Merge branch 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/msr.h>
43 #include <asm/desc.h>
44 #include <asm/mtrr.h>
45
46 #define MAX_IO_MSRS 256
47 #define CR0_RESERVED_BITS \
48 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
49 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
50 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
51 #define CR4_RESERVED_BITS \
52 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
53 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
54 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
55 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
56
57 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
58 /* EFER defaults:
59 * - enable syscall per default because its emulated by KVM
60 * - enable LME and LMA per default on 64 bit KVM
61 */
62 #ifdef CONFIG_X86_64
63 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
64 #else
65 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
66 #endif
67
68 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
69 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
70
71 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
72 struct kvm_cpuid_entry2 __user *entries);
73 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
74 u32 function, u32 index);
75
76 struct kvm_x86_ops *kvm_x86_ops;
77 EXPORT_SYMBOL_GPL(kvm_x86_ops);
78
79 struct kvm_stats_debugfs_item debugfs_entries[] = {
80 { "pf_fixed", VCPU_STAT(pf_fixed) },
81 { "pf_guest", VCPU_STAT(pf_guest) },
82 { "tlb_flush", VCPU_STAT(tlb_flush) },
83 { "invlpg", VCPU_STAT(invlpg) },
84 { "exits", VCPU_STAT(exits) },
85 { "io_exits", VCPU_STAT(io_exits) },
86 { "mmio_exits", VCPU_STAT(mmio_exits) },
87 { "signal_exits", VCPU_STAT(signal_exits) },
88 { "irq_window", VCPU_STAT(irq_window_exits) },
89 { "nmi_window", VCPU_STAT(nmi_window_exits) },
90 { "halt_exits", VCPU_STAT(halt_exits) },
91 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
92 { "hypercalls", VCPU_STAT(hypercalls) },
93 { "request_irq", VCPU_STAT(request_irq_exits) },
94 { "irq_exits", VCPU_STAT(irq_exits) },
95 { "host_state_reload", VCPU_STAT(host_state_reload) },
96 { "efer_reload", VCPU_STAT(efer_reload) },
97 { "fpu_reload", VCPU_STAT(fpu_reload) },
98 { "insn_emulation", VCPU_STAT(insn_emulation) },
99 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
100 { "irq_injections", VCPU_STAT(irq_injections) },
101 { "nmi_injections", VCPU_STAT(nmi_injections) },
102 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
103 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
104 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
105 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
106 { "mmu_flooded", VM_STAT(mmu_flooded) },
107 { "mmu_recycled", VM_STAT(mmu_recycled) },
108 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
109 { "mmu_unsync", VM_STAT(mmu_unsync) },
110 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
111 { "largepages", VM_STAT(lpages) },
112 { NULL }
113 };
114
115 unsigned long segment_base(u16 selector)
116 {
117 struct descriptor_table gdt;
118 struct desc_struct *d;
119 unsigned long table_base;
120 unsigned long v;
121
122 if (selector == 0)
123 return 0;
124
125 asm("sgdt %0" : "=m"(gdt));
126 table_base = gdt.base;
127
128 if (selector & 4) { /* from ldt */
129 u16 ldt_selector;
130
131 asm("sldt %0" : "=g"(ldt_selector));
132 table_base = segment_base(ldt_selector);
133 }
134 d = (struct desc_struct *)(table_base + (selector & ~7));
135 v = d->base0 | ((unsigned long)d->base1 << 16) |
136 ((unsigned long)d->base2 << 24);
137 #ifdef CONFIG_X86_64
138 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
139 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
140 #endif
141 return v;
142 }
143 EXPORT_SYMBOL_GPL(segment_base);
144
145 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
146 {
147 if (irqchip_in_kernel(vcpu->kvm))
148 return vcpu->arch.apic_base;
149 else
150 return vcpu->arch.apic_base;
151 }
152 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
153
154 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
155 {
156 /* TODO: reserve bits check */
157 if (irqchip_in_kernel(vcpu->kvm))
158 kvm_lapic_set_base(vcpu, data);
159 else
160 vcpu->arch.apic_base = data;
161 }
162 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
163
164 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
165 {
166 WARN_ON(vcpu->arch.exception.pending);
167 vcpu->arch.exception.pending = true;
168 vcpu->arch.exception.has_error_code = false;
169 vcpu->arch.exception.nr = nr;
170 }
171 EXPORT_SYMBOL_GPL(kvm_queue_exception);
172
173 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
174 u32 error_code)
175 {
176 ++vcpu->stat.pf_guest;
177
178 if (vcpu->arch.exception.pending) {
179 if (vcpu->arch.exception.nr == PF_VECTOR) {
180 printk(KERN_DEBUG "kvm: inject_page_fault:"
181 " double fault 0x%lx\n", addr);
182 vcpu->arch.exception.nr = DF_VECTOR;
183 vcpu->arch.exception.error_code = 0;
184 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
185 /* triple fault -> shutdown */
186 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
187 }
188 return;
189 }
190 vcpu->arch.cr2 = addr;
191 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
192 }
193
194 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
195 {
196 vcpu->arch.nmi_pending = 1;
197 }
198 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
199
200 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
201 {
202 WARN_ON(vcpu->arch.exception.pending);
203 vcpu->arch.exception.pending = true;
204 vcpu->arch.exception.has_error_code = true;
205 vcpu->arch.exception.nr = nr;
206 vcpu->arch.exception.error_code = error_code;
207 }
208 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
209
210 static void __queue_exception(struct kvm_vcpu *vcpu)
211 {
212 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
213 vcpu->arch.exception.has_error_code,
214 vcpu->arch.exception.error_code);
215 }
216
217 /*
218 * Load the pae pdptrs. Return true is they are all valid.
219 */
220 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
221 {
222 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
223 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
224 int i;
225 int ret;
226 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
227
228 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
229 offset * sizeof(u64), sizeof(pdpte));
230 if (ret < 0) {
231 ret = 0;
232 goto out;
233 }
234 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
235 if (is_present_pte(pdpte[i]) &&
236 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
237 ret = 0;
238 goto out;
239 }
240 }
241 ret = 1;
242
243 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
244 out:
245
246 return ret;
247 }
248 EXPORT_SYMBOL_GPL(load_pdptrs);
249
250 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
251 {
252 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
253 bool changed = true;
254 int r;
255
256 if (is_long_mode(vcpu) || !is_pae(vcpu))
257 return false;
258
259 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
260 if (r < 0)
261 goto out;
262 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
263 out:
264
265 return changed;
266 }
267
268 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
269 {
270 if (cr0 & CR0_RESERVED_BITS) {
271 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
272 cr0, vcpu->arch.cr0);
273 kvm_inject_gp(vcpu, 0);
274 return;
275 }
276
277 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
278 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
279 kvm_inject_gp(vcpu, 0);
280 return;
281 }
282
283 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
284 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
285 "and a clear PE flag\n");
286 kvm_inject_gp(vcpu, 0);
287 return;
288 }
289
290 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
291 #ifdef CONFIG_X86_64
292 if ((vcpu->arch.shadow_efer & EFER_LME)) {
293 int cs_db, cs_l;
294
295 if (!is_pae(vcpu)) {
296 printk(KERN_DEBUG "set_cr0: #GP, start paging "
297 "in long mode while PAE is disabled\n");
298 kvm_inject_gp(vcpu, 0);
299 return;
300 }
301 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
302 if (cs_l) {
303 printk(KERN_DEBUG "set_cr0: #GP, start paging "
304 "in long mode while CS.L == 1\n");
305 kvm_inject_gp(vcpu, 0);
306 return;
307
308 }
309 } else
310 #endif
311 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
312 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
313 "reserved bits\n");
314 kvm_inject_gp(vcpu, 0);
315 return;
316 }
317
318 }
319
320 kvm_x86_ops->set_cr0(vcpu, cr0);
321 vcpu->arch.cr0 = cr0;
322
323 kvm_mmu_reset_context(vcpu);
324 return;
325 }
326 EXPORT_SYMBOL_GPL(kvm_set_cr0);
327
328 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
329 {
330 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
331 KVMTRACE_1D(LMSW, vcpu,
332 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
333 handler);
334 }
335 EXPORT_SYMBOL_GPL(kvm_lmsw);
336
337 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
338 {
339 unsigned long old_cr4 = vcpu->arch.cr4;
340 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
341
342 if (cr4 & CR4_RESERVED_BITS) {
343 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
344 kvm_inject_gp(vcpu, 0);
345 return;
346 }
347
348 if (is_long_mode(vcpu)) {
349 if (!(cr4 & X86_CR4_PAE)) {
350 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
351 "in long mode\n");
352 kvm_inject_gp(vcpu, 0);
353 return;
354 }
355 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
356 && ((cr4 ^ old_cr4) & pdptr_bits)
357 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
358 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
359 kvm_inject_gp(vcpu, 0);
360 return;
361 }
362
363 if (cr4 & X86_CR4_VMXE) {
364 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
365 kvm_inject_gp(vcpu, 0);
366 return;
367 }
368 kvm_x86_ops->set_cr4(vcpu, cr4);
369 vcpu->arch.cr4 = cr4;
370 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
371 kvm_mmu_reset_context(vcpu);
372 }
373 EXPORT_SYMBOL_GPL(kvm_set_cr4);
374
375 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
376 {
377 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
378 kvm_mmu_sync_roots(vcpu);
379 kvm_mmu_flush_tlb(vcpu);
380 return;
381 }
382
383 if (is_long_mode(vcpu)) {
384 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
385 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
386 kvm_inject_gp(vcpu, 0);
387 return;
388 }
389 } else {
390 if (is_pae(vcpu)) {
391 if (cr3 & CR3_PAE_RESERVED_BITS) {
392 printk(KERN_DEBUG
393 "set_cr3: #GP, reserved bits\n");
394 kvm_inject_gp(vcpu, 0);
395 return;
396 }
397 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
398 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
399 "reserved bits\n");
400 kvm_inject_gp(vcpu, 0);
401 return;
402 }
403 }
404 /*
405 * We don't check reserved bits in nonpae mode, because
406 * this isn't enforced, and VMware depends on this.
407 */
408 }
409
410 /*
411 * Does the new cr3 value map to physical memory? (Note, we
412 * catch an invalid cr3 even in real-mode, because it would
413 * cause trouble later on when we turn on paging anyway.)
414 *
415 * A real CPU would silently accept an invalid cr3 and would
416 * attempt to use it - with largely undefined (and often hard
417 * to debug) behavior on the guest side.
418 */
419 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
420 kvm_inject_gp(vcpu, 0);
421 else {
422 vcpu->arch.cr3 = cr3;
423 vcpu->arch.mmu.new_cr3(vcpu);
424 }
425 }
426 EXPORT_SYMBOL_GPL(kvm_set_cr3);
427
428 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
429 {
430 if (cr8 & CR8_RESERVED_BITS) {
431 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
432 kvm_inject_gp(vcpu, 0);
433 return;
434 }
435 if (irqchip_in_kernel(vcpu->kvm))
436 kvm_lapic_set_tpr(vcpu, cr8);
437 else
438 vcpu->arch.cr8 = cr8;
439 }
440 EXPORT_SYMBOL_GPL(kvm_set_cr8);
441
442 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
443 {
444 if (irqchip_in_kernel(vcpu->kvm))
445 return kvm_lapic_get_cr8(vcpu);
446 else
447 return vcpu->arch.cr8;
448 }
449 EXPORT_SYMBOL_GPL(kvm_get_cr8);
450
451 static inline u32 bit(int bitno)
452 {
453 return 1 << (bitno & 31);
454 }
455
456 /*
457 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
458 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
459 *
460 * This list is modified at module load time to reflect the
461 * capabilities of the host cpu.
462 */
463 static u32 msrs_to_save[] = {
464 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
465 MSR_K6_STAR,
466 #ifdef CONFIG_X86_64
467 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
468 #endif
469 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
470 MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
471 };
472
473 static unsigned num_msrs_to_save;
474
475 static u32 emulated_msrs[] = {
476 MSR_IA32_MISC_ENABLE,
477 };
478
479 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
480 {
481 if (efer & efer_reserved_bits) {
482 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
483 efer);
484 kvm_inject_gp(vcpu, 0);
485 return;
486 }
487
488 if (is_paging(vcpu)
489 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
490 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
491 kvm_inject_gp(vcpu, 0);
492 return;
493 }
494
495 if (efer & EFER_FFXSR) {
496 struct kvm_cpuid_entry2 *feat;
497
498 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
499 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
500 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
501 kvm_inject_gp(vcpu, 0);
502 return;
503 }
504 }
505
506 if (efer & EFER_SVME) {
507 struct kvm_cpuid_entry2 *feat;
508
509 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
510 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
511 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
512 kvm_inject_gp(vcpu, 0);
513 return;
514 }
515 }
516
517 kvm_x86_ops->set_efer(vcpu, efer);
518
519 efer &= ~EFER_LMA;
520 efer |= vcpu->arch.shadow_efer & EFER_LMA;
521
522 vcpu->arch.shadow_efer = efer;
523
524 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
525 kvm_mmu_reset_context(vcpu);
526 }
527
528 void kvm_enable_efer_bits(u64 mask)
529 {
530 efer_reserved_bits &= ~mask;
531 }
532 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
533
534
535 /*
536 * Writes msr value into into the appropriate "register".
537 * Returns 0 on success, non-0 otherwise.
538 * Assumes vcpu_load() was already called.
539 */
540 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
541 {
542 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
543 }
544
545 /*
546 * Adapt set_msr() to msr_io()'s calling convention
547 */
548 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
549 {
550 return kvm_set_msr(vcpu, index, *data);
551 }
552
553 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
554 {
555 static int version;
556 struct pvclock_wall_clock wc;
557 struct timespec now, sys, boot;
558
559 if (!wall_clock)
560 return;
561
562 version++;
563
564 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
565
566 /*
567 * The guest calculates current wall clock time by adding
568 * system time (updated by kvm_write_guest_time below) to the
569 * wall clock specified here. guest system time equals host
570 * system time for us, thus we must fill in host boot time here.
571 */
572 now = current_kernel_time();
573 ktime_get_ts(&sys);
574 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
575
576 wc.sec = boot.tv_sec;
577 wc.nsec = boot.tv_nsec;
578 wc.version = version;
579
580 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
581
582 version++;
583 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
584 }
585
586 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
587 {
588 uint32_t quotient, remainder;
589
590 /* Don't try to replace with do_div(), this one calculates
591 * "(dividend << 32) / divisor" */
592 __asm__ ( "divl %4"
593 : "=a" (quotient), "=d" (remainder)
594 : "0" (0), "1" (dividend), "r" (divisor) );
595 return quotient;
596 }
597
598 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
599 {
600 uint64_t nsecs = 1000000000LL;
601 int32_t shift = 0;
602 uint64_t tps64;
603 uint32_t tps32;
604
605 tps64 = tsc_khz * 1000LL;
606 while (tps64 > nsecs*2) {
607 tps64 >>= 1;
608 shift--;
609 }
610
611 tps32 = (uint32_t)tps64;
612 while (tps32 <= (uint32_t)nsecs) {
613 tps32 <<= 1;
614 shift++;
615 }
616
617 hv_clock->tsc_shift = shift;
618 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
619
620 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
621 __func__, tsc_khz, hv_clock->tsc_shift,
622 hv_clock->tsc_to_system_mul);
623 }
624
625 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
626
627 static void kvm_write_guest_time(struct kvm_vcpu *v)
628 {
629 struct timespec ts;
630 unsigned long flags;
631 struct kvm_vcpu_arch *vcpu = &v->arch;
632 void *shared_kaddr;
633 unsigned long this_tsc_khz;
634
635 if ((!vcpu->time_page))
636 return;
637
638 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
639 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
640 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
641 vcpu->hv_clock_tsc_khz = this_tsc_khz;
642 }
643 put_cpu_var(cpu_tsc_khz);
644
645 /* Keep irq disabled to prevent changes to the clock */
646 local_irq_save(flags);
647 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
648 &vcpu->hv_clock.tsc_timestamp);
649 ktime_get_ts(&ts);
650 local_irq_restore(flags);
651
652 /* With all the info we got, fill in the values */
653
654 vcpu->hv_clock.system_time = ts.tv_nsec +
655 (NSEC_PER_SEC * (u64)ts.tv_sec);
656 /*
657 * The interface expects us to write an even number signaling that the
658 * update is finished. Since the guest won't see the intermediate
659 * state, we just increase by 2 at the end.
660 */
661 vcpu->hv_clock.version += 2;
662
663 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
664
665 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
666 sizeof(vcpu->hv_clock));
667
668 kunmap_atomic(shared_kaddr, KM_USER0);
669
670 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
671 }
672
673 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
674 {
675 struct kvm_vcpu_arch *vcpu = &v->arch;
676
677 if (!vcpu->time_page)
678 return 0;
679 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
680 return 1;
681 }
682
683 static bool msr_mtrr_valid(unsigned msr)
684 {
685 switch (msr) {
686 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
687 case MSR_MTRRfix64K_00000:
688 case MSR_MTRRfix16K_80000:
689 case MSR_MTRRfix16K_A0000:
690 case MSR_MTRRfix4K_C0000:
691 case MSR_MTRRfix4K_C8000:
692 case MSR_MTRRfix4K_D0000:
693 case MSR_MTRRfix4K_D8000:
694 case MSR_MTRRfix4K_E0000:
695 case MSR_MTRRfix4K_E8000:
696 case MSR_MTRRfix4K_F0000:
697 case MSR_MTRRfix4K_F8000:
698 case MSR_MTRRdefType:
699 case MSR_IA32_CR_PAT:
700 return true;
701 case 0x2f8:
702 return true;
703 }
704 return false;
705 }
706
707 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
708 {
709 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
710
711 if (!msr_mtrr_valid(msr))
712 return 1;
713
714 if (msr == MSR_MTRRdefType) {
715 vcpu->arch.mtrr_state.def_type = data;
716 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
717 } else if (msr == MSR_MTRRfix64K_00000)
718 p[0] = data;
719 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
720 p[1 + msr - MSR_MTRRfix16K_80000] = data;
721 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
722 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
723 else if (msr == MSR_IA32_CR_PAT)
724 vcpu->arch.pat = data;
725 else { /* Variable MTRRs */
726 int idx, is_mtrr_mask;
727 u64 *pt;
728
729 idx = (msr - 0x200) / 2;
730 is_mtrr_mask = msr - 0x200 - 2 * idx;
731 if (!is_mtrr_mask)
732 pt =
733 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
734 else
735 pt =
736 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
737 *pt = data;
738 }
739
740 kvm_mmu_reset_context(vcpu);
741 return 0;
742 }
743
744 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
745 {
746 switch (msr) {
747 case MSR_EFER:
748 set_efer(vcpu, data);
749 break;
750 case MSR_IA32_MC0_STATUS:
751 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
752 __func__, data);
753 break;
754 case MSR_IA32_MCG_STATUS:
755 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
756 __func__, data);
757 break;
758 case MSR_IA32_MCG_CTL:
759 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
760 __func__, data);
761 break;
762 case MSR_IA32_DEBUGCTLMSR:
763 if (!data) {
764 /* We support the non-activated case already */
765 break;
766 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
767 /* Values other than LBR and BTF are vendor-specific,
768 thus reserved and should throw a #GP */
769 return 1;
770 }
771 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
772 __func__, data);
773 break;
774 case MSR_IA32_UCODE_REV:
775 case MSR_IA32_UCODE_WRITE:
776 case MSR_VM_HSAVE_PA:
777 break;
778 case 0x200 ... 0x2ff:
779 return set_msr_mtrr(vcpu, msr, data);
780 case MSR_IA32_APICBASE:
781 kvm_set_apic_base(vcpu, data);
782 break;
783 case MSR_IA32_MISC_ENABLE:
784 vcpu->arch.ia32_misc_enable_msr = data;
785 break;
786 case MSR_KVM_WALL_CLOCK:
787 vcpu->kvm->arch.wall_clock = data;
788 kvm_write_wall_clock(vcpu->kvm, data);
789 break;
790 case MSR_KVM_SYSTEM_TIME: {
791 if (vcpu->arch.time_page) {
792 kvm_release_page_dirty(vcpu->arch.time_page);
793 vcpu->arch.time_page = NULL;
794 }
795
796 vcpu->arch.time = data;
797
798 /* we verify if the enable bit is set... */
799 if (!(data & 1))
800 break;
801
802 /* ...but clean it before doing the actual write */
803 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
804
805 vcpu->arch.time_page =
806 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
807
808 if (is_error_page(vcpu->arch.time_page)) {
809 kvm_release_page_clean(vcpu->arch.time_page);
810 vcpu->arch.time_page = NULL;
811 }
812
813 kvm_request_guest_time_update(vcpu);
814 break;
815 }
816 default:
817 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
818 return 1;
819 }
820 return 0;
821 }
822 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
823
824
825 /*
826 * Reads an msr value (of 'msr_index') into 'pdata'.
827 * Returns 0 on success, non-0 otherwise.
828 * Assumes vcpu_load() was already called.
829 */
830 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
831 {
832 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
833 }
834
835 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
836 {
837 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
838
839 if (!msr_mtrr_valid(msr))
840 return 1;
841
842 if (msr == MSR_MTRRdefType)
843 *pdata = vcpu->arch.mtrr_state.def_type +
844 (vcpu->arch.mtrr_state.enabled << 10);
845 else if (msr == MSR_MTRRfix64K_00000)
846 *pdata = p[0];
847 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
848 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
849 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
850 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
851 else if (msr == MSR_IA32_CR_PAT)
852 *pdata = vcpu->arch.pat;
853 else { /* Variable MTRRs */
854 int idx, is_mtrr_mask;
855 u64 *pt;
856
857 idx = (msr - 0x200) / 2;
858 is_mtrr_mask = msr - 0x200 - 2 * idx;
859 if (!is_mtrr_mask)
860 pt =
861 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
862 else
863 pt =
864 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
865 *pdata = *pt;
866 }
867
868 return 0;
869 }
870
871 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
872 {
873 u64 data;
874
875 switch (msr) {
876 case 0xc0010010: /* SYSCFG */
877 case 0xc0010015: /* HWCR */
878 case MSR_IA32_PLATFORM_ID:
879 case MSR_IA32_P5_MC_ADDR:
880 case MSR_IA32_P5_MC_TYPE:
881 case MSR_IA32_MC0_CTL:
882 case MSR_IA32_MCG_STATUS:
883 case MSR_IA32_MCG_CAP:
884 case MSR_IA32_MCG_CTL:
885 case MSR_IA32_MC0_MISC:
886 case MSR_IA32_MC0_MISC+4:
887 case MSR_IA32_MC0_MISC+8:
888 case MSR_IA32_MC0_MISC+12:
889 case MSR_IA32_MC0_MISC+16:
890 case MSR_IA32_MC0_MISC+20:
891 case MSR_IA32_UCODE_REV:
892 case MSR_IA32_EBL_CR_POWERON:
893 case MSR_IA32_DEBUGCTLMSR:
894 case MSR_IA32_LASTBRANCHFROMIP:
895 case MSR_IA32_LASTBRANCHTOIP:
896 case MSR_IA32_LASTINTFROMIP:
897 case MSR_IA32_LASTINTTOIP:
898 case MSR_VM_HSAVE_PA:
899 case MSR_P6_EVNTSEL0:
900 case MSR_P6_EVNTSEL1:
901 case MSR_K7_EVNTSEL0:
902 data = 0;
903 break;
904 case MSR_MTRRcap:
905 data = 0x500 | KVM_NR_VAR_MTRR;
906 break;
907 case 0x200 ... 0x2ff:
908 return get_msr_mtrr(vcpu, msr, pdata);
909 case 0xcd: /* fsb frequency */
910 data = 3;
911 break;
912 case MSR_IA32_APICBASE:
913 data = kvm_get_apic_base(vcpu);
914 break;
915 case MSR_IA32_MISC_ENABLE:
916 data = vcpu->arch.ia32_misc_enable_msr;
917 break;
918 case MSR_IA32_PERF_STATUS:
919 /* TSC increment by tick */
920 data = 1000ULL;
921 /* CPU multiplier */
922 data |= (((uint64_t)4ULL) << 40);
923 break;
924 case MSR_EFER:
925 data = vcpu->arch.shadow_efer;
926 break;
927 case MSR_KVM_WALL_CLOCK:
928 data = vcpu->kvm->arch.wall_clock;
929 break;
930 case MSR_KVM_SYSTEM_TIME:
931 data = vcpu->arch.time;
932 break;
933 default:
934 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
935 return 1;
936 }
937 *pdata = data;
938 return 0;
939 }
940 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
941
942 /*
943 * Read or write a bunch of msrs. All parameters are kernel addresses.
944 *
945 * @return number of msrs set successfully.
946 */
947 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
948 struct kvm_msr_entry *entries,
949 int (*do_msr)(struct kvm_vcpu *vcpu,
950 unsigned index, u64 *data))
951 {
952 int i;
953
954 vcpu_load(vcpu);
955
956 down_read(&vcpu->kvm->slots_lock);
957 for (i = 0; i < msrs->nmsrs; ++i)
958 if (do_msr(vcpu, entries[i].index, &entries[i].data))
959 break;
960 up_read(&vcpu->kvm->slots_lock);
961
962 vcpu_put(vcpu);
963
964 return i;
965 }
966
967 /*
968 * Read or write a bunch of msrs. Parameters are user addresses.
969 *
970 * @return number of msrs set successfully.
971 */
972 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
973 int (*do_msr)(struct kvm_vcpu *vcpu,
974 unsigned index, u64 *data),
975 int writeback)
976 {
977 struct kvm_msrs msrs;
978 struct kvm_msr_entry *entries;
979 int r, n;
980 unsigned size;
981
982 r = -EFAULT;
983 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
984 goto out;
985
986 r = -E2BIG;
987 if (msrs.nmsrs >= MAX_IO_MSRS)
988 goto out;
989
990 r = -ENOMEM;
991 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
992 entries = vmalloc(size);
993 if (!entries)
994 goto out;
995
996 r = -EFAULT;
997 if (copy_from_user(entries, user_msrs->entries, size))
998 goto out_free;
999
1000 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1001 if (r < 0)
1002 goto out_free;
1003
1004 r = -EFAULT;
1005 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1006 goto out_free;
1007
1008 r = n;
1009
1010 out_free:
1011 vfree(entries);
1012 out:
1013 return r;
1014 }
1015
1016 int kvm_dev_ioctl_check_extension(long ext)
1017 {
1018 int r;
1019
1020 switch (ext) {
1021 case KVM_CAP_IRQCHIP:
1022 case KVM_CAP_HLT:
1023 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1024 case KVM_CAP_SET_TSS_ADDR:
1025 case KVM_CAP_EXT_CPUID:
1026 case KVM_CAP_CLOCKSOURCE:
1027 case KVM_CAP_PIT:
1028 case KVM_CAP_NOP_IO_DELAY:
1029 case KVM_CAP_MP_STATE:
1030 case KVM_CAP_SYNC_MMU:
1031 case KVM_CAP_REINJECT_CONTROL:
1032 case KVM_CAP_IRQ_INJECT_STATUS:
1033 case KVM_CAP_ASSIGN_DEV_IRQ:
1034 r = 1;
1035 break;
1036 case KVM_CAP_COALESCED_MMIO:
1037 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1038 break;
1039 case KVM_CAP_VAPIC:
1040 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1041 break;
1042 case KVM_CAP_NR_VCPUS:
1043 r = KVM_MAX_VCPUS;
1044 break;
1045 case KVM_CAP_NR_MEMSLOTS:
1046 r = KVM_MEMORY_SLOTS;
1047 break;
1048 case KVM_CAP_PV_MMU:
1049 r = !tdp_enabled;
1050 break;
1051 case KVM_CAP_IOMMU:
1052 r = iommu_found();
1053 break;
1054 default:
1055 r = 0;
1056 break;
1057 }
1058 return r;
1059
1060 }
1061
1062 long kvm_arch_dev_ioctl(struct file *filp,
1063 unsigned int ioctl, unsigned long arg)
1064 {
1065 void __user *argp = (void __user *)arg;
1066 long r;
1067
1068 switch (ioctl) {
1069 case KVM_GET_MSR_INDEX_LIST: {
1070 struct kvm_msr_list __user *user_msr_list = argp;
1071 struct kvm_msr_list msr_list;
1072 unsigned n;
1073
1074 r = -EFAULT;
1075 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1076 goto out;
1077 n = msr_list.nmsrs;
1078 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1079 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1080 goto out;
1081 r = -E2BIG;
1082 if (n < num_msrs_to_save)
1083 goto out;
1084 r = -EFAULT;
1085 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1086 num_msrs_to_save * sizeof(u32)))
1087 goto out;
1088 if (copy_to_user(user_msr_list->indices
1089 + num_msrs_to_save * sizeof(u32),
1090 &emulated_msrs,
1091 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1092 goto out;
1093 r = 0;
1094 break;
1095 }
1096 case KVM_GET_SUPPORTED_CPUID: {
1097 struct kvm_cpuid2 __user *cpuid_arg = argp;
1098 struct kvm_cpuid2 cpuid;
1099
1100 r = -EFAULT;
1101 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1102 goto out;
1103 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1104 cpuid_arg->entries);
1105 if (r)
1106 goto out;
1107
1108 r = -EFAULT;
1109 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1110 goto out;
1111 r = 0;
1112 break;
1113 }
1114 default:
1115 r = -EINVAL;
1116 }
1117 out:
1118 return r;
1119 }
1120
1121 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1122 {
1123 kvm_x86_ops->vcpu_load(vcpu, cpu);
1124 kvm_request_guest_time_update(vcpu);
1125 }
1126
1127 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1128 {
1129 kvm_x86_ops->vcpu_put(vcpu);
1130 kvm_put_guest_fpu(vcpu);
1131 }
1132
1133 static int is_efer_nx(void)
1134 {
1135 unsigned long long efer = 0;
1136
1137 rdmsrl_safe(MSR_EFER, &efer);
1138 return efer & EFER_NX;
1139 }
1140
1141 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1142 {
1143 int i;
1144 struct kvm_cpuid_entry2 *e, *entry;
1145
1146 entry = NULL;
1147 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1148 e = &vcpu->arch.cpuid_entries[i];
1149 if (e->function == 0x80000001) {
1150 entry = e;
1151 break;
1152 }
1153 }
1154 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1155 entry->edx &= ~(1 << 20);
1156 printk(KERN_INFO "kvm: guest NX capability removed\n");
1157 }
1158 }
1159
1160 /* when an old userspace process fills a new kernel module */
1161 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1162 struct kvm_cpuid *cpuid,
1163 struct kvm_cpuid_entry __user *entries)
1164 {
1165 int r, i;
1166 struct kvm_cpuid_entry *cpuid_entries;
1167
1168 r = -E2BIG;
1169 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1170 goto out;
1171 r = -ENOMEM;
1172 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1173 if (!cpuid_entries)
1174 goto out;
1175 r = -EFAULT;
1176 if (copy_from_user(cpuid_entries, entries,
1177 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1178 goto out_free;
1179 for (i = 0; i < cpuid->nent; i++) {
1180 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1181 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1182 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1183 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1184 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1185 vcpu->arch.cpuid_entries[i].index = 0;
1186 vcpu->arch.cpuid_entries[i].flags = 0;
1187 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1188 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1189 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1190 }
1191 vcpu->arch.cpuid_nent = cpuid->nent;
1192 cpuid_fix_nx_cap(vcpu);
1193 r = 0;
1194
1195 out_free:
1196 vfree(cpuid_entries);
1197 out:
1198 return r;
1199 }
1200
1201 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1202 struct kvm_cpuid2 *cpuid,
1203 struct kvm_cpuid_entry2 __user *entries)
1204 {
1205 int r;
1206
1207 r = -E2BIG;
1208 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1209 goto out;
1210 r = -EFAULT;
1211 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1212 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1213 goto out;
1214 vcpu->arch.cpuid_nent = cpuid->nent;
1215 return 0;
1216
1217 out:
1218 return r;
1219 }
1220
1221 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1222 struct kvm_cpuid2 *cpuid,
1223 struct kvm_cpuid_entry2 __user *entries)
1224 {
1225 int r;
1226
1227 r = -E2BIG;
1228 if (cpuid->nent < vcpu->arch.cpuid_nent)
1229 goto out;
1230 r = -EFAULT;
1231 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1232 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1233 goto out;
1234 return 0;
1235
1236 out:
1237 cpuid->nent = vcpu->arch.cpuid_nent;
1238 return r;
1239 }
1240
1241 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1242 u32 index)
1243 {
1244 entry->function = function;
1245 entry->index = index;
1246 cpuid_count(entry->function, entry->index,
1247 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1248 entry->flags = 0;
1249 }
1250
1251 #define F(x) bit(X86_FEATURE_##x)
1252
1253 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1254 u32 index, int *nent, int maxnent)
1255 {
1256 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1257 #ifdef CONFIG_X86_64
1258 unsigned f_lm = F(LM);
1259 #else
1260 unsigned f_lm = 0;
1261 #endif
1262
1263 /* cpuid 1.edx */
1264 const u32 kvm_supported_word0_x86_features =
1265 F(FPU) | F(VME) | F(DE) | F(PSE) |
1266 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1267 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1268 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1269 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1270 0 /* Reserved, DS, ACPI */ | F(MMX) |
1271 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1272 0 /* HTT, TM, Reserved, PBE */;
1273 /* cpuid 0x80000001.edx */
1274 const u32 kvm_supported_word1_x86_features =
1275 F(FPU) | F(VME) | F(DE) | F(PSE) |
1276 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1277 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1278 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1279 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1280 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1281 F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
1282 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1283 /* cpuid 1.ecx */
1284 const u32 kvm_supported_word4_x86_features =
1285 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1286 0 /* DS-CPL, VMX, SMX, EST */ |
1287 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1288 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1289 0 /* Reserved, DCA */ | F(XMM4_1) |
1290 F(XMM4_2) | 0 /* x2APIC */ | F(MOVBE) | F(POPCNT) |
1291 0 /* Reserved, XSAVE, OSXSAVE */;
1292 /* cpuid 0x80000001.ecx */
1293 const u32 kvm_supported_word6_x86_features =
1294 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1295 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1296 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1297 0 /* SKINIT */ | 0 /* WDT */;
1298
1299 /* all calls to cpuid_count() should be made on the same cpu */
1300 get_cpu();
1301 do_cpuid_1_ent(entry, function, index);
1302 ++*nent;
1303
1304 switch (function) {
1305 case 0:
1306 entry->eax = min(entry->eax, (u32)0xb);
1307 break;
1308 case 1:
1309 entry->edx &= kvm_supported_word0_x86_features;
1310 entry->ecx &= kvm_supported_word4_x86_features;
1311 break;
1312 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1313 * may return different values. This forces us to get_cpu() before
1314 * issuing the first command, and also to emulate this annoying behavior
1315 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1316 case 2: {
1317 int t, times = entry->eax & 0xff;
1318
1319 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1320 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1321 for (t = 1; t < times && *nent < maxnent; ++t) {
1322 do_cpuid_1_ent(&entry[t], function, 0);
1323 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1324 ++*nent;
1325 }
1326 break;
1327 }
1328 /* function 4 and 0xb have additional index. */
1329 case 4: {
1330 int i, cache_type;
1331
1332 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1333 /* read more entries until cache_type is zero */
1334 for (i = 1; *nent < maxnent; ++i) {
1335 cache_type = entry[i - 1].eax & 0x1f;
1336 if (!cache_type)
1337 break;
1338 do_cpuid_1_ent(&entry[i], function, i);
1339 entry[i].flags |=
1340 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1341 ++*nent;
1342 }
1343 break;
1344 }
1345 case 0xb: {
1346 int i, level_type;
1347
1348 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1349 /* read more entries until level_type is zero */
1350 for (i = 1; *nent < maxnent; ++i) {
1351 level_type = entry[i - 1].ecx & 0xff00;
1352 if (!level_type)
1353 break;
1354 do_cpuid_1_ent(&entry[i], function, i);
1355 entry[i].flags |=
1356 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1357 ++*nent;
1358 }
1359 break;
1360 }
1361 case 0x80000000:
1362 entry->eax = min(entry->eax, 0x8000001a);
1363 break;
1364 case 0x80000001:
1365 entry->edx &= kvm_supported_word1_x86_features;
1366 entry->ecx &= kvm_supported_word6_x86_features;
1367 break;
1368 }
1369 put_cpu();
1370 }
1371
1372 #undef F
1373
1374 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1375 struct kvm_cpuid_entry2 __user *entries)
1376 {
1377 struct kvm_cpuid_entry2 *cpuid_entries;
1378 int limit, nent = 0, r = -E2BIG;
1379 u32 func;
1380
1381 if (cpuid->nent < 1)
1382 goto out;
1383 r = -ENOMEM;
1384 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1385 if (!cpuid_entries)
1386 goto out;
1387
1388 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1389 limit = cpuid_entries[0].eax;
1390 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1391 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1392 &nent, cpuid->nent);
1393 r = -E2BIG;
1394 if (nent >= cpuid->nent)
1395 goto out_free;
1396
1397 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1398 limit = cpuid_entries[nent - 1].eax;
1399 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1400 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1401 &nent, cpuid->nent);
1402 r = -EFAULT;
1403 if (copy_to_user(entries, cpuid_entries,
1404 nent * sizeof(struct kvm_cpuid_entry2)))
1405 goto out_free;
1406 cpuid->nent = nent;
1407 r = 0;
1408
1409 out_free:
1410 vfree(cpuid_entries);
1411 out:
1412 return r;
1413 }
1414
1415 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1416 struct kvm_lapic_state *s)
1417 {
1418 vcpu_load(vcpu);
1419 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1420 vcpu_put(vcpu);
1421
1422 return 0;
1423 }
1424
1425 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1426 struct kvm_lapic_state *s)
1427 {
1428 vcpu_load(vcpu);
1429 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1430 kvm_apic_post_state_restore(vcpu);
1431 vcpu_put(vcpu);
1432
1433 return 0;
1434 }
1435
1436 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1437 struct kvm_interrupt *irq)
1438 {
1439 if (irq->irq < 0 || irq->irq >= 256)
1440 return -EINVAL;
1441 if (irqchip_in_kernel(vcpu->kvm))
1442 return -ENXIO;
1443 vcpu_load(vcpu);
1444
1445 kvm_queue_interrupt(vcpu, irq->irq, false);
1446
1447 vcpu_put(vcpu);
1448
1449 return 0;
1450 }
1451
1452 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1453 {
1454 vcpu_load(vcpu);
1455 kvm_inject_nmi(vcpu);
1456 vcpu_put(vcpu);
1457
1458 return 0;
1459 }
1460
1461 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1462 struct kvm_tpr_access_ctl *tac)
1463 {
1464 if (tac->flags)
1465 return -EINVAL;
1466 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1467 return 0;
1468 }
1469
1470 long kvm_arch_vcpu_ioctl(struct file *filp,
1471 unsigned int ioctl, unsigned long arg)
1472 {
1473 struct kvm_vcpu *vcpu = filp->private_data;
1474 void __user *argp = (void __user *)arg;
1475 int r;
1476 struct kvm_lapic_state *lapic = NULL;
1477
1478 switch (ioctl) {
1479 case KVM_GET_LAPIC: {
1480 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1481
1482 r = -ENOMEM;
1483 if (!lapic)
1484 goto out;
1485 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1486 if (r)
1487 goto out;
1488 r = -EFAULT;
1489 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1490 goto out;
1491 r = 0;
1492 break;
1493 }
1494 case KVM_SET_LAPIC: {
1495 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1496 r = -ENOMEM;
1497 if (!lapic)
1498 goto out;
1499 r = -EFAULT;
1500 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1501 goto out;
1502 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1503 if (r)
1504 goto out;
1505 r = 0;
1506 break;
1507 }
1508 case KVM_INTERRUPT: {
1509 struct kvm_interrupt irq;
1510
1511 r = -EFAULT;
1512 if (copy_from_user(&irq, argp, sizeof irq))
1513 goto out;
1514 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1515 if (r)
1516 goto out;
1517 r = 0;
1518 break;
1519 }
1520 case KVM_NMI: {
1521 r = kvm_vcpu_ioctl_nmi(vcpu);
1522 if (r)
1523 goto out;
1524 r = 0;
1525 break;
1526 }
1527 case KVM_SET_CPUID: {
1528 struct kvm_cpuid __user *cpuid_arg = argp;
1529 struct kvm_cpuid cpuid;
1530
1531 r = -EFAULT;
1532 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1533 goto out;
1534 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1535 if (r)
1536 goto out;
1537 break;
1538 }
1539 case KVM_SET_CPUID2: {
1540 struct kvm_cpuid2 __user *cpuid_arg = argp;
1541 struct kvm_cpuid2 cpuid;
1542
1543 r = -EFAULT;
1544 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1545 goto out;
1546 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1547 cpuid_arg->entries);
1548 if (r)
1549 goto out;
1550 break;
1551 }
1552 case KVM_GET_CPUID2: {
1553 struct kvm_cpuid2 __user *cpuid_arg = argp;
1554 struct kvm_cpuid2 cpuid;
1555
1556 r = -EFAULT;
1557 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1558 goto out;
1559 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1560 cpuid_arg->entries);
1561 if (r)
1562 goto out;
1563 r = -EFAULT;
1564 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1565 goto out;
1566 r = 0;
1567 break;
1568 }
1569 case KVM_GET_MSRS:
1570 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1571 break;
1572 case KVM_SET_MSRS:
1573 r = msr_io(vcpu, argp, do_set_msr, 0);
1574 break;
1575 case KVM_TPR_ACCESS_REPORTING: {
1576 struct kvm_tpr_access_ctl tac;
1577
1578 r = -EFAULT;
1579 if (copy_from_user(&tac, argp, sizeof tac))
1580 goto out;
1581 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1582 if (r)
1583 goto out;
1584 r = -EFAULT;
1585 if (copy_to_user(argp, &tac, sizeof tac))
1586 goto out;
1587 r = 0;
1588 break;
1589 };
1590 case KVM_SET_VAPIC_ADDR: {
1591 struct kvm_vapic_addr va;
1592
1593 r = -EINVAL;
1594 if (!irqchip_in_kernel(vcpu->kvm))
1595 goto out;
1596 r = -EFAULT;
1597 if (copy_from_user(&va, argp, sizeof va))
1598 goto out;
1599 r = 0;
1600 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1601 break;
1602 }
1603 default:
1604 r = -EINVAL;
1605 }
1606 out:
1607 kfree(lapic);
1608 return r;
1609 }
1610
1611 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1612 {
1613 int ret;
1614
1615 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1616 return -1;
1617 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1618 return ret;
1619 }
1620
1621 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1622 u32 kvm_nr_mmu_pages)
1623 {
1624 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1625 return -EINVAL;
1626
1627 down_write(&kvm->slots_lock);
1628 spin_lock(&kvm->mmu_lock);
1629
1630 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1631 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1632
1633 spin_unlock(&kvm->mmu_lock);
1634 up_write(&kvm->slots_lock);
1635 return 0;
1636 }
1637
1638 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1639 {
1640 return kvm->arch.n_alloc_mmu_pages;
1641 }
1642
1643 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1644 {
1645 int i;
1646 struct kvm_mem_alias *alias;
1647
1648 for (i = 0; i < kvm->arch.naliases; ++i) {
1649 alias = &kvm->arch.aliases[i];
1650 if (gfn >= alias->base_gfn
1651 && gfn < alias->base_gfn + alias->npages)
1652 return alias->target_gfn + gfn - alias->base_gfn;
1653 }
1654 return gfn;
1655 }
1656
1657 /*
1658 * Set a new alias region. Aliases map a portion of physical memory into
1659 * another portion. This is useful for memory windows, for example the PC
1660 * VGA region.
1661 */
1662 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1663 struct kvm_memory_alias *alias)
1664 {
1665 int r, n;
1666 struct kvm_mem_alias *p;
1667
1668 r = -EINVAL;
1669 /* General sanity checks */
1670 if (alias->memory_size & (PAGE_SIZE - 1))
1671 goto out;
1672 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1673 goto out;
1674 if (alias->slot >= KVM_ALIAS_SLOTS)
1675 goto out;
1676 if (alias->guest_phys_addr + alias->memory_size
1677 < alias->guest_phys_addr)
1678 goto out;
1679 if (alias->target_phys_addr + alias->memory_size
1680 < alias->target_phys_addr)
1681 goto out;
1682
1683 down_write(&kvm->slots_lock);
1684 spin_lock(&kvm->mmu_lock);
1685
1686 p = &kvm->arch.aliases[alias->slot];
1687 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1688 p->npages = alias->memory_size >> PAGE_SHIFT;
1689 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1690
1691 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1692 if (kvm->arch.aliases[n - 1].npages)
1693 break;
1694 kvm->arch.naliases = n;
1695
1696 spin_unlock(&kvm->mmu_lock);
1697 kvm_mmu_zap_all(kvm);
1698
1699 up_write(&kvm->slots_lock);
1700
1701 return 0;
1702
1703 out:
1704 return r;
1705 }
1706
1707 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1708 {
1709 int r;
1710
1711 r = 0;
1712 switch (chip->chip_id) {
1713 case KVM_IRQCHIP_PIC_MASTER:
1714 memcpy(&chip->chip.pic,
1715 &pic_irqchip(kvm)->pics[0],
1716 sizeof(struct kvm_pic_state));
1717 break;
1718 case KVM_IRQCHIP_PIC_SLAVE:
1719 memcpy(&chip->chip.pic,
1720 &pic_irqchip(kvm)->pics[1],
1721 sizeof(struct kvm_pic_state));
1722 break;
1723 case KVM_IRQCHIP_IOAPIC:
1724 memcpy(&chip->chip.ioapic,
1725 ioapic_irqchip(kvm),
1726 sizeof(struct kvm_ioapic_state));
1727 break;
1728 default:
1729 r = -EINVAL;
1730 break;
1731 }
1732 return r;
1733 }
1734
1735 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1736 {
1737 int r;
1738
1739 r = 0;
1740 switch (chip->chip_id) {
1741 case KVM_IRQCHIP_PIC_MASTER:
1742 memcpy(&pic_irqchip(kvm)->pics[0],
1743 &chip->chip.pic,
1744 sizeof(struct kvm_pic_state));
1745 break;
1746 case KVM_IRQCHIP_PIC_SLAVE:
1747 memcpy(&pic_irqchip(kvm)->pics[1],
1748 &chip->chip.pic,
1749 sizeof(struct kvm_pic_state));
1750 break;
1751 case KVM_IRQCHIP_IOAPIC:
1752 memcpy(ioapic_irqchip(kvm),
1753 &chip->chip.ioapic,
1754 sizeof(struct kvm_ioapic_state));
1755 break;
1756 default:
1757 r = -EINVAL;
1758 break;
1759 }
1760 kvm_pic_update_irq(pic_irqchip(kvm));
1761 return r;
1762 }
1763
1764 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1765 {
1766 int r = 0;
1767
1768 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1769 return r;
1770 }
1771
1772 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1773 {
1774 int r = 0;
1775
1776 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1777 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1778 return r;
1779 }
1780
1781 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
1782 struct kvm_reinject_control *control)
1783 {
1784 if (!kvm->arch.vpit)
1785 return -ENXIO;
1786 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
1787 return 0;
1788 }
1789
1790 /*
1791 * Get (and clear) the dirty memory log for a memory slot.
1792 */
1793 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1794 struct kvm_dirty_log *log)
1795 {
1796 int r;
1797 int n;
1798 struct kvm_memory_slot *memslot;
1799 int is_dirty = 0;
1800
1801 down_write(&kvm->slots_lock);
1802
1803 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1804 if (r)
1805 goto out;
1806
1807 /* If nothing is dirty, don't bother messing with page tables. */
1808 if (is_dirty) {
1809 spin_lock(&kvm->mmu_lock);
1810 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1811 spin_unlock(&kvm->mmu_lock);
1812 kvm_flush_remote_tlbs(kvm);
1813 memslot = &kvm->memslots[log->slot];
1814 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1815 memset(memslot->dirty_bitmap, 0, n);
1816 }
1817 r = 0;
1818 out:
1819 up_write(&kvm->slots_lock);
1820 return r;
1821 }
1822
1823 long kvm_arch_vm_ioctl(struct file *filp,
1824 unsigned int ioctl, unsigned long arg)
1825 {
1826 struct kvm *kvm = filp->private_data;
1827 void __user *argp = (void __user *)arg;
1828 int r = -EINVAL;
1829 /*
1830 * This union makes it completely explicit to gcc-3.x
1831 * that these two variables' stack usage should be
1832 * combined, not added together.
1833 */
1834 union {
1835 struct kvm_pit_state ps;
1836 struct kvm_memory_alias alias;
1837 } u;
1838
1839 switch (ioctl) {
1840 case KVM_SET_TSS_ADDR:
1841 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1842 if (r < 0)
1843 goto out;
1844 break;
1845 case KVM_SET_MEMORY_REGION: {
1846 struct kvm_memory_region kvm_mem;
1847 struct kvm_userspace_memory_region kvm_userspace_mem;
1848
1849 r = -EFAULT;
1850 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1851 goto out;
1852 kvm_userspace_mem.slot = kvm_mem.slot;
1853 kvm_userspace_mem.flags = kvm_mem.flags;
1854 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1855 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1856 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1857 if (r)
1858 goto out;
1859 break;
1860 }
1861 case KVM_SET_NR_MMU_PAGES:
1862 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1863 if (r)
1864 goto out;
1865 break;
1866 case KVM_GET_NR_MMU_PAGES:
1867 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1868 break;
1869 case KVM_SET_MEMORY_ALIAS:
1870 r = -EFAULT;
1871 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1872 goto out;
1873 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1874 if (r)
1875 goto out;
1876 break;
1877 case KVM_CREATE_IRQCHIP:
1878 r = -ENOMEM;
1879 kvm->arch.vpic = kvm_create_pic(kvm);
1880 if (kvm->arch.vpic) {
1881 r = kvm_ioapic_init(kvm);
1882 if (r) {
1883 kfree(kvm->arch.vpic);
1884 kvm->arch.vpic = NULL;
1885 goto out;
1886 }
1887 } else
1888 goto out;
1889 r = kvm_setup_default_irq_routing(kvm);
1890 if (r) {
1891 kfree(kvm->arch.vpic);
1892 kfree(kvm->arch.vioapic);
1893 goto out;
1894 }
1895 break;
1896 case KVM_CREATE_PIT:
1897 mutex_lock(&kvm->lock);
1898 r = -EEXIST;
1899 if (kvm->arch.vpit)
1900 goto create_pit_unlock;
1901 r = -ENOMEM;
1902 kvm->arch.vpit = kvm_create_pit(kvm);
1903 if (kvm->arch.vpit)
1904 r = 0;
1905 create_pit_unlock:
1906 mutex_unlock(&kvm->lock);
1907 break;
1908 case KVM_IRQ_LINE_STATUS:
1909 case KVM_IRQ_LINE: {
1910 struct kvm_irq_level irq_event;
1911
1912 r = -EFAULT;
1913 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1914 goto out;
1915 if (irqchip_in_kernel(kvm)) {
1916 __s32 status;
1917 mutex_lock(&kvm->lock);
1918 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1919 irq_event.irq, irq_event.level);
1920 mutex_unlock(&kvm->lock);
1921 if (ioctl == KVM_IRQ_LINE_STATUS) {
1922 irq_event.status = status;
1923 if (copy_to_user(argp, &irq_event,
1924 sizeof irq_event))
1925 goto out;
1926 }
1927 r = 0;
1928 }
1929 break;
1930 }
1931 case KVM_GET_IRQCHIP: {
1932 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1933 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1934
1935 r = -ENOMEM;
1936 if (!chip)
1937 goto out;
1938 r = -EFAULT;
1939 if (copy_from_user(chip, argp, sizeof *chip))
1940 goto get_irqchip_out;
1941 r = -ENXIO;
1942 if (!irqchip_in_kernel(kvm))
1943 goto get_irqchip_out;
1944 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1945 if (r)
1946 goto get_irqchip_out;
1947 r = -EFAULT;
1948 if (copy_to_user(argp, chip, sizeof *chip))
1949 goto get_irqchip_out;
1950 r = 0;
1951 get_irqchip_out:
1952 kfree(chip);
1953 if (r)
1954 goto out;
1955 break;
1956 }
1957 case KVM_SET_IRQCHIP: {
1958 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1959 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1960
1961 r = -ENOMEM;
1962 if (!chip)
1963 goto out;
1964 r = -EFAULT;
1965 if (copy_from_user(chip, argp, sizeof *chip))
1966 goto set_irqchip_out;
1967 r = -ENXIO;
1968 if (!irqchip_in_kernel(kvm))
1969 goto set_irqchip_out;
1970 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1971 if (r)
1972 goto set_irqchip_out;
1973 r = 0;
1974 set_irqchip_out:
1975 kfree(chip);
1976 if (r)
1977 goto out;
1978 break;
1979 }
1980 case KVM_GET_PIT: {
1981 r = -EFAULT;
1982 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
1983 goto out;
1984 r = -ENXIO;
1985 if (!kvm->arch.vpit)
1986 goto out;
1987 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
1988 if (r)
1989 goto out;
1990 r = -EFAULT;
1991 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
1992 goto out;
1993 r = 0;
1994 break;
1995 }
1996 case KVM_SET_PIT: {
1997 r = -EFAULT;
1998 if (copy_from_user(&u.ps, argp, sizeof u.ps))
1999 goto out;
2000 r = -ENXIO;
2001 if (!kvm->arch.vpit)
2002 goto out;
2003 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2004 if (r)
2005 goto out;
2006 r = 0;
2007 break;
2008 }
2009 case KVM_REINJECT_CONTROL: {
2010 struct kvm_reinject_control control;
2011 r = -EFAULT;
2012 if (copy_from_user(&control, argp, sizeof(control)))
2013 goto out;
2014 r = kvm_vm_ioctl_reinject(kvm, &control);
2015 if (r)
2016 goto out;
2017 r = 0;
2018 break;
2019 }
2020 default:
2021 ;
2022 }
2023 out:
2024 return r;
2025 }
2026
2027 static void kvm_init_msr_list(void)
2028 {
2029 u32 dummy[2];
2030 unsigned i, j;
2031
2032 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2033 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2034 continue;
2035 if (j < i)
2036 msrs_to_save[j] = msrs_to_save[i];
2037 j++;
2038 }
2039 num_msrs_to_save = j;
2040 }
2041
2042 /*
2043 * Only apic need an MMIO device hook, so shortcut now..
2044 */
2045 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2046 gpa_t addr, int len,
2047 int is_write)
2048 {
2049 struct kvm_io_device *dev;
2050
2051 if (vcpu->arch.apic) {
2052 dev = &vcpu->arch.apic->dev;
2053 if (dev->in_range(dev, addr, len, is_write))
2054 return dev;
2055 }
2056 return NULL;
2057 }
2058
2059
2060 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2061 gpa_t addr, int len,
2062 int is_write)
2063 {
2064 struct kvm_io_device *dev;
2065
2066 dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2067 if (dev == NULL)
2068 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
2069 is_write);
2070 return dev;
2071 }
2072
2073 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2074 struct kvm_vcpu *vcpu)
2075 {
2076 void *data = val;
2077 int r = X86EMUL_CONTINUE;
2078
2079 while (bytes) {
2080 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2081 unsigned offset = addr & (PAGE_SIZE-1);
2082 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2083 int ret;
2084
2085 if (gpa == UNMAPPED_GVA) {
2086 r = X86EMUL_PROPAGATE_FAULT;
2087 goto out;
2088 }
2089 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2090 if (ret < 0) {
2091 r = X86EMUL_UNHANDLEABLE;
2092 goto out;
2093 }
2094
2095 bytes -= toread;
2096 data += toread;
2097 addr += toread;
2098 }
2099 out:
2100 return r;
2101 }
2102
2103 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2104 struct kvm_vcpu *vcpu)
2105 {
2106 void *data = val;
2107 int r = X86EMUL_CONTINUE;
2108
2109 while (bytes) {
2110 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2111 unsigned offset = addr & (PAGE_SIZE-1);
2112 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2113 int ret;
2114
2115 if (gpa == UNMAPPED_GVA) {
2116 r = X86EMUL_PROPAGATE_FAULT;
2117 goto out;
2118 }
2119 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2120 if (ret < 0) {
2121 r = X86EMUL_UNHANDLEABLE;
2122 goto out;
2123 }
2124
2125 bytes -= towrite;
2126 data += towrite;
2127 addr += towrite;
2128 }
2129 out:
2130 return r;
2131 }
2132
2133
2134 static int emulator_read_emulated(unsigned long addr,
2135 void *val,
2136 unsigned int bytes,
2137 struct kvm_vcpu *vcpu)
2138 {
2139 struct kvm_io_device *mmio_dev;
2140 gpa_t gpa;
2141
2142 if (vcpu->mmio_read_completed) {
2143 memcpy(val, vcpu->mmio_data, bytes);
2144 vcpu->mmio_read_completed = 0;
2145 return X86EMUL_CONTINUE;
2146 }
2147
2148 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2149
2150 /* For APIC access vmexit */
2151 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2152 goto mmio;
2153
2154 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2155 == X86EMUL_CONTINUE)
2156 return X86EMUL_CONTINUE;
2157 if (gpa == UNMAPPED_GVA)
2158 return X86EMUL_PROPAGATE_FAULT;
2159
2160 mmio:
2161 /*
2162 * Is this MMIO handled locally?
2163 */
2164 mutex_lock(&vcpu->kvm->lock);
2165 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2166 if (mmio_dev) {
2167 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2168 mutex_unlock(&vcpu->kvm->lock);
2169 return X86EMUL_CONTINUE;
2170 }
2171 mutex_unlock(&vcpu->kvm->lock);
2172
2173 vcpu->mmio_needed = 1;
2174 vcpu->mmio_phys_addr = gpa;
2175 vcpu->mmio_size = bytes;
2176 vcpu->mmio_is_write = 0;
2177
2178 return X86EMUL_UNHANDLEABLE;
2179 }
2180
2181 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2182 const void *val, int bytes)
2183 {
2184 int ret;
2185
2186 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2187 if (ret < 0)
2188 return 0;
2189 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2190 return 1;
2191 }
2192
2193 static int emulator_write_emulated_onepage(unsigned long addr,
2194 const void *val,
2195 unsigned int bytes,
2196 struct kvm_vcpu *vcpu)
2197 {
2198 struct kvm_io_device *mmio_dev;
2199 gpa_t gpa;
2200
2201 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2202
2203 if (gpa == UNMAPPED_GVA) {
2204 kvm_inject_page_fault(vcpu, addr, 2);
2205 return X86EMUL_PROPAGATE_FAULT;
2206 }
2207
2208 /* For APIC access vmexit */
2209 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2210 goto mmio;
2211
2212 if (emulator_write_phys(vcpu, gpa, val, bytes))
2213 return X86EMUL_CONTINUE;
2214
2215 mmio:
2216 /*
2217 * Is this MMIO handled locally?
2218 */
2219 mutex_lock(&vcpu->kvm->lock);
2220 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2221 if (mmio_dev) {
2222 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2223 mutex_unlock(&vcpu->kvm->lock);
2224 return X86EMUL_CONTINUE;
2225 }
2226 mutex_unlock(&vcpu->kvm->lock);
2227
2228 vcpu->mmio_needed = 1;
2229 vcpu->mmio_phys_addr = gpa;
2230 vcpu->mmio_size = bytes;
2231 vcpu->mmio_is_write = 1;
2232 memcpy(vcpu->mmio_data, val, bytes);
2233
2234 return X86EMUL_CONTINUE;
2235 }
2236
2237 int emulator_write_emulated(unsigned long addr,
2238 const void *val,
2239 unsigned int bytes,
2240 struct kvm_vcpu *vcpu)
2241 {
2242 /* Crossing a page boundary? */
2243 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2244 int rc, now;
2245
2246 now = -addr & ~PAGE_MASK;
2247 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2248 if (rc != X86EMUL_CONTINUE)
2249 return rc;
2250 addr += now;
2251 val += now;
2252 bytes -= now;
2253 }
2254 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2255 }
2256 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2257
2258 static int emulator_cmpxchg_emulated(unsigned long addr,
2259 const void *old,
2260 const void *new,
2261 unsigned int bytes,
2262 struct kvm_vcpu *vcpu)
2263 {
2264 static int reported;
2265
2266 if (!reported) {
2267 reported = 1;
2268 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2269 }
2270 #ifndef CONFIG_X86_64
2271 /* guests cmpxchg8b have to be emulated atomically */
2272 if (bytes == 8) {
2273 gpa_t gpa;
2274 struct page *page;
2275 char *kaddr;
2276 u64 val;
2277
2278 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2279
2280 if (gpa == UNMAPPED_GVA ||
2281 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2282 goto emul_write;
2283
2284 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2285 goto emul_write;
2286
2287 val = *(u64 *)new;
2288
2289 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2290
2291 kaddr = kmap_atomic(page, KM_USER0);
2292 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2293 kunmap_atomic(kaddr, KM_USER0);
2294 kvm_release_page_dirty(page);
2295 }
2296 emul_write:
2297 #endif
2298
2299 return emulator_write_emulated(addr, new, bytes, vcpu);
2300 }
2301
2302 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2303 {
2304 return kvm_x86_ops->get_segment_base(vcpu, seg);
2305 }
2306
2307 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2308 {
2309 kvm_mmu_invlpg(vcpu, address);
2310 return X86EMUL_CONTINUE;
2311 }
2312
2313 int emulate_clts(struct kvm_vcpu *vcpu)
2314 {
2315 KVMTRACE_0D(CLTS, vcpu, handler);
2316 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2317 return X86EMUL_CONTINUE;
2318 }
2319
2320 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2321 {
2322 struct kvm_vcpu *vcpu = ctxt->vcpu;
2323
2324 switch (dr) {
2325 case 0 ... 3:
2326 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2327 return X86EMUL_CONTINUE;
2328 default:
2329 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2330 return X86EMUL_UNHANDLEABLE;
2331 }
2332 }
2333
2334 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2335 {
2336 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2337 int exception;
2338
2339 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2340 if (exception) {
2341 /* FIXME: better handling */
2342 return X86EMUL_UNHANDLEABLE;
2343 }
2344 return X86EMUL_CONTINUE;
2345 }
2346
2347 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2348 {
2349 u8 opcodes[4];
2350 unsigned long rip = kvm_rip_read(vcpu);
2351 unsigned long rip_linear;
2352
2353 if (!printk_ratelimit())
2354 return;
2355
2356 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2357
2358 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2359
2360 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2361 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2362 }
2363 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2364
2365 static struct x86_emulate_ops emulate_ops = {
2366 .read_std = kvm_read_guest_virt,
2367 .read_emulated = emulator_read_emulated,
2368 .write_emulated = emulator_write_emulated,
2369 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2370 };
2371
2372 static void cache_all_regs(struct kvm_vcpu *vcpu)
2373 {
2374 kvm_register_read(vcpu, VCPU_REGS_RAX);
2375 kvm_register_read(vcpu, VCPU_REGS_RSP);
2376 kvm_register_read(vcpu, VCPU_REGS_RIP);
2377 vcpu->arch.regs_dirty = ~0;
2378 }
2379
2380 int emulate_instruction(struct kvm_vcpu *vcpu,
2381 struct kvm_run *run,
2382 unsigned long cr2,
2383 u16 error_code,
2384 int emulation_type)
2385 {
2386 int r, shadow_mask;
2387 struct decode_cache *c;
2388
2389 kvm_clear_exception_queue(vcpu);
2390 vcpu->arch.mmio_fault_cr2 = cr2;
2391 /*
2392 * TODO: fix x86_emulate.c to use guest_read/write_register
2393 * instead of direct ->regs accesses, can save hundred cycles
2394 * on Intel for instructions that don't read/change RSP, for
2395 * for example.
2396 */
2397 cache_all_regs(vcpu);
2398
2399 vcpu->mmio_is_write = 0;
2400 vcpu->arch.pio.string = 0;
2401
2402 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2403 int cs_db, cs_l;
2404 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2405
2406 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2407 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2408 vcpu->arch.emulate_ctxt.mode =
2409 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2410 ? X86EMUL_MODE_REAL : cs_l
2411 ? X86EMUL_MODE_PROT64 : cs_db
2412 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2413
2414 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2415
2416 /* Reject the instructions other than VMCALL/VMMCALL when
2417 * try to emulate invalid opcode */
2418 c = &vcpu->arch.emulate_ctxt.decode;
2419 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2420 (!(c->twobyte && c->b == 0x01 &&
2421 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2422 c->modrm_mod == 3 && c->modrm_rm == 1)))
2423 return EMULATE_FAIL;
2424
2425 ++vcpu->stat.insn_emulation;
2426 if (r) {
2427 ++vcpu->stat.insn_emulation_fail;
2428 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2429 return EMULATE_DONE;
2430 return EMULATE_FAIL;
2431 }
2432 }
2433
2434 if (emulation_type & EMULTYPE_SKIP) {
2435 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2436 return EMULATE_DONE;
2437 }
2438
2439 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2440 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2441
2442 if (r == 0)
2443 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2444
2445 if (vcpu->arch.pio.string)
2446 return EMULATE_DO_MMIO;
2447
2448 if ((r || vcpu->mmio_is_write) && run) {
2449 run->exit_reason = KVM_EXIT_MMIO;
2450 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2451 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2452 run->mmio.len = vcpu->mmio_size;
2453 run->mmio.is_write = vcpu->mmio_is_write;
2454 }
2455
2456 if (r) {
2457 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2458 return EMULATE_DONE;
2459 if (!vcpu->mmio_needed) {
2460 kvm_report_emulation_failure(vcpu, "mmio");
2461 return EMULATE_FAIL;
2462 }
2463 return EMULATE_DO_MMIO;
2464 }
2465
2466 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2467
2468 if (vcpu->mmio_is_write) {
2469 vcpu->mmio_needed = 0;
2470 return EMULATE_DO_MMIO;
2471 }
2472
2473 return EMULATE_DONE;
2474 }
2475 EXPORT_SYMBOL_GPL(emulate_instruction);
2476
2477 static int pio_copy_data(struct kvm_vcpu *vcpu)
2478 {
2479 void *p = vcpu->arch.pio_data;
2480 gva_t q = vcpu->arch.pio.guest_gva;
2481 unsigned bytes;
2482 int ret;
2483
2484 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2485 if (vcpu->arch.pio.in)
2486 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2487 else
2488 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2489 return ret;
2490 }
2491
2492 int complete_pio(struct kvm_vcpu *vcpu)
2493 {
2494 struct kvm_pio_request *io = &vcpu->arch.pio;
2495 long delta;
2496 int r;
2497 unsigned long val;
2498
2499 if (!io->string) {
2500 if (io->in) {
2501 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2502 memcpy(&val, vcpu->arch.pio_data, io->size);
2503 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2504 }
2505 } else {
2506 if (io->in) {
2507 r = pio_copy_data(vcpu);
2508 if (r)
2509 return r;
2510 }
2511
2512 delta = 1;
2513 if (io->rep) {
2514 delta *= io->cur_count;
2515 /*
2516 * The size of the register should really depend on
2517 * current address size.
2518 */
2519 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2520 val -= delta;
2521 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2522 }
2523 if (io->down)
2524 delta = -delta;
2525 delta *= io->size;
2526 if (io->in) {
2527 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2528 val += delta;
2529 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2530 } else {
2531 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2532 val += delta;
2533 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2534 }
2535 }
2536
2537 io->count -= io->cur_count;
2538 io->cur_count = 0;
2539
2540 return 0;
2541 }
2542
2543 static void kernel_pio(struct kvm_io_device *pio_dev,
2544 struct kvm_vcpu *vcpu,
2545 void *pd)
2546 {
2547 /* TODO: String I/O for in kernel device */
2548
2549 mutex_lock(&vcpu->kvm->lock);
2550 if (vcpu->arch.pio.in)
2551 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2552 vcpu->arch.pio.size,
2553 pd);
2554 else
2555 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2556 vcpu->arch.pio.size,
2557 pd);
2558 mutex_unlock(&vcpu->kvm->lock);
2559 }
2560
2561 static void pio_string_write(struct kvm_io_device *pio_dev,
2562 struct kvm_vcpu *vcpu)
2563 {
2564 struct kvm_pio_request *io = &vcpu->arch.pio;
2565 void *pd = vcpu->arch.pio_data;
2566 int i;
2567
2568 mutex_lock(&vcpu->kvm->lock);
2569 for (i = 0; i < io->cur_count; i++) {
2570 kvm_iodevice_write(pio_dev, io->port,
2571 io->size,
2572 pd);
2573 pd += io->size;
2574 }
2575 mutex_unlock(&vcpu->kvm->lock);
2576 }
2577
2578 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2579 gpa_t addr, int len,
2580 int is_write)
2581 {
2582 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2583 }
2584
2585 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2586 int size, unsigned port)
2587 {
2588 struct kvm_io_device *pio_dev;
2589 unsigned long val;
2590
2591 vcpu->run->exit_reason = KVM_EXIT_IO;
2592 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2593 vcpu->run->io.size = vcpu->arch.pio.size = size;
2594 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2595 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2596 vcpu->run->io.port = vcpu->arch.pio.port = port;
2597 vcpu->arch.pio.in = in;
2598 vcpu->arch.pio.string = 0;
2599 vcpu->arch.pio.down = 0;
2600 vcpu->arch.pio.rep = 0;
2601
2602 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2603 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2604 handler);
2605 else
2606 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2607 handler);
2608
2609 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2610 memcpy(vcpu->arch.pio_data, &val, 4);
2611
2612 pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2613 if (pio_dev) {
2614 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2615 complete_pio(vcpu);
2616 return 1;
2617 }
2618 return 0;
2619 }
2620 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2621
2622 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2623 int size, unsigned long count, int down,
2624 gva_t address, int rep, unsigned port)
2625 {
2626 unsigned now, in_page;
2627 int ret = 0;
2628 struct kvm_io_device *pio_dev;
2629
2630 vcpu->run->exit_reason = KVM_EXIT_IO;
2631 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2632 vcpu->run->io.size = vcpu->arch.pio.size = size;
2633 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2634 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2635 vcpu->run->io.port = vcpu->arch.pio.port = port;
2636 vcpu->arch.pio.in = in;
2637 vcpu->arch.pio.string = 1;
2638 vcpu->arch.pio.down = down;
2639 vcpu->arch.pio.rep = rep;
2640
2641 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2642 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2643 handler);
2644 else
2645 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2646 handler);
2647
2648 if (!count) {
2649 kvm_x86_ops->skip_emulated_instruction(vcpu);
2650 return 1;
2651 }
2652
2653 if (!down)
2654 in_page = PAGE_SIZE - offset_in_page(address);
2655 else
2656 in_page = offset_in_page(address) + size;
2657 now = min(count, (unsigned long)in_page / size);
2658 if (!now)
2659 now = 1;
2660 if (down) {
2661 /*
2662 * String I/O in reverse. Yuck. Kill the guest, fix later.
2663 */
2664 pr_unimpl(vcpu, "guest string pio down\n");
2665 kvm_inject_gp(vcpu, 0);
2666 return 1;
2667 }
2668 vcpu->run->io.count = now;
2669 vcpu->arch.pio.cur_count = now;
2670
2671 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2672 kvm_x86_ops->skip_emulated_instruction(vcpu);
2673
2674 vcpu->arch.pio.guest_gva = address;
2675
2676 pio_dev = vcpu_find_pio_dev(vcpu, port,
2677 vcpu->arch.pio.cur_count,
2678 !vcpu->arch.pio.in);
2679 if (!vcpu->arch.pio.in) {
2680 /* string PIO write */
2681 ret = pio_copy_data(vcpu);
2682 if (ret == X86EMUL_PROPAGATE_FAULT) {
2683 kvm_inject_gp(vcpu, 0);
2684 return 1;
2685 }
2686 if (ret == 0 && pio_dev) {
2687 pio_string_write(pio_dev, vcpu);
2688 complete_pio(vcpu);
2689 if (vcpu->arch.pio.count == 0)
2690 ret = 1;
2691 }
2692 } else if (pio_dev)
2693 pr_unimpl(vcpu, "no string pio read support yet, "
2694 "port %x size %d count %ld\n",
2695 port, size, count);
2696
2697 return ret;
2698 }
2699 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2700
2701 static void bounce_off(void *info)
2702 {
2703 /* nothing */
2704 }
2705
2706 static unsigned int ref_freq;
2707 static unsigned long tsc_khz_ref;
2708
2709 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
2710 void *data)
2711 {
2712 struct cpufreq_freqs *freq = data;
2713 struct kvm *kvm;
2714 struct kvm_vcpu *vcpu;
2715 int i, send_ipi = 0;
2716
2717 if (!ref_freq)
2718 ref_freq = freq->old;
2719
2720 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
2721 return 0;
2722 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
2723 return 0;
2724 per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
2725
2726 spin_lock(&kvm_lock);
2727 list_for_each_entry(kvm, &vm_list, vm_list) {
2728 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2729 vcpu = kvm->vcpus[i];
2730 if (!vcpu)
2731 continue;
2732 if (vcpu->cpu != freq->cpu)
2733 continue;
2734 if (!kvm_request_guest_time_update(vcpu))
2735 continue;
2736 if (vcpu->cpu != smp_processor_id())
2737 send_ipi++;
2738 }
2739 }
2740 spin_unlock(&kvm_lock);
2741
2742 if (freq->old < freq->new && send_ipi) {
2743 /*
2744 * We upscale the frequency. Must make the guest
2745 * doesn't see old kvmclock values while running with
2746 * the new frequency, otherwise we risk the guest sees
2747 * time go backwards.
2748 *
2749 * In case we update the frequency for another cpu
2750 * (which might be in guest context) send an interrupt
2751 * to kick the cpu out of guest context. Next time
2752 * guest context is entered kvmclock will be updated,
2753 * so the guest will not see stale values.
2754 */
2755 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
2756 }
2757 return 0;
2758 }
2759
2760 static struct notifier_block kvmclock_cpufreq_notifier_block = {
2761 .notifier_call = kvmclock_cpufreq_notifier
2762 };
2763
2764 int kvm_arch_init(void *opaque)
2765 {
2766 int r, cpu;
2767 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2768
2769 if (kvm_x86_ops) {
2770 printk(KERN_ERR "kvm: already loaded the other module\n");
2771 r = -EEXIST;
2772 goto out;
2773 }
2774
2775 if (!ops->cpu_has_kvm_support()) {
2776 printk(KERN_ERR "kvm: no hardware support\n");
2777 r = -EOPNOTSUPP;
2778 goto out;
2779 }
2780 if (ops->disabled_by_bios()) {
2781 printk(KERN_ERR "kvm: disabled by bios\n");
2782 r = -EOPNOTSUPP;
2783 goto out;
2784 }
2785
2786 r = kvm_mmu_module_init();
2787 if (r)
2788 goto out;
2789
2790 kvm_init_msr_list();
2791
2792 kvm_x86_ops = ops;
2793 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2794 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2795 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2796 PT_DIRTY_MASK, PT64_NX_MASK, 0);
2797
2798 for_each_possible_cpu(cpu)
2799 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
2800 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
2801 tsc_khz_ref = tsc_khz;
2802 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
2803 CPUFREQ_TRANSITION_NOTIFIER);
2804 }
2805
2806 return 0;
2807
2808 out:
2809 return r;
2810 }
2811
2812 void kvm_arch_exit(void)
2813 {
2814 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
2815 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
2816 CPUFREQ_TRANSITION_NOTIFIER);
2817 kvm_x86_ops = NULL;
2818 kvm_mmu_module_exit();
2819 }
2820
2821 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2822 {
2823 ++vcpu->stat.halt_exits;
2824 KVMTRACE_0D(HLT, vcpu, handler);
2825 if (irqchip_in_kernel(vcpu->kvm)) {
2826 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2827 return 1;
2828 } else {
2829 vcpu->run->exit_reason = KVM_EXIT_HLT;
2830 return 0;
2831 }
2832 }
2833 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2834
2835 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2836 unsigned long a1)
2837 {
2838 if (is_long_mode(vcpu))
2839 return a0;
2840 else
2841 return a0 | ((gpa_t)a1 << 32);
2842 }
2843
2844 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2845 {
2846 unsigned long nr, a0, a1, a2, a3, ret;
2847 int r = 1;
2848
2849 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2850 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2851 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2852 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2853 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2854
2855 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2856
2857 if (!is_long_mode(vcpu)) {
2858 nr &= 0xFFFFFFFF;
2859 a0 &= 0xFFFFFFFF;
2860 a1 &= 0xFFFFFFFF;
2861 a2 &= 0xFFFFFFFF;
2862 a3 &= 0xFFFFFFFF;
2863 }
2864
2865 switch (nr) {
2866 case KVM_HC_VAPIC_POLL_IRQ:
2867 ret = 0;
2868 break;
2869 case KVM_HC_MMU_OP:
2870 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2871 break;
2872 default:
2873 ret = -KVM_ENOSYS;
2874 break;
2875 }
2876 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2877 ++vcpu->stat.hypercalls;
2878 return r;
2879 }
2880 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2881
2882 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2883 {
2884 char instruction[3];
2885 int ret = 0;
2886 unsigned long rip = kvm_rip_read(vcpu);
2887
2888
2889 /*
2890 * Blow out the MMU to ensure that no other VCPU has an active mapping
2891 * to ensure that the updated hypercall appears atomically across all
2892 * VCPUs.
2893 */
2894 kvm_mmu_zap_all(vcpu->kvm);
2895
2896 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2897 if (emulator_write_emulated(rip, instruction, 3, vcpu)
2898 != X86EMUL_CONTINUE)
2899 ret = -EFAULT;
2900
2901 return ret;
2902 }
2903
2904 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2905 {
2906 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2907 }
2908
2909 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2910 {
2911 struct descriptor_table dt = { limit, base };
2912
2913 kvm_x86_ops->set_gdt(vcpu, &dt);
2914 }
2915
2916 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2917 {
2918 struct descriptor_table dt = { limit, base };
2919
2920 kvm_x86_ops->set_idt(vcpu, &dt);
2921 }
2922
2923 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2924 unsigned long *rflags)
2925 {
2926 kvm_lmsw(vcpu, msw);
2927 *rflags = kvm_x86_ops->get_rflags(vcpu);
2928 }
2929
2930 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2931 {
2932 unsigned long value;
2933
2934 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2935 switch (cr) {
2936 case 0:
2937 value = vcpu->arch.cr0;
2938 break;
2939 case 2:
2940 value = vcpu->arch.cr2;
2941 break;
2942 case 3:
2943 value = vcpu->arch.cr3;
2944 break;
2945 case 4:
2946 value = vcpu->arch.cr4;
2947 break;
2948 case 8:
2949 value = kvm_get_cr8(vcpu);
2950 break;
2951 default:
2952 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2953 return 0;
2954 }
2955 KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2956 (u32)((u64)value >> 32), handler);
2957
2958 return value;
2959 }
2960
2961 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2962 unsigned long *rflags)
2963 {
2964 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2965 (u32)((u64)val >> 32), handler);
2966
2967 switch (cr) {
2968 case 0:
2969 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2970 *rflags = kvm_x86_ops->get_rflags(vcpu);
2971 break;
2972 case 2:
2973 vcpu->arch.cr2 = val;
2974 break;
2975 case 3:
2976 kvm_set_cr3(vcpu, val);
2977 break;
2978 case 4:
2979 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2980 break;
2981 case 8:
2982 kvm_set_cr8(vcpu, val & 0xfUL);
2983 break;
2984 default:
2985 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2986 }
2987 }
2988
2989 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2990 {
2991 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2992 int j, nent = vcpu->arch.cpuid_nent;
2993
2994 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2995 /* when no next entry is found, the current entry[i] is reselected */
2996 for (j = i + 1; ; j = (j + 1) % nent) {
2997 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2998 if (ej->function == e->function) {
2999 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3000 return j;
3001 }
3002 }
3003 return 0; /* silence gcc, even though control never reaches here */
3004 }
3005
3006 /* find an entry with matching function, matching index (if needed), and that
3007 * should be read next (if it's stateful) */
3008 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3009 u32 function, u32 index)
3010 {
3011 if (e->function != function)
3012 return 0;
3013 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3014 return 0;
3015 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3016 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3017 return 0;
3018 return 1;
3019 }
3020
3021 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3022 u32 function, u32 index)
3023 {
3024 int i;
3025 struct kvm_cpuid_entry2 *best = NULL;
3026
3027 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3028 struct kvm_cpuid_entry2 *e;
3029
3030 e = &vcpu->arch.cpuid_entries[i];
3031 if (is_matching_cpuid_entry(e, function, index)) {
3032 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3033 move_to_next_stateful_cpuid_entry(vcpu, i);
3034 best = e;
3035 break;
3036 }
3037 /*
3038 * Both basic or both extended?
3039 */
3040 if (((e->function ^ function) & 0x80000000) == 0)
3041 if (!best || e->function > best->function)
3042 best = e;
3043 }
3044 return best;
3045 }
3046
3047 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3048 {
3049 struct kvm_cpuid_entry2 *best;
3050
3051 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3052 if (best)
3053 return best->eax & 0xff;
3054 return 36;
3055 }
3056
3057 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3058 {
3059 u32 function, index;
3060 struct kvm_cpuid_entry2 *best;
3061
3062 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3063 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3064 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3065 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3066 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3067 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3068 best = kvm_find_cpuid_entry(vcpu, function, index);
3069 if (best) {
3070 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3071 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3072 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3073 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3074 }
3075 kvm_x86_ops->skip_emulated_instruction(vcpu);
3076 KVMTRACE_5D(CPUID, vcpu, function,
3077 (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
3078 (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
3079 (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
3080 (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3081 }
3082 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3083
3084 /*
3085 * Check if userspace requested an interrupt window, and that the
3086 * interrupt window is open.
3087 *
3088 * No need to exit to userspace if we already have an interrupt queued.
3089 */
3090 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3091 struct kvm_run *kvm_run)
3092 {
3093 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3094 kvm_run->request_interrupt_window &&
3095 kvm_arch_interrupt_allowed(vcpu));
3096 }
3097
3098 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3099 struct kvm_run *kvm_run)
3100 {
3101 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3102 kvm_run->cr8 = kvm_get_cr8(vcpu);
3103 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3104 if (irqchip_in_kernel(vcpu->kvm))
3105 kvm_run->ready_for_interrupt_injection = 1;
3106 else
3107 kvm_run->ready_for_interrupt_injection =
3108 kvm_arch_interrupt_allowed(vcpu) &&
3109 !kvm_cpu_has_interrupt(vcpu) &&
3110 !kvm_event_needs_reinjection(vcpu);
3111 }
3112
3113 static void vapic_enter(struct kvm_vcpu *vcpu)
3114 {
3115 struct kvm_lapic *apic = vcpu->arch.apic;
3116 struct page *page;
3117
3118 if (!apic || !apic->vapic_addr)
3119 return;
3120
3121 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3122
3123 vcpu->arch.apic->vapic_page = page;
3124 }
3125
3126 static void vapic_exit(struct kvm_vcpu *vcpu)
3127 {
3128 struct kvm_lapic *apic = vcpu->arch.apic;
3129
3130 if (!apic || !apic->vapic_addr)
3131 return;
3132
3133 down_read(&vcpu->kvm->slots_lock);
3134 kvm_release_page_dirty(apic->vapic_page);
3135 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3136 up_read(&vcpu->kvm->slots_lock);
3137 }
3138
3139 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3140 {
3141 int max_irr, tpr;
3142
3143 if (!kvm_x86_ops->update_cr8_intercept)
3144 return;
3145
3146 if (!vcpu->arch.apic->vapic_addr)
3147 max_irr = kvm_lapic_find_highest_irr(vcpu);
3148 else
3149 max_irr = -1;
3150
3151 if (max_irr != -1)
3152 max_irr >>= 4;
3153
3154 tpr = kvm_lapic_get_cr8(vcpu);
3155
3156 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3157 }
3158
3159 static void inject_pending_irq(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3160 {
3161 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3162 kvm_x86_ops->set_interrupt_shadow(vcpu, 0);
3163
3164 /* try to reinject previous events if any */
3165 if (vcpu->arch.nmi_injected) {
3166 kvm_x86_ops->set_nmi(vcpu);
3167 return;
3168 }
3169
3170 if (vcpu->arch.interrupt.pending) {
3171 kvm_x86_ops->set_irq(vcpu);
3172 return;
3173 }
3174
3175 /* try to inject new event if pending */
3176 if (vcpu->arch.nmi_pending) {
3177 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3178 vcpu->arch.nmi_pending = false;
3179 vcpu->arch.nmi_injected = true;
3180 kvm_x86_ops->set_nmi(vcpu);
3181 }
3182 } else if (kvm_cpu_has_interrupt(vcpu)) {
3183 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3184 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3185 false);
3186 kvm_x86_ops->set_irq(vcpu);
3187 }
3188 }
3189 }
3190
3191 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3192 {
3193 int r;
3194 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3195 kvm_run->request_interrupt_window;
3196
3197 if (vcpu->requests)
3198 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3199 kvm_mmu_unload(vcpu);
3200
3201 r = kvm_mmu_reload(vcpu);
3202 if (unlikely(r))
3203 goto out;
3204
3205 if (vcpu->requests) {
3206 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3207 __kvm_migrate_timers(vcpu);
3208 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3209 kvm_write_guest_time(vcpu);
3210 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3211 kvm_mmu_sync_roots(vcpu);
3212 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3213 kvm_x86_ops->tlb_flush(vcpu);
3214 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3215 &vcpu->requests)) {
3216 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3217 r = 0;
3218 goto out;
3219 }
3220 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3221 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3222 r = 0;
3223 goto out;
3224 }
3225 }
3226
3227 preempt_disable();
3228
3229 kvm_x86_ops->prepare_guest_switch(vcpu);
3230 kvm_load_guest_fpu(vcpu);
3231
3232 local_irq_disable();
3233
3234 clear_bit(KVM_REQ_KICK, &vcpu->requests);
3235 smp_mb__after_clear_bit();
3236
3237 if (vcpu->requests || need_resched() || signal_pending(current)) {
3238 local_irq_enable();
3239 preempt_enable();
3240 r = 1;
3241 goto out;
3242 }
3243
3244 if (vcpu->arch.exception.pending)
3245 __queue_exception(vcpu);
3246 else
3247 inject_pending_irq(vcpu, kvm_run);
3248
3249 /* enable NMI/IRQ window open exits if needed */
3250 if (vcpu->arch.nmi_pending)
3251 kvm_x86_ops->enable_nmi_window(vcpu);
3252 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3253 kvm_x86_ops->enable_irq_window(vcpu);
3254
3255 if (kvm_lapic_enabled(vcpu)) {
3256 update_cr8_intercept(vcpu);
3257 kvm_lapic_sync_to_vapic(vcpu);
3258 }
3259
3260 up_read(&vcpu->kvm->slots_lock);
3261
3262 kvm_guest_enter();
3263
3264 get_debugreg(vcpu->arch.host_dr6, 6);
3265 get_debugreg(vcpu->arch.host_dr7, 7);
3266 if (unlikely(vcpu->arch.switch_db_regs)) {
3267 get_debugreg(vcpu->arch.host_db[0], 0);
3268 get_debugreg(vcpu->arch.host_db[1], 1);
3269 get_debugreg(vcpu->arch.host_db[2], 2);
3270 get_debugreg(vcpu->arch.host_db[3], 3);
3271
3272 set_debugreg(0, 7);
3273 set_debugreg(vcpu->arch.eff_db[0], 0);
3274 set_debugreg(vcpu->arch.eff_db[1], 1);
3275 set_debugreg(vcpu->arch.eff_db[2], 2);
3276 set_debugreg(vcpu->arch.eff_db[3], 3);
3277 }
3278
3279 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3280 kvm_x86_ops->run(vcpu, kvm_run);
3281
3282 if (unlikely(vcpu->arch.switch_db_regs)) {
3283 set_debugreg(0, 7);
3284 set_debugreg(vcpu->arch.host_db[0], 0);
3285 set_debugreg(vcpu->arch.host_db[1], 1);
3286 set_debugreg(vcpu->arch.host_db[2], 2);
3287 set_debugreg(vcpu->arch.host_db[3], 3);
3288 }
3289 set_debugreg(vcpu->arch.host_dr6, 6);
3290 set_debugreg(vcpu->arch.host_dr7, 7);
3291
3292 set_bit(KVM_REQ_KICK, &vcpu->requests);
3293 local_irq_enable();
3294
3295 ++vcpu->stat.exits;
3296
3297 /*
3298 * We must have an instruction between local_irq_enable() and
3299 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3300 * the interrupt shadow. The stat.exits increment will do nicely.
3301 * But we need to prevent reordering, hence this barrier():
3302 */
3303 barrier();
3304
3305 kvm_guest_exit();
3306
3307 preempt_enable();
3308
3309 down_read(&vcpu->kvm->slots_lock);
3310
3311 /*
3312 * Profile KVM exit RIPs:
3313 */
3314 if (unlikely(prof_on == KVM_PROFILING)) {
3315 unsigned long rip = kvm_rip_read(vcpu);
3316 profile_hit(KVM_PROFILING, (void *)rip);
3317 }
3318
3319
3320 kvm_lapic_sync_from_vapic(vcpu);
3321
3322 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3323 out:
3324 return r;
3325 }
3326
3327
3328 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3329 {
3330 int r;
3331
3332 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3333 pr_debug("vcpu %d received sipi with vector # %x\n",
3334 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3335 kvm_lapic_reset(vcpu);
3336 r = kvm_arch_vcpu_reset(vcpu);
3337 if (r)
3338 return r;
3339 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3340 }
3341
3342 down_read(&vcpu->kvm->slots_lock);
3343 vapic_enter(vcpu);
3344
3345 r = 1;
3346 while (r > 0) {
3347 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3348 r = vcpu_enter_guest(vcpu, kvm_run);
3349 else {
3350 up_read(&vcpu->kvm->slots_lock);
3351 kvm_vcpu_block(vcpu);
3352 down_read(&vcpu->kvm->slots_lock);
3353 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3354 {
3355 switch(vcpu->arch.mp_state) {
3356 case KVM_MP_STATE_HALTED:
3357 vcpu->arch.mp_state =
3358 KVM_MP_STATE_RUNNABLE;
3359 case KVM_MP_STATE_RUNNABLE:
3360 break;
3361 case KVM_MP_STATE_SIPI_RECEIVED:
3362 default:
3363 r = -EINTR;
3364 break;
3365 }
3366 }
3367 }
3368
3369 if (r <= 0)
3370 break;
3371
3372 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3373 if (kvm_cpu_has_pending_timer(vcpu))
3374 kvm_inject_pending_timer_irqs(vcpu);
3375
3376 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3377 r = -EINTR;
3378 kvm_run->exit_reason = KVM_EXIT_INTR;
3379 ++vcpu->stat.request_irq_exits;
3380 }
3381 if (signal_pending(current)) {
3382 r = -EINTR;
3383 kvm_run->exit_reason = KVM_EXIT_INTR;
3384 ++vcpu->stat.signal_exits;
3385 }
3386 if (need_resched()) {
3387 up_read(&vcpu->kvm->slots_lock);
3388 kvm_resched(vcpu);
3389 down_read(&vcpu->kvm->slots_lock);
3390 }
3391 }
3392
3393 up_read(&vcpu->kvm->slots_lock);
3394 post_kvm_run_save(vcpu, kvm_run);
3395
3396 vapic_exit(vcpu);
3397
3398 return r;
3399 }
3400
3401 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3402 {
3403 int r;
3404 sigset_t sigsaved;
3405
3406 vcpu_load(vcpu);
3407
3408 if (vcpu->sigset_active)
3409 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3410
3411 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3412 kvm_vcpu_block(vcpu);
3413 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3414 r = -EAGAIN;
3415 goto out;
3416 }
3417
3418 /* re-sync apic's tpr */
3419 if (!irqchip_in_kernel(vcpu->kvm))
3420 kvm_set_cr8(vcpu, kvm_run->cr8);
3421
3422 if (vcpu->arch.pio.cur_count) {
3423 r = complete_pio(vcpu);
3424 if (r)
3425 goto out;
3426 }
3427 #if CONFIG_HAS_IOMEM
3428 if (vcpu->mmio_needed) {
3429 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3430 vcpu->mmio_read_completed = 1;
3431 vcpu->mmio_needed = 0;
3432
3433 down_read(&vcpu->kvm->slots_lock);
3434 r = emulate_instruction(vcpu, kvm_run,
3435 vcpu->arch.mmio_fault_cr2, 0,
3436 EMULTYPE_NO_DECODE);
3437 up_read(&vcpu->kvm->slots_lock);
3438 if (r == EMULATE_DO_MMIO) {
3439 /*
3440 * Read-modify-write. Back to userspace.
3441 */
3442 r = 0;
3443 goto out;
3444 }
3445 }
3446 #endif
3447 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3448 kvm_register_write(vcpu, VCPU_REGS_RAX,
3449 kvm_run->hypercall.ret);
3450
3451 r = __vcpu_run(vcpu, kvm_run);
3452
3453 out:
3454 if (vcpu->sigset_active)
3455 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3456
3457 vcpu_put(vcpu);
3458 return r;
3459 }
3460
3461 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3462 {
3463 vcpu_load(vcpu);
3464
3465 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3466 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3467 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3468 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3469 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3470 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3471 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3472 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3473 #ifdef CONFIG_X86_64
3474 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3475 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3476 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3477 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3478 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3479 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3480 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3481 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3482 #endif
3483
3484 regs->rip = kvm_rip_read(vcpu);
3485 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3486
3487 /*
3488 * Don't leak debug flags in case they were set for guest debugging
3489 */
3490 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3491 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3492
3493 vcpu_put(vcpu);
3494
3495 return 0;
3496 }
3497
3498 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3499 {
3500 vcpu_load(vcpu);
3501
3502 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3503 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3504 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3505 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3506 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3507 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3508 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3509 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3510 #ifdef CONFIG_X86_64
3511 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3512 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3513 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3514 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3515 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3516 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3517 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3518 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3519
3520 #endif
3521
3522 kvm_rip_write(vcpu, regs->rip);
3523 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3524
3525
3526 vcpu->arch.exception.pending = false;
3527
3528 vcpu_put(vcpu);
3529
3530 return 0;
3531 }
3532
3533 void kvm_get_segment(struct kvm_vcpu *vcpu,
3534 struct kvm_segment *var, int seg)
3535 {
3536 kvm_x86_ops->get_segment(vcpu, var, seg);
3537 }
3538
3539 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3540 {
3541 struct kvm_segment cs;
3542
3543 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3544 *db = cs.db;
3545 *l = cs.l;
3546 }
3547 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3548
3549 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3550 struct kvm_sregs *sregs)
3551 {
3552 struct descriptor_table dt;
3553
3554 vcpu_load(vcpu);
3555
3556 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3557 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3558 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3559 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3560 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3561 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3562
3563 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3564 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3565
3566 kvm_x86_ops->get_idt(vcpu, &dt);
3567 sregs->idt.limit = dt.limit;
3568 sregs->idt.base = dt.base;
3569 kvm_x86_ops->get_gdt(vcpu, &dt);
3570 sregs->gdt.limit = dt.limit;
3571 sregs->gdt.base = dt.base;
3572
3573 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3574 sregs->cr0 = vcpu->arch.cr0;
3575 sregs->cr2 = vcpu->arch.cr2;
3576 sregs->cr3 = vcpu->arch.cr3;
3577 sregs->cr4 = vcpu->arch.cr4;
3578 sregs->cr8 = kvm_get_cr8(vcpu);
3579 sregs->efer = vcpu->arch.shadow_efer;
3580 sregs->apic_base = kvm_get_apic_base(vcpu);
3581
3582 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
3583
3584 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
3585 set_bit(vcpu->arch.interrupt.nr,
3586 (unsigned long *)sregs->interrupt_bitmap);
3587
3588 vcpu_put(vcpu);
3589
3590 return 0;
3591 }
3592
3593 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3594 struct kvm_mp_state *mp_state)
3595 {
3596 vcpu_load(vcpu);
3597 mp_state->mp_state = vcpu->arch.mp_state;
3598 vcpu_put(vcpu);
3599 return 0;
3600 }
3601
3602 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3603 struct kvm_mp_state *mp_state)
3604 {
3605 vcpu_load(vcpu);
3606 vcpu->arch.mp_state = mp_state->mp_state;
3607 vcpu_put(vcpu);
3608 return 0;
3609 }
3610
3611 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3612 struct kvm_segment *var, int seg)
3613 {
3614 kvm_x86_ops->set_segment(vcpu, var, seg);
3615 }
3616
3617 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3618 struct kvm_segment *kvm_desct)
3619 {
3620 kvm_desct->base = seg_desc->base0;
3621 kvm_desct->base |= seg_desc->base1 << 16;
3622 kvm_desct->base |= seg_desc->base2 << 24;
3623 kvm_desct->limit = seg_desc->limit0;
3624 kvm_desct->limit |= seg_desc->limit << 16;
3625 if (seg_desc->g) {
3626 kvm_desct->limit <<= 12;
3627 kvm_desct->limit |= 0xfff;
3628 }
3629 kvm_desct->selector = selector;
3630 kvm_desct->type = seg_desc->type;
3631 kvm_desct->present = seg_desc->p;
3632 kvm_desct->dpl = seg_desc->dpl;
3633 kvm_desct->db = seg_desc->d;
3634 kvm_desct->s = seg_desc->s;
3635 kvm_desct->l = seg_desc->l;
3636 kvm_desct->g = seg_desc->g;
3637 kvm_desct->avl = seg_desc->avl;
3638 if (!selector)
3639 kvm_desct->unusable = 1;
3640 else
3641 kvm_desct->unusable = 0;
3642 kvm_desct->padding = 0;
3643 }
3644
3645 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3646 u16 selector,
3647 struct descriptor_table *dtable)
3648 {
3649 if (selector & 1 << 2) {
3650 struct kvm_segment kvm_seg;
3651
3652 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3653
3654 if (kvm_seg.unusable)
3655 dtable->limit = 0;
3656 else
3657 dtable->limit = kvm_seg.limit;
3658 dtable->base = kvm_seg.base;
3659 }
3660 else
3661 kvm_x86_ops->get_gdt(vcpu, dtable);
3662 }
3663
3664 /* allowed just for 8 bytes segments */
3665 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3666 struct desc_struct *seg_desc)
3667 {
3668 gpa_t gpa;
3669 struct descriptor_table dtable;
3670 u16 index = selector >> 3;
3671
3672 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3673
3674 if (dtable.limit < index * 8 + 7) {
3675 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3676 return 1;
3677 }
3678 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3679 gpa += index * 8;
3680 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3681 }
3682
3683 /* allowed just for 8 bytes segments */
3684 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3685 struct desc_struct *seg_desc)
3686 {
3687 gpa_t gpa;
3688 struct descriptor_table dtable;
3689 u16 index = selector >> 3;
3690
3691 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3692
3693 if (dtable.limit < index * 8 + 7)
3694 return 1;
3695 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3696 gpa += index * 8;
3697 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3698 }
3699
3700 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3701 struct desc_struct *seg_desc)
3702 {
3703 u32 base_addr;
3704
3705 base_addr = seg_desc->base0;
3706 base_addr |= (seg_desc->base1 << 16);
3707 base_addr |= (seg_desc->base2 << 24);
3708
3709 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3710 }
3711
3712 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3713 {
3714 struct kvm_segment kvm_seg;
3715
3716 kvm_get_segment(vcpu, &kvm_seg, seg);
3717 return kvm_seg.selector;
3718 }
3719
3720 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3721 u16 selector,
3722 struct kvm_segment *kvm_seg)
3723 {
3724 struct desc_struct seg_desc;
3725
3726 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3727 return 1;
3728 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3729 return 0;
3730 }
3731
3732 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3733 {
3734 struct kvm_segment segvar = {
3735 .base = selector << 4,
3736 .limit = 0xffff,
3737 .selector = selector,
3738 .type = 3,
3739 .present = 1,
3740 .dpl = 3,
3741 .db = 0,
3742 .s = 1,
3743 .l = 0,
3744 .g = 0,
3745 .avl = 0,
3746 .unusable = 0,
3747 };
3748 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3749 return 0;
3750 }
3751
3752 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3753 int type_bits, int seg)
3754 {
3755 struct kvm_segment kvm_seg;
3756
3757 if (!(vcpu->arch.cr0 & X86_CR0_PE))
3758 return kvm_load_realmode_segment(vcpu, selector, seg);
3759 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3760 return 1;
3761 kvm_seg.type |= type_bits;
3762
3763 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3764 seg != VCPU_SREG_LDTR)
3765 if (!kvm_seg.s)
3766 kvm_seg.unusable = 1;
3767
3768 kvm_set_segment(vcpu, &kvm_seg, seg);
3769 return 0;
3770 }
3771
3772 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3773 struct tss_segment_32 *tss)
3774 {
3775 tss->cr3 = vcpu->arch.cr3;
3776 tss->eip = kvm_rip_read(vcpu);
3777 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3778 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3779 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3780 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3781 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3782 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3783 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3784 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3785 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3786 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3787 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3788 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3789 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3790 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3791 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3792 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3793 }
3794
3795 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3796 struct tss_segment_32 *tss)
3797 {
3798 kvm_set_cr3(vcpu, tss->cr3);
3799
3800 kvm_rip_write(vcpu, tss->eip);
3801 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3802
3803 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3804 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3805 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3806 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3807 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3808 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3809 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3810 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3811
3812 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3813 return 1;
3814
3815 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3816 return 1;
3817
3818 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3819 return 1;
3820
3821 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3822 return 1;
3823
3824 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3825 return 1;
3826
3827 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3828 return 1;
3829
3830 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3831 return 1;
3832 return 0;
3833 }
3834
3835 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3836 struct tss_segment_16 *tss)
3837 {
3838 tss->ip = kvm_rip_read(vcpu);
3839 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3840 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3841 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3842 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3843 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3844 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3845 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3846 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3847 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3848
3849 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3850 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3851 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3852 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3853 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3854 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3855 }
3856
3857 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3858 struct tss_segment_16 *tss)
3859 {
3860 kvm_rip_write(vcpu, tss->ip);
3861 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3862 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3863 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3864 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3865 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3866 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3867 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3868 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3869 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3870
3871 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3872 return 1;
3873
3874 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3875 return 1;
3876
3877 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3878 return 1;
3879
3880 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3881 return 1;
3882
3883 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3884 return 1;
3885 return 0;
3886 }
3887
3888 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3889 u16 old_tss_sel, u32 old_tss_base,
3890 struct desc_struct *nseg_desc)
3891 {
3892 struct tss_segment_16 tss_segment_16;
3893 int ret = 0;
3894
3895 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3896 sizeof tss_segment_16))
3897 goto out;
3898
3899 save_state_to_tss16(vcpu, &tss_segment_16);
3900
3901 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3902 sizeof tss_segment_16))
3903 goto out;
3904
3905 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3906 &tss_segment_16, sizeof tss_segment_16))
3907 goto out;
3908
3909 if (old_tss_sel != 0xffff) {
3910 tss_segment_16.prev_task_link = old_tss_sel;
3911
3912 if (kvm_write_guest(vcpu->kvm,
3913 get_tss_base_addr(vcpu, nseg_desc),
3914 &tss_segment_16.prev_task_link,
3915 sizeof tss_segment_16.prev_task_link))
3916 goto out;
3917 }
3918
3919 if (load_state_from_tss16(vcpu, &tss_segment_16))
3920 goto out;
3921
3922 ret = 1;
3923 out:
3924 return ret;
3925 }
3926
3927 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3928 u16 old_tss_sel, u32 old_tss_base,
3929 struct desc_struct *nseg_desc)
3930 {
3931 struct tss_segment_32 tss_segment_32;
3932 int ret = 0;
3933
3934 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3935 sizeof tss_segment_32))
3936 goto out;
3937
3938 save_state_to_tss32(vcpu, &tss_segment_32);
3939
3940 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3941 sizeof tss_segment_32))
3942 goto out;
3943
3944 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3945 &tss_segment_32, sizeof tss_segment_32))
3946 goto out;
3947
3948 if (old_tss_sel != 0xffff) {
3949 tss_segment_32.prev_task_link = old_tss_sel;
3950
3951 if (kvm_write_guest(vcpu->kvm,
3952 get_tss_base_addr(vcpu, nseg_desc),
3953 &tss_segment_32.prev_task_link,
3954 sizeof tss_segment_32.prev_task_link))
3955 goto out;
3956 }
3957
3958 if (load_state_from_tss32(vcpu, &tss_segment_32))
3959 goto out;
3960
3961 ret = 1;
3962 out:
3963 return ret;
3964 }
3965
3966 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3967 {
3968 struct kvm_segment tr_seg;
3969 struct desc_struct cseg_desc;
3970 struct desc_struct nseg_desc;
3971 int ret = 0;
3972 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3973 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3974
3975 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3976
3977 /* FIXME: Handle errors. Failure to read either TSS or their
3978 * descriptors should generate a pagefault.
3979 */
3980 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3981 goto out;
3982
3983 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3984 goto out;
3985
3986 if (reason != TASK_SWITCH_IRET) {
3987 int cpl;
3988
3989 cpl = kvm_x86_ops->get_cpl(vcpu);
3990 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3991 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3992 return 1;
3993 }
3994 }
3995
3996 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3997 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3998 return 1;
3999 }
4000
4001 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4002 cseg_desc.type &= ~(1 << 1); //clear the B flag
4003 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4004 }
4005
4006 if (reason == TASK_SWITCH_IRET) {
4007 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4008 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4009 }
4010
4011 /* set back link to prev task only if NT bit is set in eflags
4012 note that old_tss_sel is not used afetr this point */
4013 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4014 old_tss_sel = 0xffff;
4015
4016 /* set back link to prev task only if NT bit is set in eflags
4017 note that old_tss_sel is not used afetr this point */
4018 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4019 old_tss_sel = 0xffff;
4020
4021 if (nseg_desc.type & 8)
4022 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4023 old_tss_base, &nseg_desc);
4024 else
4025 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4026 old_tss_base, &nseg_desc);
4027
4028 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4029 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4030 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4031 }
4032
4033 if (reason != TASK_SWITCH_IRET) {
4034 nseg_desc.type |= (1 << 1);
4035 save_guest_segment_descriptor(vcpu, tss_selector,
4036 &nseg_desc);
4037 }
4038
4039 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4040 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4041 tr_seg.type = 11;
4042 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4043 out:
4044 return ret;
4045 }
4046 EXPORT_SYMBOL_GPL(kvm_task_switch);
4047
4048 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4049 struct kvm_sregs *sregs)
4050 {
4051 int mmu_reset_needed = 0;
4052 int pending_vec, max_bits;
4053 struct descriptor_table dt;
4054
4055 vcpu_load(vcpu);
4056
4057 dt.limit = sregs->idt.limit;
4058 dt.base = sregs->idt.base;
4059 kvm_x86_ops->set_idt(vcpu, &dt);
4060 dt.limit = sregs->gdt.limit;
4061 dt.base = sregs->gdt.base;
4062 kvm_x86_ops->set_gdt(vcpu, &dt);
4063
4064 vcpu->arch.cr2 = sregs->cr2;
4065 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4066
4067 down_read(&vcpu->kvm->slots_lock);
4068 if (gfn_to_memslot(vcpu->kvm, sregs->cr3 >> PAGE_SHIFT))
4069 vcpu->arch.cr3 = sregs->cr3;
4070 else
4071 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
4072 up_read(&vcpu->kvm->slots_lock);
4073
4074 kvm_set_cr8(vcpu, sregs->cr8);
4075
4076 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4077 kvm_x86_ops->set_efer(vcpu, sregs->efer);
4078 kvm_set_apic_base(vcpu, sregs->apic_base);
4079
4080 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4081
4082 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4083 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4084 vcpu->arch.cr0 = sregs->cr0;
4085
4086 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4087 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4088 if (!is_long_mode(vcpu) && is_pae(vcpu))
4089 load_pdptrs(vcpu, vcpu->arch.cr3);
4090
4091 if (mmu_reset_needed)
4092 kvm_mmu_reset_context(vcpu);
4093
4094 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4095 pending_vec = find_first_bit(
4096 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4097 if (pending_vec < max_bits) {
4098 kvm_queue_interrupt(vcpu, pending_vec, false);
4099 pr_debug("Set back pending irq %d\n", pending_vec);
4100 if (irqchip_in_kernel(vcpu->kvm))
4101 kvm_pic_clear_isr_ack(vcpu->kvm);
4102 }
4103
4104 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4105 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4106 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4107 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4108 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4109 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4110
4111 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4112 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4113
4114 /* Older userspace won't unhalt the vcpu on reset. */
4115 if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
4116 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4117 !(vcpu->arch.cr0 & X86_CR0_PE))
4118 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4119
4120 vcpu_put(vcpu);
4121
4122 return 0;
4123 }
4124
4125 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4126 struct kvm_guest_debug *dbg)
4127 {
4128 int i, r;
4129
4130 vcpu_load(vcpu);
4131
4132 if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4133 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4134 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4135 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4136 vcpu->arch.switch_db_regs =
4137 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4138 } else {
4139 for (i = 0; i < KVM_NR_DB_REGS; i++)
4140 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4141 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4142 }
4143
4144 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4145
4146 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4147 kvm_queue_exception(vcpu, DB_VECTOR);
4148 else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4149 kvm_queue_exception(vcpu, BP_VECTOR);
4150
4151 vcpu_put(vcpu);
4152
4153 return r;
4154 }
4155
4156 /*
4157 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4158 * we have asm/x86/processor.h
4159 */
4160 struct fxsave {
4161 u16 cwd;
4162 u16 swd;
4163 u16 twd;
4164 u16 fop;
4165 u64 rip;
4166 u64 rdp;
4167 u32 mxcsr;
4168 u32 mxcsr_mask;
4169 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4170 #ifdef CONFIG_X86_64
4171 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4172 #else
4173 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4174 #endif
4175 };
4176
4177 /*
4178 * Translate a guest virtual address to a guest physical address.
4179 */
4180 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4181 struct kvm_translation *tr)
4182 {
4183 unsigned long vaddr = tr->linear_address;
4184 gpa_t gpa;
4185
4186 vcpu_load(vcpu);
4187 down_read(&vcpu->kvm->slots_lock);
4188 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4189 up_read(&vcpu->kvm->slots_lock);
4190 tr->physical_address = gpa;
4191 tr->valid = gpa != UNMAPPED_GVA;
4192 tr->writeable = 1;
4193 tr->usermode = 0;
4194 vcpu_put(vcpu);
4195
4196 return 0;
4197 }
4198
4199 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4200 {
4201 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4202
4203 vcpu_load(vcpu);
4204
4205 memcpy(fpu->fpr, fxsave->st_space, 128);
4206 fpu->fcw = fxsave->cwd;
4207 fpu->fsw = fxsave->swd;
4208 fpu->ftwx = fxsave->twd;
4209 fpu->last_opcode = fxsave->fop;
4210 fpu->last_ip = fxsave->rip;
4211 fpu->last_dp = fxsave->rdp;
4212 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4213
4214 vcpu_put(vcpu);
4215
4216 return 0;
4217 }
4218
4219 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4220 {
4221 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4222
4223 vcpu_load(vcpu);
4224
4225 memcpy(fxsave->st_space, fpu->fpr, 128);
4226 fxsave->cwd = fpu->fcw;
4227 fxsave->swd = fpu->fsw;
4228 fxsave->twd = fpu->ftwx;
4229 fxsave->fop = fpu->last_opcode;
4230 fxsave->rip = fpu->last_ip;
4231 fxsave->rdp = fpu->last_dp;
4232 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4233
4234 vcpu_put(vcpu);
4235
4236 return 0;
4237 }
4238
4239 void fx_init(struct kvm_vcpu *vcpu)
4240 {
4241 unsigned after_mxcsr_mask;
4242
4243 /*
4244 * Touch the fpu the first time in non atomic context as if
4245 * this is the first fpu instruction the exception handler
4246 * will fire before the instruction returns and it'll have to
4247 * allocate ram with GFP_KERNEL.
4248 */
4249 if (!used_math())
4250 kvm_fx_save(&vcpu->arch.host_fx_image);
4251
4252 /* Initialize guest FPU by resetting ours and saving into guest's */
4253 preempt_disable();
4254 kvm_fx_save(&vcpu->arch.host_fx_image);
4255 kvm_fx_finit();
4256 kvm_fx_save(&vcpu->arch.guest_fx_image);
4257 kvm_fx_restore(&vcpu->arch.host_fx_image);
4258 preempt_enable();
4259
4260 vcpu->arch.cr0 |= X86_CR0_ET;
4261 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4262 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4263 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4264 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4265 }
4266 EXPORT_SYMBOL_GPL(fx_init);
4267
4268 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4269 {
4270 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4271 return;
4272
4273 vcpu->guest_fpu_loaded = 1;
4274 kvm_fx_save(&vcpu->arch.host_fx_image);
4275 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4276 }
4277 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4278
4279 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4280 {
4281 if (!vcpu->guest_fpu_loaded)
4282 return;
4283
4284 vcpu->guest_fpu_loaded = 0;
4285 kvm_fx_save(&vcpu->arch.guest_fx_image);
4286 kvm_fx_restore(&vcpu->arch.host_fx_image);
4287 ++vcpu->stat.fpu_reload;
4288 }
4289 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4290
4291 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4292 {
4293 if (vcpu->arch.time_page) {
4294 kvm_release_page_dirty(vcpu->arch.time_page);
4295 vcpu->arch.time_page = NULL;
4296 }
4297
4298 kvm_x86_ops->vcpu_free(vcpu);
4299 }
4300
4301 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4302 unsigned int id)
4303 {
4304 return kvm_x86_ops->vcpu_create(kvm, id);
4305 }
4306
4307 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4308 {
4309 int r;
4310
4311 /* We do fxsave: this must be aligned. */
4312 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4313
4314 vcpu->arch.mtrr_state.have_fixed = 1;
4315 vcpu_load(vcpu);
4316 r = kvm_arch_vcpu_reset(vcpu);
4317 if (r == 0)
4318 r = kvm_mmu_setup(vcpu);
4319 vcpu_put(vcpu);
4320 if (r < 0)
4321 goto free_vcpu;
4322
4323 return 0;
4324 free_vcpu:
4325 kvm_x86_ops->vcpu_free(vcpu);
4326 return r;
4327 }
4328
4329 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4330 {
4331 vcpu_load(vcpu);
4332 kvm_mmu_unload(vcpu);
4333 vcpu_put(vcpu);
4334
4335 kvm_x86_ops->vcpu_free(vcpu);
4336 }
4337
4338 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4339 {
4340 vcpu->arch.nmi_pending = false;
4341 vcpu->arch.nmi_injected = false;
4342
4343 vcpu->arch.switch_db_regs = 0;
4344 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4345 vcpu->arch.dr6 = DR6_FIXED_1;
4346 vcpu->arch.dr7 = DR7_FIXED_1;
4347
4348 return kvm_x86_ops->vcpu_reset(vcpu);
4349 }
4350
4351 void kvm_arch_hardware_enable(void *garbage)
4352 {
4353 kvm_x86_ops->hardware_enable(garbage);
4354 }
4355
4356 void kvm_arch_hardware_disable(void *garbage)
4357 {
4358 kvm_x86_ops->hardware_disable(garbage);
4359 }
4360
4361 int kvm_arch_hardware_setup(void)
4362 {
4363 return kvm_x86_ops->hardware_setup();
4364 }
4365
4366 void kvm_arch_hardware_unsetup(void)
4367 {
4368 kvm_x86_ops->hardware_unsetup();
4369 }
4370
4371 void kvm_arch_check_processor_compat(void *rtn)
4372 {
4373 kvm_x86_ops->check_processor_compatibility(rtn);
4374 }
4375
4376 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4377 {
4378 struct page *page;
4379 struct kvm *kvm;
4380 int r;
4381
4382 BUG_ON(vcpu->kvm == NULL);
4383 kvm = vcpu->kvm;
4384
4385 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4386 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4387 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4388 else
4389 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4390
4391 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4392 if (!page) {
4393 r = -ENOMEM;
4394 goto fail;
4395 }
4396 vcpu->arch.pio_data = page_address(page);
4397
4398 r = kvm_mmu_create(vcpu);
4399 if (r < 0)
4400 goto fail_free_pio_data;
4401
4402 if (irqchip_in_kernel(kvm)) {
4403 r = kvm_create_lapic(vcpu);
4404 if (r < 0)
4405 goto fail_mmu_destroy;
4406 }
4407
4408 return 0;
4409
4410 fail_mmu_destroy:
4411 kvm_mmu_destroy(vcpu);
4412 fail_free_pio_data:
4413 free_page((unsigned long)vcpu->arch.pio_data);
4414 fail:
4415 return r;
4416 }
4417
4418 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4419 {
4420 kvm_free_lapic(vcpu);
4421 down_read(&vcpu->kvm->slots_lock);
4422 kvm_mmu_destroy(vcpu);
4423 up_read(&vcpu->kvm->slots_lock);
4424 free_page((unsigned long)vcpu->arch.pio_data);
4425 }
4426
4427 struct kvm *kvm_arch_create_vm(void)
4428 {
4429 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4430
4431 if (!kvm)
4432 return ERR_PTR(-ENOMEM);
4433
4434 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4435 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4436
4437 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4438 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4439
4440 rdtscll(kvm->arch.vm_init_tsc);
4441
4442 return kvm;
4443 }
4444
4445 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4446 {
4447 vcpu_load(vcpu);
4448 kvm_mmu_unload(vcpu);
4449 vcpu_put(vcpu);
4450 }
4451
4452 static void kvm_free_vcpus(struct kvm *kvm)
4453 {
4454 unsigned int i;
4455
4456 /*
4457 * Unpin any mmu pages first.
4458 */
4459 for (i = 0; i < KVM_MAX_VCPUS; ++i)
4460 if (kvm->vcpus[i])
4461 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4462 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4463 if (kvm->vcpus[i]) {
4464 kvm_arch_vcpu_free(kvm->vcpus[i]);
4465 kvm->vcpus[i] = NULL;
4466 }
4467 }
4468
4469 }
4470
4471 void kvm_arch_sync_events(struct kvm *kvm)
4472 {
4473 kvm_free_all_assigned_devices(kvm);
4474 }
4475
4476 void kvm_arch_destroy_vm(struct kvm *kvm)
4477 {
4478 kvm_iommu_unmap_guest(kvm);
4479 kvm_free_pit(kvm);
4480 kfree(kvm->arch.vpic);
4481 kfree(kvm->arch.vioapic);
4482 kvm_free_vcpus(kvm);
4483 kvm_free_physmem(kvm);
4484 if (kvm->arch.apic_access_page)
4485 put_page(kvm->arch.apic_access_page);
4486 if (kvm->arch.ept_identity_pagetable)
4487 put_page(kvm->arch.ept_identity_pagetable);
4488 kfree(kvm);
4489 }
4490
4491 int kvm_arch_set_memory_region(struct kvm *kvm,
4492 struct kvm_userspace_memory_region *mem,
4493 struct kvm_memory_slot old,
4494 int user_alloc)
4495 {
4496 int npages = mem->memory_size >> PAGE_SHIFT;
4497 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4498
4499 /*To keep backward compatibility with older userspace,
4500 *x86 needs to hanlde !user_alloc case.
4501 */
4502 if (!user_alloc) {
4503 if (npages && !old.rmap) {
4504 unsigned long userspace_addr;
4505
4506 down_write(&current->mm->mmap_sem);
4507 userspace_addr = do_mmap(NULL, 0,
4508 npages * PAGE_SIZE,
4509 PROT_READ | PROT_WRITE,
4510 MAP_PRIVATE | MAP_ANONYMOUS,
4511 0);
4512 up_write(&current->mm->mmap_sem);
4513
4514 if (IS_ERR((void *)userspace_addr))
4515 return PTR_ERR((void *)userspace_addr);
4516
4517 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4518 spin_lock(&kvm->mmu_lock);
4519 memslot->userspace_addr = userspace_addr;
4520 spin_unlock(&kvm->mmu_lock);
4521 } else {
4522 if (!old.user_alloc && old.rmap) {
4523 int ret;
4524
4525 down_write(&current->mm->mmap_sem);
4526 ret = do_munmap(current->mm, old.userspace_addr,
4527 old.npages * PAGE_SIZE);
4528 up_write(&current->mm->mmap_sem);
4529 if (ret < 0)
4530 printk(KERN_WARNING
4531 "kvm_vm_ioctl_set_memory_region: "
4532 "failed to munmap memory\n");
4533 }
4534 }
4535 }
4536
4537 spin_lock(&kvm->mmu_lock);
4538 if (!kvm->arch.n_requested_mmu_pages) {
4539 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4540 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4541 }
4542
4543 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4544 spin_unlock(&kvm->mmu_lock);
4545 kvm_flush_remote_tlbs(kvm);
4546
4547 return 0;
4548 }
4549
4550 void kvm_arch_flush_shadow(struct kvm *kvm)
4551 {
4552 kvm_mmu_zap_all(kvm);
4553 kvm_reload_remote_mmus(kvm);
4554 }
4555
4556 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4557 {
4558 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4559 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4560 || vcpu->arch.nmi_pending;
4561 }
4562
4563 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4564 {
4565 int me;
4566 int cpu = vcpu->cpu;
4567
4568 if (waitqueue_active(&vcpu->wq)) {
4569 wake_up_interruptible(&vcpu->wq);
4570 ++vcpu->stat.halt_wakeup;
4571 }
4572
4573 me = get_cpu();
4574 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
4575 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
4576 smp_send_reschedule(cpu);
4577 put_cpu();
4578 }
4579
4580 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4581 {
4582 return kvm_x86_ops->interrupt_allowed(vcpu);
4583 }
This page took 0.18835 seconds and 6 git commands to generate.