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4866 if (ctxt->exception.vector == PF_VECTOR)
4867 kvm_propagate_fault(vcpu, &ctxt->exception);
4868 else if (ctxt->exception.error_code_valid)
4869 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4870 ctxt->exception.error_code);
4871 else
4872 kvm_queue_exception(vcpu, ctxt->exception.vector);
4873 }
4874
4875 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4876 {
4877 memset(&ctxt->opcode_len, 0,
4878 (void *)&ctxt->_regs - (void *)&ctxt->opcode_len);
4879
4880 ctxt->fetch.start = 0;
4881 ctxt->fetch.end = 0;
4882 ctxt->io_read.pos = 0;
4883 ctxt->io_read.end = 0;
4884 ctxt->mem_read.pos = 0;
4885 ctxt->mem_read.end = 0;
4886 }
4887
4888 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4889 {
4890 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4891 int cs_db, cs_l;
4892
4893 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4894
4895 ctxt->eflags = kvm_get_rflags(vcpu);
4896 ctxt->eip = kvm_rip_read(vcpu);
4897 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4898 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4899 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
4900 cs_db ? X86EMUL_MODE_PROT32 :
4901 X86EMUL_MODE_PROT16;
4902 ctxt->guest_mode = is_guest_mode(vcpu);
4903
4904 init_decode_cache(ctxt);
4905 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4906 }
4907
4908 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4909 {
4910 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4911 int ret;
4912
4913 init_emulate_ctxt(vcpu);
4914
4915 ctxt->op_bytes = 2;
4916 ctxt->ad_bytes = 2;
4917 ctxt->_eip = ctxt->eip + inc_eip;
4918 ret = emulate_int_real(ctxt, irq);
4919
4920 if (ret != X86EMUL_CONTINUE)
4921 return EMULATE_FAIL;
4922
4923 ctxt->eip = ctxt->_eip;
4924 kvm_rip_write(vcpu, ctxt->eip);
4925 kvm_set_rflags(vcpu, ctxt->eflags);
4926
4927 if (irq == NMI_VECTOR)
4928 vcpu->arch.nmi_pending = 0;
4929 else
4930 vcpu->arch.interrupt.pending = false;
4931
4932 return EMULATE_DONE;
4933 }
4934 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4935
4936 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4937 {
4938 int r = EMULATE_DONE;
4939
4940 ++vcpu->stat.insn_emulation_fail;
4941 trace_kvm_emulate_insn_failed(vcpu);
4942 if (!is_guest_mode(vcpu)) {
4943 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4944 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4945 vcpu->run->internal.ndata = 0;
4946 r = EMULATE_FAIL;
4947 }
4948 kvm_queue_exception(vcpu, UD_VECTOR);
4949
4950 return r;
4951 }
4952
4953 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4954 bool write_fault_to_shadow_pgtable,
4955 int emulation_type)
4956 {
4957 gpa_t gpa = cr2;
4958 pfn_t pfn;
4959
4960 if (emulation_type & EMULTYPE_NO_REEXECUTE)
4961 return false;
4962
4963 if (!vcpu->arch.mmu.direct_map) {
4964 /*
4965 * Write permission should be allowed since only
4966 * write access need to be emulated.
4967 */
4968 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4969
4970 /*
4971 * If the mapping is invalid in guest, let cpu retry
4972 * it to generate fault.
4973 */
4974 if (gpa == UNMAPPED_GVA)
4975 return true;
4976 }
4977
4978 /*
4979 * Do not retry the unhandleable instruction if it faults on the
4980 * readonly host memory, otherwise it will goto a infinite loop:
4981 * retry instruction -> write #PF -> emulation fail -> retry
4982 * instruction -> ...
4983 */
4984 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4985
4986 /*
4987 * If the instruction failed on the error pfn, it can not be fixed,
4988 * report the error to userspace.
4989 */
4990 if (is_error_noslot_pfn(pfn))
4991 return false;
4992
4993 kvm_release_pfn_clean(pfn);
4994
4995 /* The instructions are well-emulated on direct mmu. */
4996 if (vcpu->arch.mmu.direct_map) {
4997 unsigned int indirect_shadow_pages;
4998
4999 spin_lock(&vcpu->kvm->mmu_lock);
5000 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5001 spin_unlock(&vcpu->kvm->mmu_lock);
5002
5003 if (indirect_shadow_pages)
5004 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5005
5006 return true;
5007 }
5008
5009 /*
5010 * if emulation was due to access to shadowed page table
5011 * and it failed try to unshadow page and re-enter the
5012 * guest to let CPU execute the instruction.
5013 */
5014 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5015
5016 /*
5017 * If the access faults on its page table, it can not
5018 * be fixed by unprotecting shadow page and it should
5019 * be reported to userspace.
5020 */
5021 return !write_fault_to_shadow_pgtable;
5022 }
5023
5024 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5025 unsigned long cr2, int emulation_type)
5026 {
5027 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5028 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5029
5030 last_retry_eip = vcpu->arch.last_retry_eip;
5031 last_retry_addr = vcpu->arch.last_retry_addr;
5032
5033 /*
5034 * If the emulation is caused by #PF and it is non-page_table
5035 * writing instruction, it means the VM-EXIT is caused by shadow
5036 * page protected, we can zap the shadow page and retry this
5037 * instruction directly.
5038 *
5039 * Note: if the guest uses a non-page-table modifying instruction
5040 * on the PDE that points to the instruction, then we will unmap
5041 * the instruction and go to an infinite loop. So, we cache the
5042 * last retried eip and the last fault address, if we meet the eip
5043 * and the address again, we can break out of the potential infinite
5044 * loop.
5045 */
5046 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5047
5048 if (!(emulation_type & EMULTYPE_RETRY))
5049 return false;
5050
5051 if (x86_page_table_writing_insn(ctxt))
5052 return false;
5053
5054 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5055 return false;
5056
5057 vcpu->arch.last_retry_eip = ctxt->eip;
5058 vcpu->arch.last_retry_addr = cr2;
5059
5060 if (!vcpu->arch.mmu.direct_map)
5061 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5062
5063 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5064
5065 return true;
5066 }
5067
5068 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5069 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5070
5071 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5072 unsigned long *db)
5073 {
5074 u32 dr6 = 0;
5075 int i;
5076 u32 enable, rwlen;
5077
5078 enable = dr7;
5079 rwlen = dr7 >> 16;
5080 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5081 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5082 dr6 |= (1 << i);
5083 return dr6;
5084 }
5085
5086 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
5087 {
5088 struct kvm_run *kvm_run = vcpu->run;
5089
5090 /*
5091 * Use the "raw" value to see if TF was passed to the processor.
5092 * Note that the new value of the flags has not been saved yet.
5093 *
5094 * This is correct even for TF set by the guest, because "the
5095 * processor will not generate this exception after the instruction
5096 * that sets the TF flag".
5097 */
5098 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5099
5100 if (unlikely(rflags & X86_EFLAGS_TF)) {
5101 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5102 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
5103 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5104 kvm_run->debug.arch.exception = DB_VECTOR;
5105 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5106 *r = EMULATE_USER_EXIT;
5107 } else {
5108 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5109 /*
5110 * "Certain debug exceptions may clear bit 0-3. The
5111 * remaining contents of the DR6 register are never
5112 * cleared by the processor".
5113 */
5114 vcpu->arch.dr6 &= ~15;
5115 vcpu->arch.dr6 |= DR6_BS;
5116 kvm_queue_exception(vcpu, DB_VECTOR);
5117 }
5118 }
5119 }
5120
5121 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5122 {
5123 struct kvm_run *kvm_run = vcpu->run;
5124 unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5125 u32 dr6 = 0;
5126
5127 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5128 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5129 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5130 vcpu->arch.guest_debug_dr7,
5131 vcpu->arch.eff_db);
5132
5133 if (dr6 != 0) {
5134 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5135 kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5136 get_segment_base(vcpu, VCPU_SREG_CS);
5137
5138 kvm_run->debug.arch.exception = DB_VECTOR;
5139 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5140 *r = EMULATE_USER_EXIT;
5141 return true;
5142 }
5143 }
5144
5145 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
5146 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5147 vcpu->arch.dr7,
5148 vcpu->arch.db);
5149
5150 if (dr6 != 0) {
5151 vcpu->arch.dr6 &= ~15;
5152 vcpu->arch.dr6 |= dr6;
5153 kvm_queue_exception(vcpu, DB_VECTOR);
5154 *r = EMULATE_DONE;
5155 return true;
5156 }
5157 }
5158
5159 return false;
5160 }
5161
5162 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5163 unsigned long cr2,
5164 int emulation_type,
5165 void *insn,
5166 int insn_len)
5167 {
5168 int r;
5169 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5170 bool writeback = true;
5171 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5172
5173 /*
5174 * Clear write_fault_to_shadow_pgtable here to ensure it is
5175 * never reused.
5176 */
5177 vcpu->arch.write_fault_to_shadow_pgtable = false;
5178 kvm_clear_exception_queue(vcpu);
5179
5180 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5181 init_emulate_ctxt(vcpu);
5182
5183 /*
5184 * We will reenter on the same instruction since
5185 * we do not set complete_userspace_io. This does not
5186 * handle watchpoints yet, those would be handled in
5187 * the emulate_ops.
5188 */
5189 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5190 return r;
5191
5192 ctxt->interruptibility = 0;
5193 ctxt->have_exception = false;
5194 ctxt->perm_ok = false;
5195
5196 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5197
5198 r = x86_decode_insn(ctxt, insn, insn_len);
5199
5200 trace_kvm_emulate_insn_start(vcpu);
5201 ++vcpu->stat.insn_emulation;
5202 if (r != EMULATION_OK) {
5203 if (emulation_type & EMULTYPE_TRAP_UD)
5204 return EMULATE_FAIL;
5205 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5206 emulation_type))
5207 return EMULATE_DONE;
5208 if (emulation_type & EMULTYPE_SKIP)
5209 return EMULATE_FAIL;
5210 return handle_emulation_failure(vcpu);
5211 }
5212 }
5213
5214 if (emulation_type & EMULTYPE_SKIP) {
5215 kvm_rip_write(vcpu, ctxt->_eip);
5216 return EMULATE_DONE;
5217 }
5218
5219 if (retry_instruction(ctxt, cr2, emulation_type))
5220 return EMULATE_DONE;
5221
5222 /* this is needed for vmware backdoor interface to work since it
5223 changes registers values during IO operation */
5224 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5225 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5226 emulator_invalidate_register_cache(ctxt);
5227 }
5228
5229 restart:
5230 r = x86_emulate_insn(ctxt);
5231
5232 if (r == EMULATION_INTERCEPTED)
5233 return EMULATE_DONE;
5234
5235 if (r == EMULATION_FAILED) {
5236 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5237 emulation_type))
5238 return EMULATE_DONE;
5239
5240 return handle_emulation_failure(vcpu);
5241 }
5242
5243 if (ctxt->have_exception) {
5244 inject_emulated_exception(vcpu);
5245 r = EMULATE_DONE;
5246 } else if (vcpu->arch.pio.count) {
5247 if (!vcpu->arch.pio.in) {
5248 /* FIXME: return into emulator if single-stepping. */
5249 vcpu->arch.pio.count = 0;
5250 } else {
5251 writeback = false;
5252 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5253 }
5254 r = EMULATE_USER_EXIT;
5255 } else if (vcpu->mmio_needed) {
5256 if (!vcpu->mmio_is_write)
5257 writeback = false;
5258 r = EMULATE_USER_EXIT;
5259 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5260 } else if (r == EMULATION_RESTART)
5261 goto restart;
5262 else
5263 r = EMULATE_DONE;
5264
5265 if (writeback) {
5266 toggle_interruptibility(vcpu, ctxt->interruptibility);
5267 kvm_make_request(KVM_REQ_EVENT, vcpu);
5268 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5269 kvm_rip_write(vcpu, ctxt->eip);
5270 if (r == EMULATE_DONE)
5271 kvm_vcpu_check_singlestep(vcpu, &r);
5272 kvm_set_rflags(vcpu, ctxt->eflags);
5273 } else
5274 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5275
5276 return r;
5277 }
5278 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5279
5280 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5281 {
5282 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5283 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5284 size, port, &val, 1);
5285 /* do not return to emulator after return from userspace */
5286 vcpu->arch.pio.count = 0;
5287 return ret;
5288 }
5289 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5290
5291 static void tsc_bad(void *info)
5292 {
5293 __this_cpu_write(cpu_tsc_khz, 0);
5294 }
5295
5296 static void tsc_khz_changed(void *data)
5297 {
5298 struct cpufreq_freqs *freq = data;
5299 unsigned long khz = 0;
5300
5301 if (data)
5302 khz = freq->new;
5303 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5304 khz = cpufreq_quick_get(raw_smp_processor_id());
5305 if (!khz)
5306 khz = tsc_khz;
5307 __this_cpu_write(cpu_tsc_khz, khz);
5308 }
5309
5310 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5311 void *data)
5312 {
5313 struct cpufreq_freqs *freq = data;
5314 struct kvm *kvm;
5315 struct kvm_vcpu *vcpu;
5316 int i, send_ipi = 0;
5317
5318 /*
5319 * We allow guests to temporarily run on slowing clocks,
5320 * provided we notify them after, or to run on accelerating
5321 * clocks, provided we notify them before. Thus time never
5322 * goes backwards.
5323 *
5324 * However, we have a problem. We can't atomically update
5325 * the frequency of a given CPU from this function; it is
5326 * merely a notifier, which can be called from any CPU.
5327 * Changing the TSC frequency at arbitrary points in time
5328 * requires a recomputation of local variables related to
5329 * the TSC for each VCPU. We must flag these local variables
5330 * to be updated and be sure the update takes place with the
5331 * new frequency before any guests proceed.
5332 *
5333 * Unfortunately, the combination of hotplug CPU and frequency
5334 * change creates an intractable locking scenario; the order
5335 * of when these callouts happen is undefined with respect to
5336 * CPU hotplug, and they can race with each other. As such,
5337 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5338 * undefined; you can actually have a CPU frequency change take
5339 * place in between the computation of X and the setting of the
5340 * variable. To protect against this problem, all updates of
5341 * the per_cpu tsc_khz variable are done in an interrupt
5342 * protected IPI, and all callers wishing to update the value
5343 * must wait for a synchronous IPI to complete (which is trivial
5344 * if the caller is on the CPU already). This establishes the
5345 * necessary total order on variable updates.
5346 *
5347 * Note that because a guest time update may take place
5348 * anytime after the setting of the VCPU's request bit, the
5349 * correct TSC value must be set before the request. However,
5350 * to ensure the update actually makes it to any guest which
5351 * starts running in hardware virtualization between the set
5352 * and the acquisition of the spinlock, we must also ping the
5353 * CPU after setting the request bit.
5354 *
5355 */
5356
5357 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5358 return 0;
5359 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5360 return 0;
5361
5362 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5363
5364 spin_lock(&kvm_lock);
5365 list_for_each_entry(kvm, &vm_list, vm_list) {
5366 kvm_for_each_vcpu(i, vcpu, kvm) {
5367 if (vcpu->cpu != freq->cpu)
5368 continue;
5369 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5370 if (vcpu->cpu != smp_processor_id())
5371 send_ipi = 1;
5372 }
5373 }
5374 spin_unlock(&kvm_lock);
5375
5376 if (freq->old < freq->new && send_ipi) {
5377 /*
5378 * We upscale the frequency. Must make the guest
5379 * doesn't see old kvmclock values while running with
5380 * the new frequency, otherwise we risk the guest sees
5381 * time go backwards.
5382 *
5383 * In case we update the frequency for another cpu
5384 * (which might be in guest context) send an interrupt
5385 * to kick the cpu out of guest context. Next time
5386 * guest context is entered kvmclock will be updated,
5387 * so the guest will not see stale values.
5388 */
5389 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5390 }
5391 return 0;
5392 }
5393
5394 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5395 .notifier_call = kvmclock_cpufreq_notifier
5396 };
5397
5398 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5399 unsigned long action, void *hcpu)
5400 {
5401 unsigned int cpu = (unsigned long)hcpu;
5402
5403 switch (action) {
5404 case CPU_ONLINE:
5405 case CPU_DOWN_FAILED:
5406 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5407 break;
5408 case CPU_DOWN_PREPARE:
5409 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5410 break;
5411 }
5412 return NOTIFY_OK;
5413 }
5414
5415 static struct notifier_block kvmclock_cpu_notifier_block = {
5416 .notifier_call = kvmclock_cpu_notifier,
5417 .priority = -INT_MAX
5418 };
5419
5420 static void kvm_timer_init(void)
5421 {
5422 int cpu;
5423
5424 max_tsc_khz = tsc_khz;
5425
5426 cpu_notifier_register_begin();
5427 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5428 #ifdef CONFIG_CPU_FREQ
5429 struct cpufreq_policy policy;
5430 memset(&policy, 0, sizeof(policy));
5431 cpu = get_cpu();
5432 cpufreq_get_policy(&policy, cpu);
5433 if (policy.cpuinfo.max_freq)
5434 max_tsc_khz = policy.cpuinfo.max_freq;
5435 put_cpu();
5436 #endif
5437 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5438 CPUFREQ_TRANSITION_NOTIFIER);
5439 }
5440 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5441 for_each_online_cpu(cpu)
5442 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5443
5444 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5445 cpu_notifier_register_done();
5446
5447 }
5448
5449 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5450
5451 int kvm_is_in_guest(void)
5452 {
5453 return __this_cpu_read(current_vcpu) != NULL;
5454 }
5455
5456 static int kvm_is_user_mode(void)
5457 {
5458 int user_mode = 3;
5459
5460 if (__this_cpu_read(current_vcpu))
5461 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5462
5463 return user_mode != 0;
5464 }
5465
5466 static unsigned long kvm_get_guest_ip(void)
5467 {
5468 unsigned long ip = 0;
5469
5470 if (__this_cpu_read(current_vcpu))
5471 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5472
5473 return ip;
5474 }
5475
5476 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5477 .is_in_guest = kvm_is_in_guest,
5478 .is_user_mode = kvm_is_user_mode,
5479 .get_guest_ip = kvm_get_guest_ip,
5480 };
5481
5482 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5483 {
5484 __this_cpu_write(current_vcpu, vcpu);
5485 }
5486 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5487
5488 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5489 {
5490 __this_cpu_write(current_vcpu, NULL);
5491 }
5492 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5493
5494 static void kvm_set_mmio_spte_mask(void)
5495 {
5496 u64 mask;
5497 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5498
5499 /*
5500 * Set the reserved bits and the present bit of an paging-structure
5501 * entry to generate page fault with PFER.RSV = 1.
5502 */
5503 /* Mask the reserved physical address bits. */
5504 mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5505
5506 /* Bit 62 is always reserved for 32bit host. */
5507 mask |= 0x3ull << 62;
5508
5509 /* Set the present bit. */
5510 mask |= 1ull;
5511
5512 #ifdef CONFIG_X86_64
5513 /*
5514 * If reserved bit is not supported, clear the present bit to disable
5515 * mmio page fault.
5516 */
5517 if (maxphyaddr == 52)
5518 mask &= ~1ull;
5519 #endif
5520
5521 kvm_mmu_set_mmio_spte_mask(mask);
5522 }
5523
5524 #ifdef CONFIG_X86_64
5525 static void pvclock_gtod_update_fn(struct work_struct *work)
5526 {
5527 struct kvm *kvm;
5528
5529 struct kvm_vcpu *vcpu;
5530 int i;
5531
5532 spin_lock(&kvm_lock);
5533 list_for_each_entry(kvm, &vm_list, vm_list)
5534 kvm_for_each_vcpu(i, vcpu, kvm)
5535 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5536 atomic_set(&kvm_guest_has_master_clock, 0);
5537 spin_unlock(&kvm_lock);
5538 }
5539
5540 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5541
5542 /*
5543 * Notification about pvclock gtod data update.
5544 */
5545 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5546 void *priv)
5547 {
5548 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5549 struct timekeeper *tk = priv;
5550
5551 update_pvclock_gtod(tk);
5552
5553 /* disable master clock if host does not trust, or does not
5554 * use, TSC clocksource
5555 */
5556 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5557 atomic_read(&kvm_guest_has_master_clock) != 0)
5558 queue_work(system_long_wq, &pvclock_gtod_work);
5559
5560 return 0;
5561 }
5562
5563 static struct notifier_block pvclock_gtod_notifier = {
5564 .notifier_call = pvclock_gtod_notify,
5565 };
5566 #endif
5567
5568 int kvm_arch_init(void *opaque)
5569 {
5570 int r;
5571 struct kvm_x86_ops *ops = opaque;
5572
5573 if (kvm_x86_ops) {
5574 printk(KERN_ERR "kvm: already loaded the other module\n");
5575 r = -EEXIST;
5576 goto out;
5577 }
5578
5579 if (!ops->cpu_has_kvm_support()) {
5580 printk(KERN_ERR "kvm: no hardware support\n");
5581 r = -EOPNOTSUPP;
5582 goto out;
5583 }
5584 if (ops->disabled_by_bios()) {
5585 printk(KERN_ERR "kvm: disabled by bios\n");
5586 r = -EOPNOTSUPP;
5587 goto out;
5588 }
5589
5590 r = -ENOMEM;
5591 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5592 if (!shared_msrs) {
5593 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5594 goto out;
5595 }
5596
5597 r = kvm_mmu_module_init();
5598 if (r)
5599 goto out_free_percpu;
5600
5601 kvm_set_mmio_spte_mask();
5602
5603 kvm_x86_ops = ops;
5604 kvm_init_msr_list();
5605
5606 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5607 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5608
5609 kvm_timer_init();
5610
5611 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5612
5613 if (cpu_has_xsave)
5614 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5615
5616 kvm_lapic_init();
5617 #ifdef CONFIG_X86_64
5618 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5619 #endif
5620
5621 return 0;
5622
5623 out_free_percpu:
5624 free_percpu(shared_msrs);
5625 out:
5626 return r;
5627 }
5628
5629 void kvm_arch_exit(void)
5630 {
5631 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5632
5633 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5634 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5635 CPUFREQ_TRANSITION_NOTIFIER);
5636 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5637 #ifdef CONFIG_X86_64
5638 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5639 #endif
5640 kvm_x86_ops = NULL;
5641 kvm_mmu_module_exit();
5642 free_percpu(shared_msrs);
5643 }
5644
5645 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5646 {
5647 ++vcpu->stat.halt_exits;
5648 if (irqchip_in_kernel(vcpu->kvm)) {
5649 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5650 return 1;
5651 } else {
5652 vcpu->run->exit_reason = KVM_EXIT_HLT;
5653 return 0;
5654 }
5655 }
5656 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5657
5658 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5659 {
5660 u64 param, ingpa, outgpa, ret;
5661 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5662 bool fast, longmode;
5663 int cs_db, cs_l;
5664
5665 /*
5666 * hypercall generates UD from non zero cpl and real mode
5667 * per HYPER-V spec
5668 */
5669 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5670 kvm_queue_exception(vcpu, UD_VECTOR);
5671 return 0;
5672 }
5673
5674 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5675 longmode = is_long_mode(vcpu) && cs_l == 1;
5676
5677 if (!longmode) {
5678 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5679 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5680 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5681 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5682 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5683 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5684 }
5685 #ifdef CONFIG_X86_64
5686 else {
5687 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5688 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5689 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5690 }
5691 #endif
5692
5693 code = param & 0xffff;
5694 fast = (param >> 16) & 0x1;
5695 rep_cnt = (param >> 32) & 0xfff;
5696 rep_idx = (param >> 48) & 0xfff;
5697
5698 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5699
5700 switch (code) {
5701 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5702 kvm_vcpu_on_spin(vcpu);
5703 break;
5704 default:
5705 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5706 break;
5707 }
5708
5709 ret = res | (((u64)rep_done & 0xfff) << 32);
5710 if (longmode) {
5711 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5712 } else {
5713 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5714 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5715 }
5716
5717 return 1;
5718 }
5719
5720 /*
5721 * kvm_pv_kick_cpu_op: Kick a vcpu.
5722 *
5723 * @apicid - apicid of vcpu to be kicked.
5724 */
5725 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5726 {
5727 struct kvm_lapic_irq lapic_irq;
5728
5729 lapic_irq.shorthand = 0;
5730 lapic_irq.dest_mode = 0;
5731 lapic_irq.dest_id = apicid;
5732
5733 lapic_irq.delivery_mode = APIC_DM_REMRD;
5734 kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5735 }
5736
5737 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5738 {
5739 unsigned long nr, a0, a1, a2, a3, ret;
5740 int r = 1;
5741
5742 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5743 return kvm_hv_hypercall(vcpu);
5744
5745 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5746 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5747 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5748 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5749 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5750
5751 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5752
5753 if (!is_long_mode(vcpu)) {
5754 nr &= 0xFFFFFFFF;
5755 a0 &= 0xFFFFFFFF;
5756 a1 &= 0xFFFFFFFF;
5757 a2 &= 0xFFFFFFFF;
5758 a3 &= 0xFFFFFFFF;
5759 }
5760
5761 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5762 ret = -KVM_EPERM;
5763 goto out;
5764 }
5765
5766 switch (nr) {
5767 case KVM_HC_VAPIC_POLL_IRQ:
5768 ret = 0;
5769 break;
5770 case KVM_HC_KICK_CPU:
5771 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5772 ret = 0;
5773 break;
5774 default:
5775 ret = -KVM_ENOSYS;
5776 break;
5777 }
5778 out:
5779 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5780 ++vcpu->stat.hypercalls;
5781 return r;
5782 }
5783 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5784
5785 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5786 {
5787 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5788 char instruction[3];
5789 unsigned long rip = kvm_rip_read(vcpu);
5790
5791 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5792
5793 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5794 }
5795
5796 /*
5797 * Check if userspace requested an interrupt window, and that the
5798 * interrupt window is open.
5799 *
5800 * No need to exit to userspace if we already have an interrupt queued.
5801 */
5802 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5803 {
5804 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5805 vcpu->run->request_interrupt_window &&
5806 kvm_arch_interrupt_allowed(vcpu));
5807 }
5808
5809 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5810 {
5811 struct kvm_run *kvm_run = vcpu->run;
5812
5813 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5814 kvm_run->cr8 = kvm_get_cr8(vcpu);
5815 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5816 if (irqchip_in_kernel(vcpu->kvm))
5817 kvm_run->ready_for_interrupt_injection = 1;
5818 else
5819 kvm_run->ready_for_interrupt_injection =
5820 kvm_arch_interrupt_allowed(vcpu) &&
5821 !kvm_cpu_has_interrupt(vcpu) &&
5822 !kvm_event_needs_reinjection(vcpu);
5823 }
5824
5825 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5826 {
5827 int max_irr, tpr;
5828
5829 if (!kvm_x86_ops->update_cr8_intercept)
5830 return;
5831
5832 if (!vcpu->arch.apic)
5833 return;
5834
5835 if (!vcpu->arch.apic->vapic_addr)
5836 max_irr = kvm_lapic_find_highest_irr(vcpu);
5837 else
5838 max_irr = -1;
5839
5840 if (max_irr != -1)
5841 max_irr >>= 4;
5842
5843 tpr = kvm_lapic_get_cr8(vcpu);
5844
5845 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5846 }
5847
5848 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5849 {
5850 int r;
5851
5852 /* try to reinject previous events if any */
5853 if (vcpu->arch.exception.pending) {
5854 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5855 vcpu->arch.exception.has_error_code,
5856 vcpu->arch.exception.error_code);
5857 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5858 vcpu->arch.exception.has_error_code,
5859 vcpu->arch.exception.error_code,
5860 vcpu->arch.exception.reinject);
5861 return 0;
5862 }
5863
5864 if (vcpu->arch.nmi_injected) {
5865 kvm_x86_ops->set_nmi(vcpu);
5866 return 0;
5867 }
5868
5869 if (vcpu->arch.interrupt.pending) {
5870 kvm_x86_ops->set_irq(vcpu);
5871 return 0;
5872 }
5873
5874 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5875 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5876 if (r != 0)
5877 return r;
5878 }
5879
5880 /* try to inject new event if pending */
5881 if (vcpu->arch.nmi_pending) {
5882 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5883 --vcpu->arch.nmi_pending;
5884 vcpu->arch.nmi_injected = true;
5885 kvm_x86_ops->set_nmi(vcpu);
5886 }
5887 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5888 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5889 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5890 false);
5891 kvm_x86_ops->set_irq(vcpu);
5892 }
5893 }
5894 return 0;
5895 }
5896
5897 static void process_nmi(struct kvm_vcpu *vcpu)
5898 {
5899 unsigned limit = 2;
5900
5901 /*
5902 * x86 is limited to one NMI running, and one NMI pending after it.
5903 * If an NMI is already in progress, limit further NMIs to just one.
5904 * Otherwise, allow two (and we'll inject the first one immediately).
5905 */
5906 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5907 limit = 1;
5908
5909 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5910 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5911 kvm_make_request(KVM_REQ_EVENT, vcpu);
5912 }
5913
5914 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5915 {
5916 u64 eoi_exit_bitmap[4];
5917 u32 tmr[8];
5918
5919 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5920 return;
5921
5922 memset(eoi_exit_bitmap, 0, 32);
5923 memset(tmr, 0, 32);
5924
5925 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5926 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5927 kvm_apic_update_tmr(vcpu, tmr);
5928 }
5929
5930 /*
5931 * Returns 1 to let __vcpu_run() continue the guest execution loop without
5932 * exiting to the userspace. Otherwise, the value will be returned to the
5933 * userspace.
5934 */
5935 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5936 {
5937 int r;
5938 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5939 vcpu->run->request_interrupt_window;
5940 bool req_immediate_exit = false;
5941
5942 if (vcpu->requests) {
5943 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5944 kvm_mmu_unload(vcpu);
5945 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5946 __kvm_migrate_timers(vcpu);
5947 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5948 kvm_gen_update_masterclock(vcpu->kvm);
5949 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5950 kvm_gen_kvmclock_update(vcpu);
5951 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5952 r = kvm_guest_time_update(vcpu);
5953 if (unlikely(r))
5954 goto out;
5955 }
5956 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5957 kvm_mmu_sync_roots(vcpu);
5958 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5959 kvm_x86_ops->tlb_flush(vcpu);
5960 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5961 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5962 r = 0;
5963 goto out;
5964 }
5965 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5966 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5967 r = 0;
5968 goto out;
5969 }
5970 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5971 vcpu->fpu_active = 0;
5972 kvm_x86_ops->fpu_deactivate(vcpu);
5973 }
5974 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5975 /* Page is swapped out. Do synthetic halt */
5976 vcpu->arch.apf.halted = true;
5977 r = 1;
5978 goto out;
5979 }
5980 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5981 record_steal_time(vcpu);
5982 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5983 process_nmi(vcpu);
5984 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5985 kvm_handle_pmu_event(vcpu);
5986 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5987 kvm_deliver_pmi(vcpu);
5988 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5989 vcpu_scan_ioapic(vcpu);
5990 }
5991
5992 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5993 kvm_apic_accept_events(vcpu);
5994 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5995 r = 1;
5996 goto out;
5997 }
5998
5999 if (inject_pending_event(vcpu, req_int_win) != 0)
6000 req_immediate_exit = true;
6001 /* enable NMI/IRQ window open exits if needed */
6002 else if (vcpu->arch.nmi_pending)
6003 kvm_x86_ops->enable_nmi_window(vcpu);
6004 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6005 kvm_x86_ops->enable_irq_window(vcpu);
6006
6007 if (kvm_lapic_enabled(vcpu)) {
6008 /*
6009 * Update architecture specific hints for APIC
6010 * virtual interrupt delivery.
6011 */
6012 if (kvm_x86_ops->hwapic_irr_update)
6013 kvm_x86_ops->hwapic_irr_update(vcpu,
6014 kvm_lapic_find_highest_irr(vcpu));
6015 update_cr8_intercept(vcpu);
6016 kvm_lapic_sync_to_vapic(vcpu);
6017 }
6018 }
6019
6020 r = kvm_mmu_reload(vcpu);
6021 if (unlikely(r)) {
6022 goto cancel_injection;
6023 }
6024
6025 preempt_disable();
6026
6027 kvm_x86_ops->prepare_guest_switch(vcpu);
6028 if (vcpu->fpu_active)
6029 kvm_load_guest_fpu(vcpu);
6030 kvm_load_guest_xcr0(vcpu);
6031
6032 vcpu->mode = IN_GUEST_MODE;
6033
6034 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6035
6036 /* We should set ->mode before check ->requests,
6037 * see the comment in make_all_cpus_request.
6038 */
6039 smp_mb__after_srcu_read_unlock();
6040
6041 local_irq_disable();
6042
6043 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6044 || need_resched() || signal_pending(current)) {
6045 vcpu->mode = OUTSIDE_GUEST_MODE;
6046 smp_wmb();
6047 local_irq_enable();
6048 preempt_enable();
6049 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6050 r = 1;
6051 goto cancel_injection;
6052 }
6053
6054 if (req_immediate_exit)
6055 smp_send_reschedule(vcpu->cpu);
6056
6057 kvm_guest_enter();
6058
6059 if (unlikely(vcpu->arch.switch_db_regs)) {
6060 set_debugreg(0, 7);
6061 set_debugreg(vcpu->arch.eff_db[0], 0);
6062 set_debugreg(vcpu->arch.eff_db[1], 1);
6063 set_debugreg(vcpu->arch.eff_db[2], 2);
6064 set_debugreg(vcpu->arch.eff_db[3], 3);
6065 set_debugreg(vcpu->arch.dr6, 6);
6066 }
6067
6068 trace_kvm_entry(vcpu->vcpu_id);
6069 kvm_x86_ops->run(vcpu);
6070
6071 /*
6072 * Do this here before restoring debug registers on the host. And
6073 * since we do this before handling the vmexit, a DR access vmexit
6074 * can (a) read the correct value of the debug registers, (b) set
6075 * KVM_DEBUGREG_WONT_EXIT again.
6076 */
6077 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6078 int i;
6079
6080 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6081 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6082 for (i = 0; i < KVM_NR_DB_REGS; i++)
6083 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6084 }
6085
6086 /*
6087 * If the guest has used debug registers, at least dr7
6088 * will be disabled while returning to the host.
6089 * If we don't have active breakpoints in the host, we don't
6090 * care about the messed up debug address registers. But if
6091 * we have some of them active, restore the old state.
6092 */
6093 if (hw_breakpoint_active())
6094 hw_breakpoint_restore();
6095
6096 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6097 native_read_tsc());
6098
6099 vcpu->mode = OUTSIDE_GUEST_MODE;
6100 smp_wmb();
6101
6102 /* Interrupt is enabled by handle_external_intr() */
6103 kvm_x86_ops->handle_external_intr(vcpu);
6104
6105 ++vcpu->stat.exits;
6106
6107 /*
6108 * We must have an instruction between local_irq_enable() and
6109 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6110 * the interrupt shadow. The stat.exits increment will do nicely.
6111 * But we need to prevent reordering, hence this barrier():
6112 */
6113 barrier();
6114
6115 kvm_guest_exit();
6116
6117 preempt_enable();
6118
6119 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6120
6121 /*
6122 * Profile KVM exit RIPs:
6123 */
6124 if (unlikely(prof_on == KVM_PROFILING)) {
6125 unsigned long rip = kvm_rip_read(vcpu);
6126 profile_hit(KVM_PROFILING, (void *)rip);
6127 }
6128
6129 if (unlikely(vcpu->arch.tsc_always_catchup))
6130 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6131
6132 if (vcpu->arch.apic_attention)
6133 kvm_lapic_sync_from_vapic(vcpu);
6134
6135 r = kvm_x86_ops->handle_exit(vcpu);
6136 return r;
6137
6138 cancel_injection:
6139 kvm_x86_ops->cancel_injection(vcpu);
6140 if (unlikely(vcpu->arch.apic_attention))
6141 kvm_lapic_sync_from_vapic(vcpu);
6142 out:
6143 return r;
6144 }
6145
6146
6147 static int __vcpu_run(struct kvm_vcpu *vcpu)
6148 {
6149 int r;
6150 struct kvm *kvm = vcpu->kvm;
6151
6152 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6153
6154 r = 1;
6155 while (r > 0) {
6156 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6157 !vcpu->arch.apf.halted)
6158 r = vcpu_enter_guest(vcpu);
6159 else {
6160 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6161 kvm_vcpu_block(vcpu);
6162 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6163 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6164 kvm_apic_accept_events(vcpu);
6165 switch(vcpu->arch.mp_state) {
6166 case KVM_MP_STATE_HALTED:
6167 vcpu->arch.pv.pv_unhalted = false;
6168 vcpu->arch.mp_state =
6169 KVM_MP_STATE_RUNNABLE;
6170 case KVM_MP_STATE_RUNNABLE:
6171 vcpu->arch.apf.halted = false;
6172 break;
6173 case KVM_MP_STATE_INIT_RECEIVED:
6174 break;
6175 default:
6176 r = -EINTR;
6177 break;
6178 }
6179 }
6180 }
6181
6182 if (r <= 0)
6183 break;
6184
6185 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6186 if (kvm_cpu_has_pending_timer(vcpu))
6187 kvm_inject_pending_timer_irqs(vcpu);
6188
6189 if (dm_request_for_irq_injection(vcpu)) {
6190 r = -EINTR;
6191 vcpu->run->exit_reason = KVM_EXIT_INTR;
6192 ++vcpu->stat.request_irq_exits;
6193 }
6194
6195 kvm_check_async_pf_completion(vcpu);
6196
6197 if (signal_pending(current)) {
6198 r = -EINTR;
6199 vcpu->run->exit_reason = KVM_EXIT_INTR;
6200 ++vcpu->stat.signal_exits;
6201 }
6202 if (need_resched()) {
6203 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6204 cond_resched();
6205 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6206 }
6207 }
6208
6209 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6210
6211 return r;
6212 }
6213
6214 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6215 {
6216 int r;
6217 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6218 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6219 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6220 if (r != EMULATE_DONE)
6221 return 0;
6222 return 1;
6223 }
6224
6225 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6226 {
6227 BUG_ON(!vcpu->arch.pio.count);
6228
6229 return complete_emulated_io(vcpu);
6230 }
6231
6232 /*
6233 * Implements the following, as a state machine:
6234 *
6235 * read:
6236 * for each fragment
6237 * for each mmio piece in the fragment
6238 * write gpa, len
6239 * exit
6240 * copy data
6241 * execute insn
6242 *
6243 * write:
6244 * for each fragment
6245 * for each mmio piece in the fragment
6246 * write gpa, len
6247 * copy data
6248 * exit
6249 */
6250 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6251 {
6252 struct kvm_run *run = vcpu->run;
6253 struct kvm_mmio_fragment *frag;
6254 unsigned len;
6255
6256 BUG_ON(!vcpu->mmio_needed);
6257
6258 /* Complete previous fragment */
6259 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6260 len = min(8u, frag->len);
6261 if (!vcpu->mmio_is_write)
6262 memcpy(frag->data, run->mmio.data, len);
6263
6264 if (frag->len <= 8) {
6265 /* Switch to the next fragment. */
6266 frag++;
6267 vcpu->mmio_cur_fragment++;
6268 } else {
6269 /* Go forward to the next mmio piece. */
6270 frag->data += len;
6271 frag->gpa += len;
6272 frag->len -= len;
6273 }
6274
6275 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6276 vcpu->mmio_needed = 0;
6277
6278 /* FIXME: return into emulator if single-stepping. */
6279 if (vcpu->mmio_is_write)
6280 return 1;
6281 vcpu->mmio_read_completed = 1;
6282 return complete_emulated_io(vcpu);
6283 }
6284
6285 run->exit_reason = KVM_EXIT_MMIO;
6286 run->mmio.phys_addr = frag->gpa;
6287 if (vcpu->mmio_is_write)
6288 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6289 run->mmio.len = min(8u, frag->len);
6290 run->mmio.is_write = vcpu->mmio_is_write;
6291 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6292 return 0;
6293 }
6294
6295
6296 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6297 {
6298 int r;
6299 sigset_t sigsaved;
6300
6301 if (!tsk_used_math(current) && init_fpu(current))
6302 return -ENOMEM;
6303
6304 if (vcpu->sigset_active)
6305 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6306
6307 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6308 kvm_vcpu_block(vcpu);
6309 kvm_apic_accept_events(vcpu);
6310 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6311 r = -EAGAIN;
6312 goto out;
6313 }
6314
6315 /* re-sync apic's tpr */
6316 if (!irqchip_in_kernel(vcpu->kvm)) {
6317 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6318 r = -EINVAL;
6319 goto out;
6320 }
6321 }
6322
6323 if (unlikely(vcpu->arch.complete_userspace_io)) {
6324 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6325 vcpu->arch.complete_userspace_io = NULL;
6326 r = cui(vcpu);
6327 if (r <= 0)
6328 goto out;
6329 } else
6330 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6331
6332 r = __vcpu_run(vcpu);
6333
6334 out:
6335 post_kvm_run_save(vcpu);
6336 if (vcpu->sigset_active)
6337 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6338
6339 return r;
6340 }
6341
6342 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6343 {
6344 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6345 /*
6346 * We are here if userspace calls get_regs() in the middle of
6347 * instruction emulation. Registers state needs to be copied
6348 * back from emulation context to vcpu. Userspace shouldn't do
6349 * that usually, but some bad designed PV devices (vmware
6350 * backdoor interface) need this to work
6351 */
6352 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6353 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6354 }
6355 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6356 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6357 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6358 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6359 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6360 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6361 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6362 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6363 #ifdef CONFIG_X86_64
6364 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6365 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6366 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6367 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6368 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6369 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6370 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6371 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6372 #endif
6373
6374 regs->rip = kvm_rip_read(vcpu);
6375 regs->rflags = kvm_get_rflags(vcpu);
6376
6377 return 0;
6378 }
6379
6380 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6381 {
6382 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6383 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6384
6385 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6386 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6387 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6388 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6389 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6390 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6391 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6392 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6393 #ifdef CONFIG_X86_64
6394 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6395 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6396 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6397 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6398 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6399 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6400 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6401 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6402 #endif
6403
6404 kvm_rip_write(vcpu, regs->rip);
6405 kvm_set_rflags(vcpu, regs->rflags);
6406
6407 vcpu->arch.exception.pending = false;
6408
6409 kvm_make_request(KVM_REQ_EVENT, vcpu);
6410
6411 return 0;
6412 }
6413
6414 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6415 {
6416 struct kvm_segment cs;
6417
6418 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6419 *db = cs.db;
6420 *l = cs.l;
6421 }
6422 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6423
6424 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6425 struct kvm_sregs *sregs)
6426 {
6427 struct desc_ptr dt;
6428
6429 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6430 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6431 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6432 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6433 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6434 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6435
6436 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6437 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6438
6439 kvm_x86_ops->get_idt(vcpu, &dt);
6440 sregs->idt.limit = dt.size;
6441 sregs->idt.base = dt.address;
6442 kvm_x86_ops->get_gdt(vcpu, &dt);
6443 sregs->gdt.limit = dt.size;
6444 sregs->gdt.base = dt.address;
6445
6446 sregs->cr0 = kvm_read_cr0(vcpu);
6447 sregs->cr2 = vcpu->arch.cr2;
6448 sregs->cr3 = kvm_read_cr3(vcpu);
6449 sregs->cr4 = kvm_read_cr4(vcpu);
6450 sregs->cr8 = kvm_get_cr8(vcpu);
6451 sregs->efer = vcpu->arch.efer;
6452 sregs->apic_base = kvm_get_apic_base(vcpu);
6453
6454 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6455
6456 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6457 set_bit(vcpu->arch.interrupt.nr,
6458 (unsigned long *)sregs->interrupt_bitmap);
6459
6460 return 0;
6461 }
6462
6463 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6464 struct kvm_mp_state *mp_state)
6465 {
6466 kvm_apic_accept_events(vcpu);
6467 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6468 vcpu->arch.pv.pv_unhalted)
6469 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6470 else
6471 mp_state->mp_state = vcpu->arch.mp_state;
6472
6473 return 0;
6474 }
6475
6476 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6477 struct kvm_mp_state *mp_state)
6478 {
6479 if (!kvm_vcpu_has_lapic(vcpu) &&
6480 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6481 return -EINVAL;
6482
6483 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6484 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6485 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6486 } else
6487 vcpu->arch.mp_state = mp_state->mp_state;
6488 kvm_make_request(KVM_REQ_EVENT, vcpu);
6489 return 0;
6490 }
6491
6492 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6493 int reason, bool has_error_code, u32 error_code)
6494 {
6495 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6496 int ret;
6497
6498 init_emulate_ctxt(vcpu);
6499
6500 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6501 has_error_code, error_code);
6502
6503 if (ret)
6504 return EMULATE_FAIL;
6505
6506 kvm_rip_write(vcpu, ctxt->eip);
6507 kvm_set_rflags(vcpu, ctxt->eflags);
6508 kvm_make_request(KVM_REQ_EVENT, vcpu);
6509 return EMULATE_DONE;
6510 }
6511 EXPORT_SYMBOL_GPL(kvm_task_switch);
6512
6513 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6514 struct kvm_sregs *sregs)
6515 {
6516 struct msr_data apic_base_msr;
6517 int mmu_reset_needed = 0;
6518 int pending_vec, max_bits, idx;
6519 struct desc_ptr dt;
6520
6521 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6522 return -EINVAL;
6523
6524 dt.size = sregs->idt.limit;
6525 dt.address = sregs->idt.base;
6526 kvm_x86_ops->set_idt(vcpu, &dt);
6527 dt.size = sregs->gdt.limit;
6528 dt.address = sregs->gdt.base;
6529 kvm_x86_ops->set_gdt(vcpu, &dt);
6530
6531 vcpu->arch.cr2 = sregs->cr2;
6532 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6533 vcpu->arch.cr3 = sregs->cr3;
6534 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6535
6536 kvm_set_cr8(vcpu, sregs->cr8);
6537
6538 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6539 kvm_x86_ops->set_efer(vcpu, sregs->efer);
6540 apic_base_msr.data = sregs->apic_base;
6541 apic_base_msr.host_initiated = true;
6542 kvm_set_apic_base(vcpu, &apic_base_msr);
6543
6544 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6545 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6546 vcpu->arch.cr0 = sregs->cr0;
6547
6548 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6549 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6550 if (sregs->cr4 & X86_CR4_OSXSAVE)
6551 kvm_update_cpuid(vcpu);
6552
6553 idx = srcu_read_lock(&vcpu->kvm->srcu);
6554 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6555 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6556 mmu_reset_needed = 1;
6557 }
6558 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6559
6560 if (mmu_reset_needed)
6561 kvm_mmu_reset_context(vcpu);
6562
6563 max_bits = KVM_NR_INTERRUPTS;
6564 pending_vec = find_first_bit(
6565 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6566 if (pending_vec < max_bits) {
6567 kvm_queue_interrupt(vcpu, pending_vec, false);
6568 pr_debug("Set back pending irq %d\n", pending_vec);
6569 }
6570
6571 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6572 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6573 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6574 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6575 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6576 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6577
6578 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6579 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6580
6581 update_cr8_intercept(vcpu);
6582
6583 /* Older userspace won't unhalt the vcpu on reset. */
6584 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6585 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6586 !is_protmode(vcpu))
6587 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6588
6589 kvm_make_request(KVM_REQ_EVENT, vcpu);
6590
6591 return 0;
6592 }
6593
6594 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6595 struct kvm_guest_debug *dbg)
6596 {
6597 unsigned long rflags;
6598 int i, r;
6599
6600 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6601 r = -EBUSY;
6602 if (vcpu->arch.exception.pending)
6603 goto out;
6604 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6605 kvm_queue_exception(vcpu, DB_VECTOR);
6606 else
6607 kvm_queue_exception(vcpu, BP_VECTOR);
6608 }
6609
6610 /*
6611 * Read rflags as long as potentially injected trace flags are still
6612 * filtered out.
6613 */
6614 rflags = kvm_get_rflags(vcpu);
6615
6616 vcpu->guest_debug = dbg->control;
6617 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6618 vcpu->guest_debug = 0;
6619
6620 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6621 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6622 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6623 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6624 } else {
6625 for (i = 0; i < KVM_NR_DB_REGS; i++)
6626 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6627 }
6628 kvm_update_dr7(vcpu);
6629
6630 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6631 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6632 get_segment_base(vcpu, VCPU_SREG_CS);
6633
6634 /*
6635 * Trigger an rflags update that will inject or remove the trace
6636 * flags.
6637 */
6638 kvm_set_rflags(vcpu, rflags);
6639
6640 kvm_x86_ops->update_db_bp_intercept(vcpu);
6641
6642 r = 0;
6643
6644 out:
6645
6646 return r;
6647 }
6648
6649 /*
6650 * Translate a guest virtual address to a guest physical address.
6651 */
6652 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6653 struct kvm_translation *tr)
6654 {
6655 unsigned long vaddr = tr->linear_address;
6656 gpa_t gpa;
6657 int idx;
6658
6659 idx = srcu_read_lock(&vcpu->kvm->srcu);
6660 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6661 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6662 tr->physical_address = gpa;
6663 tr->valid = gpa != UNMAPPED_GVA;
6664 tr->writeable = 1;
6665 tr->usermode = 0;
6666
6667 return 0;
6668 }
6669
6670 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6671 {
6672 struct i387_fxsave_struct *fxsave =
6673 &vcpu->arch.guest_fpu.state->fxsave;
6674
6675 memcpy(fpu->fpr, fxsave->st_space, 128);
6676 fpu->fcw = fxsave->cwd;
6677 fpu->fsw = fxsave->swd;
6678 fpu->ftwx = fxsave->twd;
6679 fpu->last_opcode = fxsave->fop;
6680 fpu->last_ip = fxsave->rip;
6681 fpu->last_dp = fxsave->rdp;
6682 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6683
6684 return 0;
6685 }
6686
6687 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6688 {
6689 struct i387_fxsave_struct *fxsave =
6690 &vcpu->arch.guest_fpu.state->fxsave;
6691
6692 memcpy(fxsave->st_space, fpu->fpr, 128);
6693 fxsave->cwd = fpu->fcw;
6694 fxsave->swd = fpu->fsw;
6695 fxsave->twd = fpu->ftwx;
6696 fxsave->fop = fpu->last_opcode;
6697 fxsave->rip = fpu->last_ip;
6698 fxsave->rdp = fpu->last_dp;
6699 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6700
6701 return 0;
6702 }
6703
6704 int fx_init(struct kvm_vcpu *vcpu)
6705 {
6706 int err;
6707
6708 err = fpu_alloc(&vcpu->arch.guest_fpu);
6709 if (err)
6710 return err;
6711
6712 fpu_finit(&vcpu->arch.guest_fpu);
6713
6714 /*
6715 * Ensure guest xcr0 is valid for loading
6716 */
6717 vcpu->arch.xcr0 = XSTATE_FP;
6718
6719 vcpu->arch.cr0 |= X86_CR0_ET;
6720
6721 return 0;
6722 }
6723 EXPORT_SYMBOL_GPL(fx_init);
6724
6725 static void fx_free(struct kvm_vcpu *vcpu)
6726 {
6727 fpu_free(&vcpu->arch.guest_fpu);
6728 }
6729
6730 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6731 {
6732 if (vcpu->guest_fpu_loaded)
6733 return;
6734
6735 /*
6736 * Restore all possible states in the guest,
6737 * and assume host would use all available bits.
6738 * Guest xcr0 would be loaded later.
6739 */
6740 kvm_put_guest_xcr0(vcpu);
6741 vcpu->guest_fpu_loaded = 1;
6742 __kernel_fpu_begin();
6743 fpu_restore_checking(&vcpu->arch.guest_fpu);
6744 trace_kvm_fpu(1);
6745 }
6746
6747 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6748 {
6749 kvm_put_guest_xcr0(vcpu);
6750
6751 if (!vcpu->guest_fpu_loaded)
6752 return;
6753
6754 vcpu->guest_fpu_loaded = 0;
6755 fpu_save_init(&vcpu->arch.guest_fpu);
6756 __kernel_fpu_end();
6757 ++vcpu->stat.fpu_reload;
6758 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6759 trace_kvm_fpu(0);
6760 }
6761
6762 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6763 {
6764 kvmclock_reset(vcpu);
6765
6766 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6767 fx_free(vcpu);
6768 kvm_x86_ops->vcpu_free(vcpu);
6769 }
6770
6771 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6772 unsigned int id)
6773 {
6774 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6775 printk_once(KERN_WARNING
6776 "kvm: SMP vm created on host with unstable TSC; "
6777 "guest TSC will not be reliable\n");
6778 return kvm_x86_ops->vcpu_create(kvm, id);
6779 }
6780
6781 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6782 {
6783 int r;
6784
6785 vcpu->arch.mtrr_state.have_fixed = 1;
6786 r = vcpu_load(vcpu);
6787 if (r)
6788 return r;
6789 kvm_vcpu_reset(vcpu);
6790 kvm_mmu_setup(vcpu);
6791 vcpu_put(vcpu);
6792
6793 return r;
6794 }
6795
6796 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6797 {
6798 int r;
6799 struct msr_data msr;
6800 struct kvm *kvm = vcpu->kvm;
6801
6802 r = vcpu_load(vcpu);
6803 if (r)
6804 return r;
6805 msr.data = 0x0;
6806 msr.index = MSR_IA32_TSC;
6807 msr.host_initiated = true;
6808 kvm_write_tsc(vcpu, &msr);
6809 vcpu_put(vcpu);
6810
6811 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
6812 KVMCLOCK_SYNC_PERIOD);
6813
6814 return r;
6815 }
6816
6817 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6818 {
6819 int r;
6820 vcpu->arch.apf.msr_val = 0;
6821
6822 r = vcpu_load(vcpu);
6823 BUG_ON(r);
6824 kvm_mmu_unload(vcpu);
6825 vcpu_put(vcpu);
6826
6827 fx_free(vcpu);
6828 kvm_x86_ops->vcpu_free(vcpu);
6829 }
6830
6831 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6832 {
6833 atomic_set(&vcpu->arch.nmi_queued, 0);
6834 vcpu->arch.nmi_pending = 0;
6835 vcpu->arch.nmi_injected = false;
6836
6837 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6838 vcpu->arch.dr6 = DR6_FIXED_1;
6839 kvm_update_dr6(vcpu);
6840 vcpu->arch.dr7 = DR7_FIXED_1;
6841 kvm_update_dr7(vcpu);
6842
6843 kvm_make_request(KVM_REQ_EVENT, vcpu);
6844 vcpu->arch.apf.msr_val = 0;
6845 vcpu->arch.st.msr_val = 0;
6846
6847 kvmclock_reset(vcpu);
6848
6849 kvm_clear_async_pf_completion_queue(vcpu);
6850 kvm_async_pf_hash_reset(vcpu);
6851 vcpu->arch.apf.halted = false;
6852
6853 kvm_pmu_reset(vcpu);
6854
6855 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6856 vcpu->arch.regs_avail = ~0;
6857 vcpu->arch.regs_dirty = ~0;
6858
6859 kvm_x86_ops->vcpu_reset(vcpu);
6860 }
6861
6862 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6863 {
6864 struct kvm_segment cs;
6865
6866 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6867 cs.selector = vector << 8;
6868 cs.base = vector << 12;
6869 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6870 kvm_rip_write(vcpu, 0);
6871 }
6872
6873 int kvm_arch_hardware_enable(void *garbage)
6874 {
6875 struct kvm *kvm;
6876 struct kvm_vcpu *vcpu;
6877 int i;
6878 int ret;
6879 u64 local_tsc;
6880 u64 max_tsc = 0;
6881 bool stable, backwards_tsc = false;
6882
6883 kvm_shared_msr_cpu_online();
6884 ret = kvm_x86_ops->hardware_enable(garbage);
6885 if (ret != 0)
6886 return ret;
6887
6888 local_tsc = native_read_tsc();
6889 stable = !check_tsc_unstable();
6890 list_for_each_entry(kvm, &vm_list, vm_list) {
6891 kvm_for_each_vcpu(i, vcpu, kvm) {
6892 if (!stable && vcpu->cpu == smp_processor_id())
6893 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6894 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6895 backwards_tsc = true;
6896 if (vcpu->arch.last_host_tsc > max_tsc)
6897 max_tsc = vcpu->arch.last_host_tsc;
6898 }
6899 }
6900 }
6901
6902 /*
6903 * Sometimes, even reliable TSCs go backwards. This happens on
6904 * platforms that reset TSC during suspend or hibernate actions, but
6905 * maintain synchronization. We must compensate. Fortunately, we can
6906 * detect that condition here, which happens early in CPU bringup,
6907 * before any KVM threads can be running. Unfortunately, we can't
6908 * bring the TSCs fully up to date with real time, as we aren't yet far
6909 * enough into CPU bringup that we know how much real time has actually
6910 * elapsed; our helper function, get_kernel_ns() will be using boot
6911 * variables that haven't been updated yet.
6912 *
6913 * So we simply find the maximum observed TSC above, then record the
6914 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
6915 * the adjustment will be applied. Note that we accumulate
6916 * adjustments, in case multiple suspend cycles happen before some VCPU
6917 * gets a chance to run again. In the event that no KVM threads get a
6918 * chance to run, we will miss the entire elapsed period, as we'll have
6919 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6920 * loose cycle time. This isn't too big a deal, since the loss will be
6921 * uniform across all VCPUs (not to mention the scenario is extremely
6922 * unlikely). It is possible that a second hibernate recovery happens
6923 * much faster than a first, causing the observed TSC here to be
6924 * smaller; this would require additional padding adjustment, which is
6925 * why we set last_host_tsc to the local tsc observed here.
6926 *
6927 * N.B. - this code below runs only on platforms with reliable TSC,
6928 * as that is the only way backwards_tsc is set above. Also note
6929 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6930 * have the same delta_cyc adjustment applied if backwards_tsc
6931 * is detected. Note further, this adjustment is only done once,
6932 * as we reset last_host_tsc on all VCPUs to stop this from being
6933 * called multiple times (one for each physical CPU bringup).
6934 *
6935 * Platforms with unreliable TSCs don't have to deal with this, they
6936 * will be compensated by the logic in vcpu_load, which sets the TSC to
6937 * catchup mode. This will catchup all VCPUs to real time, but cannot
6938 * guarantee that they stay in perfect synchronization.
6939 */
6940 if (backwards_tsc) {
6941 u64 delta_cyc = max_tsc - local_tsc;
6942 list_for_each_entry(kvm, &vm_list, vm_list) {
6943 kvm_for_each_vcpu(i, vcpu, kvm) {
6944 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6945 vcpu->arch.last_host_tsc = local_tsc;
6946 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6947 &vcpu->requests);
6948 }
6949
6950 /*
6951 * We have to disable TSC offset matching.. if you were
6952 * booting a VM while issuing an S4 host suspend....
6953 * you may have some problem. Solving this issue is
6954 * left as an exercise to the reader.
6955 */
6956 kvm->arch.last_tsc_nsec = 0;
6957 kvm->arch.last_tsc_write = 0;
6958 }
6959
6960 }
6961 return 0;
6962 }
6963
6964 void kvm_arch_hardware_disable(void *garbage)
6965 {
6966 kvm_x86_ops->hardware_disable(garbage);
6967 drop_user_return_notifiers(garbage);
6968 }
6969
6970 int kvm_arch_hardware_setup(void)
6971 {
6972 return kvm_x86_ops->hardware_setup();
6973 }
6974
6975 void kvm_arch_hardware_unsetup(void)
6976 {
6977 kvm_x86_ops->hardware_unsetup();
6978 }
6979
6980 void kvm_arch_check_processor_compat(void *rtn)
6981 {
6982 kvm_x86_ops->check_processor_compatibility(rtn);
6983 }
6984
6985 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6986 {
6987 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6988 }
6989
6990 struct static_key kvm_no_apic_vcpu __read_mostly;
6991
6992 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6993 {
6994 struct page *page;
6995 struct kvm *kvm;
6996 int r;
6997
6998 BUG_ON(vcpu->kvm == NULL);
6999 kvm = vcpu->kvm;
7000
7001 vcpu->arch.pv.pv_unhalted = false;
7002 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7003 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
7004 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7005 else
7006 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7007
7008 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7009 if (!page) {
7010 r = -ENOMEM;
7011 goto fail;
7012 }
7013 vcpu->arch.pio_data = page_address(page);
7014
7015 kvm_set_tsc_khz(vcpu, max_tsc_khz);
7016
7017 r = kvm_mmu_create(vcpu);
7018 if (r < 0)
7019 goto fail_free_pio_data;
7020
7021 if (irqchip_in_kernel(kvm)) {
7022 r = kvm_create_lapic(vcpu);
7023 if (r < 0)
7024 goto fail_mmu_destroy;
7025 } else
7026 static_key_slow_inc(&kvm_no_apic_vcpu);
7027
7028 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7029 GFP_KERNEL);
7030 if (!vcpu->arch.mce_banks) {
7031 r = -ENOMEM;
7032 goto fail_free_lapic;
7033 }
7034 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7035
7036 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7037 r = -ENOMEM;
7038 goto fail_free_mce_banks;
7039 }
7040
7041 r = fx_init(vcpu);
7042 if (r)
7043 goto fail_free_wbinvd_dirty_mask;
7044
7045 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7046 vcpu->arch.pv_time_enabled = false;
7047
7048 vcpu->arch.guest_supported_xcr0 = 0;
7049 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7050
7051 kvm_async_pf_hash_reset(vcpu);
7052 kvm_pmu_init(vcpu);
7053
7054 return 0;
7055 fail_free_wbinvd_dirty_mask:
7056 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7057 fail_free_mce_banks:
7058 kfree(vcpu->arch.mce_banks);
7059 fail_free_lapic:
7060 kvm_free_lapic(vcpu);
7061 fail_mmu_destroy:
7062 kvm_mmu_destroy(vcpu);
7063 fail_free_pio_data:
7064 free_page((unsigned long)vcpu->arch.pio_data);
7065 fail:
7066 return r;
7067 }
7068
7069 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7070 {
7071 int idx;
7072
7073 kvm_pmu_destroy(vcpu);
7074 kfree(vcpu->arch.mce_banks);
7075 kvm_free_lapic(vcpu);
7076 idx = srcu_read_lock(&vcpu->kvm->srcu);
7077 kvm_mmu_destroy(vcpu);
7078 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7079 free_page((unsigned long)vcpu->arch.pio_data);
7080 if (!irqchip_in_kernel(vcpu->kvm))
7081 static_key_slow_dec(&kvm_no_apic_vcpu);
7082 }
7083
7084 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7085 {
7086 if (type)
7087 return -EINVAL;
7088
7089 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7090 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7091 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7092 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7093
7094 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7095 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7096 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7097 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7098 &kvm->arch.irq_sources_bitmap);
7099
7100 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7101 mutex_init(&kvm->arch.apic_map_lock);
7102 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7103
7104 pvclock_update_vm_gtod_copy(kvm);
7105
7106 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7107 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7108
7109 return 0;
7110 }
7111
7112 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7113 {
7114 int r;
7115 r = vcpu_load(vcpu);
7116 BUG_ON(r);
7117 kvm_mmu_unload(vcpu);
7118 vcpu_put(vcpu);
7119 }
7120
7121 static void kvm_free_vcpus(struct kvm *kvm)
7122 {
7123 unsigned int i;
7124 struct kvm_vcpu *vcpu;
7125
7126 /*
7127 * Unpin any mmu pages first.
7128 */
7129 kvm_for_each_vcpu(i, vcpu, kvm) {
7130 kvm_clear_async_pf_completion_queue(vcpu);
7131 kvm_unload_vcpu_mmu(vcpu);
7132 }
7133 kvm_for_each_vcpu(i, vcpu, kvm)
7134 kvm_arch_vcpu_free(vcpu);
7135
7136 mutex_lock(&kvm->lock);
7137 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7138 kvm->vcpus[i] = NULL;
7139
7140 atomic_set(&kvm->online_vcpus, 0);
7141 mutex_unlock(&kvm->lock);
7142 }
7143
7144 void kvm_arch_sync_events(struct kvm *kvm)
7145 {
7146 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7147 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7148 kvm_free_all_assigned_devices(kvm);
7149 kvm_free_pit(kvm);
7150 }
7151
7152 void kvm_arch_destroy_vm(struct kvm *kvm)
7153 {
7154 if (current->mm == kvm->mm) {
7155 /*
7156 * Free memory regions allocated on behalf of userspace,
7157 * unless the the memory map has changed due to process exit
7158 * or fd copying.
7159 */
7160 struct kvm_userspace_memory_region mem;
7161 memset(&mem, 0, sizeof(mem));
7162 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7163 kvm_set_memory_region(kvm, &mem);
7164
7165 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7166 kvm_set_memory_region(kvm, &mem);
7167
7168 mem.slot = TSS_PRIVATE_MEMSLOT;
7169 kvm_set_memory_region(kvm, &mem);
7170 }
7171 kvm_iommu_unmap_guest(kvm);
7172 kfree(kvm->arch.vpic);
7173 kfree(kvm->arch.vioapic);
7174 kvm_free_vcpus(kvm);
7175 if (kvm->arch.apic_access_page)
7176 put_page(kvm->arch.apic_access_page);
7177 if (kvm->arch.ept_identity_pagetable)
7178 put_page(kvm->arch.ept_identity_pagetable);
7179 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7180 }
7181
7182 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7183 struct kvm_memory_slot *dont)
7184 {
7185 int i;
7186
7187 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7188 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7189 kvm_kvfree(free->arch.rmap[i]);
7190 free->arch.rmap[i] = NULL;
7191 }
7192 if (i == 0)
7193 continue;
7194
7195 if (!dont || free->arch.lpage_info[i - 1] !=
7196 dont->arch.lpage_info[i - 1]) {
7197 kvm_kvfree(free->arch.lpage_info[i - 1]);
7198 free->arch.lpage_info[i - 1] = NULL;
7199 }
7200 }
7201 }
7202
7203 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7204 unsigned long npages)
7205 {
7206 int i;
7207
7208 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7209 unsigned long ugfn;
7210 int lpages;
7211 int level = i + 1;
7212
7213 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7214 slot->base_gfn, level) + 1;
7215
7216 slot->arch.rmap[i] =
7217 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7218 if (!slot->arch.rmap[i])
7219 goto out_free;
7220 if (i == 0)
7221 continue;
7222
7223 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7224 sizeof(*slot->arch.lpage_info[i - 1]));
7225 if (!slot->arch.lpage_info[i - 1])
7226 goto out_free;
7227
7228 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7229 slot->arch.lpage_info[i - 1][0].write_count = 1;
7230 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7231 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7232 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7233 /*
7234 * If the gfn and userspace address are not aligned wrt each
7235 * other, or if explicitly asked to, disable large page
7236 * support for this slot
7237 */
7238 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7239 !kvm_largepages_enabled()) {
7240 unsigned long j;
7241
7242 for (j = 0; j < lpages; ++j)
7243 slot->arch.lpage_info[i - 1][j].write_count = 1;
7244 }
7245 }
7246
7247 return 0;
7248
7249 out_free:
7250 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7251 kvm_kvfree(slot->arch.rmap[i]);
7252 slot->arch.rmap[i] = NULL;
7253 if (i == 0)
7254 continue;
7255
7256 kvm_kvfree(slot->arch.lpage_info[i - 1]);
7257 slot->arch.lpage_info[i - 1] = NULL;
7258 }
7259 return -ENOMEM;
7260 }
7261
7262 void kvm_arch_memslots_updated(struct kvm *kvm)
7263 {
7264 /*
7265 * memslots->generation has been incremented.
7266 * mmio generation may have reached its maximum value.
7267 */
7268 kvm_mmu_invalidate_mmio_sptes(kvm);
7269 }
7270
7271 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7272 struct kvm_memory_slot *memslot,
7273 struct kvm_userspace_memory_region *mem,
7274 enum kvm_mr_change change)
7275 {
7276 /*
7277 * Only private memory slots need to be mapped here since
7278 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7279 */
7280 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7281 unsigned long userspace_addr;
7282
7283 /*
7284 * MAP_SHARED to prevent internal slot pages from being moved
7285 * by fork()/COW.
7286 */
7287 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7288 PROT_READ | PROT_WRITE,
7289 MAP_SHARED | MAP_ANONYMOUS, 0);
7290
7291 if (IS_ERR((void *)userspace_addr))
7292 return PTR_ERR((void *)userspace_addr);
7293
7294 memslot->userspace_addr = userspace_addr;
7295 }
7296
7297 return 0;
7298 }
7299
7300 void kvm_arch_commit_memory_region(struct kvm *kvm,
7301 struct kvm_userspace_memory_region *mem,
7302 const struct kvm_memory_slot *old,
7303 enum kvm_mr_change change)
7304 {
7305
7306 int nr_mmu_pages = 0;
7307
7308 if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7309 int ret;
7310
7311 ret = vm_munmap(old->userspace_addr,
7312 old->npages * PAGE_SIZE);
7313 if (ret < 0)
7314 printk(KERN_WARNING
7315 "kvm_vm_ioctl_set_memory_region: "
7316 "failed to munmap memory\n");
7317 }
7318
7319 if (!kvm->arch.n_requested_mmu_pages)
7320 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7321
7322 if (nr_mmu_pages)
7323 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7324 /*
7325 * Write protect all pages for dirty logging.
7326 *
7327 * All the sptes including the large sptes which point to this
7328 * slot are set to readonly. We can not create any new large
7329 * spte on this slot until the end of the logging.
7330 *
7331 * See the comments in fast_page_fault().
7332 */
7333 if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7334 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7335 }
7336
7337 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7338 {
7339 kvm_mmu_invalidate_zap_all_pages(kvm);
7340 }
7341
7342 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7343 struct kvm_memory_slot *slot)
7344 {
7345 kvm_mmu_invalidate_zap_all_pages(kvm);
7346 }
7347
7348 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7349 {
7350 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7351 kvm_x86_ops->check_nested_events(vcpu, false);
7352
7353 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7354 !vcpu->arch.apf.halted)
7355 || !list_empty_careful(&vcpu->async_pf.done)
7356 || kvm_apic_has_events(vcpu)
7357 || vcpu->arch.pv.pv_unhalted
7358 || atomic_read(&vcpu->arch.nmi_queued) ||
7359 (kvm_arch_interrupt_allowed(vcpu) &&
7360 kvm_cpu_has_interrupt(vcpu));
7361 }
7362
7363 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7364 {
7365 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7366 }
7367
7368 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7369 {
7370 return kvm_x86_ops->interrupt_allowed(vcpu);
7371 }
7372
7373 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7374 {
7375 unsigned long current_rip = kvm_rip_read(vcpu) +
7376 get_segment_base(vcpu, VCPU_SREG_CS);
7377
7378 return current_rip == linear_rip;
7379 }
7380 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7381
7382 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7383 {
7384 unsigned long rflags;
7385
7386 rflags = kvm_x86_ops->get_rflags(vcpu);
7387 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7388 rflags &= ~X86_EFLAGS_TF;
7389 return rflags;
7390 }
7391 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7392
7393 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7394 {
7395 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7396 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7397 rflags |= X86_EFLAGS_TF;
7398 kvm_x86_ops->set_rflags(vcpu, rflags);
7399 kvm_make_request(KVM_REQ_EVENT, vcpu);
7400 }
7401 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7402
7403 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7404 {
7405 int r;
7406
7407 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7408 work->wakeup_all)
7409 return;
7410
7411 r = kvm_mmu_reload(vcpu);
7412 if (unlikely(r))
7413 return;
7414
7415 if (!vcpu->arch.mmu.direct_map &&
7416 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7417 return;
7418
7419 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7420 }
7421
7422 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7423 {
7424 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7425 }
7426
7427 static inline u32 kvm_async_pf_next_probe(u32 key)
7428 {
7429 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7430 }
7431
7432 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7433 {
7434 u32 key = kvm_async_pf_hash_fn(gfn);
7435
7436 while (vcpu->arch.apf.gfns[key] != ~0)
7437 key = kvm_async_pf_next_probe(key);
7438
7439 vcpu->arch.apf.gfns[key] = gfn;
7440 }
7441
7442 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7443 {
7444 int i;
7445 u32 key = kvm_async_pf_hash_fn(gfn);
7446
7447 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7448 (vcpu->arch.apf.gfns[key] != gfn &&
7449 vcpu->arch.apf.gfns[key] != ~0); i++)
7450 key = kvm_async_pf_next_probe(key);
7451
7452 return key;
7453 }
7454
7455 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7456 {
7457 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7458 }
7459
7460 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7461 {
7462 u32 i, j, k;
7463
7464 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7465 while (true) {
7466 vcpu->arch.apf.gfns[i] = ~0;
7467 do {
7468 j = kvm_async_pf_next_probe(j);
7469 if (vcpu->arch.apf.gfns[j] == ~0)
7470 return;
7471 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7472 /*
7473 * k lies cyclically in ]i,j]
7474 * | i.k.j |
7475 * |....j i.k.| or |.k..j i...|
7476 */
7477 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7478 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7479 i = j;
7480 }
7481 }
7482
7483 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7484 {
7485
7486 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7487 sizeof(val));
7488 }
7489
7490 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7491 struct kvm_async_pf *work)
7492 {
7493 struct x86_exception fault;
7494
7495 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7496 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7497
7498 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7499 (vcpu->arch.apf.send_user_only &&
7500 kvm_x86_ops->get_cpl(vcpu) == 0))
7501 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7502 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7503 fault.vector = PF_VECTOR;
7504 fault.error_code_valid = true;
7505 fault.error_code = 0;
7506 fault.nested_page_fault = false;
7507 fault.address = work->arch.token;
7508 kvm_inject_page_fault(vcpu, &fault);
7509 }
7510 }
7511
7512 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7513 struct kvm_async_pf *work)
7514 {
7515 struct x86_exception fault;
7516
7517 trace_kvm_async_pf_ready(work->arch.token, work->gva);
7518 if (work->wakeup_all)
7519 work->arch.token = ~0; /* broadcast wakeup */
7520 else
7521 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7522
7523 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7524 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7525 fault.vector = PF_VECTOR;
7526 fault.error_code_valid = true;
7527 fault.error_code = 0;
7528 fault.nested_page_fault = false;
7529 fault.address = work->arch.token;
7530 kvm_inject_page_fault(vcpu, &fault);
7531 }
7532 vcpu->arch.apf.halted = false;
7533 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7534 }
7535
7536 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7537 {
7538 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7539 return true;
7540 else
7541 return !kvm_event_needs_reinjection(vcpu) &&
7542 kvm_x86_ops->interrupt_allowed(vcpu);
7543 }
7544
7545 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7546 {
7547 atomic_inc(&kvm->arch.noncoherent_dma_count);
7548 }
7549 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7550
7551 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7552 {
7553 atomic_dec(&kvm->arch.noncoherent_dma_count);
7554 }
7555 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7556
7557 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7558 {
7559 return atomic_read(&kvm->arch.noncoherent_dma_count);
7560 }
7561 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7562
7563 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7564 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7569 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7570 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7571 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7572 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
This page took 0.19816 seconds and 4 git commands to generate.