Merge branch 'master' of /home/davem/src/GIT/linux-2.6/
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/msr.h>
42 #include <asm/desc.h>
43 #include <asm/mtrr.h>
44
45 #define MAX_IO_MSRS 256
46 #define CR0_RESERVED_BITS \
47 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
48 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
49 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
50 #define CR4_RESERVED_BITS \
51 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
52 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
53 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
54 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
55
56 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
57 /* EFER defaults:
58 * - enable syscall per default because its emulated by KVM
59 * - enable LME and LMA per default on 64 bit KVM
60 */
61 #ifdef CONFIG_X86_64
62 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
63 #else
64 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
65 #endif
66
67 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
68 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
69
70 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
71 struct kvm_cpuid_entry2 __user *entries);
72
73 struct kvm_x86_ops *kvm_x86_ops;
74 EXPORT_SYMBOL_GPL(kvm_x86_ops);
75
76 struct kvm_stats_debugfs_item debugfs_entries[] = {
77 { "pf_fixed", VCPU_STAT(pf_fixed) },
78 { "pf_guest", VCPU_STAT(pf_guest) },
79 { "tlb_flush", VCPU_STAT(tlb_flush) },
80 { "invlpg", VCPU_STAT(invlpg) },
81 { "exits", VCPU_STAT(exits) },
82 { "io_exits", VCPU_STAT(io_exits) },
83 { "mmio_exits", VCPU_STAT(mmio_exits) },
84 { "signal_exits", VCPU_STAT(signal_exits) },
85 { "irq_window", VCPU_STAT(irq_window_exits) },
86 { "nmi_window", VCPU_STAT(nmi_window_exits) },
87 { "halt_exits", VCPU_STAT(halt_exits) },
88 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
89 { "hypercalls", VCPU_STAT(hypercalls) },
90 { "request_irq", VCPU_STAT(request_irq_exits) },
91 { "request_nmi", VCPU_STAT(request_nmi_exits) },
92 { "irq_exits", VCPU_STAT(irq_exits) },
93 { "host_state_reload", VCPU_STAT(host_state_reload) },
94 { "efer_reload", VCPU_STAT(efer_reload) },
95 { "fpu_reload", VCPU_STAT(fpu_reload) },
96 { "insn_emulation", VCPU_STAT(insn_emulation) },
97 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
98 { "irq_injections", VCPU_STAT(irq_injections) },
99 { "nmi_injections", VCPU_STAT(nmi_injections) },
100 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
101 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
102 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
103 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
104 { "mmu_flooded", VM_STAT(mmu_flooded) },
105 { "mmu_recycled", VM_STAT(mmu_recycled) },
106 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
107 { "mmu_unsync", VM_STAT(mmu_unsync) },
108 { "mmu_unsync_global", VM_STAT(mmu_unsync_global) },
109 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
110 { "largepages", VM_STAT(lpages) },
111 { NULL }
112 };
113
114 unsigned long segment_base(u16 selector)
115 {
116 struct descriptor_table gdt;
117 struct desc_struct *d;
118 unsigned long table_base;
119 unsigned long v;
120
121 if (selector == 0)
122 return 0;
123
124 asm("sgdt %0" : "=m"(gdt));
125 table_base = gdt.base;
126
127 if (selector & 4) { /* from ldt */
128 u16 ldt_selector;
129
130 asm("sldt %0" : "=g"(ldt_selector));
131 table_base = segment_base(ldt_selector);
132 }
133 d = (struct desc_struct *)(table_base + (selector & ~7));
134 v = d->base0 | ((unsigned long)d->base1 << 16) |
135 ((unsigned long)d->base2 << 24);
136 #ifdef CONFIG_X86_64
137 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
138 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
139 #endif
140 return v;
141 }
142 EXPORT_SYMBOL_GPL(segment_base);
143
144 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
145 {
146 if (irqchip_in_kernel(vcpu->kvm))
147 return vcpu->arch.apic_base;
148 else
149 return vcpu->arch.apic_base;
150 }
151 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
152
153 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
154 {
155 /* TODO: reserve bits check */
156 if (irqchip_in_kernel(vcpu->kvm))
157 kvm_lapic_set_base(vcpu, data);
158 else
159 vcpu->arch.apic_base = data;
160 }
161 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
162
163 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
164 {
165 WARN_ON(vcpu->arch.exception.pending);
166 vcpu->arch.exception.pending = true;
167 vcpu->arch.exception.has_error_code = false;
168 vcpu->arch.exception.nr = nr;
169 }
170 EXPORT_SYMBOL_GPL(kvm_queue_exception);
171
172 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
173 u32 error_code)
174 {
175 ++vcpu->stat.pf_guest;
176 if (vcpu->arch.exception.pending) {
177 if (vcpu->arch.exception.nr == PF_VECTOR) {
178 printk(KERN_DEBUG "kvm: inject_page_fault:"
179 " double fault 0x%lx\n", addr);
180 vcpu->arch.exception.nr = DF_VECTOR;
181 vcpu->arch.exception.error_code = 0;
182 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
183 /* triple fault -> shutdown */
184 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
185 }
186 return;
187 }
188 vcpu->arch.cr2 = addr;
189 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
190 }
191
192 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
193 {
194 vcpu->arch.nmi_pending = 1;
195 }
196 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
197
198 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
199 {
200 WARN_ON(vcpu->arch.exception.pending);
201 vcpu->arch.exception.pending = true;
202 vcpu->arch.exception.has_error_code = true;
203 vcpu->arch.exception.nr = nr;
204 vcpu->arch.exception.error_code = error_code;
205 }
206 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
207
208 static void __queue_exception(struct kvm_vcpu *vcpu)
209 {
210 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
211 vcpu->arch.exception.has_error_code,
212 vcpu->arch.exception.error_code);
213 }
214
215 /*
216 * Load the pae pdptrs. Return true is they are all valid.
217 */
218 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
219 {
220 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
221 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
222 int i;
223 int ret;
224 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
225
226 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
227 offset * sizeof(u64), sizeof(pdpte));
228 if (ret < 0) {
229 ret = 0;
230 goto out;
231 }
232 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
233 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
234 ret = 0;
235 goto out;
236 }
237 }
238 ret = 1;
239
240 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
241 out:
242
243 return ret;
244 }
245 EXPORT_SYMBOL_GPL(load_pdptrs);
246
247 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
248 {
249 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
250 bool changed = true;
251 int r;
252
253 if (is_long_mode(vcpu) || !is_pae(vcpu))
254 return false;
255
256 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
257 if (r < 0)
258 goto out;
259 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
260 out:
261
262 return changed;
263 }
264
265 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
266 {
267 if (cr0 & CR0_RESERVED_BITS) {
268 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
269 cr0, vcpu->arch.cr0);
270 kvm_inject_gp(vcpu, 0);
271 return;
272 }
273
274 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
275 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
276 kvm_inject_gp(vcpu, 0);
277 return;
278 }
279
280 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
281 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
282 "and a clear PE flag\n");
283 kvm_inject_gp(vcpu, 0);
284 return;
285 }
286
287 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
288 #ifdef CONFIG_X86_64
289 if ((vcpu->arch.shadow_efer & EFER_LME)) {
290 int cs_db, cs_l;
291
292 if (!is_pae(vcpu)) {
293 printk(KERN_DEBUG "set_cr0: #GP, start paging "
294 "in long mode while PAE is disabled\n");
295 kvm_inject_gp(vcpu, 0);
296 return;
297 }
298 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
299 if (cs_l) {
300 printk(KERN_DEBUG "set_cr0: #GP, start paging "
301 "in long mode while CS.L == 1\n");
302 kvm_inject_gp(vcpu, 0);
303 return;
304
305 }
306 } else
307 #endif
308 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
309 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
310 "reserved bits\n");
311 kvm_inject_gp(vcpu, 0);
312 return;
313 }
314
315 }
316
317 kvm_x86_ops->set_cr0(vcpu, cr0);
318 vcpu->arch.cr0 = cr0;
319
320 kvm_mmu_sync_global(vcpu);
321 kvm_mmu_reset_context(vcpu);
322 return;
323 }
324 EXPORT_SYMBOL_GPL(kvm_set_cr0);
325
326 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
327 {
328 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
329 KVMTRACE_1D(LMSW, vcpu,
330 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
331 handler);
332 }
333 EXPORT_SYMBOL_GPL(kvm_lmsw);
334
335 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
336 {
337 if (cr4 & CR4_RESERVED_BITS) {
338 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
339 kvm_inject_gp(vcpu, 0);
340 return;
341 }
342
343 if (is_long_mode(vcpu)) {
344 if (!(cr4 & X86_CR4_PAE)) {
345 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
346 "in long mode\n");
347 kvm_inject_gp(vcpu, 0);
348 return;
349 }
350 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
351 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
352 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
353 kvm_inject_gp(vcpu, 0);
354 return;
355 }
356
357 if (cr4 & X86_CR4_VMXE) {
358 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
359 kvm_inject_gp(vcpu, 0);
360 return;
361 }
362 kvm_x86_ops->set_cr4(vcpu, cr4);
363 vcpu->arch.cr4 = cr4;
364 kvm_mmu_sync_global(vcpu);
365 kvm_mmu_reset_context(vcpu);
366 }
367 EXPORT_SYMBOL_GPL(kvm_set_cr4);
368
369 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
370 {
371 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
372 kvm_mmu_sync_roots(vcpu);
373 kvm_mmu_flush_tlb(vcpu);
374 return;
375 }
376
377 if (is_long_mode(vcpu)) {
378 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
379 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
380 kvm_inject_gp(vcpu, 0);
381 return;
382 }
383 } else {
384 if (is_pae(vcpu)) {
385 if (cr3 & CR3_PAE_RESERVED_BITS) {
386 printk(KERN_DEBUG
387 "set_cr3: #GP, reserved bits\n");
388 kvm_inject_gp(vcpu, 0);
389 return;
390 }
391 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
392 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
393 "reserved bits\n");
394 kvm_inject_gp(vcpu, 0);
395 return;
396 }
397 }
398 /*
399 * We don't check reserved bits in nonpae mode, because
400 * this isn't enforced, and VMware depends on this.
401 */
402 }
403
404 /*
405 * Does the new cr3 value map to physical memory? (Note, we
406 * catch an invalid cr3 even in real-mode, because it would
407 * cause trouble later on when we turn on paging anyway.)
408 *
409 * A real CPU would silently accept an invalid cr3 and would
410 * attempt to use it - with largely undefined (and often hard
411 * to debug) behavior on the guest side.
412 */
413 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
414 kvm_inject_gp(vcpu, 0);
415 else {
416 vcpu->arch.cr3 = cr3;
417 vcpu->arch.mmu.new_cr3(vcpu);
418 }
419 }
420 EXPORT_SYMBOL_GPL(kvm_set_cr3);
421
422 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
423 {
424 if (cr8 & CR8_RESERVED_BITS) {
425 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
426 kvm_inject_gp(vcpu, 0);
427 return;
428 }
429 if (irqchip_in_kernel(vcpu->kvm))
430 kvm_lapic_set_tpr(vcpu, cr8);
431 else
432 vcpu->arch.cr8 = cr8;
433 }
434 EXPORT_SYMBOL_GPL(kvm_set_cr8);
435
436 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
437 {
438 if (irqchip_in_kernel(vcpu->kvm))
439 return kvm_lapic_get_cr8(vcpu);
440 else
441 return vcpu->arch.cr8;
442 }
443 EXPORT_SYMBOL_GPL(kvm_get_cr8);
444
445 /*
446 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
447 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
448 *
449 * This list is modified at module load time to reflect the
450 * capabilities of the host cpu.
451 */
452 static u32 msrs_to_save[] = {
453 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
454 MSR_K6_STAR,
455 #ifdef CONFIG_X86_64
456 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
457 #endif
458 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
459 MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT
460 };
461
462 static unsigned num_msrs_to_save;
463
464 static u32 emulated_msrs[] = {
465 MSR_IA32_MISC_ENABLE,
466 };
467
468 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
469 {
470 if (efer & efer_reserved_bits) {
471 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
472 efer);
473 kvm_inject_gp(vcpu, 0);
474 return;
475 }
476
477 if (is_paging(vcpu)
478 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
479 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
480 kvm_inject_gp(vcpu, 0);
481 return;
482 }
483
484 kvm_x86_ops->set_efer(vcpu, efer);
485
486 efer &= ~EFER_LMA;
487 efer |= vcpu->arch.shadow_efer & EFER_LMA;
488
489 vcpu->arch.shadow_efer = efer;
490 }
491
492 void kvm_enable_efer_bits(u64 mask)
493 {
494 efer_reserved_bits &= ~mask;
495 }
496 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
497
498
499 /*
500 * Writes msr value into into the appropriate "register".
501 * Returns 0 on success, non-0 otherwise.
502 * Assumes vcpu_load() was already called.
503 */
504 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
505 {
506 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
507 }
508
509 /*
510 * Adapt set_msr() to msr_io()'s calling convention
511 */
512 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
513 {
514 return kvm_set_msr(vcpu, index, *data);
515 }
516
517 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
518 {
519 static int version;
520 struct pvclock_wall_clock wc;
521 struct timespec now, sys, boot;
522
523 if (!wall_clock)
524 return;
525
526 version++;
527
528 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
529
530 /*
531 * The guest calculates current wall clock time by adding
532 * system time (updated by kvm_write_guest_time below) to the
533 * wall clock specified here. guest system time equals host
534 * system time for us, thus we must fill in host boot time here.
535 */
536 now = current_kernel_time();
537 ktime_get_ts(&sys);
538 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
539
540 wc.sec = boot.tv_sec;
541 wc.nsec = boot.tv_nsec;
542 wc.version = version;
543
544 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
545
546 version++;
547 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
548 }
549
550 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
551 {
552 uint32_t quotient, remainder;
553
554 /* Don't try to replace with do_div(), this one calculates
555 * "(dividend << 32) / divisor" */
556 __asm__ ( "divl %4"
557 : "=a" (quotient), "=d" (remainder)
558 : "0" (0), "1" (dividend), "r" (divisor) );
559 return quotient;
560 }
561
562 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
563 {
564 uint64_t nsecs = 1000000000LL;
565 int32_t shift = 0;
566 uint64_t tps64;
567 uint32_t tps32;
568
569 tps64 = tsc_khz * 1000LL;
570 while (tps64 > nsecs*2) {
571 tps64 >>= 1;
572 shift--;
573 }
574
575 tps32 = (uint32_t)tps64;
576 while (tps32 <= (uint32_t)nsecs) {
577 tps32 <<= 1;
578 shift++;
579 }
580
581 hv_clock->tsc_shift = shift;
582 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
583
584 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
585 __func__, tsc_khz, hv_clock->tsc_shift,
586 hv_clock->tsc_to_system_mul);
587 }
588
589 static void kvm_write_guest_time(struct kvm_vcpu *v)
590 {
591 struct timespec ts;
592 unsigned long flags;
593 struct kvm_vcpu_arch *vcpu = &v->arch;
594 void *shared_kaddr;
595
596 if ((!vcpu->time_page))
597 return;
598
599 if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
600 kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
601 vcpu->hv_clock_tsc_khz = tsc_khz;
602 }
603
604 /* Keep irq disabled to prevent changes to the clock */
605 local_irq_save(flags);
606 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
607 &vcpu->hv_clock.tsc_timestamp);
608 ktime_get_ts(&ts);
609 local_irq_restore(flags);
610
611 /* With all the info we got, fill in the values */
612
613 vcpu->hv_clock.system_time = ts.tv_nsec +
614 (NSEC_PER_SEC * (u64)ts.tv_sec);
615 /*
616 * The interface expects us to write an even number signaling that the
617 * update is finished. Since the guest won't see the intermediate
618 * state, we just increase by 2 at the end.
619 */
620 vcpu->hv_clock.version += 2;
621
622 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
623
624 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
625 sizeof(vcpu->hv_clock));
626
627 kunmap_atomic(shared_kaddr, KM_USER0);
628
629 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
630 }
631
632 static bool msr_mtrr_valid(unsigned msr)
633 {
634 switch (msr) {
635 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
636 case MSR_MTRRfix64K_00000:
637 case MSR_MTRRfix16K_80000:
638 case MSR_MTRRfix16K_A0000:
639 case MSR_MTRRfix4K_C0000:
640 case MSR_MTRRfix4K_C8000:
641 case MSR_MTRRfix4K_D0000:
642 case MSR_MTRRfix4K_D8000:
643 case MSR_MTRRfix4K_E0000:
644 case MSR_MTRRfix4K_E8000:
645 case MSR_MTRRfix4K_F0000:
646 case MSR_MTRRfix4K_F8000:
647 case MSR_MTRRdefType:
648 case MSR_IA32_CR_PAT:
649 return true;
650 case 0x2f8:
651 return true;
652 }
653 return false;
654 }
655
656 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
657 {
658 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
659
660 if (!msr_mtrr_valid(msr))
661 return 1;
662
663 if (msr == MSR_MTRRdefType) {
664 vcpu->arch.mtrr_state.def_type = data;
665 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
666 } else if (msr == MSR_MTRRfix64K_00000)
667 p[0] = data;
668 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
669 p[1 + msr - MSR_MTRRfix16K_80000] = data;
670 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
671 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
672 else if (msr == MSR_IA32_CR_PAT)
673 vcpu->arch.pat = data;
674 else { /* Variable MTRRs */
675 int idx, is_mtrr_mask;
676 u64 *pt;
677
678 idx = (msr - 0x200) / 2;
679 is_mtrr_mask = msr - 0x200 - 2 * idx;
680 if (!is_mtrr_mask)
681 pt =
682 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
683 else
684 pt =
685 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
686 *pt = data;
687 }
688
689 kvm_mmu_reset_context(vcpu);
690 return 0;
691 }
692
693 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
694 {
695 switch (msr) {
696 case MSR_EFER:
697 set_efer(vcpu, data);
698 break;
699 case MSR_IA32_MC0_STATUS:
700 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
701 __func__, data);
702 break;
703 case MSR_IA32_MCG_STATUS:
704 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
705 __func__, data);
706 break;
707 case MSR_IA32_MCG_CTL:
708 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
709 __func__, data);
710 break;
711 case MSR_IA32_DEBUGCTLMSR:
712 if (!data) {
713 /* We support the non-activated case already */
714 break;
715 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
716 /* Values other than LBR and BTF are vendor-specific,
717 thus reserved and should throw a #GP */
718 return 1;
719 }
720 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
721 __func__, data);
722 break;
723 case MSR_IA32_UCODE_REV:
724 case MSR_IA32_UCODE_WRITE:
725 break;
726 case 0x200 ... 0x2ff:
727 return set_msr_mtrr(vcpu, msr, data);
728 case MSR_IA32_APICBASE:
729 kvm_set_apic_base(vcpu, data);
730 break;
731 case MSR_IA32_MISC_ENABLE:
732 vcpu->arch.ia32_misc_enable_msr = data;
733 break;
734 case MSR_KVM_WALL_CLOCK:
735 vcpu->kvm->arch.wall_clock = data;
736 kvm_write_wall_clock(vcpu->kvm, data);
737 break;
738 case MSR_KVM_SYSTEM_TIME: {
739 if (vcpu->arch.time_page) {
740 kvm_release_page_dirty(vcpu->arch.time_page);
741 vcpu->arch.time_page = NULL;
742 }
743
744 vcpu->arch.time = data;
745
746 /* we verify if the enable bit is set... */
747 if (!(data & 1))
748 break;
749
750 /* ...but clean it before doing the actual write */
751 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
752
753 vcpu->arch.time_page =
754 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
755
756 if (is_error_page(vcpu->arch.time_page)) {
757 kvm_release_page_clean(vcpu->arch.time_page);
758 vcpu->arch.time_page = NULL;
759 }
760
761 kvm_write_guest_time(vcpu);
762 break;
763 }
764 default:
765 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
766 return 1;
767 }
768 return 0;
769 }
770 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
771
772
773 /*
774 * Reads an msr value (of 'msr_index') into 'pdata'.
775 * Returns 0 on success, non-0 otherwise.
776 * Assumes vcpu_load() was already called.
777 */
778 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
779 {
780 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
781 }
782
783 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
784 {
785 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
786
787 if (!msr_mtrr_valid(msr))
788 return 1;
789
790 if (msr == MSR_MTRRdefType)
791 *pdata = vcpu->arch.mtrr_state.def_type +
792 (vcpu->arch.mtrr_state.enabled << 10);
793 else if (msr == MSR_MTRRfix64K_00000)
794 *pdata = p[0];
795 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
796 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
797 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
798 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
799 else if (msr == MSR_IA32_CR_PAT)
800 *pdata = vcpu->arch.pat;
801 else { /* Variable MTRRs */
802 int idx, is_mtrr_mask;
803 u64 *pt;
804
805 idx = (msr - 0x200) / 2;
806 is_mtrr_mask = msr - 0x200 - 2 * idx;
807 if (!is_mtrr_mask)
808 pt =
809 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
810 else
811 pt =
812 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
813 *pdata = *pt;
814 }
815
816 return 0;
817 }
818
819 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
820 {
821 u64 data;
822
823 switch (msr) {
824 case 0xc0010010: /* SYSCFG */
825 case 0xc0010015: /* HWCR */
826 case MSR_IA32_PLATFORM_ID:
827 case MSR_IA32_P5_MC_ADDR:
828 case MSR_IA32_P5_MC_TYPE:
829 case MSR_IA32_MC0_CTL:
830 case MSR_IA32_MCG_STATUS:
831 case MSR_IA32_MCG_CAP:
832 case MSR_IA32_MCG_CTL:
833 case MSR_IA32_MC0_MISC:
834 case MSR_IA32_MC0_MISC+4:
835 case MSR_IA32_MC0_MISC+8:
836 case MSR_IA32_MC0_MISC+12:
837 case MSR_IA32_MC0_MISC+16:
838 case MSR_IA32_MC0_MISC+20:
839 case MSR_IA32_UCODE_REV:
840 case MSR_IA32_EBL_CR_POWERON:
841 case MSR_IA32_DEBUGCTLMSR:
842 case MSR_IA32_LASTBRANCHFROMIP:
843 case MSR_IA32_LASTBRANCHTOIP:
844 case MSR_IA32_LASTINTFROMIP:
845 case MSR_IA32_LASTINTTOIP:
846 data = 0;
847 break;
848 case MSR_MTRRcap:
849 data = 0x500 | KVM_NR_VAR_MTRR;
850 break;
851 case 0x200 ... 0x2ff:
852 return get_msr_mtrr(vcpu, msr, pdata);
853 case 0xcd: /* fsb frequency */
854 data = 3;
855 break;
856 case MSR_IA32_APICBASE:
857 data = kvm_get_apic_base(vcpu);
858 break;
859 case MSR_IA32_MISC_ENABLE:
860 data = vcpu->arch.ia32_misc_enable_msr;
861 break;
862 case MSR_IA32_PERF_STATUS:
863 /* TSC increment by tick */
864 data = 1000ULL;
865 /* CPU multiplier */
866 data |= (((uint64_t)4ULL) << 40);
867 break;
868 case MSR_EFER:
869 data = vcpu->arch.shadow_efer;
870 break;
871 case MSR_KVM_WALL_CLOCK:
872 data = vcpu->kvm->arch.wall_clock;
873 break;
874 case MSR_KVM_SYSTEM_TIME:
875 data = vcpu->arch.time;
876 break;
877 default:
878 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
879 return 1;
880 }
881 *pdata = data;
882 return 0;
883 }
884 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
885
886 /*
887 * Read or write a bunch of msrs. All parameters are kernel addresses.
888 *
889 * @return number of msrs set successfully.
890 */
891 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
892 struct kvm_msr_entry *entries,
893 int (*do_msr)(struct kvm_vcpu *vcpu,
894 unsigned index, u64 *data))
895 {
896 int i;
897
898 vcpu_load(vcpu);
899
900 down_read(&vcpu->kvm->slots_lock);
901 for (i = 0; i < msrs->nmsrs; ++i)
902 if (do_msr(vcpu, entries[i].index, &entries[i].data))
903 break;
904 up_read(&vcpu->kvm->slots_lock);
905
906 vcpu_put(vcpu);
907
908 return i;
909 }
910
911 /*
912 * Read or write a bunch of msrs. Parameters are user addresses.
913 *
914 * @return number of msrs set successfully.
915 */
916 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
917 int (*do_msr)(struct kvm_vcpu *vcpu,
918 unsigned index, u64 *data),
919 int writeback)
920 {
921 struct kvm_msrs msrs;
922 struct kvm_msr_entry *entries;
923 int r, n;
924 unsigned size;
925
926 r = -EFAULT;
927 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
928 goto out;
929
930 r = -E2BIG;
931 if (msrs.nmsrs >= MAX_IO_MSRS)
932 goto out;
933
934 r = -ENOMEM;
935 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
936 entries = vmalloc(size);
937 if (!entries)
938 goto out;
939
940 r = -EFAULT;
941 if (copy_from_user(entries, user_msrs->entries, size))
942 goto out_free;
943
944 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
945 if (r < 0)
946 goto out_free;
947
948 r = -EFAULT;
949 if (writeback && copy_to_user(user_msrs->entries, entries, size))
950 goto out_free;
951
952 r = n;
953
954 out_free:
955 vfree(entries);
956 out:
957 return r;
958 }
959
960 int kvm_dev_ioctl_check_extension(long ext)
961 {
962 int r;
963
964 switch (ext) {
965 case KVM_CAP_IRQCHIP:
966 case KVM_CAP_HLT:
967 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
968 case KVM_CAP_SET_TSS_ADDR:
969 case KVM_CAP_EXT_CPUID:
970 case KVM_CAP_PIT:
971 case KVM_CAP_NOP_IO_DELAY:
972 case KVM_CAP_MP_STATE:
973 case KVM_CAP_SYNC_MMU:
974 r = 1;
975 break;
976 case KVM_CAP_COALESCED_MMIO:
977 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
978 break;
979 case KVM_CAP_VAPIC:
980 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
981 break;
982 case KVM_CAP_NR_VCPUS:
983 r = KVM_MAX_VCPUS;
984 break;
985 case KVM_CAP_NR_MEMSLOTS:
986 r = KVM_MEMORY_SLOTS;
987 break;
988 case KVM_CAP_PV_MMU:
989 r = !tdp_enabled;
990 break;
991 case KVM_CAP_IOMMU:
992 r = iommu_found();
993 break;
994 case KVM_CAP_CLOCKSOURCE:
995 r = boot_cpu_has(X86_FEATURE_CONSTANT_TSC);
996 break;
997 default:
998 r = 0;
999 break;
1000 }
1001 return r;
1002
1003 }
1004
1005 long kvm_arch_dev_ioctl(struct file *filp,
1006 unsigned int ioctl, unsigned long arg)
1007 {
1008 void __user *argp = (void __user *)arg;
1009 long r;
1010
1011 switch (ioctl) {
1012 case KVM_GET_MSR_INDEX_LIST: {
1013 struct kvm_msr_list __user *user_msr_list = argp;
1014 struct kvm_msr_list msr_list;
1015 unsigned n;
1016
1017 r = -EFAULT;
1018 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1019 goto out;
1020 n = msr_list.nmsrs;
1021 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1022 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1023 goto out;
1024 r = -E2BIG;
1025 if (n < num_msrs_to_save)
1026 goto out;
1027 r = -EFAULT;
1028 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1029 num_msrs_to_save * sizeof(u32)))
1030 goto out;
1031 if (copy_to_user(user_msr_list->indices
1032 + num_msrs_to_save * sizeof(u32),
1033 &emulated_msrs,
1034 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1035 goto out;
1036 r = 0;
1037 break;
1038 }
1039 case KVM_GET_SUPPORTED_CPUID: {
1040 struct kvm_cpuid2 __user *cpuid_arg = argp;
1041 struct kvm_cpuid2 cpuid;
1042
1043 r = -EFAULT;
1044 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1045 goto out;
1046 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1047 cpuid_arg->entries);
1048 if (r)
1049 goto out;
1050
1051 r = -EFAULT;
1052 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1053 goto out;
1054 r = 0;
1055 break;
1056 }
1057 default:
1058 r = -EINVAL;
1059 }
1060 out:
1061 return r;
1062 }
1063
1064 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1065 {
1066 kvm_x86_ops->vcpu_load(vcpu, cpu);
1067 kvm_write_guest_time(vcpu);
1068 }
1069
1070 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1071 {
1072 kvm_x86_ops->vcpu_put(vcpu);
1073 kvm_put_guest_fpu(vcpu);
1074 }
1075
1076 static int is_efer_nx(void)
1077 {
1078 u64 efer;
1079
1080 rdmsrl(MSR_EFER, efer);
1081 return efer & EFER_NX;
1082 }
1083
1084 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1085 {
1086 int i;
1087 struct kvm_cpuid_entry2 *e, *entry;
1088
1089 entry = NULL;
1090 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1091 e = &vcpu->arch.cpuid_entries[i];
1092 if (e->function == 0x80000001) {
1093 entry = e;
1094 break;
1095 }
1096 }
1097 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1098 entry->edx &= ~(1 << 20);
1099 printk(KERN_INFO "kvm: guest NX capability removed\n");
1100 }
1101 }
1102
1103 /* when an old userspace process fills a new kernel module */
1104 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1105 struct kvm_cpuid *cpuid,
1106 struct kvm_cpuid_entry __user *entries)
1107 {
1108 int r, i;
1109 struct kvm_cpuid_entry *cpuid_entries;
1110
1111 r = -E2BIG;
1112 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1113 goto out;
1114 r = -ENOMEM;
1115 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1116 if (!cpuid_entries)
1117 goto out;
1118 r = -EFAULT;
1119 if (copy_from_user(cpuid_entries, entries,
1120 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1121 goto out_free;
1122 for (i = 0; i < cpuid->nent; i++) {
1123 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1124 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1125 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1126 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1127 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1128 vcpu->arch.cpuid_entries[i].index = 0;
1129 vcpu->arch.cpuid_entries[i].flags = 0;
1130 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1131 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1132 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1133 }
1134 vcpu->arch.cpuid_nent = cpuid->nent;
1135 cpuid_fix_nx_cap(vcpu);
1136 r = 0;
1137
1138 out_free:
1139 vfree(cpuid_entries);
1140 out:
1141 return r;
1142 }
1143
1144 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1145 struct kvm_cpuid2 *cpuid,
1146 struct kvm_cpuid_entry2 __user *entries)
1147 {
1148 int r;
1149
1150 r = -E2BIG;
1151 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1152 goto out;
1153 r = -EFAULT;
1154 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1155 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1156 goto out;
1157 vcpu->arch.cpuid_nent = cpuid->nent;
1158 return 0;
1159
1160 out:
1161 return r;
1162 }
1163
1164 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1165 struct kvm_cpuid2 *cpuid,
1166 struct kvm_cpuid_entry2 __user *entries)
1167 {
1168 int r;
1169
1170 r = -E2BIG;
1171 if (cpuid->nent < vcpu->arch.cpuid_nent)
1172 goto out;
1173 r = -EFAULT;
1174 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1175 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1176 goto out;
1177 return 0;
1178
1179 out:
1180 cpuid->nent = vcpu->arch.cpuid_nent;
1181 return r;
1182 }
1183
1184 static inline u32 bit(int bitno)
1185 {
1186 return 1 << (bitno & 31);
1187 }
1188
1189 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1190 u32 index)
1191 {
1192 entry->function = function;
1193 entry->index = index;
1194 cpuid_count(entry->function, entry->index,
1195 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1196 entry->flags = 0;
1197 }
1198
1199 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1200 u32 index, int *nent, int maxnent)
1201 {
1202 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1203 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1204 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1205 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1206 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1207 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1208 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1209 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1210 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1211 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1212 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1213 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1214 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1215 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1216 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1217 bit(X86_FEATURE_PGE) |
1218 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1219 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1220 bit(X86_FEATURE_SYSCALL) |
1221 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1222 #ifdef CONFIG_X86_64
1223 bit(X86_FEATURE_LM) |
1224 #endif
1225 bit(X86_FEATURE_MMXEXT) |
1226 bit(X86_FEATURE_3DNOWEXT) |
1227 bit(X86_FEATURE_3DNOW);
1228 const u32 kvm_supported_word3_x86_features =
1229 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1230 const u32 kvm_supported_word6_x86_features =
1231 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1232
1233 /* all func 2 cpuid_count() should be called on the same cpu */
1234 get_cpu();
1235 do_cpuid_1_ent(entry, function, index);
1236 ++*nent;
1237
1238 switch (function) {
1239 case 0:
1240 entry->eax = min(entry->eax, (u32)0xb);
1241 break;
1242 case 1:
1243 entry->edx &= kvm_supported_word0_x86_features;
1244 entry->ecx &= kvm_supported_word3_x86_features;
1245 break;
1246 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1247 * may return different values. This forces us to get_cpu() before
1248 * issuing the first command, and also to emulate this annoying behavior
1249 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1250 case 2: {
1251 int t, times = entry->eax & 0xff;
1252
1253 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1254 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1255 for (t = 1; t < times && *nent < maxnent; ++t) {
1256 do_cpuid_1_ent(&entry[t], function, 0);
1257 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1258 ++*nent;
1259 }
1260 break;
1261 }
1262 /* function 4 and 0xb have additional index. */
1263 case 4: {
1264 int i, cache_type;
1265
1266 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1267 /* read more entries until cache_type is zero */
1268 for (i = 1; *nent < maxnent; ++i) {
1269 cache_type = entry[i - 1].eax & 0x1f;
1270 if (!cache_type)
1271 break;
1272 do_cpuid_1_ent(&entry[i], function, i);
1273 entry[i].flags |=
1274 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1275 ++*nent;
1276 }
1277 break;
1278 }
1279 case 0xb: {
1280 int i, level_type;
1281
1282 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1283 /* read more entries until level_type is zero */
1284 for (i = 1; *nent < maxnent; ++i) {
1285 level_type = entry[i - 1].ecx & 0xff00;
1286 if (!level_type)
1287 break;
1288 do_cpuid_1_ent(&entry[i], function, i);
1289 entry[i].flags |=
1290 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1291 ++*nent;
1292 }
1293 break;
1294 }
1295 case 0x80000000:
1296 entry->eax = min(entry->eax, 0x8000001a);
1297 break;
1298 case 0x80000001:
1299 entry->edx &= kvm_supported_word1_x86_features;
1300 entry->ecx &= kvm_supported_word6_x86_features;
1301 break;
1302 }
1303 put_cpu();
1304 }
1305
1306 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1307 struct kvm_cpuid_entry2 __user *entries)
1308 {
1309 struct kvm_cpuid_entry2 *cpuid_entries;
1310 int limit, nent = 0, r = -E2BIG;
1311 u32 func;
1312
1313 if (cpuid->nent < 1)
1314 goto out;
1315 r = -ENOMEM;
1316 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1317 if (!cpuid_entries)
1318 goto out;
1319
1320 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1321 limit = cpuid_entries[0].eax;
1322 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1323 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1324 &nent, cpuid->nent);
1325 r = -E2BIG;
1326 if (nent >= cpuid->nent)
1327 goto out_free;
1328
1329 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1330 limit = cpuid_entries[nent - 1].eax;
1331 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1332 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1333 &nent, cpuid->nent);
1334 r = -EFAULT;
1335 if (copy_to_user(entries, cpuid_entries,
1336 nent * sizeof(struct kvm_cpuid_entry2)))
1337 goto out_free;
1338 cpuid->nent = nent;
1339 r = 0;
1340
1341 out_free:
1342 vfree(cpuid_entries);
1343 out:
1344 return r;
1345 }
1346
1347 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1348 struct kvm_lapic_state *s)
1349 {
1350 vcpu_load(vcpu);
1351 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1352 vcpu_put(vcpu);
1353
1354 return 0;
1355 }
1356
1357 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1358 struct kvm_lapic_state *s)
1359 {
1360 vcpu_load(vcpu);
1361 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1362 kvm_apic_post_state_restore(vcpu);
1363 vcpu_put(vcpu);
1364
1365 return 0;
1366 }
1367
1368 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1369 struct kvm_interrupt *irq)
1370 {
1371 if (irq->irq < 0 || irq->irq >= 256)
1372 return -EINVAL;
1373 if (irqchip_in_kernel(vcpu->kvm))
1374 return -ENXIO;
1375 vcpu_load(vcpu);
1376
1377 set_bit(irq->irq, vcpu->arch.irq_pending);
1378 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1379
1380 vcpu_put(vcpu);
1381
1382 return 0;
1383 }
1384
1385 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1386 {
1387 vcpu_load(vcpu);
1388 kvm_inject_nmi(vcpu);
1389 vcpu_put(vcpu);
1390
1391 return 0;
1392 }
1393
1394 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1395 struct kvm_tpr_access_ctl *tac)
1396 {
1397 if (tac->flags)
1398 return -EINVAL;
1399 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1400 return 0;
1401 }
1402
1403 long kvm_arch_vcpu_ioctl(struct file *filp,
1404 unsigned int ioctl, unsigned long arg)
1405 {
1406 struct kvm_vcpu *vcpu = filp->private_data;
1407 void __user *argp = (void __user *)arg;
1408 int r;
1409 struct kvm_lapic_state *lapic = NULL;
1410
1411 switch (ioctl) {
1412 case KVM_GET_LAPIC: {
1413 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1414
1415 r = -ENOMEM;
1416 if (!lapic)
1417 goto out;
1418 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1419 if (r)
1420 goto out;
1421 r = -EFAULT;
1422 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1423 goto out;
1424 r = 0;
1425 break;
1426 }
1427 case KVM_SET_LAPIC: {
1428 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1429 r = -ENOMEM;
1430 if (!lapic)
1431 goto out;
1432 r = -EFAULT;
1433 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1434 goto out;
1435 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1436 if (r)
1437 goto out;
1438 r = 0;
1439 break;
1440 }
1441 case KVM_INTERRUPT: {
1442 struct kvm_interrupt irq;
1443
1444 r = -EFAULT;
1445 if (copy_from_user(&irq, argp, sizeof irq))
1446 goto out;
1447 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1448 if (r)
1449 goto out;
1450 r = 0;
1451 break;
1452 }
1453 case KVM_NMI: {
1454 r = kvm_vcpu_ioctl_nmi(vcpu);
1455 if (r)
1456 goto out;
1457 r = 0;
1458 break;
1459 }
1460 case KVM_SET_CPUID: {
1461 struct kvm_cpuid __user *cpuid_arg = argp;
1462 struct kvm_cpuid cpuid;
1463
1464 r = -EFAULT;
1465 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1466 goto out;
1467 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1468 if (r)
1469 goto out;
1470 break;
1471 }
1472 case KVM_SET_CPUID2: {
1473 struct kvm_cpuid2 __user *cpuid_arg = argp;
1474 struct kvm_cpuid2 cpuid;
1475
1476 r = -EFAULT;
1477 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1478 goto out;
1479 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1480 cpuid_arg->entries);
1481 if (r)
1482 goto out;
1483 break;
1484 }
1485 case KVM_GET_CPUID2: {
1486 struct kvm_cpuid2 __user *cpuid_arg = argp;
1487 struct kvm_cpuid2 cpuid;
1488
1489 r = -EFAULT;
1490 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1491 goto out;
1492 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1493 cpuid_arg->entries);
1494 if (r)
1495 goto out;
1496 r = -EFAULT;
1497 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1498 goto out;
1499 r = 0;
1500 break;
1501 }
1502 case KVM_GET_MSRS:
1503 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1504 break;
1505 case KVM_SET_MSRS:
1506 r = msr_io(vcpu, argp, do_set_msr, 0);
1507 break;
1508 case KVM_TPR_ACCESS_REPORTING: {
1509 struct kvm_tpr_access_ctl tac;
1510
1511 r = -EFAULT;
1512 if (copy_from_user(&tac, argp, sizeof tac))
1513 goto out;
1514 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1515 if (r)
1516 goto out;
1517 r = -EFAULT;
1518 if (copy_to_user(argp, &tac, sizeof tac))
1519 goto out;
1520 r = 0;
1521 break;
1522 };
1523 case KVM_SET_VAPIC_ADDR: {
1524 struct kvm_vapic_addr va;
1525
1526 r = -EINVAL;
1527 if (!irqchip_in_kernel(vcpu->kvm))
1528 goto out;
1529 r = -EFAULT;
1530 if (copy_from_user(&va, argp, sizeof va))
1531 goto out;
1532 r = 0;
1533 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1534 break;
1535 }
1536 default:
1537 r = -EINVAL;
1538 }
1539 out:
1540 if (lapic)
1541 kfree(lapic);
1542 return r;
1543 }
1544
1545 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1546 {
1547 int ret;
1548
1549 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1550 return -1;
1551 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1552 return ret;
1553 }
1554
1555 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1556 u32 kvm_nr_mmu_pages)
1557 {
1558 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1559 return -EINVAL;
1560
1561 down_write(&kvm->slots_lock);
1562
1563 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1564 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1565
1566 up_write(&kvm->slots_lock);
1567 return 0;
1568 }
1569
1570 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1571 {
1572 return kvm->arch.n_alloc_mmu_pages;
1573 }
1574
1575 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1576 {
1577 int i;
1578 struct kvm_mem_alias *alias;
1579
1580 for (i = 0; i < kvm->arch.naliases; ++i) {
1581 alias = &kvm->arch.aliases[i];
1582 if (gfn >= alias->base_gfn
1583 && gfn < alias->base_gfn + alias->npages)
1584 return alias->target_gfn + gfn - alias->base_gfn;
1585 }
1586 return gfn;
1587 }
1588
1589 /*
1590 * Set a new alias region. Aliases map a portion of physical memory into
1591 * another portion. This is useful for memory windows, for example the PC
1592 * VGA region.
1593 */
1594 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1595 struct kvm_memory_alias *alias)
1596 {
1597 int r, n;
1598 struct kvm_mem_alias *p;
1599
1600 r = -EINVAL;
1601 /* General sanity checks */
1602 if (alias->memory_size & (PAGE_SIZE - 1))
1603 goto out;
1604 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1605 goto out;
1606 if (alias->slot >= KVM_ALIAS_SLOTS)
1607 goto out;
1608 if (alias->guest_phys_addr + alias->memory_size
1609 < alias->guest_phys_addr)
1610 goto out;
1611 if (alias->target_phys_addr + alias->memory_size
1612 < alias->target_phys_addr)
1613 goto out;
1614
1615 down_write(&kvm->slots_lock);
1616 spin_lock(&kvm->mmu_lock);
1617
1618 p = &kvm->arch.aliases[alias->slot];
1619 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1620 p->npages = alias->memory_size >> PAGE_SHIFT;
1621 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1622
1623 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1624 if (kvm->arch.aliases[n - 1].npages)
1625 break;
1626 kvm->arch.naliases = n;
1627
1628 spin_unlock(&kvm->mmu_lock);
1629 kvm_mmu_zap_all(kvm);
1630
1631 up_write(&kvm->slots_lock);
1632
1633 return 0;
1634
1635 out:
1636 return r;
1637 }
1638
1639 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1640 {
1641 int r;
1642
1643 r = 0;
1644 switch (chip->chip_id) {
1645 case KVM_IRQCHIP_PIC_MASTER:
1646 memcpy(&chip->chip.pic,
1647 &pic_irqchip(kvm)->pics[0],
1648 sizeof(struct kvm_pic_state));
1649 break;
1650 case KVM_IRQCHIP_PIC_SLAVE:
1651 memcpy(&chip->chip.pic,
1652 &pic_irqchip(kvm)->pics[1],
1653 sizeof(struct kvm_pic_state));
1654 break;
1655 case KVM_IRQCHIP_IOAPIC:
1656 memcpy(&chip->chip.ioapic,
1657 ioapic_irqchip(kvm),
1658 sizeof(struct kvm_ioapic_state));
1659 break;
1660 default:
1661 r = -EINVAL;
1662 break;
1663 }
1664 return r;
1665 }
1666
1667 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1668 {
1669 int r;
1670
1671 r = 0;
1672 switch (chip->chip_id) {
1673 case KVM_IRQCHIP_PIC_MASTER:
1674 memcpy(&pic_irqchip(kvm)->pics[0],
1675 &chip->chip.pic,
1676 sizeof(struct kvm_pic_state));
1677 break;
1678 case KVM_IRQCHIP_PIC_SLAVE:
1679 memcpy(&pic_irqchip(kvm)->pics[1],
1680 &chip->chip.pic,
1681 sizeof(struct kvm_pic_state));
1682 break;
1683 case KVM_IRQCHIP_IOAPIC:
1684 memcpy(ioapic_irqchip(kvm),
1685 &chip->chip.ioapic,
1686 sizeof(struct kvm_ioapic_state));
1687 break;
1688 default:
1689 r = -EINVAL;
1690 break;
1691 }
1692 kvm_pic_update_irq(pic_irqchip(kvm));
1693 return r;
1694 }
1695
1696 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1697 {
1698 int r = 0;
1699
1700 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1701 return r;
1702 }
1703
1704 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1705 {
1706 int r = 0;
1707
1708 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1709 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1710 return r;
1711 }
1712
1713 /*
1714 * Get (and clear) the dirty memory log for a memory slot.
1715 */
1716 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1717 struct kvm_dirty_log *log)
1718 {
1719 int r;
1720 int n;
1721 struct kvm_memory_slot *memslot;
1722 int is_dirty = 0;
1723
1724 down_write(&kvm->slots_lock);
1725
1726 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1727 if (r)
1728 goto out;
1729
1730 /* If nothing is dirty, don't bother messing with page tables. */
1731 if (is_dirty) {
1732 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1733 kvm_flush_remote_tlbs(kvm);
1734 memslot = &kvm->memslots[log->slot];
1735 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1736 memset(memslot->dirty_bitmap, 0, n);
1737 }
1738 r = 0;
1739 out:
1740 up_write(&kvm->slots_lock);
1741 return r;
1742 }
1743
1744 long kvm_arch_vm_ioctl(struct file *filp,
1745 unsigned int ioctl, unsigned long arg)
1746 {
1747 struct kvm *kvm = filp->private_data;
1748 void __user *argp = (void __user *)arg;
1749 int r = -EINVAL;
1750 /*
1751 * This union makes it completely explicit to gcc-3.x
1752 * that these two variables' stack usage should be
1753 * combined, not added together.
1754 */
1755 union {
1756 struct kvm_pit_state ps;
1757 struct kvm_memory_alias alias;
1758 } u;
1759
1760 switch (ioctl) {
1761 case KVM_SET_TSS_ADDR:
1762 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1763 if (r < 0)
1764 goto out;
1765 break;
1766 case KVM_SET_MEMORY_REGION: {
1767 struct kvm_memory_region kvm_mem;
1768 struct kvm_userspace_memory_region kvm_userspace_mem;
1769
1770 r = -EFAULT;
1771 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1772 goto out;
1773 kvm_userspace_mem.slot = kvm_mem.slot;
1774 kvm_userspace_mem.flags = kvm_mem.flags;
1775 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1776 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1777 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1778 if (r)
1779 goto out;
1780 break;
1781 }
1782 case KVM_SET_NR_MMU_PAGES:
1783 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1784 if (r)
1785 goto out;
1786 break;
1787 case KVM_GET_NR_MMU_PAGES:
1788 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1789 break;
1790 case KVM_SET_MEMORY_ALIAS:
1791 r = -EFAULT;
1792 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1793 goto out;
1794 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1795 if (r)
1796 goto out;
1797 break;
1798 case KVM_CREATE_IRQCHIP:
1799 r = -ENOMEM;
1800 kvm->arch.vpic = kvm_create_pic(kvm);
1801 if (kvm->arch.vpic) {
1802 r = kvm_ioapic_init(kvm);
1803 if (r) {
1804 kfree(kvm->arch.vpic);
1805 kvm->arch.vpic = NULL;
1806 goto out;
1807 }
1808 } else
1809 goto out;
1810 break;
1811 case KVM_CREATE_PIT:
1812 r = -ENOMEM;
1813 kvm->arch.vpit = kvm_create_pit(kvm);
1814 if (kvm->arch.vpit)
1815 r = 0;
1816 break;
1817 case KVM_IRQ_LINE: {
1818 struct kvm_irq_level irq_event;
1819
1820 r = -EFAULT;
1821 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1822 goto out;
1823 if (irqchip_in_kernel(kvm)) {
1824 mutex_lock(&kvm->lock);
1825 kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1826 irq_event.irq, irq_event.level);
1827 mutex_unlock(&kvm->lock);
1828 r = 0;
1829 }
1830 break;
1831 }
1832 case KVM_GET_IRQCHIP: {
1833 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1834 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1835
1836 r = -ENOMEM;
1837 if (!chip)
1838 goto out;
1839 r = -EFAULT;
1840 if (copy_from_user(chip, argp, sizeof *chip))
1841 goto get_irqchip_out;
1842 r = -ENXIO;
1843 if (!irqchip_in_kernel(kvm))
1844 goto get_irqchip_out;
1845 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1846 if (r)
1847 goto get_irqchip_out;
1848 r = -EFAULT;
1849 if (copy_to_user(argp, chip, sizeof *chip))
1850 goto get_irqchip_out;
1851 r = 0;
1852 get_irqchip_out:
1853 kfree(chip);
1854 if (r)
1855 goto out;
1856 break;
1857 }
1858 case KVM_SET_IRQCHIP: {
1859 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1860 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1861
1862 r = -ENOMEM;
1863 if (!chip)
1864 goto out;
1865 r = -EFAULT;
1866 if (copy_from_user(chip, argp, sizeof *chip))
1867 goto set_irqchip_out;
1868 r = -ENXIO;
1869 if (!irqchip_in_kernel(kvm))
1870 goto set_irqchip_out;
1871 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1872 if (r)
1873 goto set_irqchip_out;
1874 r = 0;
1875 set_irqchip_out:
1876 kfree(chip);
1877 if (r)
1878 goto out;
1879 break;
1880 }
1881 case KVM_GET_PIT: {
1882 r = -EFAULT;
1883 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
1884 goto out;
1885 r = -ENXIO;
1886 if (!kvm->arch.vpit)
1887 goto out;
1888 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
1889 if (r)
1890 goto out;
1891 r = -EFAULT;
1892 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
1893 goto out;
1894 r = 0;
1895 break;
1896 }
1897 case KVM_SET_PIT: {
1898 r = -EFAULT;
1899 if (copy_from_user(&u.ps, argp, sizeof u.ps))
1900 goto out;
1901 r = -ENXIO;
1902 if (!kvm->arch.vpit)
1903 goto out;
1904 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
1905 if (r)
1906 goto out;
1907 r = 0;
1908 break;
1909 }
1910 default:
1911 ;
1912 }
1913 out:
1914 return r;
1915 }
1916
1917 static void kvm_init_msr_list(void)
1918 {
1919 u32 dummy[2];
1920 unsigned i, j;
1921
1922 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1923 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1924 continue;
1925 if (j < i)
1926 msrs_to_save[j] = msrs_to_save[i];
1927 j++;
1928 }
1929 num_msrs_to_save = j;
1930 }
1931
1932 /*
1933 * Only apic need an MMIO device hook, so shortcut now..
1934 */
1935 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1936 gpa_t addr, int len,
1937 int is_write)
1938 {
1939 struct kvm_io_device *dev;
1940
1941 if (vcpu->arch.apic) {
1942 dev = &vcpu->arch.apic->dev;
1943 if (dev->in_range(dev, addr, len, is_write))
1944 return dev;
1945 }
1946 return NULL;
1947 }
1948
1949
1950 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1951 gpa_t addr, int len,
1952 int is_write)
1953 {
1954 struct kvm_io_device *dev;
1955
1956 dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
1957 if (dev == NULL)
1958 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
1959 is_write);
1960 return dev;
1961 }
1962
1963 int emulator_read_std(unsigned long addr,
1964 void *val,
1965 unsigned int bytes,
1966 struct kvm_vcpu *vcpu)
1967 {
1968 void *data = val;
1969 int r = X86EMUL_CONTINUE;
1970
1971 while (bytes) {
1972 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1973 unsigned offset = addr & (PAGE_SIZE-1);
1974 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1975 int ret;
1976
1977 if (gpa == UNMAPPED_GVA) {
1978 r = X86EMUL_PROPAGATE_FAULT;
1979 goto out;
1980 }
1981 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1982 if (ret < 0) {
1983 r = X86EMUL_UNHANDLEABLE;
1984 goto out;
1985 }
1986
1987 bytes -= tocopy;
1988 data += tocopy;
1989 addr += tocopy;
1990 }
1991 out:
1992 return r;
1993 }
1994 EXPORT_SYMBOL_GPL(emulator_read_std);
1995
1996 static int emulator_read_emulated(unsigned long addr,
1997 void *val,
1998 unsigned int bytes,
1999 struct kvm_vcpu *vcpu)
2000 {
2001 struct kvm_io_device *mmio_dev;
2002 gpa_t gpa;
2003
2004 if (vcpu->mmio_read_completed) {
2005 memcpy(val, vcpu->mmio_data, bytes);
2006 vcpu->mmio_read_completed = 0;
2007 return X86EMUL_CONTINUE;
2008 }
2009
2010 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2011
2012 /* For APIC access vmexit */
2013 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2014 goto mmio;
2015
2016 if (emulator_read_std(addr, val, bytes, vcpu)
2017 == X86EMUL_CONTINUE)
2018 return X86EMUL_CONTINUE;
2019 if (gpa == UNMAPPED_GVA)
2020 return X86EMUL_PROPAGATE_FAULT;
2021
2022 mmio:
2023 /*
2024 * Is this MMIO handled locally?
2025 */
2026 mutex_lock(&vcpu->kvm->lock);
2027 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2028 if (mmio_dev) {
2029 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2030 mutex_unlock(&vcpu->kvm->lock);
2031 return X86EMUL_CONTINUE;
2032 }
2033 mutex_unlock(&vcpu->kvm->lock);
2034
2035 vcpu->mmio_needed = 1;
2036 vcpu->mmio_phys_addr = gpa;
2037 vcpu->mmio_size = bytes;
2038 vcpu->mmio_is_write = 0;
2039
2040 return X86EMUL_UNHANDLEABLE;
2041 }
2042
2043 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2044 const void *val, int bytes)
2045 {
2046 int ret;
2047
2048 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2049 if (ret < 0)
2050 return 0;
2051 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2052 return 1;
2053 }
2054
2055 static int emulator_write_emulated_onepage(unsigned long addr,
2056 const void *val,
2057 unsigned int bytes,
2058 struct kvm_vcpu *vcpu)
2059 {
2060 struct kvm_io_device *mmio_dev;
2061 gpa_t gpa;
2062
2063 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2064
2065 if (gpa == UNMAPPED_GVA) {
2066 kvm_inject_page_fault(vcpu, addr, 2);
2067 return X86EMUL_PROPAGATE_FAULT;
2068 }
2069
2070 /* For APIC access vmexit */
2071 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2072 goto mmio;
2073
2074 if (emulator_write_phys(vcpu, gpa, val, bytes))
2075 return X86EMUL_CONTINUE;
2076
2077 mmio:
2078 /*
2079 * Is this MMIO handled locally?
2080 */
2081 mutex_lock(&vcpu->kvm->lock);
2082 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2083 if (mmio_dev) {
2084 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2085 mutex_unlock(&vcpu->kvm->lock);
2086 return X86EMUL_CONTINUE;
2087 }
2088 mutex_unlock(&vcpu->kvm->lock);
2089
2090 vcpu->mmio_needed = 1;
2091 vcpu->mmio_phys_addr = gpa;
2092 vcpu->mmio_size = bytes;
2093 vcpu->mmio_is_write = 1;
2094 memcpy(vcpu->mmio_data, val, bytes);
2095
2096 return X86EMUL_CONTINUE;
2097 }
2098
2099 int emulator_write_emulated(unsigned long addr,
2100 const void *val,
2101 unsigned int bytes,
2102 struct kvm_vcpu *vcpu)
2103 {
2104 /* Crossing a page boundary? */
2105 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2106 int rc, now;
2107
2108 now = -addr & ~PAGE_MASK;
2109 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2110 if (rc != X86EMUL_CONTINUE)
2111 return rc;
2112 addr += now;
2113 val += now;
2114 bytes -= now;
2115 }
2116 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2117 }
2118 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2119
2120 static int emulator_cmpxchg_emulated(unsigned long addr,
2121 const void *old,
2122 const void *new,
2123 unsigned int bytes,
2124 struct kvm_vcpu *vcpu)
2125 {
2126 static int reported;
2127
2128 if (!reported) {
2129 reported = 1;
2130 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2131 }
2132 #ifndef CONFIG_X86_64
2133 /* guests cmpxchg8b have to be emulated atomically */
2134 if (bytes == 8) {
2135 gpa_t gpa;
2136 struct page *page;
2137 char *kaddr;
2138 u64 val;
2139
2140 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2141
2142 if (gpa == UNMAPPED_GVA ||
2143 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2144 goto emul_write;
2145
2146 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2147 goto emul_write;
2148
2149 val = *(u64 *)new;
2150
2151 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2152
2153 kaddr = kmap_atomic(page, KM_USER0);
2154 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2155 kunmap_atomic(kaddr, KM_USER0);
2156 kvm_release_page_dirty(page);
2157 }
2158 emul_write:
2159 #endif
2160
2161 return emulator_write_emulated(addr, new, bytes, vcpu);
2162 }
2163
2164 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2165 {
2166 return kvm_x86_ops->get_segment_base(vcpu, seg);
2167 }
2168
2169 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2170 {
2171 kvm_mmu_invlpg(vcpu, address);
2172 return X86EMUL_CONTINUE;
2173 }
2174
2175 int emulate_clts(struct kvm_vcpu *vcpu)
2176 {
2177 KVMTRACE_0D(CLTS, vcpu, handler);
2178 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2179 return X86EMUL_CONTINUE;
2180 }
2181
2182 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2183 {
2184 struct kvm_vcpu *vcpu = ctxt->vcpu;
2185
2186 switch (dr) {
2187 case 0 ... 3:
2188 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2189 return X86EMUL_CONTINUE;
2190 default:
2191 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2192 return X86EMUL_UNHANDLEABLE;
2193 }
2194 }
2195
2196 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2197 {
2198 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2199 int exception;
2200
2201 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2202 if (exception) {
2203 /* FIXME: better handling */
2204 return X86EMUL_UNHANDLEABLE;
2205 }
2206 return X86EMUL_CONTINUE;
2207 }
2208
2209 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2210 {
2211 u8 opcodes[4];
2212 unsigned long rip = kvm_rip_read(vcpu);
2213 unsigned long rip_linear;
2214
2215 if (!printk_ratelimit())
2216 return;
2217
2218 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2219
2220 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2221
2222 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2223 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2224 }
2225 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2226
2227 static struct x86_emulate_ops emulate_ops = {
2228 .read_std = emulator_read_std,
2229 .read_emulated = emulator_read_emulated,
2230 .write_emulated = emulator_write_emulated,
2231 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2232 };
2233
2234 static void cache_all_regs(struct kvm_vcpu *vcpu)
2235 {
2236 kvm_register_read(vcpu, VCPU_REGS_RAX);
2237 kvm_register_read(vcpu, VCPU_REGS_RSP);
2238 kvm_register_read(vcpu, VCPU_REGS_RIP);
2239 vcpu->arch.regs_dirty = ~0;
2240 }
2241
2242 int emulate_instruction(struct kvm_vcpu *vcpu,
2243 struct kvm_run *run,
2244 unsigned long cr2,
2245 u16 error_code,
2246 int emulation_type)
2247 {
2248 int r;
2249 struct decode_cache *c;
2250
2251 kvm_clear_exception_queue(vcpu);
2252 vcpu->arch.mmio_fault_cr2 = cr2;
2253 /*
2254 * TODO: fix x86_emulate.c to use guest_read/write_register
2255 * instead of direct ->regs accesses, can save hundred cycles
2256 * on Intel for instructions that don't read/change RSP, for
2257 * for example.
2258 */
2259 cache_all_regs(vcpu);
2260
2261 vcpu->mmio_is_write = 0;
2262 vcpu->arch.pio.string = 0;
2263
2264 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2265 int cs_db, cs_l;
2266 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2267
2268 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2269 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2270 vcpu->arch.emulate_ctxt.mode =
2271 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2272 ? X86EMUL_MODE_REAL : cs_l
2273 ? X86EMUL_MODE_PROT64 : cs_db
2274 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2275
2276 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2277
2278 /* Reject the instructions other than VMCALL/VMMCALL when
2279 * try to emulate invalid opcode */
2280 c = &vcpu->arch.emulate_ctxt.decode;
2281 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2282 (!(c->twobyte && c->b == 0x01 &&
2283 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2284 c->modrm_mod == 3 && c->modrm_rm == 1)))
2285 return EMULATE_FAIL;
2286
2287 ++vcpu->stat.insn_emulation;
2288 if (r) {
2289 ++vcpu->stat.insn_emulation_fail;
2290 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2291 return EMULATE_DONE;
2292 return EMULATE_FAIL;
2293 }
2294 }
2295
2296 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2297
2298 if (vcpu->arch.pio.string)
2299 return EMULATE_DO_MMIO;
2300
2301 if ((r || vcpu->mmio_is_write) && run) {
2302 run->exit_reason = KVM_EXIT_MMIO;
2303 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2304 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2305 run->mmio.len = vcpu->mmio_size;
2306 run->mmio.is_write = vcpu->mmio_is_write;
2307 }
2308
2309 if (r) {
2310 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2311 return EMULATE_DONE;
2312 if (!vcpu->mmio_needed) {
2313 kvm_report_emulation_failure(vcpu, "mmio");
2314 return EMULATE_FAIL;
2315 }
2316 return EMULATE_DO_MMIO;
2317 }
2318
2319 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2320
2321 if (vcpu->mmio_is_write) {
2322 vcpu->mmio_needed = 0;
2323 return EMULATE_DO_MMIO;
2324 }
2325
2326 return EMULATE_DONE;
2327 }
2328 EXPORT_SYMBOL_GPL(emulate_instruction);
2329
2330 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2331 {
2332 int i;
2333
2334 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2335 if (vcpu->arch.pio.guest_pages[i]) {
2336 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2337 vcpu->arch.pio.guest_pages[i] = NULL;
2338 }
2339 }
2340
2341 static int pio_copy_data(struct kvm_vcpu *vcpu)
2342 {
2343 void *p = vcpu->arch.pio_data;
2344 void *q;
2345 unsigned bytes;
2346 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2347
2348 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2349 PAGE_KERNEL);
2350 if (!q) {
2351 free_pio_guest_pages(vcpu);
2352 return -ENOMEM;
2353 }
2354 q += vcpu->arch.pio.guest_page_offset;
2355 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2356 if (vcpu->arch.pio.in)
2357 memcpy(q, p, bytes);
2358 else
2359 memcpy(p, q, bytes);
2360 q -= vcpu->arch.pio.guest_page_offset;
2361 vunmap(q);
2362 free_pio_guest_pages(vcpu);
2363 return 0;
2364 }
2365
2366 int complete_pio(struct kvm_vcpu *vcpu)
2367 {
2368 struct kvm_pio_request *io = &vcpu->arch.pio;
2369 long delta;
2370 int r;
2371 unsigned long val;
2372
2373 if (!io->string) {
2374 if (io->in) {
2375 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2376 memcpy(&val, vcpu->arch.pio_data, io->size);
2377 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2378 }
2379 } else {
2380 if (io->in) {
2381 r = pio_copy_data(vcpu);
2382 if (r)
2383 return r;
2384 }
2385
2386 delta = 1;
2387 if (io->rep) {
2388 delta *= io->cur_count;
2389 /*
2390 * The size of the register should really depend on
2391 * current address size.
2392 */
2393 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2394 val -= delta;
2395 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2396 }
2397 if (io->down)
2398 delta = -delta;
2399 delta *= io->size;
2400 if (io->in) {
2401 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2402 val += delta;
2403 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2404 } else {
2405 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2406 val += delta;
2407 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2408 }
2409 }
2410
2411 io->count -= io->cur_count;
2412 io->cur_count = 0;
2413
2414 return 0;
2415 }
2416
2417 static void kernel_pio(struct kvm_io_device *pio_dev,
2418 struct kvm_vcpu *vcpu,
2419 void *pd)
2420 {
2421 /* TODO: String I/O for in kernel device */
2422
2423 mutex_lock(&vcpu->kvm->lock);
2424 if (vcpu->arch.pio.in)
2425 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2426 vcpu->arch.pio.size,
2427 pd);
2428 else
2429 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2430 vcpu->arch.pio.size,
2431 pd);
2432 mutex_unlock(&vcpu->kvm->lock);
2433 }
2434
2435 static void pio_string_write(struct kvm_io_device *pio_dev,
2436 struct kvm_vcpu *vcpu)
2437 {
2438 struct kvm_pio_request *io = &vcpu->arch.pio;
2439 void *pd = vcpu->arch.pio_data;
2440 int i;
2441
2442 mutex_lock(&vcpu->kvm->lock);
2443 for (i = 0; i < io->cur_count; i++) {
2444 kvm_iodevice_write(pio_dev, io->port,
2445 io->size,
2446 pd);
2447 pd += io->size;
2448 }
2449 mutex_unlock(&vcpu->kvm->lock);
2450 }
2451
2452 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2453 gpa_t addr, int len,
2454 int is_write)
2455 {
2456 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2457 }
2458
2459 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2460 int size, unsigned port)
2461 {
2462 struct kvm_io_device *pio_dev;
2463 unsigned long val;
2464
2465 vcpu->run->exit_reason = KVM_EXIT_IO;
2466 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2467 vcpu->run->io.size = vcpu->arch.pio.size = size;
2468 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2469 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2470 vcpu->run->io.port = vcpu->arch.pio.port = port;
2471 vcpu->arch.pio.in = in;
2472 vcpu->arch.pio.string = 0;
2473 vcpu->arch.pio.down = 0;
2474 vcpu->arch.pio.guest_page_offset = 0;
2475 vcpu->arch.pio.rep = 0;
2476
2477 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2478 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2479 handler);
2480 else
2481 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2482 handler);
2483
2484 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2485 memcpy(vcpu->arch.pio_data, &val, 4);
2486
2487 pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2488 if (pio_dev) {
2489 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2490 complete_pio(vcpu);
2491 return 1;
2492 }
2493 return 0;
2494 }
2495 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2496
2497 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2498 int size, unsigned long count, int down,
2499 gva_t address, int rep, unsigned port)
2500 {
2501 unsigned now, in_page;
2502 int i, ret = 0;
2503 int nr_pages = 1;
2504 struct page *page;
2505 struct kvm_io_device *pio_dev;
2506
2507 vcpu->run->exit_reason = KVM_EXIT_IO;
2508 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2509 vcpu->run->io.size = vcpu->arch.pio.size = size;
2510 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2511 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2512 vcpu->run->io.port = vcpu->arch.pio.port = port;
2513 vcpu->arch.pio.in = in;
2514 vcpu->arch.pio.string = 1;
2515 vcpu->arch.pio.down = down;
2516 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2517 vcpu->arch.pio.rep = rep;
2518
2519 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2520 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2521 handler);
2522 else
2523 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2524 handler);
2525
2526 if (!count) {
2527 kvm_x86_ops->skip_emulated_instruction(vcpu);
2528 return 1;
2529 }
2530
2531 if (!down)
2532 in_page = PAGE_SIZE - offset_in_page(address);
2533 else
2534 in_page = offset_in_page(address) + size;
2535 now = min(count, (unsigned long)in_page / size);
2536 if (!now) {
2537 /*
2538 * String I/O straddles page boundary. Pin two guest pages
2539 * so that we satisfy atomicity constraints. Do just one
2540 * transaction to avoid complexity.
2541 */
2542 nr_pages = 2;
2543 now = 1;
2544 }
2545 if (down) {
2546 /*
2547 * String I/O in reverse. Yuck. Kill the guest, fix later.
2548 */
2549 pr_unimpl(vcpu, "guest string pio down\n");
2550 kvm_inject_gp(vcpu, 0);
2551 return 1;
2552 }
2553 vcpu->run->io.count = now;
2554 vcpu->arch.pio.cur_count = now;
2555
2556 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2557 kvm_x86_ops->skip_emulated_instruction(vcpu);
2558
2559 for (i = 0; i < nr_pages; ++i) {
2560 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2561 vcpu->arch.pio.guest_pages[i] = page;
2562 if (!page) {
2563 kvm_inject_gp(vcpu, 0);
2564 free_pio_guest_pages(vcpu);
2565 return 1;
2566 }
2567 }
2568
2569 pio_dev = vcpu_find_pio_dev(vcpu, port,
2570 vcpu->arch.pio.cur_count,
2571 !vcpu->arch.pio.in);
2572 if (!vcpu->arch.pio.in) {
2573 /* string PIO write */
2574 ret = pio_copy_data(vcpu);
2575 if (ret >= 0 && pio_dev) {
2576 pio_string_write(pio_dev, vcpu);
2577 complete_pio(vcpu);
2578 if (vcpu->arch.pio.count == 0)
2579 ret = 1;
2580 }
2581 } else if (pio_dev)
2582 pr_unimpl(vcpu, "no string pio read support yet, "
2583 "port %x size %d count %ld\n",
2584 port, size, count);
2585
2586 return ret;
2587 }
2588 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2589
2590 int kvm_arch_init(void *opaque)
2591 {
2592 int r;
2593 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2594
2595 if (kvm_x86_ops) {
2596 printk(KERN_ERR "kvm: already loaded the other module\n");
2597 r = -EEXIST;
2598 goto out;
2599 }
2600
2601 if (!ops->cpu_has_kvm_support()) {
2602 printk(KERN_ERR "kvm: no hardware support\n");
2603 r = -EOPNOTSUPP;
2604 goto out;
2605 }
2606 if (ops->disabled_by_bios()) {
2607 printk(KERN_ERR "kvm: disabled by bios\n");
2608 r = -EOPNOTSUPP;
2609 goto out;
2610 }
2611
2612 r = kvm_mmu_module_init();
2613 if (r)
2614 goto out;
2615
2616 kvm_init_msr_list();
2617
2618 kvm_x86_ops = ops;
2619 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2620 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2621 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2622 PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
2623 return 0;
2624
2625 out:
2626 return r;
2627 }
2628
2629 void kvm_arch_exit(void)
2630 {
2631 kvm_x86_ops = NULL;
2632 kvm_mmu_module_exit();
2633 }
2634
2635 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2636 {
2637 ++vcpu->stat.halt_exits;
2638 KVMTRACE_0D(HLT, vcpu, handler);
2639 if (irqchip_in_kernel(vcpu->kvm)) {
2640 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2641 return 1;
2642 } else {
2643 vcpu->run->exit_reason = KVM_EXIT_HLT;
2644 return 0;
2645 }
2646 }
2647 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2648
2649 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2650 unsigned long a1)
2651 {
2652 if (is_long_mode(vcpu))
2653 return a0;
2654 else
2655 return a0 | ((gpa_t)a1 << 32);
2656 }
2657
2658 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2659 {
2660 unsigned long nr, a0, a1, a2, a3, ret;
2661 int r = 1;
2662
2663 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2664 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2665 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2666 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2667 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2668
2669 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2670
2671 if (!is_long_mode(vcpu)) {
2672 nr &= 0xFFFFFFFF;
2673 a0 &= 0xFFFFFFFF;
2674 a1 &= 0xFFFFFFFF;
2675 a2 &= 0xFFFFFFFF;
2676 a3 &= 0xFFFFFFFF;
2677 }
2678
2679 switch (nr) {
2680 case KVM_HC_VAPIC_POLL_IRQ:
2681 ret = 0;
2682 break;
2683 case KVM_HC_MMU_OP:
2684 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2685 break;
2686 default:
2687 ret = -KVM_ENOSYS;
2688 break;
2689 }
2690 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2691 ++vcpu->stat.hypercalls;
2692 return r;
2693 }
2694 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2695
2696 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2697 {
2698 char instruction[3];
2699 int ret = 0;
2700 unsigned long rip = kvm_rip_read(vcpu);
2701
2702
2703 /*
2704 * Blow out the MMU to ensure that no other VCPU has an active mapping
2705 * to ensure that the updated hypercall appears atomically across all
2706 * VCPUs.
2707 */
2708 kvm_mmu_zap_all(vcpu->kvm);
2709
2710 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2711 if (emulator_write_emulated(rip, instruction, 3, vcpu)
2712 != X86EMUL_CONTINUE)
2713 ret = -EFAULT;
2714
2715 return ret;
2716 }
2717
2718 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2719 {
2720 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2721 }
2722
2723 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2724 {
2725 struct descriptor_table dt = { limit, base };
2726
2727 kvm_x86_ops->set_gdt(vcpu, &dt);
2728 }
2729
2730 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2731 {
2732 struct descriptor_table dt = { limit, base };
2733
2734 kvm_x86_ops->set_idt(vcpu, &dt);
2735 }
2736
2737 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2738 unsigned long *rflags)
2739 {
2740 kvm_lmsw(vcpu, msw);
2741 *rflags = kvm_x86_ops->get_rflags(vcpu);
2742 }
2743
2744 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2745 {
2746 unsigned long value;
2747
2748 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2749 switch (cr) {
2750 case 0:
2751 value = vcpu->arch.cr0;
2752 break;
2753 case 2:
2754 value = vcpu->arch.cr2;
2755 break;
2756 case 3:
2757 value = vcpu->arch.cr3;
2758 break;
2759 case 4:
2760 value = vcpu->arch.cr4;
2761 break;
2762 case 8:
2763 value = kvm_get_cr8(vcpu);
2764 break;
2765 default:
2766 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2767 return 0;
2768 }
2769 KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2770 (u32)((u64)value >> 32), handler);
2771
2772 return value;
2773 }
2774
2775 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2776 unsigned long *rflags)
2777 {
2778 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2779 (u32)((u64)val >> 32), handler);
2780
2781 switch (cr) {
2782 case 0:
2783 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2784 *rflags = kvm_x86_ops->get_rflags(vcpu);
2785 break;
2786 case 2:
2787 vcpu->arch.cr2 = val;
2788 break;
2789 case 3:
2790 kvm_set_cr3(vcpu, val);
2791 break;
2792 case 4:
2793 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2794 break;
2795 case 8:
2796 kvm_set_cr8(vcpu, val & 0xfUL);
2797 break;
2798 default:
2799 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2800 }
2801 }
2802
2803 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2804 {
2805 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2806 int j, nent = vcpu->arch.cpuid_nent;
2807
2808 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2809 /* when no next entry is found, the current entry[i] is reselected */
2810 for (j = i + 1; ; j = (j + 1) % nent) {
2811 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2812 if (ej->function == e->function) {
2813 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2814 return j;
2815 }
2816 }
2817 return 0; /* silence gcc, even though control never reaches here */
2818 }
2819
2820 /* find an entry with matching function, matching index (if needed), and that
2821 * should be read next (if it's stateful) */
2822 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2823 u32 function, u32 index)
2824 {
2825 if (e->function != function)
2826 return 0;
2827 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2828 return 0;
2829 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2830 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2831 return 0;
2832 return 1;
2833 }
2834
2835 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2836 {
2837 int i;
2838 u32 function, index;
2839 struct kvm_cpuid_entry2 *e, *best;
2840
2841 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
2842 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
2843 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
2844 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
2845 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
2846 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
2847 best = NULL;
2848 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2849 e = &vcpu->arch.cpuid_entries[i];
2850 if (is_matching_cpuid_entry(e, function, index)) {
2851 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2852 move_to_next_stateful_cpuid_entry(vcpu, i);
2853 best = e;
2854 break;
2855 }
2856 /*
2857 * Both basic or both extended?
2858 */
2859 if (((e->function ^ function) & 0x80000000) == 0)
2860 if (!best || e->function > best->function)
2861 best = e;
2862 }
2863 if (best) {
2864 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
2865 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
2866 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
2867 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
2868 }
2869 kvm_x86_ops->skip_emulated_instruction(vcpu);
2870 KVMTRACE_5D(CPUID, vcpu, function,
2871 (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
2872 (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
2873 (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
2874 (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
2875 }
2876 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2877
2878 /*
2879 * Check if userspace requested an interrupt window, and that the
2880 * interrupt window is open.
2881 *
2882 * No need to exit to userspace if we already have an interrupt queued.
2883 */
2884 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2885 struct kvm_run *kvm_run)
2886 {
2887 return (!vcpu->arch.irq_summary &&
2888 kvm_run->request_interrupt_window &&
2889 vcpu->arch.interrupt_window_open &&
2890 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2891 }
2892
2893 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2894 struct kvm_run *kvm_run)
2895 {
2896 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2897 kvm_run->cr8 = kvm_get_cr8(vcpu);
2898 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2899 if (irqchip_in_kernel(vcpu->kvm))
2900 kvm_run->ready_for_interrupt_injection = 1;
2901 else
2902 kvm_run->ready_for_interrupt_injection =
2903 (vcpu->arch.interrupt_window_open &&
2904 vcpu->arch.irq_summary == 0);
2905 }
2906
2907 static void vapic_enter(struct kvm_vcpu *vcpu)
2908 {
2909 struct kvm_lapic *apic = vcpu->arch.apic;
2910 struct page *page;
2911
2912 if (!apic || !apic->vapic_addr)
2913 return;
2914
2915 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2916
2917 vcpu->arch.apic->vapic_page = page;
2918 }
2919
2920 static void vapic_exit(struct kvm_vcpu *vcpu)
2921 {
2922 struct kvm_lapic *apic = vcpu->arch.apic;
2923
2924 if (!apic || !apic->vapic_addr)
2925 return;
2926
2927 down_read(&vcpu->kvm->slots_lock);
2928 kvm_release_page_dirty(apic->vapic_page);
2929 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2930 up_read(&vcpu->kvm->slots_lock);
2931 }
2932
2933 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2934 {
2935 int r;
2936
2937 if (vcpu->requests)
2938 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2939 kvm_mmu_unload(vcpu);
2940
2941 r = kvm_mmu_reload(vcpu);
2942 if (unlikely(r))
2943 goto out;
2944
2945 if (vcpu->requests) {
2946 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2947 __kvm_migrate_timers(vcpu);
2948 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
2949 kvm_mmu_sync_roots(vcpu);
2950 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2951 kvm_x86_ops->tlb_flush(vcpu);
2952 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2953 &vcpu->requests)) {
2954 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2955 r = 0;
2956 goto out;
2957 }
2958 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2959 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2960 r = 0;
2961 goto out;
2962 }
2963 }
2964
2965 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
2966 kvm_inject_pending_timer_irqs(vcpu);
2967
2968 preempt_disable();
2969
2970 kvm_x86_ops->prepare_guest_switch(vcpu);
2971 kvm_load_guest_fpu(vcpu);
2972
2973 local_irq_disable();
2974
2975 if (vcpu->requests || need_resched() || signal_pending(current)) {
2976 local_irq_enable();
2977 preempt_enable();
2978 r = 1;
2979 goto out;
2980 }
2981
2982 if (vcpu->guest_debug.enabled)
2983 kvm_x86_ops->guest_debug_pre(vcpu);
2984
2985 vcpu->guest_mode = 1;
2986 /*
2987 * Make sure that guest_mode assignment won't happen after
2988 * testing the pending IRQ vector bitmap.
2989 */
2990 smp_wmb();
2991
2992 if (vcpu->arch.exception.pending)
2993 __queue_exception(vcpu);
2994 else if (irqchip_in_kernel(vcpu->kvm))
2995 kvm_x86_ops->inject_pending_irq(vcpu);
2996 else
2997 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2998
2999 kvm_lapic_sync_to_vapic(vcpu);
3000
3001 up_read(&vcpu->kvm->slots_lock);
3002
3003 kvm_guest_enter();
3004
3005
3006 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3007 kvm_x86_ops->run(vcpu, kvm_run);
3008
3009 vcpu->guest_mode = 0;
3010 local_irq_enable();
3011
3012 ++vcpu->stat.exits;
3013
3014 /*
3015 * We must have an instruction between local_irq_enable() and
3016 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3017 * the interrupt shadow. The stat.exits increment will do nicely.
3018 * But we need to prevent reordering, hence this barrier():
3019 */
3020 barrier();
3021
3022 kvm_guest_exit();
3023
3024 preempt_enable();
3025
3026 down_read(&vcpu->kvm->slots_lock);
3027
3028 /*
3029 * Profile KVM exit RIPs:
3030 */
3031 if (unlikely(prof_on == KVM_PROFILING)) {
3032 unsigned long rip = kvm_rip_read(vcpu);
3033 profile_hit(KVM_PROFILING, (void *)rip);
3034 }
3035
3036 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
3037 vcpu->arch.exception.pending = false;
3038
3039 kvm_lapic_sync_from_vapic(vcpu);
3040
3041 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3042 out:
3043 return r;
3044 }
3045
3046 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3047 {
3048 int r;
3049
3050 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3051 pr_debug("vcpu %d received sipi with vector # %x\n",
3052 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3053 kvm_lapic_reset(vcpu);
3054 r = kvm_arch_vcpu_reset(vcpu);
3055 if (r)
3056 return r;
3057 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3058 }
3059
3060 down_read(&vcpu->kvm->slots_lock);
3061 vapic_enter(vcpu);
3062
3063 r = 1;
3064 while (r > 0) {
3065 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3066 r = vcpu_enter_guest(vcpu, kvm_run);
3067 else {
3068 up_read(&vcpu->kvm->slots_lock);
3069 kvm_vcpu_block(vcpu);
3070 down_read(&vcpu->kvm->slots_lock);
3071 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3072 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3073 vcpu->arch.mp_state =
3074 KVM_MP_STATE_RUNNABLE;
3075 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
3076 r = -EINTR;
3077 }
3078
3079 if (r > 0) {
3080 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3081 r = -EINTR;
3082 kvm_run->exit_reason = KVM_EXIT_INTR;
3083 ++vcpu->stat.request_irq_exits;
3084 }
3085 if (signal_pending(current)) {
3086 r = -EINTR;
3087 kvm_run->exit_reason = KVM_EXIT_INTR;
3088 ++vcpu->stat.signal_exits;
3089 }
3090 if (need_resched()) {
3091 up_read(&vcpu->kvm->slots_lock);
3092 kvm_resched(vcpu);
3093 down_read(&vcpu->kvm->slots_lock);
3094 }
3095 }
3096 }
3097
3098 up_read(&vcpu->kvm->slots_lock);
3099 post_kvm_run_save(vcpu, kvm_run);
3100
3101 vapic_exit(vcpu);
3102
3103 return r;
3104 }
3105
3106 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3107 {
3108 int r;
3109 sigset_t sigsaved;
3110
3111 vcpu_load(vcpu);
3112
3113 if (vcpu->sigset_active)
3114 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3115
3116 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3117 kvm_vcpu_block(vcpu);
3118 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3119 r = -EAGAIN;
3120 goto out;
3121 }
3122
3123 /* re-sync apic's tpr */
3124 if (!irqchip_in_kernel(vcpu->kvm))
3125 kvm_set_cr8(vcpu, kvm_run->cr8);
3126
3127 if (vcpu->arch.pio.cur_count) {
3128 r = complete_pio(vcpu);
3129 if (r)
3130 goto out;
3131 }
3132 #if CONFIG_HAS_IOMEM
3133 if (vcpu->mmio_needed) {
3134 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3135 vcpu->mmio_read_completed = 1;
3136 vcpu->mmio_needed = 0;
3137
3138 down_read(&vcpu->kvm->slots_lock);
3139 r = emulate_instruction(vcpu, kvm_run,
3140 vcpu->arch.mmio_fault_cr2, 0,
3141 EMULTYPE_NO_DECODE);
3142 up_read(&vcpu->kvm->slots_lock);
3143 if (r == EMULATE_DO_MMIO) {
3144 /*
3145 * Read-modify-write. Back to userspace.
3146 */
3147 r = 0;
3148 goto out;
3149 }
3150 }
3151 #endif
3152 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3153 kvm_register_write(vcpu, VCPU_REGS_RAX,
3154 kvm_run->hypercall.ret);
3155
3156 r = __vcpu_run(vcpu, kvm_run);
3157
3158 out:
3159 if (vcpu->sigset_active)
3160 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3161
3162 vcpu_put(vcpu);
3163 return r;
3164 }
3165
3166 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3167 {
3168 vcpu_load(vcpu);
3169
3170 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3171 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3172 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3173 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3174 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3175 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3176 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3177 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3178 #ifdef CONFIG_X86_64
3179 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3180 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3181 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3182 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3183 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3184 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3185 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3186 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3187 #endif
3188
3189 regs->rip = kvm_rip_read(vcpu);
3190 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3191
3192 /*
3193 * Don't leak debug flags in case they were set for guest debugging
3194 */
3195 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
3196 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3197
3198 vcpu_put(vcpu);
3199
3200 return 0;
3201 }
3202
3203 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3204 {
3205 vcpu_load(vcpu);
3206
3207 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3208 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3209 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3210 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3211 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3212 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3213 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3214 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3215 #ifdef CONFIG_X86_64
3216 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3217 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3218 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3219 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3220 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3221 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3222 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3223 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3224
3225 #endif
3226
3227 kvm_rip_write(vcpu, regs->rip);
3228 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3229
3230
3231 vcpu->arch.exception.pending = false;
3232
3233 vcpu_put(vcpu);
3234
3235 return 0;
3236 }
3237
3238 void kvm_get_segment(struct kvm_vcpu *vcpu,
3239 struct kvm_segment *var, int seg)
3240 {
3241 kvm_x86_ops->get_segment(vcpu, var, seg);
3242 }
3243
3244 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3245 {
3246 struct kvm_segment cs;
3247
3248 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3249 *db = cs.db;
3250 *l = cs.l;
3251 }
3252 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3253
3254 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3255 struct kvm_sregs *sregs)
3256 {
3257 struct descriptor_table dt;
3258 int pending_vec;
3259
3260 vcpu_load(vcpu);
3261
3262 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3263 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3264 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3265 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3266 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3267 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3268
3269 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3270 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3271
3272 kvm_x86_ops->get_idt(vcpu, &dt);
3273 sregs->idt.limit = dt.limit;
3274 sregs->idt.base = dt.base;
3275 kvm_x86_ops->get_gdt(vcpu, &dt);
3276 sregs->gdt.limit = dt.limit;
3277 sregs->gdt.base = dt.base;
3278
3279 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3280 sregs->cr0 = vcpu->arch.cr0;
3281 sregs->cr2 = vcpu->arch.cr2;
3282 sregs->cr3 = vcpu->arch.cr3;
3283 sregs->cr4 = vcpu->arch.cr4;
3284 sregs->cr8 = kvm_get_cr8(vcpu);
3285 sregs->efer = vcpu->arch.shadow_efer;
3286 sregs->apic_base = kvm_get_apic_base(vcpu);
3287
3288 if (irqchip_in_kernel(vcpu->kvm)) {
3289 memset(sregs->interrupt_bitmap, 0,
3290 sizeof sregs->interrupt_bitmap);
3291 pending_vec = kvm_x86_ops->get_irq(vcpu);
3292 if (pending_vec >= 0)
3293 set_bit(pending_vec,
3294 (unsigned long *)sregs->interrupt_bitmap);
3295 } else
3296 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3297 sizeof sregs->interrupt_bitmap);
3298
3299 vcpu_put(vcpu);
3300
3301 return 0;
3302 }
3303
3304 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3305 struct kvm_mp_state *mp_state)
3306 {
3307 vcpu_load(vcpu);
3308 mp_state->mp_state = vcpu->arch.mp_state;
3309 vcpu_put(vcpu);
3310 return 0;
3311 }
3312
3313 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3314 struct kvm_mp_state *mp_state)
3315 {
3316 vcpu_load(vcpu);
3317 vcpu->arch.mp_state = mp_state->mp_state;
3318 vcpu_put(vcpu);
3319 return 0;
3320 }
3321
3322 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3323 struct kvm_segment *var, int seg)
3324 {
3325 kvm_x86_ops->set_segment(vcpu, var, seg);
3326 }
3327
3328 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3329 struct kvm_segment *kvm_desct)
3330 {
3331 kvm_desct->base = seg_desc->base0;
3332 kvm_desct->base |= seg_desc->base1 << 16;
3333 kvm_desct->base |= seg_desc->base2 << 24;
3334 kvm_desct->limit = seg_desc->limit0;
3335 kvm_desct->limit |= seg_desc->limit << 16;
3336 if (seg_desc->g) {
3337 kvm_desct->limit <<= 12;
3338 kvm_desct->limit |= 0xfff;
3339 }
3340 kvm_desct->selector = selector;
3341 kvm_desct->type = seg_desc->type;
3342 kvm_desct->present = seg_desc->p;
3343 kvm_desct->dpl = seg_desc->dpl;
3344 kvm_desct->db = seg_desc->d;
3345 kvm_desct->s = seg_desc->s;
3346 kvm_desct->l = seg_desc->l;
3347 kvm_desct->g = seg_desc->g;
3348 kvm_desct->avl = seg_desc->avl;
3349 if (!selector)
3350 kvm_desct->unusable = 1;
3351 else
3352 kvm_desct->unusable = 0;
3353 kvm_desct->padding = 0;
3354 }
3355
3356 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3357 u16 selector,
3358 struct descriptor_table *dtable)
3359 {
3360 if (selector & 1 << 2) {
3361 struct kvm_segment kvm_seg;
3362
3363 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3364
3365 if (kvm_seg.unusable)
3366 dtable->limit = 0;
3367 else
3368 dtable->limit = kvm_seg.limit;
3369 dtable->base = kvm_seg.base;
3370 }
3371 else
3372 kvm_x86_ops->get_gdt(vcpu, dtable);
3373 }
3374
3375 /* allowed just for 8 bytes segments */
3376 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3377 struct desc_struct *seg_desc)
3378 {
3379 gpa_t gpa;
3380 struct descriptor_table dtable;
3381 u16 index = selector >> 3;
3382
3383 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3384
3385 if (dtable.limit < index * 8 + 7) {
3386 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3387 return 1;
3388 }
3389 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3390 gpa += index * 8;
3391 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3392 }
3393
3394 /* allowed just for 8 bytes segments */
3395 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3396 struct desc_struct *seg_desc)
3397 {
3398 gpa_t gpa;
3399 struct descriptor_table dtable;
3400 u16 index = selector >> 3;
3401
3402 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3403
3404 if (dtable.limit < index * 8 + 7)
3405 return 1;
3406 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3407 gpa += index * 8;
3408 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3409 }
3410
3411 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3412 struct desc_struct *seg_desc)
3413 {
3414 u32 base_addr;
3415
3416 base_addr = seg_desc->base0;
3417 base_addr |= (seg_desc->base1 << 16);
3418 base_addr |= (seg_desc->base2 << 24);
3419
3420 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3421 }
3422
3423 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3424 {
3425 struct kvm_segment kvm_seg;
3426
3427 kvm_get_segment(vcpu, &kvm_seg, seg);
3428 return kvm_seg.selector;
3429 }
3430
3431 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3432 u16 selector,
3433 struct kvm_segment *kvm_seg)
3434 {
3435 struct desc_struct seg_desc;
3436
3437 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3438 return 1;
3439 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3440 return 0;
3441 }
3442
3443 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3444 {
3445 struct kvm_segment segvar = {
3446 .base = selector << 4,
3447 .limit = 0xffff,
3448 .selector = selector,
3449 .type = 3,
3450 .present = 1,
3451 .dpl = 3,
3452 .db = 0,
3453 .s = 1,
3454 .l = 0,
3455 .g = 0,
3456 .avl = 0,
3457 .unusable = 0,
3458 };
3459 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3460 return 0;
3461 }
3462
3463 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3464 int type_bits, int seg)
3465 {
3466 struct kvm_segment kvm_seg;
3467
3468 if (!(vcpu->arch.cr0 & X86_CR0_PE))
3469 return kvm_load_realmode_segment(vcpu, selector, seg);
3470 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3471 return 1;
3472 kvm_seg.type |= type_bits;
3473
3474 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3475 seg != VCPU_SREG_LDTR)
3476 if (!kvm_seg.s)
3477 kvm_seg.unusable = 1;
3478
3479 kvm_set_segment(vcpu, &kvm_seg, seg);
3480 return 0;
3481 }
3482
3483 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3484 struct tss_segment_32 *tss)
3485 {
3486 tss->cr3 = vcpu->arch.cr3;
3487 tss->eip = kvm_rip_read(vcpu);
3488 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3489 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3490 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3491 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3492 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3493 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3494 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3495 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3496 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3497 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3498 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3499 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3500 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3501 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3502 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3503 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3504 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3505 }
3506
3507 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3508 struct tss_segment_32 *tss)
3509 {
3510 kvm_set_cr3(vcpu, tss->cr3);
3511
3512 kvm_rip_write(vcpu, tss->eip);
3513 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3514
3515 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3516 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3517 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3518 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3519 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3520 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3521 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3522 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3523
3524 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3525 return 1;
3526
3527 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3528 return 1;
3529
3530 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3531 return 1;
3532
3533 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3534 return 1;
3535
3536 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3537 return 1;
3538
3539 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3540 return 1;
3541
3542 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3543 return 1;
3544 return 0;
3545 }
3546
3547 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3548 struct tss_segment_16 *tss)
3549 {
3550 tss->ip = kvm_rip_read(vcpu);
3551 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3552 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3553 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3554 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3555 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3556 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3557 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3558 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3559 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3560
3561 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3562 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3563 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3564 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3565 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3566 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3567 }
3568
3569 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3570 struct tss_segment_16 *tss)
3571 {
3572 kvm_rip_write(vcpu, tss->ip);
3573 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3574 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3575 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3576 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3577 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3578 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3579 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3580 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3581 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3582
3583 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3584 return 1;
3585
3586 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3587 return 1;
3588
3589 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3590 return 1;
3591
3592 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3593 return 1;
3594
3595 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3596 return 1;
3597 return 0;
3598 }
3599
3600 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3601 u32 old_tss_base,
3602 struct desc_struct *nseg_desc)
3603 {
3604 struct tss_segment_16 tss_segment_16;
3605 int ret = 0;
3606
3607 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3608 sizeof tss_segment_16))
3609 goto out;
3610
3611 save_state_to_tss16(vcpu, &tss_segment_16);
3612
3613 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3614 sizeof tss_segment_16))
3615 goto out;
3616
3617 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3618 &tss_segment_16, sizeof tss_segment_16))
3619 goto out;
3620
3621 if (load_state_from_tss16(vcpu, &tss_segment_16))
3622 goto out;
3623
3624 ret = 1;
3625 out:
3626 return ret;
3627 }
3628
3629 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3630 u32 old_tss_base,
3631 struct desc_struct *nseg_desc)
3632 {
3633 struct tss_segment_32 tss_segment_32;
3634 int ret = 0;
3635
3636 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3637 sizeof tss_segment_32))
3638 goto out;
3639
3640 save_state_to_tss32(vcpu, &tss_segment_32);
3641
3642 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3643 sizeof tss_segment_32))
3644 goto out;
3645
3646 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3647 &tss_segment_32, sizeof tss_segment_32))
3648 goto out;
3649
3650 if (load_state_from_tss32(vcpu, &tss_segment_32))
3651 goto out;
3652
3653 ret = 1;
3654 out:
3655 return ret;
3656 }
3657
3658 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3659 {
3660 struct kvm_segment tr_seg;
3661 struct desc_struct cseg_desc;
3662 struct desc_struct nseg_desc;
3663 int ret = 0;
3664 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3665 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3666
3667 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3668
3669 /* FIXME: Handle errors. Failure to read either TSS or their
3670 * descriptors should generate a pagefault.
3671 */
3672 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3673 goto out;
3674
3675 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3676 goto out;
3677
3678 if (reason != TASK_SWITCH_IRET) {
3679 int cpl;
3680
3681 cpl = kvm_x86_ops->get_cpl(vcpu);
3682 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3683 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3684 return 1;
3685 }
3686 }
3687
3688 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3689 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3690 return 1;
3691 }
3692
3693 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3694 cseg_desc.type &= ~(1 << 1); //clear the B flag
3695 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3696 }
3697
3698 if (reason == TASK_SWITCH_IRET) {
3699 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3700 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3701 }
3702
3703 kvm_x86_ops->skip_emulated_instruction(vcpu);
3704
3705 if (nseg_desc.type & 8)
3706 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3707 &nseg_desc);
3708 else
3709 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3710 &nseg_desc);
3711
3712 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3713 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3714 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3715 }
3716
3717 if (reason != TASK_SWITCH_IRET) {
3718 nseg_desc.type |= (1 << 1);
3719 save_guest_segment_descriptor(vcpu, tss_selector,
3720 &nseg_desc);
3721 }
3722
3723 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3724 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3725 tr_seg.type = 11;
3726 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3727 out:
3728 return ret;
3729 }
3730 EXPORT_SYMBOL_GPL(kvm_task_switch);
3731
3732 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3733 struct kvm_sregs *sregs)
3734 {
3735 int mmu_reset_needed = 0;
3736 int i, pending_vec, max_bits;
3737 struct descriptor_table dt;
3738
3739 vcpu_load(vcpu);
3740
3741 dt.limit = sregs->idt.limit;
3742 dt.base = sregs->idt.base;
3743 kvm_x86_ops->set_idt(vcpu, &dt);
3744 dt.limit = sregs->gdt.limit;
3745 dt.base = sregs->gdt.base;
3746 kvm_x86_ops->set_gdt(vcpu, &dt);
3747
3748 vcpu->arch.cr2 = sregs->cr2;
3749 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3750 vcpu->arch.cr3 = sregs->cr3;
3751
3752 kvm_set_cr8(vcpu, sregs->cr8);
3753
3754 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3755 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3756 kvm_set_apic_base(vcpu, sregs->apic_base);
3757
3758 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3759
3760 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3761 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3762 vcpu->arch.cr0 = sregs->cr0;
3763
3764 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3765 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3766 if (!is_long_mode(vcpu) && is_pae(vcpu))
3767 load_pdptrs(vcpu, vcpu->arch.cr3);
3768
3769 if (mmu_reset_needed)
3770 kvm_mmu_reset_context(vcpu);
3771
3772 if (!irqchip_in_kernel(vcpu->kvm)) {
3773 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3774 sizeof vcpu->arch.irq_pending);
3775 vcpu->arch.irq_summary = 0;
3776 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3777 if (vcpu->arch.irq_pending[i])
3778 __set_bit(i, &vcpu->arch.irq_summary);
3779 } else {
3780 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3781 pending_vec = find_first_bit(
3782 (const unsigned long *)sregs->interrupt_bitmap,
3783 max_bits);
3784 /* Only pending external irq is handled here */
3785 if (pending_vec < max_bits) {
3786 kvm_x86_ops->set_irq(vcpu, pending_vec);
3787 pr_debug("Set back pending irq %d\n",
3788 pending_vec);
3789 }
3790 kvm_pic_clear_isr_ack(vcpu->kvm);
3791 }
3792
3793 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3794 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3795 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3796 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3797 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3798 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3799
3800 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3801 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3802
3803 /* Older userspace won't unhalt the vcpu on reset. */
3804 if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
3805 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
3806 !(vcpu->arch.cr0 & X86_CR0_PE))
3807 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3808
3809 vcpu_put(vcpu);
3810
3811 return 0;
3812 }
3813
3814 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3815 struct kvm_debug_guest *dbg)
3816 {
3817 int r;
3818
3819 vcpu_load(vcpu);
3820
3821 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3822
3823 vcpu_put(vcpu);
3824
3825 return r;
3826 }
3827
3828 /*
3829 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3830 * we have asm/x86/processor.h
3831 */
3832 struct fxsave {
3833 u16 cwd;
3834 u16 swd;
3835 u16 twd;
3836 u16 fop;
3837 u64 rip;
3838 u64 rdp;
3839 u32 mxcsr;
3840 u32 mxcsr_mask;
3841 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3842 #ifdef CONFIG_X86_64
3843 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3844 #else
3845 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3846 #endif
3847 };
3848
3849 /*
3850 * Translate a guest virtual address to a guest physical address.
3851 */
3852 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3853 struct kvm_translation *tr)
3854 {
3855 unsigned long vaddr = tr->linear_address;
3856 gpa_t gpa;
3857
3858 vcpu_load(vcpu);
3859 down_read(&vcpu->kvm->slots_lock);
3860 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3861 up_read(&vcpu->kvm->slots_lock);
3862 tr->physical_address = gpa;
3863 tr->valid = gpa != UNMAPPED_GVA;
3864 tr->writeable = 1;
3865 tr->usermode = 0;
3866 vcpu_put(vcpu);
3867
3868 return 0;
3869 }
3870
3871 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3872 {
3873 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3874
3875 vcpu_load(vcpu);
3876
3877 memcpy(fpu->fpr, fxsave->st_space, 128);
3878 fpu->fcw = fxsave->cwd;
3879 fpu->fsw = fxsave->swd;
3880 fpu->ftwx = fxsave->twd;
3881 fpu->last_opcode = fxsave->fop;
3882 fpu->last_ip = fxsave->rip;
3883 fpu->last_dp = fxsave->rdp;
3884 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3885
3886 vcpu_put(vcpu);
3887
3888 return 0;
3889 }
3890
3891 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3892 {
3893 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3894
3895 vcpu_load(vcpu);
3896
3897 memcpy(fxsave->st_space, fpu->fpr, 128);
3898 fxsave->cwd = fpu->fcw;
3899 fxsave->swd = fpu->fsw;
3900 fxsave->twd = fpu->ftwx;
3901 fxsave->fop = fpu->last_opcode;
3902 fxsave->rip = fpu->last_ip;
3903 fxsave->rdp = fpu->last_dp;
3904 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3905
3906 vcpu_put(vcpu);
3907
3908 return 0;
3909 }
3910
3911 void fx_init(struct kvm_vcpu *vcpu)
3912 {
3913 unsigned after_mxcsr_mask;
3914
3915 /*
3916 * Touch the fpu the first time in non atomic context as if
3917 * this is the first fpu instruction the exception handler
3918 * will fire before the instruction returns and it'll have to
3919 * allocate ram with GFP_KERNEL.
3920 */
3921 if (!used_math())
3922 kvm_fx_save(&vcpu->arch.host_fx_image);
3923
3924 /* Initialize guest FPU by resetting ours and saving into guest's */
3925 preempt_disable();
3926 kvm_fx_save(&vcpu->arch.host_fx_image);
3927 kvm_fx_finit();
3928 kvm_fx_save(&vcpu->arch.guest_fx_image);
3929 kvm_fx_restore(&vcpu->arch.host_fx_image);
3930 preempt_enable();
3931
3932 vcpu->arch.cr0 |= X86_CR0_ET;
3933 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3934 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3935 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3936 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3937 }
3938 EXPORT_SYMBOL_GPL(fx_init);
3939
3940 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3941 {
3942 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3943 return;
3944
3945 vcpu->guest_fpu_loaded = 1;
3946 kvm_fx_save(&vcpu->arch.host_fx_image);
3947 kvm_fx_restore(&vcpu->arch.guest_fx_image);
3948 }
3949 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3950
3951 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3952 {
3953 if (!vcpu->guest_fpu_loaded)
3954 return;
3955
3956 vcpu->guest_fpu_loaded = 0;
3957 kvm_fx_save(&vcpu->arch.guest_fx_image);
3958 kvm_fx_restore(&vcpu->arch.host_fx_image);
3959 ++vcpu->stat.fpu_reload;
3960 }
3961 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3962
3963 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3964 {
3965 kvm_x86_ops->vcpu_free(vcpu);
3966 }
3967
3968 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3969 unsigned int id)
3970 {
3971 return kvm_x86_ops->vcpu_create(kvm, id);
3972 }
3973
3974 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3975 {
3976 int r;
3977
3978 /* We do fxsave: this must be aligned. */
3979 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3980
3981 vcpu->arch.mtrr_state.have_fixed = 1;
3982 vcpu_load(vcpu);
3983 r = kvm_arch_vcpu_reset(vcpu);
3984 if (r == 0)
3985 r = kvm_mmu_setup(vcpu);
3986 vcpu_put(vcpu);
3987 if (r < 0)
3988 goto free_vcpu;
3989
3990 return 0;
3991 free_vcpu:
3992 kvm_x86_ops->vcpu_free(vcpu);
3993 return r;
3994 }
3995
3996 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3997 {
3998 vcpu_load(vcpu);
3999 kvm_mmu_unload(vcpu);
4000 vcpu_put(vcpu);
4001
4002 kvm_x86_ops->vcpu_free(vcpu);
4003 }
4004
4005 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4006 {
4007 vcpu->arch.nmi_pending = false;
4008 vcpu->arch.nmi_injected = false;
4009
4010 return kvm_x86_ops->vcpu_reset(vcpu);
4011 }
4012
4013 void kvm_arch_hardware_enable(void *garbage)
4014 {
4015 kvm_x86_ops->hardware_enable(garbage);
4016 }
4017
4018 void kvm_arch_hardware_disable(void *garbage)
4019 {
4020 kvm_x86_ops->hardware_disable(garbage);
4021 }
4022
4023 int kvm_arch_hardware_setup(void)
4024 {
4025 return kvm_x86_ops->hardware_setup();
4026 }
4027
4028 void kvm_arch_hardware_unsetup(void)
4029 {
4030 kvm_x86_ops->hardware_unsetup();
4031 }
4032
4033 void kvm_arch_check_processor_compat(void *rtn)
4034 {
4035 kvm_x86_ops->check_processor_compatibility(rtn);
4036 }
4037
4038 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4039 {
4040 struct page *page;
4041 struct kvm *kvm;
4042 int r;
4043
4044 BUG_ON(vcpu->kvm == NULL);
4045 kvm = vcpu->kvm;
4046
4047 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4048 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4049 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4050 else
4051 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4052
4053 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4054 if (!page) {
4055 r = -ENOMEM;
4056 goto fail;
4057 }
4058 vcpu->arch.pio_data = page_address(page);
4059
4060 r = kvm_mmu_create(vcpu);
4061 if (r < 0)
4062 goto fail_free_pio_data;
4063
4064 if (irqchip_in_kernel(kvm)) {
4065 r = kvm_create_lapic(vcpu);
4066 if (r < 0)
4067 goto fail_mmu_destroy;
4068 }
4069
4070 return 0;
4071
4072 fail_mmu_destroy:
4073 kvm_mmu_destroy(vcpu);
4074 fail_free_pio_data:
4075 free_page((unsigned long)vcpu->arch.pio_data);
4076 fail:
4077 return r;
4078 }
4079
4080 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4081 {
4082 kvm_free_lapic(vcpu);
4083 down_read(&vcpu->kvm->slots_lock);
4084 kvm_mmu_destroy(vcpu);
4085 up_read(&vcpu->kvm->slots_lock);
4086 free_page((unsigned long)vcpu->arch.pio_data);
4087 }
4088
4089 struct kvm *kvm_arch_create_vm(void)
4090 {
4091 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4092
4093 if (!kvm)
4094 return ERR_PTR(-ENOMEM);
4095
4096 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4097 INIT_LIST_HEAD(&kvm->arch.oos_global_pages);
4098 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4099
4100 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4101 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4102
4103 return kvm;
4104 }
4105
4106 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4107 {
4108 vcpu_load(vcpu);
4109 kvm_mmu_unload(vcpu);
4110 vcpu_put(vcpu);
4111 }
4112
4113 static void kvm_free_vcpus(struct kvm *kvm)
4114 {
4115 unsigned int i;
4116
4117 /*
4118 * Unpin any mmu pages first.
4119 */
4120 for (i = 0; i < KVM_MAX_VCPUS; ++i)
4121 if (kvm->vcpus[i])
4122 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4123 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4124 if (kvm->vcpus[i]) {
4125 kvm_arch_vcpu_free(kvm->vcpus[i]);
4126 kvm->vcpus[i] = NULL;
4127 }
4128 }
4129
4130 }
4131
4132 void kvm_arch_sync_events(struct kvm *kvm)
4133 {
4134 kvm_free_all_assigned_devices(kvm);
4135 }
4136
4137 void kvm_arch_destroy_vm(struct kvm *kvm)
4138 {
4139 kvm_iommu_unmap_guest(kvm);
4140 kvm_free_pit(kvm);
4141 kfree(kvm->arch.vpic);
4142 kfree(kvm->arch.vioapic);
4143 kvm_free_vcpus(kvm);
4144 kvm_free_physmem(kvm);
4145 if (kvm->arch.apic_access_page)
4146 put_page(kvm->arch.apic_access_page);
4147 if (kvm->arch.ept_identity_pagetable)
4148 put_page(kvm->arch.ept_identity_pagetable);
4149 kfree(kvm);
4150 }
4151
4152 int kvm_arch_set_memory_region(struct kvm *kvm,
4153 struct kvm_userspace_memory_region *mem,
4154 struct kvm_memory_slot old,
4155 int user_alloc)
4156 {
4157 int npages = mem->memory_size >> PAGE_SHIFT;
4158 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4159
4160 /*To keep backward compatibility with older userspace,
4161 *x86 needs to hanlde !user_alloc case.
4162 */
4163 if (!user_alloc) {
4164 if (npages && !old.rmap) {
4165 unsigned long userspace_addr;
4166
4167 down_write(&current->mm->mmap_sem);
4168 userspace_addr = do_mmap(NULL, 0,
4169 npages * PAGE_SIZE,
4170 PROT_READ | PROT_WRITE,
4171 MAP_PRIVATE | MAP_ANONYMOUS,
4172 0);
4173 up_write(&current->mm->mmap_sem);
4174
4175 if (IS_ERR((void *)userspace_addr))
4176 return PTR_ERR((void *)userspace_addr);
4177
4178 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4179 spin_lock(&kvm->mmu_lock);
4180 memslot->userspace_addr = userspace_addr;
4181 spin_unlock(&kvm->mmu_lock);
4182 } else {
4183 if (!old.user_alloc && old.rmap) {
4184 int ret;
4185
4186 down_write(&current->mm->mmap_sem);
4187 ret = do_munmap(current->mm, old.userspace_addr,
4188 old.npages * PAGE_SIZE);
4189 up_write(&current->mm->mmap_sem);
4190 if (ret < 0)
4191 printk(KERN_WARNING
4192 "kvm_vm_ioctl_set_memory_region: "
4193 "failed to munmap memory\n");
4194 }
4195 }
4196 }
4197
4198 if (!kvm->arch.n_requested_mmu_pages) {
4199 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4200 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4201 }
4202
4203 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4204 kvm_flush_remote_tlbs(kvm);
4205
4206 return 0;
4207 }
4208
4209 void kvm_arch_flush_shadow(struct kvm *kvm)
4210 {
4211 kvm_mmu_zap_all(kvm);
4212 }
4213
4214 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4215 {
4216 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4217 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4218 || vcpu->arch.nmi_pending;
4219 }
4220
4221 static void vcpu_kick_intr(void *info)
4222 {
4223 #ifdef DEBUG
4224 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4225 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4226 #endif
4227 }
4228
4229 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4230 {
4231 int ipi_pcpu = vcpu->cpu;
4232 int cpu = get_cpu();
4233
4234 if (waitqueue_active(&vcpu->wq)) {
4235 wake_up_interruptible(&vcpu->wq);
4236 ++vcpu->stat.halt_wakeup;
4237 }
4238 /*
4239 * We may be called synchronously with irqs disabled in guest mode,
4240 * So need not to call smp_call_function_single() in that case.
4241 */
4242 if (vcpu->guest_mode && vcpu->cpu != cpu)
4243 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4244 put_cpu();
4245 }
This page took 0.231772 seconds and 6 git commands to generate.