KVM: SVM: Only allow setting of EFER_SVME when CPUID SVM is set
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/msr.h>
42 #include <asm/desc.h>
43 #include <asm/mtrr.h>
44
45 #define MAX_IO_MSRS 256
46 #define CR0_RESERVED_BITS \
47 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
48 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
49 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
50 #define CR4_RESERVED_BITS \
51 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
52 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
53 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
54 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
55
56 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
57 /* EFER defaults:
58 * - enable syscall per default because its emulated by KVM
59 * - enable LME and LMA per default on 64 bit KVM
60 */
61 #ifdef CONFIG_X86_64
62 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
63 #else
64 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
65 #endif
66
67 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
68 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
69
70 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
71 struct kvm_cpuid_entry2 __user *entries);
72 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
73 u32 function, u32 index);
74
75 struct kvm_x86_ops *kvm_x86_ops;
76 EXPORT_SYMBOL_GPL(kvm_x86_ops);
77
78 struct kvm_stats_debugfs_item debugfs_entries[] = {
79 { "pf_fixed", VCPU_STAT(pf_fixed) },
80 { "pf_guest", VCPU_STAT(pf_guest) },
81 { "tlb_flush", VCPU_STAT(tlb_flush) },
82 { "invlpg", VCPU_STAT(invlpg) },
83 { "exits", VCPU_STAT(exits) },
84 { "io_exits", VCPU_STAT(io_exits) },
85 { "mmio_exits", VCPU_STAT(mmio_exits) },
86 { "signal_exits", VCPU_STAT(signal_exits) },
87 { "irq_window", VCPU_STAT(irq_window_exits) },
88 { "nmi_window", VCPU_STAT(nmi_window_exits) },
89 { "halt_exits", VCPU_STAT(halt_exits) },
90 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
91 { "hypercalls", VCPU_STAT(hypercalls) },
92 { "request_irq", VCPU_STAT(request_irq_exits) },
93 { "request_nmi", VCPU_STAT(request_nmi_exits) },
94 { "irq_exits", VCPU_STAT(irq_exits) },
95 { "host_state_reload", VCPU_STAT(host_state_reload) },
96 { "efer_reload", VCPU_STAT(efer_reload) },
97 { "fpu_reload", VCPU_STAT(fpu_reload) },
98 { "insn_emulation", VCPU_STAT(insn_emulation) },
99 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
100 { "irq_injections", VCPU_STAT(irq_injections) },
101 { "nmi_injections", VCPU_STAT(nmi_injections) },
102 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
103 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
104 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
105 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
106 { "mmu_flooded", VM_STAT(mmu_flooded) },
107 { "mmu_recycled", VM_STAT(mmu_recycled) },
108 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
109 { "mmu_unsync", VM_STAT(mmu_unsync) },
110 { "mmu_unsync_global", VM_STAT(mmu_unsync_global) },
111 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
112 { "largepages", VM_STAT(lpages) },
113 { NULL }
114 };
115
116 unsigned long segment_base(u16 selector)
117 {
118 struct descriptor_table gdt;
119 struct desc_struct *d;
120 unsigned long table_base;
121 unsigned long v;
122
123 if (selector == 0)
124 return 0;
125
126 asm("sgdt %0" : "=m"(gdt));
127 table_base = gdt.base;
128
129 if (selector & 4) { /* from ldt */
130 u16 ldt_selector;
131
132 asm("sldt %0" : "=g"(ldt_selector));
133 table_base = segment_base(ldt_selector);
134 }
135 d = (struct desc_struct *)(table_base + (selector & ~7));
136 v = d->base0 | ((unsigned long)d->base1 << 16) |
137 ((unsigned long)d->base2 << 24);
138 #ifdef CONFIG_X86_64
139 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
140 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
141 #endif
142 return v;
143 }
144 EXPORT_SYMBOL_GPL(segment_base);
145
146 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
147 {
148 if (irqchip_in_kernel(vcpu->kvm))
149 return vcpu->arch.apic_base;
150 else
151 return vcpu->arch.apic_base;
152 }
153 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
154
155 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
156 {
157 /* TODO: reserve bits check */
158 if (irqchip_in_kernel(vcpu->kvm))
159 kvm_lapic_set_base(vcpu, data);
160 else
161 vcpu->arch.apic_base = data;
162 }
163 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
164
165 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
166 {
167 WARN_ON(vcpu->arch.exception.pending);
168 vcpu->arch.exception.pending = true;
169 vcpu->arch.exception.has_error_code = false;
170 vcpu->arch.exception.nr = nr;
171 }
172 EXPORT_SYMBOL_GPL(kvm_queue_exception);
173
174 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
175 u32 error_code)
176 {
177 ++vcpu->stat.pf_guest;
178
179 if (vcpu->arch.exception.pending) {
180 if (vcpu->arch.exception.nr == PF_VECTOR) {
181 printk(KERN_DEBUG "kvm: inject_page_fault:"
182 " double fault 0x%lx\n", addr);
183 vcpu->arch.exception.nr = DF_VECTOR;
184 vcpu->arch.exception.error_code = 0;
185 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
186 /* triple fault -> shutdown */
187 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
188 }
189 return;
190 }
191 vcpu->arch.cr2 = addr;
192 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
193 }
194
195 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
196 {
197 vcpu->arch.nmi_pending = 1;
198 }
199 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
200
201 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
202 {
203 WARN_ON(vcpu->arch.exception.pending);
204 vcpu->arch.exception.pending = true;
205 vcpu->arch.exception.has_error_code = true;
206 vcpu->arch.exception.nr = nr;
207 vcpu->arch.exception.error_code = error_code;
208 }
209 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
210
211 static void __queue_exception(struct kvm_vcpu *vcpu)
212 {
213 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
214 vcpu->arch.exception.has_error_code,
215 vcpu->arch.exception.error_code);
216 }
217
218 /*
219 * Load the pae pdptrs. Return true is they are all valid.
220 */
221 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
222 {
223 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
224 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
225 int i;
226 int ret;
227 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
228
229 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
230 offset * sizeof(u64), sizeof(pdpte));
231 if (ret < 0) {
232 ret = 0;
233 goto out;
234 }
235 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
236 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
237 ret = 0;
238 goto out;
239 }
240 }
241 ret = 1;
242
243 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
244 out:
245
246 return ret;
247 }
248 EXPORT_SYMBOL_GPL(load_pdptrs);
249
250 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
251 {
252 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
253 bool changed = true;
254 int r;
255
256 if (is_long_mode(vcpu) || !is_pae(vcpu))
257 return false;
258
259 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
260 if (r < 0)
261 goto out;
262 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
263 out:
264
265 return changed;
266 }
267
268 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
269 {
270 if (cr0 & CR0_RESERVED_BITS) {
271 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
272 cr0, vcpu->arch.cr0);
273 kvm_inject_gp(vcpu, 0);
274 return;
275 }
276
277 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
278 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
279 kvm_inject_gp(vcpu, 0);
280 return;
281 }
282
283 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
284 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
285 "and a clear PE flag\n");
286 kvm_inject_gp(vcpu, 0);
287 return;
288 }
289
290 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
291 #ifdef CONFIG_X86_64
292 if ((vcpu->arch.shadow_efer & EFER_LME)) {
293 int cs_db, cs_l;
294
295 if (!is_pae(vcpu)) {
296 printk(KERN_DEBUG "set_cr0: #GP, start paging "
297 "in long mode while PAE is disabled\n");
298 kvm_inject_gp(vcpu, 0);
299 return;
300 }
301 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
302 if (cs_l) {
303 printk(KERN_DEBUG "set_cr0: #GP, start paging "
304 "in long mode while CS.L == 1\n");
305 kvm_inject_gp(vcpu, 0);
306 return;
307
308 }
309 } else
310 #endif
311 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
312 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
313 "reserved bits\n");
314 kvm_inject_gp(vcpu, 0);
315 return;
316 }
317
318 }
319
320 kvm_x86_ops->set_cr0(vcpu, cr0);
321 vcpu->arch.cr0 = cr0;
322
323 kvm_mmu_sync_global(vcpu);
324 kvm_mmu_reset_context(vcpu);
325 return;
326 }
327 EXPORT_SYMBOL_GPL(kvm_set_cr0);
328
329 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
330 {
331 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
332 KVMTRACE_1D(LMSW, vcpu,
333 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
334 handler);
335 }
336 EXPORT_SYMBOL_GPL(kvm_lmsw);
337
338 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
339 {
340 if (cr4 & CR4_RESERVED_BITS) {
341 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
342 kvm_inject_gp(vcpu, 0);
343 return;
344 }
345
346 if (is_long_mode(vcpu)) {
347 if (!(cr4 & X86_CR4_PAE)) {
348 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
349 "in long mode\n");
350 kvm_inject_gp(vcpu, 0);
351 return;
352 }
353 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
354 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
355 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
356 kvm_inject_gp(vcpu, 0);
357 return;
358 }
359
360 if (cr4 & X86_CR4_VMXE) {
361 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
362 kvm_inject_gp(vcpu, 0);
363 return;
364 }
365 kvm_x86_ops->set_cr4(vcpu, cr4);
366 vcpu->arch.cr4 = cr4;
367 kvm_mmu_sync_global(vcpu);
368 kvm_mmu_reset_context(vcpu);
369 }
370 EXPORT_SYMBOL_GPL(kvm_set_cr4);
371
372 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
373 {
374 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
375 kvm_mmu_sync_roots(vcpu);
376 kvm_mmu_flush_tlb(vcpu);
377 return;
378 }
379
380 if (is_long_mode(vcpu)) {
381 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
382 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
383 kvm_inject_gp(vcpu, 0);
384 return;
385 }
386 } else {
387 if (is_pae(vcpu)) {
388 if (cr3 & CR3_PAE_RESERVED_BITS) {
389 printk(KERN_DEBUG
390 "set_cr3: #GP, reserved bits\n");
391 kvm_inject_gp(vcpu, 0);
392 return;
393 }
394 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
395 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
396 "reserved bits\n");
397 kvm_inject_gp(vcpu, 0);
398 return;
399 }
400 }
401 /*
402 * We don't check reserved bits in nonpae mode, because
403 * this isn't enforced, and VMware depends on this.
404 */
405 }
406
407 /*
408 * Does the new cr3 value map to physical memory? (Note, we
409 * catch an invalid cr3 even in real-mode, because it would
410 * cause trouble later on when we turn on paging anyway.)
411 *
412 * A real CPU would silently accept an invalid cr3 and would
413 * attempt to use it - with largely undefined (and often hard
414 * to debug) behavior on the guest side.
415 */
416 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
417 kvm_inject_gp(vcpu, 0);
418 else {
419 vcpu->arch.cr3 = cr3;
420 vcpu->arch.mmu.new_cr3(vcpu);
421 }
422 }
423 EXPORT_SYMBOL_GPL(kvm_set_cr3);
424
425 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
426 {
427 if (cr8 & CR8_RESERVED_BITS) {
428 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
429 kvm_inject_gp(vcpu, 0);
430 return;
431 }
432 if (irqchip_in_kernel(vcpu->kvm))
433 kvm_lapic_set_tpr(vcpu, cr8);
434 else
435 vcpu->arch.cr8 = cr8;
436 }
437 EXPORT_SYMBOL_GPL(kvm_set_cr8);
438
439 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
440 {
441 if (irqchip_in_kernel(vcpu->kvm))
442 return kvm_lapic_get_cr8(vcpu);
443 else
444 return vcpu->arch.cr8;
445 }
446 EXPORT_SYMBOL_GPL(kvm_get_cr8);
447
448 static inline u32 bit(int bitno)
449 {
450 return 1 << (bitno & 31);
451 }
452
453 /*
454 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
455 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
456 *
457 * This list is modified at module load time to reflect the
458 * capabilities of the host cpu.
459 */
460 static u32 msrs_to_save[] = {
461 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
462 MSR_K6_STAR,
463 #ifdef CONFIG_X86_64
464 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
465 #endif
466 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
467 MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
468 };
469
470 static unsigned num_msrs_to_save;
471
472 static u32 emulated_msrs[] = {
473 MSR_IA32_MISC_ENABLE,
474 };
475
476 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
477 {
478 if (efer & efer_reserved_bits) {
479 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
480 efer);
481 kvm_inject_gp(vcpu, 0);
482 return;
483 }
484
485 if (is_paging(vcpu)
486 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
487 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
488 kvm_inject_gp(vcpu, 0);
489 return;
490 }
491
492 if (efer & EFER_SVME) {
493 struct kvm_cpuid_entry2 *feat;
494
495 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
496 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
497 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
498 kvm_inject_gp(vcpu, 0);
499 return;
500 }
501 }
502
503 kvm_x86_ops->set_efer(vcpu, efer);
504
505 efer &= ~EFER_LMA;
506 efer |= vcpu->arch.shadow_efer & EFER_LMA;
507
508 vcpu->arch.shadow_efer = efer;
509 }
510
511 void kvm_enable_efer_bits(u64 mask)
512 {
513 efer_reserved_bits &= ~mask;
514 }
515 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
516
517
518 /*
519 * Writes msr value into into the appropriate "register".
520 * Returns 0 on success, non-0 otherwise.
521 * Assumes vcpu_load() was already called.
522 */
523 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
524 {
525 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
526 }
527
528 /*
529 * Adapt set_msr() to msr_io()'s calling convention
530 */
531 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
532 {
533 return kvm_set_msr(vcpu, index, *data);
534 }
535
536 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
537 {
538 static int version;
539 struct pvclock_wall_clock wc;
540 struct timespec now, sys, boot;
541
542 if (!wall_clock)
543 return;
544
545 version++;
546
547 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
548
549 /*
550 * The guest calculates current wall clock time by adding
551 * system time (updated by kvm_write_guest_time below) to the
552 * wall clock specified here. guest system time equals host
553 * system time for us, thus we must fill in host boot time here.
554 */
555 now = current_kernel_time();
556 ktime_get_ts(&sys);
557 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
558
559 wc.sec = boot.tv_sec;
560 wc.nsec = boot.tv_nsec;
561 wc.version = version;
562
563 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
564
565 version++;
566 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
567 }
568
569 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
570 {
571 uint32_t quotient, remainder;
572
573 /* Don't try to replace with do_div(), this one calculates
574 * "(dividend << 32) / divisor" */
575 __asm__ ( "divl %4"
576 : "=a" (quotient), "=d" (remainder)
577 : "0" (0), "1" (dividend), "r" (divisor) );
578 return quotient;
579 }
580
581 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
582 {
583 uint64_t nsecs = 1000000000LL;
584 int32_t shift = 0;
585 uint64_t tps64;
586 uint32_t tps32;
587
588 tps64 = tsc_khz * 1000LL;
589 while (tps64 > nsecs*2) {
590 tps64 >>= 1;
591 shift--;
592 }
593
594 tps32 = (uint32_t)tps64;
595 while (tps32 <= (uint32_t)nsecs) {
596 tps32 <<= 1;
597 shift++;
598 }
599
600 hv_clock->tsc_shift = shift;
601 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
602
603 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
604 __func__, tsc_khz, hv_clock->tsc_shift,
605 hv_clock->tsc_to_system_mul);
606 }
607
608 static void kvm_write_guest_time(struct kvm_vcpu *v)
609 {
610 struct timespec ts;
611 unsigned long flags;
612 struct kvm_vcpu_arch *vcpu = &v->arch;
613 void *shared_kaddr;
614
615 if ((!vcpu->time_page))
616 return;
617
618 if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
619 kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
620 vcpu->hv_clock_tsc_khz = tsc_khz;
621 }
622
623 /* Keep irq disabled to prevent changes to the clock */
624 local_irq_save(flags);
625 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
626 &vcpu->hv_clock.tsc_timestamp);
627 ktime_get_ts(&ts);
628 local_irq_restore(flags);
629
630 /* With all the info we got, fill in the values */
631
632 vcpu->hv_clock.system_time = ts.tv_nsec +
633 (NSEC_PER_SEC * (u64)ts.tv_sec);
634 /*
635 * The interface expects us to write an even number signaling that the
636 * update is finished. Since the guest won't see the intermediate
637 * state, we just increase by 2 at the end.
638 */
639 vcpu->hv_clock.version += 2;
640
641 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
642
643 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
644 sizeof(vcpu->hv_clock));
645
646 kunmap_atomic(shared_kaddr, KM_USER0);
647
648 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
649 }
650
651 static bool msr_mtrr_valid(unsigned msr)
652 {
653 switch (msr) {
654 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
655 case MSR_MTRRfix64K_00000:
656 case MSR_MTRRfix16K_80000:
657 case MSR_MTRRfix16K_A0000:
658 case MSR_MTRRfix4K_C0000:
659 case MSR_MTRRfix4K_C8000:
660 case MSR_MTRRfix4K_D0000:
661 case MSR_MTRRfix4K_D8000:
662 case MSR_MTRRfix4K_E0000:
663 case MSR_MTRRfix4K_E8000:
664 case MSR_MTRRfix4K_F0000:
665 case MSR_MTRRfix4K_F8000:
666 case MSR_MTRRdefType:
667 case MSR_IA32_CR_PAT:
668 return true;
669 case 0x2f8:
670 return true;
671 }
672 return false;
673 }
674
675 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
676 {
677 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
678
679 if (!msr_mtrr_valid(msr))
680 return 1;
681
682 if (msr == MSR_MTRRdefType) {
683 vcpu->arch.mtrr_state.def_type = data;
684 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
685 } else if (msr == MSR_MTRRfix64K_00000)
686 p[0] = data;
687 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
688 p[1 + msr - MSR_MTRRfix16K_80000] = data;
689 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
690 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
691 else if (msr == MSR_IA32_CR_PAT)
692 vcpu->arch.pat = data;
693 else { /* Variable MTRRs */
694 int idx, is_mtrr_mask;
695 u64 *pt;
696
697 idx = (msr - 0x200) / 2;
698 is_mtrr_mask = msr - 0x200 - 2 * idx;
699 if (!is_mtrr_mask)
700 pt =
701 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
702 else
703 pt =
704 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
705 *pt = data;
706 }
707
708 kvm_mmu_reset_context(vcpu);
709 return 0;
710 }
711
712 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
713 {
714 switch (msr) {
715 case MSR_EFER:
716 set_efer(vcpu, data);
717 break;
718 case MSR_IA32_MC0_STATUS:
719 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
720 __func__, data);
721 break;
722 case MSR_IA32_MCG_STATUS:
723 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
724 __func__, data);
725 break;
726 case MSR_IA32_MCG_CTL:
727 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
728 __func__, data);
729 break;
730 case MSR_IA32_DEBUGCTLMSR:
731 if (!data) {
732 /* We support the non-activated case already */
733 break;
734 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
735 /* Values other than LBR and BTF are vendor-specific,
736 thus reserved and should throw a #GP */
737 return 1;
738 }
739 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
740 __func__, data);
741 break;
742 case MSR_IA32_UCODE_REV:
743 case MSR_IA32_UCODE_WRITE:
744 break;
745 case 0x200 ... 0x2ff:
746 return set_msr_mtrr(vcpu, msr, data);
747 case MSR_IA32_APICBASE:
748 kvm_set_apic_base(vcpu, data);
749 break;
750 case MSR_IA32_MISC_ENABLE:
751 vcpu->arch.ia32_misc_enable_msr = data;
752 break;
753 case MSR_KVM_WALL_CLOCK:
754 vcpu->kvm->arch.wall_clock = data;
755 kvm_write_wall_clock(vcpu->kvm, data);
756 break;
757 case MSR_KVM_SYSTEM_TIME: {
758 if (vcpu->arch.time_page) {
759 kvm_release_page_dirty(vcpu->arch.time_page);
760 vcpu->arch.time_page = NULL;
761 }
762
763 vcpu->arch.time = data;
764
765 /* we verify if the enable bit is set... */
766 if (!(data & 1))
767 break;
768
769 /* ...but clean it before doing the actual write */
770 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
771
772 vcpu->arch.time_page =
773 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
774
775 if (is_error_page(vcpu->arch.time_page)) {
776 kvm_release_page_clean(vcpu->arch.time_page);
777 vcpu->arch.time_page = NULL;
778 }
779
780 kvm_write_guest_time(vcpu);
781 break;
782 }
783 default:
784 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
785 return 1;
786 }
787 return 0;
788 }
789 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
790
791
792 /*
793 * Reads an msr value (of 'msr_index') into 'pdata'.
794 * Returns 0 on success, non-0 otherwise.
795 * Assumes vcpu_load() was already called.
796 */
797 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
798 {
799 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
800 }
801
802 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
803 {
804 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
805
806 if (!msr_mtrr_valid(msr))
807 return 1;
808
809 if (msr == MSR_MTRRdefType)
810 *pdata = vcpu->arch.mtrr_state.def_type +
811 (vcpu->arch.mtrr_state.enabled << 10);
812 else if (msr == MSR_MTRRfix64K_00000)
813 *pdata = p[0];
814 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
815 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
816 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
817 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
818 else if (msr == MSR_IA32_CR_PAT)
819 *pdata = vcpu->arch.pat;
820 else { /* Variable MTRRs */
821 int idx, is_mtrr_mask;
822 u64 *pt;
823
824 idx = (msr - 0x200) / 2;
825 is_mtrr_mask = msr - 0x200 - 2 * idx;
826 if (!is_mtrr_mask)
827 pt =
828 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
829 else
830 pt =
831 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
832 *pdata = *pt;
833 }
834
835 return 0;
836 }
837
838 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
839 {
840 u64 data;
841
842 switch (msr) {
843 case 0xc0010010: /* SYSCFG */
844 case 0xc0010015: /* HWCR */
845 case MSR_IA32_PLATFORM_ID:
846 case MSR_IA32_P5_MC_ADDR:
847 case MSR_IA32_P5_MC_TYPE:
848 case MSR_IA32_MC0_CTL:
849 case MSR_IA32_MCG_STATUS:
850 case MSR_IA32_MCG_CAP:
851 case MSR_IA32_MCG_CTL:
852 case MSR_IA32_MC0_MISC:
853 case MSR_IA32_MC0_MISC+4:
854 case MSR_IA32_MC0_MISC+8:
855 case MSR_IA32_MC0_MISC+12:
856 case MSR_IA32_MC0_MISC+16:
857 case MSR_IA32_MC0_MISC+20:
858 case MSR_IA32_UCODE_REV:
859 case MSR_IA32_EBL_CR_POWERON:
860 case MSR_IA32_DEBUGCTLMSR:
861 case MSR_IA32_LASTBRANCHFROMIP:
862 case MSR_IA32_LASTBRANCHTOIP:
863 case MSR_IA32_LASTINTFROMIP:
864 case MSR_IA32_LASTINTTOIP:
865 data = 0;
866 break;
867 case MSR_MTRRcap:
868 data = 0x500 | KVM_NR_VAR_MTRR;
869 break;
870 case 0x200 ... 0x2ff:
871 return get_msr_mtrr(vcpu, msr, pdata);
872 case 0xcd: /* fsb frequency */
873 data = 3;
874 break;
875 case MSR_IA32_APICBASE:
876 data = kvm_get_apic_base(vcpu);
877 break;
878 case MSR_IA32_MISC_ENABLE:
879 data = vcpu->arch.ia32_misc_enable_msr;
880 break;
881 case MSR_IA32_PERF_STATUS:
882 /* TSC increment by tick */
883 data = 1000ULL;
884 /* CPU multiplier */
885 data |= (((uint64_t)4ULL) << 40);
886 break;
887 case MSR_EFER:
888 data = vcpu->arch.shadow_efer;
889 break;
890 case MSR_KVM_WALL_CLOCK:
891 data = vcpu->kvm->arch.wall_clock;
892 break;
893 case MSR_KVM_SYSTEM_TIME:
894 data = vcpu->arch.time;
895 break;
896 default:
897 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
898 return 1;
899 }
900 *pdata = data;
901 return 0;
902 }
903 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
904
905 /*
906 * Read or write a bunch of msrs. All parameters are kernel addresses.
907 *
908 * @return number of msrs set successfully.
909 */
910 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
911 struct kvm_msr_entry *entries,
912 int (*do_msr)(struct kvm_vcpu *vcpu,
913 unsigned index, u64 *data))
914 {
915 int i;
916
917 vcpu_load(vcpu);
918
919 down_read(&vcpu->kvm->slots_lock);
920 for (i = 0; i < msrs->nmsrs; ++i)
921 if (do_msr(vcpu, entries[i].index, &entries[i].data))
922 break;
923 up_read(&vcpu->kvm->slots_lock);
924
925 vcpu_put(vcpu);
926
927 return i;
928 }
929
930 /*
931 * Read or write a bunch of msrs. Parameters are user addresses.
932 *
933 * @return number of msrs set successfully.
934 */
935 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
936 int (*do_msr)(struct kvm_vcpu *vcpu,
937 unsigned index, u64 *data),
938 int writeback)
939 {
940 struct kvm_msrs msrs;
941 struct kvm_msr_entry *entries;
942 int r, n;
943 unsigned size;
944
945 r = -EFAULT;
946 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
947 goto out;
948
949 r = -E2BIG;
950 if (msrs.nmsrs >= MAX_IO_MSRS)
951 goto out;
952
953 r = -ENOMEM;
954 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
955 entries = vmalloc(size);
956 if (!entries)
957 goto out;
958
959 r = -EFAULT;
960 if (copy_from_user(entries, user_msrs->entries, size))
961 goto out_free;
962
963 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
964 if (r < 0)
965 goto out_free;
966
967 r = -EFAULT;
968 if (writeback && copy_to_user(user_msrs->entries, entries, size))
969 goto out_free;
970
971 r = n;
972
973 out_free:
974 vfree(entries);
975 out:
976 return r;
977 }
978
979 int kvm_dev_ioctl_check_extension(long ext)
980 {
981 int r;
982
983 switch (ext) {
984 case KVM_CAP_IRQCHIP:
985 case KVM_CAP_HLT:
986 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
987 case KVM_CAP_SET_TSS_ADDR:
988 case KVM_CAP_EXT_CPUID:
989 case KVM_CAP_PIT:
990 case KVM_CAP_NOP_IO_DELAY:
991 case KVM_CAP_MP_STATE:
992 case KVM_CAP_SYNC_MMU:
993 r = 1;
994 break;
995 case KVM_CAP_COALESCED_MMIO:
996 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
997 break;
998 case KVM_CAP_VAPIC:
999 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1000 break;
1001 case KVM_CAP_NR_VCPUS:
1002 r = KVM_MAX_VCPUS;
1003 break;
1004 case KVM_CAP_NR_MEMSLOTS:
1005 r = KVM_MEMORY_SLOTS;
1006 break;
1007 case KVM_CAP_PV_MMU:
1008 r = !tdp_enabled;
1009 break;
1010 case KVM_CAP_IOMMU:
1011 r = iommu_found();
1012 break;
1013 case KVM_CAP_CLOCKSOURCE:
1014 r = boot_cpu_has(X86_FEATURE_CONSTANT_TSC);
1015 break;
1016 default:
1017 r = 0;
1018 break;
1019 }
1020 return r;
1021
1022 }
1023
1024 long kvm_arch_dev_ioctl(struct file *filp,
1025 unsigned int ioctl, unsigned long arg)
1026 {
1027 void __user *argp = (void __user *)arg;
1028 long r;
1029
1030 switch (ioctl) {
1031 case KVM_GET_MSR_INDEX_LIST: {
1032 struct kvm_msr_list __user *user_msr_list = argp;
1033 struct kvm_msr_list msr_list;
1034 unsigned n;
1035
1036 r = -EFAULT;
1037 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1038 goto out;
1039 n = msr_list.nmsrs;
1040 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1041 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1042 goto out;
1043 r = -E2BIG;
1044 if (n < num_msrs_to_save)
1045 goto out;
1046 r = -EFAULT;
1047 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1048 num_msrs_to_save * sizeof(u32)))
1049 goto out;
1050 if (copy_to_user(user_msr_list->indices
1051 + num_msrs_to_save * sizeof(u32),
1052 &emulated_msrs,
1053 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1054 goto out;
1055 r = 0;
1056 break;
1057 }
1058 case KVM_GET_SUPPORTED_CPUID: {
1059 struct kvm_cpuid2 __user *cpuid_arg = argp;
1060 struct kvm_cpuid2 cpuid;
1061
1062 r = -EFAULT;
1063 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1064 goto out;
1065 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1066 cpuid_arg->entries);
1067 if (r)
1068 goto out;
1069
1070 r = -EFAULT;
1071 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1072 goto out;
1073 r = 0;
1074 break;
1075 }
1076 default:
1077 r = -EINVAL;
1078 }
1079 out:
1080 return r;
1081 }
1082
1083 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1084 {
1085 kvm_x86_ops->vcpu_load(vcpu, cpu);
1086 kvm_write_guest_time(vcpu);
1087 }
1088
1089 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1090 {
1091 kvm_x86_ops->vcpu_put(vcpu);
1092 kvm_put_guest_fpu(vcpu);
1093 }
1094
1095 static int is_efer_nx(void)
1096 {
1097 u64 efer;
1098
1099 rdmsrl(MSR_EFER, efer);
1100 return efer & EFER_NX;
1101 }
1102
1103 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1104 {
1105 int i;
1106 struct kvm_cpuid_entry2 *e, *entry;
1107
1108 entry = NULL;
1109 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1110 e = &vcpu->arch.cpuid_entries[i];
1111 if (e->function == 0x80000001) {
1112 entry = e;
1113 break;
1114 }
1115 }
1116 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1117 entry->edx &= ~(1 << 20);
1118 printk(KERN_INFO "kvm: guest NX capability removed\n");
1119 }
1120 }
1121
1122 /* when an old userspace process fills a new kernel module */
1123 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1124 struct kvm_cpuid *cpuid,
1125 struct kvm_cpuid_entry __user *entries)
1126 {
1127 int r, i;
1128 struct kvm_cpuid_entry *cpuid_entries;
1129
1130 r = -E2BIG;
1131 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1132 goto out;
1133 r = -ENOMEM;
1134 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1135 if (!cpuid_entries)
1136 goto out;
1137 r = -EFAULT;
1138 if (copy_from_user(cpuid_entries, entries,
1139 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1140 goto out_free;
1141 for (i = 0; i < cpuid->nent; i++) {
1142 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1143 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1144 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1145 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1146 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1147 vcpu->arch.cpuid_entries[i].index = 0;
1148 vcpu->arch.cpuid_entries[i].flags = 0;
1149 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1150 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1151 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1152 }
1153 vcpu->arch.cpuid_nent = cpuid->nent;
1154 cpuid_fix_nx_cap(vcpu);
1155 r = 0;
1156
1157 out_free:
1158 vfree(cpuid_entries);
1159 out:
1160 return r;
1161 }
1162
1163 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1164 struct kvm_cpuid2 *cpuid,
1165 struct kvm_cpuid_entry2 __user *entries)
1166 {
1167 int r;
1168
1169 r = -E2BIG;
1170 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1171 goto out;
1172 r = -EFAULT;
1173 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1174 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1175 goto out;
1176 vcpu->arch.cpuid_nent = cpuid->nent;
1177 return 0;
1178
1179 out:
1180 return r;
1181 }
1182
1183 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1184 struct kvm_cpuid2 *cpuid,
1185 struct kvm_cpuid_entry2 __user *entries)
1186 {
1187 int r;
1188
1189 r = -E2BIG;
1190 if (cpuid->nent < vcpu->arch.cpuid_nent)
1191 goto out;
1192 r = -EFAULT;
1193 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1194 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1195 goto out;
1196 return 0;
1197
1198 out:
1199 cpuid->nent = vcpu->arch.cpuid_nent;
1200 return r;
1201 }
1202
1203 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1204 u32 index)
1205 {
1206 entry->function = function;
1207 entry->index = index;
1208 cpuid_count(entry->function, entry->index,
1209 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1210 entry->flags = 0;
1211 }
1212
1213 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1214 u32 index, int *nent, int maxnent)
1215 {
1216 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1217 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1218 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1219 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1220 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1221 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1222 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1223 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1224 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1225 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1226 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1227 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1228 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1229 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1230 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1231 bit(X86_FEATURE_PGE) |
1232 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1233 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1234 bit(X86_FEATURE_SYSCALL) |
1235 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1236 #ifdef CONFIG_X86_64
1237 bit(X86_FEATURE_LM) |
1238 #endif
1239 bit(X86_FEATURE_MMXEXT) |
1240 bit(X86_FEATURE_3DNOWEXT) |
1241 bit(X86_FEATURE_3DNOW);
1242 const u32 kvm_supported_word3_x86_features =
1243 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1244 const u32 kvm_supported_word6_x86_features =
1245 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY) |
1246 bit(X86_FEATURE_SVM);
1247
1248 /* all func 2 cpuid_count() should be called on the same cpu */
1249 get_cpu();
1250 do_cpuid_1_ent(entry, function, index);
1251 ++*nent;
1252
1253 switch (function) {
1254 case 0:
1255 entry->eax = min(entry->eax, (u32)0xb);
1256 break;
1257 case 1:
1258 entry->edx &= kvm_supported_word0_x86_features;
1259 entry->ecx &= kvm_supported_word3_x86_features;
1260 break;
1261 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1262 * may return different values. This forces us to get_cpu() before
1263 * issuing the first command, and also to emulate this annoying behavior
1264 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1265 case 2: {
1266 int t, times = entry->eax & 0xff;
1267
1268 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1269 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1270 for (t = 1; t < times && *nent < maxnent; ++t) {
1271 do_cpuid_1_ent(&entry[t], function, 0);
1272 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1273 ++*nent;
1274 }
1275 break;
1276 }
1277 /* function 4 and 0xb have additional index. */
1278 case 4: {
1279 int i, cache_type;
1280
1281 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1282 /* read more entries until cache_type is zero */
1283 for (i = 1; *nent < maxnent; ++i) {
1284 cache_type = entry[i - 1].eax & 0x1f;
1285 if (!cache_type)
1286 break;
1287 do_cpuid_1_ent(&entry[i], function, i);
1288 entry[i].flags |=
1289 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1290 ++*nent;
1291 }
1292 break;
1293 }
1294 case 0xb: {
1295 int i, level_type;
1296
1297 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1298 /* read more entries until level_type is zero */
1299 for (i = 1; *nent < maxnent; ++i) {
1300 level_type = entry[i - 1].ecx & 0xff00;
1301 if (!level_type)
1302 break;
1303 do_cpuid_1_ent(&entry[i], function, i);
1304 entry[i].flags |=
1305 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1306 ++*nent;
1307 }
1308 break;
1309 }
1310 case 0x80000000:
1311 entry->eax = min(entry->eax, 0x8000001a);
1312 break;
1313 case 0x80000001:
1314 entry->edx &= kvm_supported_word1_x86_features;
1315 entry->ecx &= kvm_supported_word6_x86_features;
1316 break;
1317 }
1318 put_cpu();
1319 }
1320
1321 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1322 struct kvm_cpuid_entry2 __user *entries)
1323 {
1324 struct kvm_cpuid_entry2 *cpuid_entries;
1325 int limit, nent = 0, r = -E2BIG;
1326 u32 func;
1327
1328 if (cpuid->nent < 1)
1329 goto out;
1330 r = -ENOMEM;
1331 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1332 if (!cpuid_entries)
1333 goto out;
1334
1335 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1336 limit = cpuid_entries[0].eax;
1337 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1338 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1339 &nent, cpuid->nent);
1340 r = -E2BIG;
1341 if (nent >= cpuid->nent)
1342 goto out_free;
1343
1344 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1345 limit = cpuid_entries[nent - 1].eax;
1346 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1347 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1348 &nent, cpuid->nent);
1349 r = -EFAULT;
1350 if (copy_to_user(entries, cpuid_entries,
1351 nent * sizeof(struct kvm_cpuid_entry2)))
1352 goto out_free;
1353 cpuid->nent = nent;
1354 r = 0;
1355
1356 out_free:
1357 vfree(cpuid_entries);
1358 out:
1359 return r;
1360 }
1361
1362 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1363 struct kvm_lapic_state *s)
1364 {
1365 vcpu_load(vcpu);
1366 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1367 vcpu_put(vcpu);
1368
1369 return 0;
1370 }
1371
1372 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1373 struct kvm_lapic_state *s)
1374 {
1375 vcpu_load(vcpu);
1376 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1377 kvm_apic_post_state_restore(vcpu);
1378 vcpu_put(vcpu);
1379
1380 return 0;
1381 }
1382
1383 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1384 struct kvm_interrupt *irq)
1385 {
1386 if (irq->irq < 0 || irq->irq >= 256)
1387 return -EINVAL;
1388 if (irqchip_in_kernel(vcpu->kvm))
1389 return -ENXIO;
1390 vcpu_load(vcpu);
1391
1392 set_bit(irq->irq, vcpu->arch.irq_pending);
1393 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1394
1395 vcpu_put(vcpu);
1396
1397 return 0;
1398 }
1399
1400 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1401 {
1402 vcpu_load(vcpu);
1403 kvm_inject_nmi(vcpu);
1404 vcpu_put(vcpu);
1405
1406 return 0;
1407 }
1408
1409 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1410 struct kvm_tpr_access_ctl *tac)
1411 {
1412 if (tac->flags)
1413 return -EINVAL;
1414 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1415 return 0;
1416 }
1417
1418 long kvm_arch_vcpu_ioctl(struct file *filp,
1419 unsigned int ioctl, unsigned long arg)
1420 {
1421 struct kvm_vcpu *vcpu = filp->private_data;
1422 void __user *argp = (void __user *)arg;
1423 int r;
1424 struct kvm_lapic_state *lapic = NULL;
1425
1426 switch (ioctl) {
1427 case KVM_GET_LAPIC: {
1428 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1429
1430 r = -ENOMEM;
1431 if (!lapic)
1432 goto out;
1433 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1434 if (r)
1435 goto out;
1436 r = -EFAULT;
1437 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1438 goto out;
1439 r = 0;
1440 break;
1441 }
1442 case KVM_SET_LAPIC: {
1443 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1444 r = -ENOMEM;
1445 if (!lapic)
1446 goto out;
1447 r = -EFAULT;
1448 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1449 goto out;
1450 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1451 if (r)
1452 goto out;
1453 r = 0;
1454 break;
1455 }
1456 case KVM_INTERRUPT: {
1457 struct kvm_interrupt irq;
1458
1459 r = -EFAULT;
1460 if (copy_from_user(&irq, argp, sizeof irq))
1461 goto out;
1462 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1463 if (r)
1464 goto out;
1465 r = 0;
1466 break;
1467 }
1468 case KVM_NMI: {
1469 r = kvm_vcpu_ioctl_nmi(vcpu);
1470 if (r)
1471 goto out;
1472 r = 0;
1473 break;
1474 }
1475 case KVM_SET_CPUID: {
1476 struct kvm_cpuid __user *cpuid_arg = argp;
1477 struct kvm_cpuid cpuid;
1478
1479 r = -EFAULT;
1480 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1481 goto out;
1482 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1483 if (r)
1484 goto out;
1485 break;
1486 }
1487 case KVM_SET_CPUID2: {
1488 struct kvm_cpuid2 __user *cpuid_arg = argp;
1489 struct kvm_cpuid2 cpuid;
1490
1491 r = -EFAULT;
1492 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1493 goto out;
1494 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1495 cpuid_arg->entries);
1496 if (r)
1497 goto out;
1498 break;
1499 }
1500 case KVM_GET_CPUID2: {
1501 struct kvm_cpuid2 __user *cpuid_arg = argp;
1502 struct kvm_cpuid2 cpuid;
1503
1504 r = -EFAULT;
1505 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1506 goto out;
1507 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1508 cpuid_arg->entries);
1509 if (r)
1510 goto out;
1511 r = -EFAULT;
1512 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1513 goto out;
1514 r = 0;
1515 break;
1516 }
1517 case KVM_GET_MSRS:
1518 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1519 break;
1520 case KVM_SET_MSRS:
1521 r = msr_io(vcpu, argp, do_set_msr, 0);
1522 break;
1523 case KVM_TPR_ACCESS_REPORTING: {
1524 struct kvm_tpr_access_ctl tac;
1525
1526 r = -EFAULT;
1527 if (copy_from_user(&tac, argp, sizeof tac))
1528 goto out;
1529 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1530 if (r)
1531 goto out;
1532 r = -EFAULT;
1533 if (copy_to_user(argp, &tac, sizeof tac))
1534 goto out;
1535 r = 0;
1536 break;
1537 };
1538 case KVM_SET_VAPIC_ADDR: {
1539 struct kvm_vapic_addr va;
1540
1541 r = -EINVAL;
1542 if (!irqchip_in_kernel(vcpu->kvm))
1543 goto out;
1544 r = -EFAULT;
1545 if (copy_from_user(&va, argp, sizeof va))
1546 goto out;
1547 r = 0;
1548 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1549 break;
1550 }
1551 default:
1552 r = -EINVAL;
1553 }
1554 out:
1555 if (lapic)
1556 kfree(lapic);
1557 return r;
1558 }
1559
1560 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1561 {
1562 int ret;
1563
1564 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1565 return -1;
1566 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1567 return ret;
1568 }
1569
1570 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1571 u32 kvm_nr_mmu_pages)
1572 {
1573 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1574 return -EINVAL;
1575
1576 down_write(&kvm->slots_lock);
1577
1578 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1579 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1580
1581 up_write(&kvm->slots_lock);
1582 return 0;
1583 }
1584
1585 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1586 {
1587 return kvm->arch.n_alloc_mmu_pages;
1588 }
1589
1590 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1591 {
1592 int i;
1593 struct kvm_mem_alias *alias;
1594
1595 for (i = 0; i < kvm->arch.naliases; ++i) {
1596 alias = &kvm->arch.aliases[i];
1597 if (gfn >= alias->base_gfn
1598 && gfn < alias->base_gfn + alias->npages)
1599 return alias->target_gfn + gfn - alias->base_gfn;
1600 }
1601 return gfn;
1602 }
1603
1604 /*
1605 * Set a new alias region. Aliases map a portion of physical memory into
1606 * another portion. This is useful for memory windows, for example the PC
1607 * VGA region.
1608 */
1609 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1610 struct kvm_memory_alias *alias)
1611 {
1612 int r, n;
1613 struct kvm_mem_alias *p;
1614
1615 r = -EINVAL;
1616 /* General sanity checks */
1617 if (alias->memory_size & (PAGE_SIZE - 1))
1618 goto out;
1619 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1620 goto out;
1621 if (alias->slot >= KVM_ALIAS_SLOTS)
1622 goto out;
1623 if (alias->guest_phys_addr + alias->memory_size
1624 < alias->guest_phys_addr)
1625 goto out;
1626 if (alias->target_phys_addr + alias->memory_size
1627 < alias->target_phys_addr)
1628 goto out;
1629
1630 down_write(&kvm->slots_lock);
1631 spin_lock(&kvm->mmu_lock);
1632
1633 p = &kvm->arch.aliases[alias->slot];
1634 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1635 p->npages = alias->memory_size >> PAGE_SHIFT;
1636 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1637
1638 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1639 if (kvm->arch.aliases[n - 1].npages)
1640 break;
1641 kvm->arch.naliases = n;
1642
1643 spin_unlock(&kvm->mmu_lock);
1644 kvm_mmu_zap_all(kvm);
1645
1646 up_write(&kvm->slots_lock);
1647
1648 return 0;
1649
1650 out:
1651 return r;
1652 }
1653
1654 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1655 {
1656 int r;
1657
1658 r = 0;
1659 switch (chip->chip_id) {
1660 case KVM_IRQCHIP_PIC_MASTER:
1661 memcpy(&chip->chip.pic,
1662 &pic_irqchip(kvm)->pics[0],
1663 sizeof(struct kvm_pic_state));
1664 break;
1665 case KVM_IRQCHIP_PIC_SLAVE:
1666 memcpy(&chip->chip.pic,
1667 &pic_irqchip(kvm)->pics[1],
1668 sizeof(struct kvm_pic_state));
1669 break;
1670 case KVM_IRQCHIP_IOAPIC:
1671 memcpy(&chip->chip.ioapic,
1672 ioapic_irqchip(kvm),
1673 sizeof(struct kvm_ioapic_state));
1674 break;
1675 default:
1676 r = -EINVAL;
1677 break;
1678 }
1679 return r;
1680 }
1681
1682 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1683 {
1684 int r;
1685
1686 r = 0;
1687 switch (chip->chip_id) {
1688 case KVM_IRQCHIP_PIC_MASTER:
1689 memcpy(&pic_irqchip(kvm)->pics[0],
1690 &chip->chip.pic,
1691 sizeof(struct kvm_pic_state));
1692 break;
1693 case KVM_IRQCHIP_PIC_SLAVE:
1694 memcpy(&pic_irqchip(kvm)->pics[1],
1695 &chip->chip.pic,
1696 sizeof(struct kvm_pic_state));
1697 break;
1698 case KVM_IRQCHIP_IOAPIC:
1699 memcpy(ioapic_irqchip(kvm),
1700 &chip->chip.ioapic,
1701 sizeof(struct kvm_ioapic_state));
1702 break;
1703 default:
1704 r = -EINVAL;
1705 break;
1706 }
1707 kvm_pic_update_irq(pic_irqchip(kvm));
1708 return r;
1709 }
1710
1711 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1712 {
1713 int r = 0;
1714
1715 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1716 return r;
1717 }
1718
1719 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1720 {
1721 int r = 0;
1722
1723 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1724 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1725 return r;
1726 }
1727
1728 /*
1729 * Get (and clear) the dirty memory log for a memory slot.
1730 */
1731 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1732 struct kvm_dirty_log *log)
1733 {
1734 int r;
1735 int n;
1736 struct kvm_memory_slot *memslot;
1737 int is_dirty = 0;
1738
1739 down_write(&kvm->slots_lock);
1740
1741 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1742 if (r)
1743 goto out;
1744
1745 /* If nothing is dirty, don't bother messing with page tables. */
1746 if (is_dirty) {
1747 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1748 kvm_flush_remote_tlbs(kvm);
1749 memslot = &kvm->memslots[log->slot];
1750 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1751 memset(memslot->dirty_bitmap, 0, n);
1752 }
1753 r = 0;
1754 out:
1755 up_write(&kvm->slots_lock);
1756 return r;
1757 }
1758
1759 long kvm_arch_vm_ioctl(struct file *filp,
1760 unsigned int ioctl, unsigned long arg)
1761 {
1762 struct kvm *kvm = filp->private_data;
1763 void __user *argp = (void __user *)arg;
1764 int r = -EINVAL;
1765 /*
1766 * This union makes it completely explicit to gcc-3.x
1767 * that these two variables' stack usage should be
1768 * combined, not added together.
1769 */
1770 union {
1771 struct kvm_pit_state ps;
1772 struct kvm_memory_alias alias;
1773 } u;
1774
1775 switch (ioctl) {
1776 case KVM_SET_TSS_ADDR:
1777 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1778 if (r < 0)
1779 goto out;
1780 break;
1781 case KVM_SET_MEMORY_REGION: {
1782 struct kvm_memory_region kvm_mem;
1783 struct kvm_userspace_memory_region kvm_userspace_mem;
1784
1785 r = -EFAULT;
1786 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1787 goto out;
1788 kvm_userspace_mem.slot = kvm_mem.slot;
1789 kvm_userspace_mem.flags = kvm_mem.flags;
1790 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1791 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1792 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1793 if (r)
1794 goto out;
1795 break;
1796 }
1797 case KVM_SET_NR_MMU_PAGES:
1798 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1799 if (r)
1800 goto out;
1801 break;
1802 case KVM_GET_NR_MMU_PAGES:
1803 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1804 break;
1805 case KVM_SET_MEMORY_ALIAS:
1806 r = -EFAULT;
1807 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1808 goto out;
1809 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1810 if (r)
1811 goto out;
1812 break;
1813 case KVM_CREATE_IRQCHIP:
1814 r = -ENOMEM;
1815 kvm->arch.vpic = kvm_create_pic(kvm);
1816 if (kvm->arch.vpic) {
1817 r = kvm_ioapic_init(kvm);
1818 if (r) {
1819 kfree(kvm->arch.vpic);
1820 kvm->arch.vpic = NULL;
1821 goto out;
1822 }
1823 } else
1824 goto out;
1825 break;
1826 case KVM_CREATE_PIT:
1827 r = -ENOMEM;
1828 kvm->arch.vpit = kvm_create_pit(kvm);
1829 if (kvm->arch.vpit)
1830 r = 0;
1831 break;
1832 case KVM_IRQ_LINE: {
1833 struct kvm_irq_level irq_event;
1834
1835 r = -EFAULT;
1836 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1837 goto out;
1838 if (irqchip_in_kernel(kvm)) {
1839 mutex_lock(&kvm->lock);
1840 kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1841 irq_event.irq, irq_event.level);
1842 mutex_unlock(&kvm->lock);
1843 r = 0;
1844 }
1845 break;
1846 }
1847 case KVM_GET_IRQCHIP: {
1848 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1849 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1850
1851 r = -ENOMEM;
1852 if (!chip)
1853 goto out;
1854 r = -EFAULT;
1855 if (copy_from_user(chip, argp, sizeof *chip))
1856 goto get_irqchip_out;
1857 r = -ENXIO;
1858 if (!irqchip_in_kernel(kvm))
1859 goto get_irqchip_out;
1860 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1861 if (r)
1862 goto get_irqchip_out;
1863 r = -EFAULT;
1864 if (copy_to_user(argp, chip, sizeof *chip))
1865 goto get_irqchip_out;
1866 r = 0;
1867 get_irqchip_out:
1868 kfree(chip);
1869 if (r)
1870 goto out;
1871 break;
1872 }
1873 case KVM_SET_IRQCHIP: {
1874 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1875 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1876
1877 r = -ENOMEM;
1878 if (!chip)
1879 goto out;
1880 r = -EFAULT;
1881 if (copy_from_user(chip, argp, sizeof *chip))
1882 goto set_irqchip_out;
1883 r = -ENXIO;
1884 if (!irqchip_in_kernel(kvm))
1885 goto set_irqchip_out;
1886 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1887 if (r)
1888 goto set_irqchip_out;
1889 r = 0;
1890 set_irqchip_out:
1891 kfree(chip);
1892 if (r)
1893 goto out;
1894 break;
1895 }
1896 case KVM_GET_PIT: {
1897 r = -EFAULT;
1898 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
1899 goto out;
1900 r = -ENXIO;
1901 if (!kvm->arch.vpit)
1902 goto out;
1903 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
1904 if (r)
1905 goto out;
1906 r = -EFAULT;
1907 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
1908 goto out;
1909 r = 0;
1910 break;
1911 }
1912 case KVM_SET_PIT: {
1913 r = -EFAULT;
1914 if (copy_from_user(&u.ps, argp, sizeof u.ps))
1915 goto out;
1916 r = -ENXIO;
1917 if (!kvm->arch.vpit)
1918 goto out;
1919 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
1920 if (r)
1921 goto out;
1922 r = 0;
1923 break;
1924 }
1925 default:
1926 ;
1927 }
1928 out:
1929 return r;
1930 }
1931
1932 static void kvm_init_msr_list(void)
1933 {
1934 u32 dummy[2];
1935 unsigned i, j;
1936
1937 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1938 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1939 continue;
1940 if (j < i)
1941 msrs_to_save[j] = msrs_to_save[i];
1942 j++;
1943 }
1944 num_msrs_to_save = j;
1945 }
1946
1947 /*
1948 * Only apic need an MMIO device hook, so shortcut now..
1949 */
1950 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1951 gpa_t addr, int len,
1952 int is_write)
1953 {
1954 struct kvm_io_device *dev;
1955
1956 if (vcpu->arch.apic) {
1957 dev = &vcpu->arch.apic->dev;
1958 if (dev->in_range(dev, addr, len, is_write))
1959 return dev;
1960 }
1961 return NULL;
1962 }
1963
1964
1965 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1966 gpa_t addr, int len,
1967 int is_write)
1968 {
1969 struct kvm_io_device *dev;
1970
1971 dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
1972 if (dev == NULL)
1973 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
1974 is_write);
1975 return dev;
1976 }
1977
1978 int emulator_read_std(unsigned long addr,
1979 void *val,
1980 unsigned int bytes,
1981 struct kvm_vcpu *vcpu)
1982 {
1983 void *data = val;
1984 int r = X86EMUL_CONTINUE;
1985
1986 while (bytes) {
1987 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1988 unsigned offset = addr & (PAGE_SIZE-1);
1989 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1990 int ret;
1991
1992 if (gpa == UNMAPPED_GVA) {
1993 r = X86EMUL_PROPAGATE_FAULT;
1994 goto out;
1995 }
1996 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1997 if (ret < 0) {
1998 r = X86EMUL_UNHANDLEABLE;
1999 goto out;
2000 }
2001
2002 bytes -= tocopy;
2003 data += tocopy;
2004 addr += tocopy;
2005 }
2006 out:
2007 return r;
2008 }
2009 EXPORT_SYMBOL_GPL(emulator_read_std);
2010
2011 static int emulator_read_emulated(unsigned long addr,
2012 void *val,
2013 unsigned int bytes,
2014 struct kvm_vcpu *vcpu)
2015 {
2016 struct kvm_io_device *mmio_dev;
2017 gpa_t gpa;
2018
2019 if (vcpu->mmio_read_completed) {
2020 memcpy(val, vcpu->mmio_data, bytes);
2021 vcpu->mmio_read_completed = 0;
2022 return X86EMUL_CONTINUE;
2023 }
2024
2025 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2026
2027 /* For APIC access vmexit */
2028 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2029 goto mmio;
2030
2031 if (emulator_read_std(addr, val, bytes, vcpu)
2032 == X86EMUL_CONTINUE)
2033 return X86EMUL_CONTINUE;
2034 if (gpa == UNMAPPED_GVA)
2035 return X86EMUL_PROPAGATE_FAULT;
2036
2037 mmio:
2038 /*
2039 * Is this MMIO handled locally?
2040 */
2041 mutex_lock(&vcpu->kvm->lock);
2042 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2043 if (mmio_dev) {
2044 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2045 mutex_unlock(&vcpu->kvm->lock);
2046 return X86EMUL_CONTINUE;
2047 }
2048 mutex_unlock(&vcpu->kvm->lock);
2049
2050 vcpu->mmio_needed = 1;
2051 vcpu->mmio_phys_addr = gpa;
2052 vcpu->mmio_size = bytes;
2053 vcpu->mmio_is_write = 0;
2054
2055 return X86EMUL_UNHANDLEABLE;
2056 }
2057
2058 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2059 const void *val, int bytes)
2060 {
2061 int ret;
2062
2063 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2064 if (ret < 0)
2065 return 0;
2066 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2067 return 1;
2068 }
2069
2070 static int emulator_write_emulated_onepage(unsigned long addr,
2071 const void *val,
2072 unsigned int bytes,
2073 struct kvm_vcpu *vcpu)
2074 {
2075 struct kvm_io_device *mmio_dev;
2076 gpa_t gpa;
2077
2078 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2079
2080 if (gpa == UNMAPPED_GVA) {
2081 kvm_inject_page_fault(vcpu, addr, 2);
2082 return X86EMUL_PROPAGATE_FAULT;
2083 }
2084
2085 /* For APIC access vmexit */
2086 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2087 goto mmio;
2088
2089 if (emulator_write_phys(vcpu, gpa, val, bytes))
2090 return X86EMUL_CONTINUE;
2091
2092 mmio:
2093 /*
2094 * Is this MMIO handled locally?
2095 */
2096 mutex_lock(&vcpu->kvm->lock);
2097 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2098 if (mmio_dev) {
2099 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2100 mutex_unlock(&vcpu->kvm->lock);
2101 return X86EMUL_CONTINUE;
2102 }
2103 mutex_unlock(&vcpu->kvm->lock);
2104
2105 vcpu->mmio_needed = 1;
2106 vcpu->mmio_phys_addr = gpa;
2107 vcpu->mmio_size = bytes;
2108 vcpu->mmio_is_write = 1;
2109 memcpy(vcpu->mmio_data, val, bytes);
2110
2111 return X86EMUL_CONTINUE;
2112 }
2113
2114 int emulator_write_emulated(unsigned long addr,
2115 const void *val,
2116 unsigned int bytes,
2117 struct kvm_vcpu *vcpu)
2118 {
2119 /* Crossing a page boundary? */
2120 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2121 int rc, now;
2122
2123 now = -addr & ~PAGE_MASK;
2124 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2125 if (rc != X86EMUL_CONTINUE)
2126 return rc;
2127 addr += now;
2128 val += now;
2129 bytes -= now;
2130 }
2131 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2132 }
2133 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2134
2135 static int emulator_cmpxchg_emulated(unsigned long addr,
2136 const void *old,
2137 const void *new,
2138 unsigned int bytes,
2139 struct kvm_vcpu *vcpu)
2140 {
2141 static int reported;
2142
2143 if (!reported) {
2144 reported = 1;
2145 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2146 }
2147 #ifndef CONFIG_X86_64
2148 /* guests cmpxchg8b have to be emulated atomically */
2149 if (bytes == 8) {
2150 gpa_t gpa;
2151 struct page *page;
2152 char *kaddr;
2153 u64 val;
2154
2155 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2156
2157 if (gpa == UNMAPPED_GVA ||
2158 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2159 goto emul_write;
2160
2161 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2162 goto emul_write;
2163
2164 val = *(u64 *)new;
2165
2166 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2167
2168 kaddr = kmap_atomic(page, KM_USER0);
2169 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2170 kunmap_atomic(kaddr, KM_USER0);
2171 kvm_release_page_dirty(page);
2172 }
2173 emul_write:
2174 #endif
2175
2176 return emulator_write_emulated(addr, new, bytes, vcpu);
2177 }
2178
2179 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2180 {
2181 return kvm_x86_ops->get_segment_base(vcpu, seg);
2182 }
2183
2184 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2185 {
2186 kvm_mmu_invlpg(vcpu, address);
2187 return X86EMUL_CONTINUE;
2188 }
2189
2190 int emulate_clts(struct kvm_vcpu *vcpu)
2191 {
2192 KVMTRACE_0D(CLTS, vcpu, handler);
2193 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2194 return X86EMUL_CONTINUE;
2195 }
2196
2197 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2198 {
2199 struct kvm_vcpu *vcpu = ctxt->vcpu;
2200
2201 switch (dr) {
2202 case 0 ... 3:
2203 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2204 return X86EMUL_CONTINUE;
2205 default:
2206 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2207 return X86EMUL_UNHANDLEABLE;
2208 }
2209 }
2210
2211 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2212 {
2213 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2214 int exception;
2215
2216 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2217 if (exception) {
2218 /* FIXME: better handling */
2219 return X86EMUL_UNHANDLEABLE;
2220 }
2221 return X86EMUL_CONTINUE;
2222 }
2223
2224 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2225 {
2226 u8 opcodes[4];
2227 unsigned long rip = kvm_rip_read(vcpu);
2228 unsigned long rip_linear;
2229
2230 if (!printk_ratelimit())
2231 return;
2232
2233 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2234
2235 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2236
2237 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2238 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2239 }
2240 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2241
2242 static struct x86_emulate_ops emulate_ops = {
2243 .read_std = emulator_read_std,
2244 .read_emulated = emulator_read_emulated,
2245 .write_emulated = emulator_write_emulated,
2246 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2247 };
2248
2249 static void cache_all_regs(struct kvm_vcpu *vcpu)
2250 {
2251 kvm_register_read(vcpu, VCPU_REGS_RAX);
2252 kvm_register_read(vcpu, VCPU_REGS_RSP);
2253 kvm_register_read(vcpu, VCPU_REGS_RIP);
2254 vcpu->arch.regs_dirty = ~0;
2255 }
2256
2257 int emulate_instruction(struct kvm_vcpu *vcpu,
2258 struct kvm_run *run,
2259 unsigned long cr2,
2260 u16 error_code,
2261 int emulation_type)
2262 {
2263 int r;
2264 struct decode_cache *c;
2265
2266 kvm_clear_exception_queue(vcpu);
2267 vcpu->arch.mmio_fault_cr2 = cr2;
2268 /*
2269 * TODO: fix x86_emulate.c to use guest_read/write_register
2270 * instead of direct ->regs accesses, can save hundred cycles
2271 * on Intel for instructions that don't read/change RSP, for
2272 * for example.
2273 */
2274 cache_all_regs(vcpu);
2275
2276 vcpu->mmio_is_write = 0;
2277 vcpu->arch.pio.string = 0;
2278
2279 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2280 int cs_db, cs_l;
2281 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2282
2283 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2284 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2285 vcpu->arch.emulate_ctxt.mode =
2286 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2287 ? X86EMUL_MODE_REAL : cs_l
2288 ? X86EMUL_MODE_PROT64 : cs_db
2289 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2290
2291 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2292
2293 /* Reject the instructions other than VMCALL/VMMCALL when
2294 * try to emulate invalid opcode */
2295 c = &vcpu->arch.emulate_ctxt.decode;
2296 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2297 (!(c->twobyte && c->b == 0x01 &&
2298 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2299 c->modrm_mod == 3 && c->modrm_rm == 1)))
2300 return EMULATE_FAIL;
2301
2302 ++vcpu->stat.insn_emulation;
2303 if (r) {
2304 ++vcpu->stat.insn_emulation_fail;
2305 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2306 return EMULATE_DONE;
2307 return EMULATE_FAIL;
2308 }
2309 }
2310
2311 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2312
2313 if (vcpu->arch.pio.string)
2314 return EMULATE_DO_MMIO;
2315
2316 if ((r || vcpu->mmio_is_write) && run) {
2317 run->exit_reason = KVM_EXIT_MMIO;
2318 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2319 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2320 run->mmio.len = vcpu->mmio_size;
2321 run->mmio.is_write = vcpu->mmio_is_write;
2322 }
2323
2324 if (r) {
2325 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2326 return EMULATE_DONE;
2327 if (!vcpu->mmio_needed) {
2328 kvm_report_emulation_failure(vcpu, "mmio");
2329 return EMULATE_FAIL;
2330 }
2331 return EMULATE_DO_MMIO;
2332 }
2333
2334 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2335
2336 if (vcpu->mmio_is_write) {
2337 vcpu->mmio_needed = 0;
2338 return EMULATE_DO_MMIO;
2339 }
2340
2341 return EMULATE_DONE;
2342 }
2343 EXPORT_SYMBOL_GPL(emulate_instruction);
2344
2345 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2346 {
2347 int i;
2348
2349 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2350 if (vcpu->arch.pio.guest_pages[i]) {
2351 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2352 vcpu->arch.pio.guest_pages[i] = NULL;
2353 }
2354 }
2355
2356 static int pio_copy_data(struct kvm_vcpu *vcpu)
2357 {
2358 void *p = vcpu->arch.pio_data;
2359 void *q;
2360 unsigned bytes;
2361 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2362
2363 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2364 PAGE_KERNEL);
2365 if (!q) {
2366 free_pio_guest_pages(vcpu);
2367 return -ENOMEM;
2368 }
2369 q += vcpu->arch.pio.guest_page_offset;
2370 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2371 if (vcpu->arch.pio.in)
2372 memcpy(q, p, bytes);
2373 else
2374 memcpy(p, q, bytes);
2375 q -= vcpu->arch.pio.guest_page_offset;
2376 vunmap(q);
2377 free_pio_guest_pages(vcpu);
2378 return 0;
2379 }
2380
2381 int complete_pio(struct kvm_vcpu *vcpu)
2382 {
2383 struct kvm_pio_request *io = &vcpu->arch.pio;
2384 long delta;
2385 int r;
2386 unsigned long val;
2387
2388 if (!io->string) {
2389 if (io->in) {
2390 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2391 memcpy(&val, vcpu->arch.pio_data, io->size);
2392 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2393 }
2394 } else {
2395 if (io->in) {
2396 r = pio_copy_data(vcpu);
2397 if (r)
2398 return r;
2399 }
2400
2401 delta = 1;
2402 if (io->rep) {
2403 delta *= io->cur_count;
2404 /*
2405 * The size of the register should really depend on
2406 * current address size.
2407 */
2408 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2409 val -= delta;
2410 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2411 }
2412 if (io->down)
2413 delta = -delta;
2414 delta *= io->size;
2415 if (io->in) {
2416 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2417 val += delta;
2418 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2419 } else {
2420 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2421 val += delta;
2422 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2423 }
2424 }
2425
2426 io->count -= io->cur_count;
2427 io->cur_count = 0;
2428
2429 return 0;
2430 }
2431
2432 static void kernel_pio(struct kvm_io_device *pio_dev,
2433 struct kvm_vcpu *vcpu,
2434 void *pd)
2435 {
2436 /* TODO: String I/O for in kernel device */
2437
2438 mutex_lock(&vcpu->kvm->lock);
2439 if (vcpu->arch.pio.in)
2440 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2441 vcpu->arch.pio.size,
2442 pd);
2443 else
2444 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2445 vcpu->arch.pio.size,
2446 pd);
2447 mutex_unlock(&vcpu->kvm->lock);
2448 }
2449
2450 static void pio_string_write(struct kvm_io_device *pio_dev,
2451 struct kvm_vcpu *vcpu)
2452 {
2453 struct kvm_pio_request *io = &vcpu->arch.pio;
2454 void *pd = vcpu->arch.pio_data;
2455 int i;
2456
2457 mutex_lock(&vcpu->kvm->lock);
2458 for (i = 0; i < io->cur_count; i++) {
2459 kvm_iodevice_write(pio_dev, io->port,
2460 io->size,
2461 pd);
2462 pd += io->size;
2463 }
2464 mutex_unlock(&vcpu->kvm->lock);
2465 }
2466
2467 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2468 gpa_t addr, int len,
2469 int is_write)
2470 {
2471 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2472 }
2473
2474 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2475 int size, unsigned port)
2476 {
2477 struct kvm_io_device *pio_dev;
2478 unsigned long val;
2479
2480 vcpu->run->exit_reason = KVM_EXIT_IO;
2481 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2482 vcpu->run->io.size = vcpu->arch.pio.size = size;
2483 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2484 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2485 vcpu->run->io.port = vcpu->arch.pio.port = port;
2486 vcpu->arch.pio.in = in;
2487 vcpu->arch.pio.string = 0;
2488 vcpu->arch.pio.down = 0;
2489 vcpu->arch.pio.guest_page_offset = 0;
2490 vcpu->arch.pio.rep = 0;
2491
2492 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2493 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2494 handler);
2495 else
2496 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2497 handler);
2498
2499 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2500 memcpy(vcpu->arch.pio_data, &val, 4);
2501
2502 pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2503 if (pio_dev) {
2504 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2505 complete_pio(vcpu);
2506 return 1;
2507 }
2508 return 0;
2509 }
2510 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2511
2512 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2513 int size, unsigned long count, int down,
2514 gva_t address, int rep, unsigned port)
2515 {
2516 unsigned now, in_page;
2517 int i, ret = 0;
2518 int nr_pages = 1;
2519 struct page *page;
2520 struct kvm_io_device *pio_dev;
2521
2522 vcpu->run->exit_reason = KVM_EXIT_IO;
2523 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2524 vcpu->run->io.size = vcpu->arch.pio.size = size;
2525 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2526 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2527 vcpu->run->io.port = vcpu->arch.pio.port = port;
2528 vcpu->arch.pio.in = in;
2529 vcpu->arch.pio.string = 1;
2530 vcpu->arch.pio.down = down;
2531 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2532 vcpu->arch.pio.rep = rep;
2533
2534 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2535 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2536 handler);
2537 else
2538 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2539 handler);
2540
2541 if (!count) {
2542 kvm_x86_ops->skip_emulated_instruction(vcpu);
2543 return 1;
2544 }
2545
2546 if (!down)
2547 in_page = PAGE_SIZE - offset_in_page(address);
2548 else
2549 in_page = offset_in_page(address) + size;
2550 now = min(count, (unsigned long)in_page / size);
2551 if (!now) {
2552 /*
2553 * String I/O straddles page boundary. Pin two guest pages
2554 * so that we satisfy atomicity constraints. Do just one
2555 * transaction to avoid complexity.
2556 */
2557 nr_pages = 2;
2558 now = 1;
2559 }
2560 if (down) {
2561 /*
2562 * String I/O in reverse. Yuck. Kill the guest, fix later.
2563 */
2564 pr_unimpl(vcpu, "guest string pio down\n");
2565 kvm_inject_gp(vcpu, 0);
2566 return 1;
2567 }
2568 vcpu->run->io.count = now;
2569 vcpu->arch.pio.cur_count = now;
2570
2571 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2572 kvm_x86_ops->skip_emulated_instruction(vcpu);
2573
2574 for (i = 0; i < nr_pages; ++i) {
2575 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2576 vcpu->arch.pio.guest_pages[i] = page;
2577 if (!page) {
2578 kvm_inject_gp(vcpu, 0);
2579 free_pio_guest_pages(vcpu);
2580 return 1;
2581 }
2582 }
2583
2584 pio_dev = vcpu_find_pio_dev(vcpu, port,
2585 vcpu->arch.pio.cur_count,
2586 !vcpu->arch.pio.in);
2587 if (!vcpu->arch.pio.in) {
2588 /* string PIO write */
2589 ret = pio_copy_data(vcpu);
2590 if (ret >= 0 && pio_dev) {
2591 pio_string_write(pio_dev, vcpu);
2592 complete_pio(vcpu);
2593 if (vcpu->arch.pio.count == 0)
2594 ret = 1;
2595 }
2596 } else if (pio_dev)
2597 pr_unimpl(vcpu, "no string pio read support yet, "
2598 "port %x size %d count %ld\n",
2599 port, size, count);
2600
2601 return ret;
2602 }
2603 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2604
2605 int kvm_arch_init(void *opaque)
2606 {
2607 int r;
2608 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2609
2610 if (kvm_x86_ops) {
2611 printk(KERN_ERR "kvm: already loaded the other module\n");
2612 r = -EEXIST;
2613 goto out;
2614 }
2615
2616 if (!ops->cpu_has_kvm_support()) {
2617 printk(KERN_ERR "kvm: no hardware support\n");
2618 r = -EOPNOTSUPP;
2619 goto out;
2620 }
2621 if (ops->disabled_by_bios()) {
2622 printk(KERN_ERR "kvm: disabled by bios\n");
2623 r = -EOPNOTSUPP;
2624 goto out;
2625 }
2626
2627 r = kvm_mmu_module_init();
2628 if (r)
2629 goto out;
2630
2631 kvm_init_msr_list();
2632
2633 kvm_x86_ops = ops;
2634 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2635 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2636 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2637 PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
2638 return 0;
2639
2640 out:
2641 return r;
2642 }
2643
2644 void kvm_arch_exit(void)
2645 {
2646 kvm_x86_ops = NULL;
2647 kvm_mmu_module_exit();
2648 }
2649
2650 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2651 {
2652 ++vcpu->stat.halt_exits;
2653 KVMTRACE_0D(HLT, vcpu, handler);
2654 if (irqchip_in_kernel(vcpu->kvm)) {
2655 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2656 return 1;
2657 } else {
2658 vcpu->run->exit_reason = KVM_EXIT_HLT;
2659 return 0;
2660 }
2661 }
2662 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2663
2664 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2665 unsigned long a1)
2666 {
2667 if (is_long_mode(vcpu))
2668 return a0;
2669 else
2670 return a0 | ((gpa_t)a1 << 32);
2671 }
2672
2673 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2674 {
2675 unsigned long nr, a0, a1, a2, a3, ret;
2676 int r = 1;
2677
2678 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2679 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2680 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2681 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2682 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2683
2684 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2685
2686 if (!is_long_mode(vcpu)) {
2687 nr &= 0xFFFFFFFF;
2688 a0 &= 0xFFFFFFFF;
2689 a1 &= 0xFFFFFFFF;
2690 a2 &= 0xFFFFFFFF;
2691 a3 &= 0xFFFFFFFF;
2692 }
2693
2694 switch (nr) {
2695 case KVM_HC_VAPIC_POLL_IRQ:
2696 ret = 0;
2697 break;
2698 case KVM_HC_MMU_OP:
2699 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2700 break;
2701 default:
2702 ret = -KVM_ENOSYS;
2703 break;
2704 }
2705 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2706 ++vcpu->stat.hypercalls;
2707 return r;
2708 }
2709 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2710
2711 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2712 {
2713 char instruction[3];
2714 int ret = 0;
2715 unsigned long rip = kvm_rip_read(vcpu);
2716
2717
2718 /*
2719 * Blow out the MMU to ensure that no other VCPU has an active mapping
2720 * to ensure that the updated hypercall appears atomically across all
2721 * VCPUs.
2722 */
2723 kvm_mmu_zap_all(vcpu->kvm);
2724
2725 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2726 if (emulator_write_emulated(rip, instruction, 3, vcpu)
2727 != X86EMUL_CONTINUE)
2728 ret = -EFAULT;
2729
2730 return ret;
2731 }
2732
2733 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2734 {
2735 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2736 }
2737
2738 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2739 {
2740 struct descriptor_table dt = { limit, base };
2741
2742 kvm_x86_ops->set_gdt(vcpu, &dt);
2743 }
2744
2745 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2746 {
2747 struct descriptor_table dt = { limit, base };
2748
2749 kvm_x86_ops->set_idt(vcpu, &dt);
2750 }
2751
2752 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2753 unsigned long *rflags)
2754 {
2755 kvm_lmsw(vcpu, msw);
2756 *rflags = kvm_x86_ops->get_rflags(vcpu);
2757 }
2758
2759 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2760 {
2761 unsigned long value;
2762
2763 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2764 switch (cr) {
2765 case 0:
2766 value = vcpu->arch.cr0;
2767 break;
2768 case 2:
2769 value = vcpu->arch.cr2;
2770 break;
2771 case 3:
2772 value = vcpu->arch.cr3;
2773 break;
2774 case 4:
2775 value = vcpu->arch.cr4;
2776 break;
2777 case 8:
2778 value = kvm_get_cr8(vcpu);
2779 break;
2780 default:
2781 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2782 return 0;
2783 }
2784 KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2785 (u32)((u64)value >> 32), handler);
2786
2787 return value;
2788 }
2789
2790 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2791 unsigned long *rflags)
2792 {
2793 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2794 (u32)((u64)val >> 32), handler);
2795
2796 switch (cr) {
2797 case 0:
2798 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2799 *rflags = kvm_x86_ops->get_rflags(vcpu);
2800 break;
2801 case 2:
2802 vcpu->arch.cr2 = val;
2803 break;
2804 case 3:
2805 kvm_set_cr3(vcpu, val);
2806 break;
2807 case 4:
2808 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2809 break;
2810 case 8:
2811 kvm_set_cr8(vcpu, val & 0xfUL);
2812 break;
2813 default:
2814 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2815 }
2816 }
2817
2818 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2819 {
2820 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2821 int j, nent = vcpu->arch.cpuid_nent;
2822
2823 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2824 /* when no next entry is found, the current entry[i] is reselected */
2825 for (j = i + 1; ; j = (j + 1) % nent) {
2826 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2827 if (ej->function == e->function) {
2828 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2829 return j;
2830 }
2831 }
2832 return 0; /* silence gcc, even though control never reaches here */
2833 }
2834
2835 /* find an entry with matching function, matching index (if needed), and that
2836 * should be read next (if it's stateful) */
2837 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2838 u32 function, u32 index)
2839 {
2840 if (e->function != function)
2841 return 0;
2842 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2843 return 0;
2844 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2845 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2846 return 0;
2847 return 1;
2848 }
2849
2850 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
2851 u32 function, u32 index)
2852 {
2853 int i;
2854 struct kvm_cpuid_entry2 *best = NULL;
2855
2856 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2857 struct kvm_cpuid_entry2 *e;
2858
2859 e = &vcpu->arch.cpuid_entries[i];
2860 if (is_matching_cpuid_entry(e, function, index)) {
2861 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2862 move_to_next_stateful_cpuid_entry(vcpu, i);
2863 best = e;
2864 break;
2865 }
2866 /*
2867 * Both basic or both extended?
2868 */
2869 if (((e->function ^ function) & 0x80000000) == 0)
2870 if (!best || e->function > best->function)
2871 best = e;
2872 }
2873
2874 return best;
2875 }
2876
2877 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2878 {
2879 u32 function, index;
2880 struct kvm_cpuid_entry2 *best;
2881
2882 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
2883 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
2884 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
2885 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
2886 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
2887 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
2888 best = kvm_find_cpuid_entry(vcpu, function, index);
2889 if (best) {
2890 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
2891 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
2892 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
2893 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
2894 }
2895 kvm_x86_ops->skip_emulated_instruction(vcpu);
2896 KVMTRACE_5D(CPUID, vcpu, function,
2897 (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
2898 (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
2899 (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
2900 (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
2901 }
2902 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2903
2904 /*
2905 * Check if userspace requested an interrupt window, and that the
2906 * interrupt window is open.
2907 *
2908 * No need to exit to userspace if we already have an interrupt queued.
2909 */
2910 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2911 struct kvm_run *kvm_run)
2912 {
2913 return (!vcpu->arch.irq_summary &&
2914 kvm_run->request_interrupt_window &&
2915 vcpu->arch.interrupt_window_open &&
2916 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2917 }
2918
2919 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2920 struct kvm_run *kvm_run)
2921 {
2922 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2923 kvm_run->cr8 = kvm_get_cr8(vcpu);
2924 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2925 if (irqchip_in_kernel(vcpu->kvm))
2926 kvm_run->ready_for_interrupt_injection = 1;
2927 else
2928 kvm_run->ready_for_interrupt_injection =
2929 (vcpu->arch.interrupt_window_open &&
2930 vcpu->arch.irq_summary == 0);
2931 }
2932
2933 static void vapic_enter(struct kvm_vcpu *vcpu)
2934 {
2935 struct kvm_lapic *apic = vcpu->arch.apic;
2936 struct page *page;
2937
2938 if (!apic || !apic->vapic_addr)
2939 return;
2940
2941 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2942
2943 vcpu->arch.apic->vapic_page = page;
2944 }
2945
2946 static void vapic_exit(struct kvm_vcpu *vcpu)
2947 {
2948 struct kvm_lapic *apic = vcpu->arch.apic;
2949
2950 if (!apic || !apic->vapic_addr)
2951 return;
2952
2953 down_read(&vcpu->kvm->slots_lock);
2954 kvm_release_page_dirty(apic->vapic_page);
2955 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2956 up_read(&vcpu->kvm->slots_lock);
2957 }
2958
2959 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2960 {
2961 int r;
2962
2963 if (vcpu->requests)
2964 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2965 kvm_mmu_unload(vcpu);
2966
2967 r = kvm_mmu_reload(vcpu);
2968 if (unlikely(r))
2969 goto out;
2970
2971 if (vcpu->requests) {
2972 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2973 __kvm_migrate_timers(vcpu);
2974 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
2975 kvm_mmu_sync_roots(vcpu);
2976 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2977 kvm_x86_ops->tlb_flush(vcpu);
2978 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2979 &vcpu->requests)) {
2980 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2981 r = 0;
2982 goto out;
2983 }
2984 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2985 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2986 r = 0;
2987 goto out;
2988 }
2989 }
2990
2991 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
2992 kvm_inject_pending_timer_irqs(vcpu);
2993
2994 preempt_disable();
2995
2996 kvm_x86_ops->prepare_guest_switch(vcpu);
2997 kvm_load_guest_fpu(vcpu);
2998
2999 local_irq_disable();
3000
3001 if (vcpu->requests || need_resched() || signal_pending(current)) {
3002 local_irq_enable();
3003 preempt_enable();
3004 r = 1;
3005 goto out;
3006 }
3007
3008 if (vcpu->guest_debug.enabled)
3009 kvm_x86_ops->guest_debug_pre(vcpu);
3010
3011 vcpu->guest_mode = 1;
3012 /*
3013 * Make sure that guest_mode assignment won't happen after
3014 * testing the pending IRQ vector bitmap.
3015 */
3016 smp_wmb();
3017
3018 if (vcpu->arch.exception.pending)
3019 __queue_exception(vcpu);
3020 else if (irqchip_in_kernel(vcpu->kvm))
3021 kvm_x86_ops->inject_pending_irq(vcpu);
3022 else
3023 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
3024
3025 kvm_lapic_sync_to_vapic(vcpu);
3026
3027 up_read(&vcpu->kvm->slots_lock);
3028
3029 kvm_guest_enter();
3030
3031
3032 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3033 kvm_x86_ops->run(vcpu, kvm_run);
3034
3035 vcpu->guest_mode = 0;
3036 local_irq_enable();
3037
3038 ++vcpu->stat.exits;
3039
3040 /*
3041 * We must have an instruction between local_irq_enable() and
3042 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3043 * the interrupt shadow. The stat.exits increment will do nicely.
3044 * But we need to prevent reordering, hence this barrier():
3045 */
3046 barrier();
3047
3048 kvm_guest_exit();
3049
3050 preempt_enable();
3051
3052 down_read(&vcpu->kvm->slots_lock);
3053
3054 /*
3055 * Profile KVM exit RIPs:
3056 */
3057 if (unlikely(prof_on == KVM_PROFILING)) {
3058 unsigned long rip = kvm_rip_read(vcpu);
3059 profile_hit(KVM_PROFILING, (void *)rip);
3060 }
3061
3062 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
3063 vcpu->arch.exception.pending = false;
3064
3065 kvm_lapic_sync_from_vapic(vcpu);
3066
3067 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3068 out:
3069 return r;
3070 }
3071
3072 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3073 {
3074 int r;
3075
3076 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3077 pr_debug("vcpu %d received sipi with vector # %x\n",
3078 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3079 kvm_lapic_reset(vcpu);
3080 r = kvm_arch_vcpu_reset(vcpu);
3081 if (r)
3082 return r;
3083 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3084 }
3085
3086 down_read(&vcpu->kvm->slots_lock);
3087 vapic_enter(vcpu);
3088
3089 r = 1;
3090 while (r > 0) {
3091 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3092 r = vcpu_enter_guest(vcpu, kvm_run);
3093 else {
3094 up_read(&vcpu->kvm->slots_lock);
3095 kvm_vcpu_block(vcpu);
3096 down_read(&vcpu->kvm->slots_lock);
3097 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3098 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3099 vcpu->arch.mp_state =
3100 KVM_MP_STATE_RUNNABLE;
3101 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
3102 r = -EINTR;
3103 }
3104
3105 if (r > 0) {
3106 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3107 r = -EINTR;
3108 kvm_run->exit_reason = KVM_EXIT_INTR;
3109 ++vcpu->stat.request_irq_exits;
3110 }
3111 if (signal_pending(current)) {
3112 r = -EINTR;
3113 kvm_run->exit_reason = KVM_EXIT_INTR;
3114 ++vcpu->stat.signal_exits;
3115 }
3116 if (need_resched()) {
3117 up_read(&vcpu->kvm->slots_lock);
3118 kvm_resched(vcpu);
3119 down_read(&vcpu->kvm->slots_lock);
3120 }
3121 }
3122 }
3123
3124 up_read(&vcpu->kvm->slots_lock);
3125 post_kvm_run_save(vcpu, kvm_run);
3126
3127 vapic_exit(vcpu);
3128
3129 return r;
3130 }
3131
3132 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3133 {
3134 int r;
3135 sigset_t sigsaved;
3136
3137 vcpu_load(vcpu);
3138
3139 if (vcpu->sigset_active)
3140 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3141
3142 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3143 kvm_vcpu_block(vcpu);
3144 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3145 r = -EAGAIN;
3146 goto out;
3147 }
3148
3149 /* re-sync apic's tpr */
3150 if (!irqchip_in_kernel(vcpu->kvm))
3151 kvm_set_cr8(vcpu, kvm_run->cr8);
3152
3153 if (vcpu->arch.pio.cur_count) {
3154 r = complete_pio(vcpu);
3155 if (r)
3156 goto out;
3157 }
3158 #if CONFIG_HAS_IOMEM
3159 if (vcpu->mmio_needed) {
3160 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3161 vcpu->mmio_read_completed = 1;
3162 vcpu->mmio_needed = 0;
3163
3164 down_read(&vcpu->kvm->slots_lock);
3165 r = emulate_instruction(vcpu, kvm_run,
3166 vcpu->arch.mmio_fault_cr2, 0,
3167 EMULTYPE_NO_DECODE);
3168 up_read(&vcpu->kvm->slots_lock);
3169 if (r == EMULATE_DO_MMIO) {
3170 /*
3171 * Read-modify-write. Back to userspace.
3172 */
3173 r = 0;
3174 goto out;
3175 }
3176 }
3177 #endif
3178 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3179 kvm_register_write(vcpu, VCPU_REGS_RAX,
3180 kvm_run->hypercall.ret);
3181
3182 r = __vcpu_run(vcpu, kvm_run);
3183
3184 out:
3185 if (vcpu->sigset_active)
3186 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3187
3188 vcpu_put(vcpu);
3189 return r;
3190 }
3191
3192 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3193 {
3194 vcpu_load(vcpu);
3195
3196 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3197 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3198 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3199 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3200 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3201 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3202 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3203 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3204 #ifdef CONFIG_X86_64
3205 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3206 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3207 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3208 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3209 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3210 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3211 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3212 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3213 #endif
3214
3215 regs->rip = kvm_rip_read(vcpu);
3216 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3217
3218 /*
3219 * Don't leak debug flags in case they were set for guest debugging
3220 */
3221 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
3222 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3223
3224 vcpu_put(vcpu);
3225
3226 return 0;
3227 }
3228
3229 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3230 {
3231 vcpu_load(vcpu);
3232
3233 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3234 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3235 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3236 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3237 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3238 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3239 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3240 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3241 #ifdef CONFIG_X86_64
3242 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3243 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3244 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3245 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3246 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3247 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3248 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3249 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3250
3251 #endif
3252
3253 kvm_rip_write(vcpu, regs->rip);
3254 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3255
3256
3257 vcpu->arch.exception.pending = false;
3258
3259 vcpu_put(vcpu);
3260
3261 return 0;
3262 }
3263
3264 void kvm_get_segment(struct kvm_vcpu *vcpu,
3265 struct kvm_segment *var, int seg)
3266 {
3267 kvm_x86_ops->get_segment(vcpu, var, seg);
3268 }
3269
3270 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3271 {
3272 struct kvm_segment cs;
3273
3274 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3275 *db = cs.db;
3276 *l = cs.l;
3277 }
3278 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3279
3280 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3281 struct kvm_sregs *sregs)
3282 {
3283 struct descriptor_table dt;
3284 int pending_vec;
3285
3286 vcpu_load(vcpu);
3287
3288 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3289 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3290 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3291 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3292 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3293 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3294
3295 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3296 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3297
3298 kvm_x86_ops->get_idt(vcpu, &dt);
3299 sregs->idt.limit = dt.limit;
3300 sregs->idt.base = dt.base;
3301 kvm_x86_ops->get_gdt(vcpu, &dt);
3302 sregs->gdt.limit = dt.limit;
3303 sregs->gdt.base = dt.base;
3304
3305 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3306 sregs->cr0 = vcpu->arch.cr0;
3307 sregs->cr2 = vcpu->arch.cr2;
3308 sregs->cr3 = vcpu->arch.cr3;
3309 sregs->cr4 = vcpu->arch.cr4;
3310 sregs->cr8 = kvm_get_cr8(vcpu);
3311 sregs->efer = vcpu->arch.shadow_efer;
3312 sregs->apic_base = kvm_get_apic_base(vcpu);
3313
3314 if (irqchip_in_kernel(vcpu->kvm)) {
3315 memset(sregs->interrupt_bitmap, 0,
3316 sizeof sregs->interrupt_bitmap);
3317 pending_vec = kvm_x86_ops->get_irq(vcpu);
3318 if (pending_vec >= 0)
3319 set_bit(pending_vec,
3320 (unsigned long *)sregs->interrupt_bitmap);
3321 } else
3322 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3323 sizeof sregs->interrupt_bitmap);
3324
3325 vcpu_put(vcpu);
3326
3327 return 0;
3328 }
3329
3330 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3331 struct kvm_mp_state *mp_state)
3332 {
3333 vcpu_load(vcpu);
3334 mp_state->mp_state = vcpu->arch.mp_state;
3335 vcpu_put(vcpu);
3336 return 0;
3337 }
3338
3339 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3340 struct kvm_mp_state *mp_state)
3341 {
3342 vcpu_load(vcpu);
3343 vcpu->arch.mp_state = mp_state->mp_state;
3344 vcpu_put(vcpu);
3345 return 0;
3346 }
3347
3348 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3349 struct kvm_segment *var, int seg)
3350 {
3351 kvm_x86_ops->set_segment(vcpu, var, seg);
3352 }
3353
3354 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3355 struct kvm_segment *kvm_desct)
3356 {
3357 kvm_desct->base = seg_desc->base0;
3358 kvm_desct->base |= seg_desc->base1 << 16;
3359 kvm_desct->base |= seg_desc->base2 << 24;
3360 kvm_desct->limit = seg_desc->limit0;
3361 kvm_desct->limit |= seg_desc->limit << 16;
3362 if (seg_desc->g) {
3363 kvm_desct->limit <<= 12;
3364 kvm_desct->limit |= 0xfff;
3365 }
3366 kvm_desct->selector = selector;
3367 kvm_desct->type = seg_desc->type;
3368 kvm_desct->present = seg_desc->p;
3369 kvm_desct->dpl = seg_desc->dpl;
3370 kvm_desct->db = seg_desc->d;
3371 kvm_desct->s = seg_desc->s;
3372 kvm_desct->l = seg_desc->l;
3373 kvm_desct->g = seg_desc->g;
3374 kvm_desct->avl = seg_desc->avl;
3375 if (!selector)
3376 kvm_desct->unusable = 1;
3377 else
3378 kvm_desct->unusable = 0;
3379 kvm_desct->padding = 0;
3380 }
3381
3382 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3383 u16 selector,
3384 struct descriptor_table *dtable)
3385 {
3386 if (selector & 1 << 2) {
3387 struct kvm_segment kvm_seg;
3388
3389 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3390
3391 if (kvm_seg.unusable)
3392 dtable->limit = 0;
3393 else
3394 dtable->limit = kvm_seg.limit;
3395 dtable->base = kvm_seg.base;
3396 }
3397 else
3398 kvm_x86_ops->get_gdt(vcpu, dtable);
3399 }
3400
3401 /* allowed just for 8 bytes segments */
3402 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3403 struct desc_struct *seg_desc)
3404 {
3405 gpa_t gpa;
3406 struct descriptor_table dtable;
3407 u16 index = selector >> 3;
3408
3409 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3410
3411 if (dtable.limit < index * 8 + 7) {
3412 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3413 return 1;
3414 }
3415 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3416 gpa += index * 8;
3417 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3418 }
3419
3420 /* allowed just for 8 bytes segments */
3421 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3422 struct desc_struct *seg_desc)
3423 {
3424 gpa_t gpa;
3425 struct descriptor_table dtable;
3426 u16 index = selector >> 3;
3427
3428 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3429
3430 if (dtable.limit < index * 8 + 7)
3431 return 1;
3432 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3433 gpa += index * 8;
3434 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3435 }
3436
3437 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3438 struct desc_struct *seg_desc)
3439 {
3440 u32 base_addr;
3441
3442 base_addr = seg_desc->base0;
3443 base_addr |= (seg_desc->base1 << 16);
3444 base_addr |= (seg_desc->base2 << 24);
3445
3446 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3447 }
3448
3449 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3450 {
3451 struct kvm_segment kvm_seg;
3452
3453 kvm_get_segment(vcpu, &kvm_seg, seg);
3454 return kvm_seg.selector;
3455 }
3456
3457 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3458 u16 selector,
3459 struct kvm_segment *kvm_seg)
3460 {
3461 struct desc_struct seg_desc;
3462
3463 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3464 return 1;
3465 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3466 return 0;
3467 }
3468
3469 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3470 {
3471 struct kvm_segment segvar = {
3472 .base = selector << 4,
3473 .limit = 0xffff,
3474 .selector = selector,
3475 .type = 3,
3476 .present = 1,
3477 .dpl = 3,
3478 .db = 0,
3479 .s = 1,
3480 .l = 0,
3481 .g = 0,
3482 .avl = 0,
3483 .unusable = 0,
3484 };
3485 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3486 return 0;
3487 }
3488
3489 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3490 int type_bits, int seg)
3491 {
3492 struct kvm_segment kvm_seg;
3493
3494 if (!(vcpu->arch.cr0 & X86_CR0_PE))
3495 return kvm_load_realmode_segment(vcpu, selector, seg);
3496 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3497 return 1;
3498 kvm_seg.type |= type_bits;
3499
3500 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3501 seg != VCPU_SREG_LDTR)
3502 if (!kvm_seg.s)
3503 kvm_seg.unusable = 1;
3504
3505 kvm_set_segment(vcpu, &kvm_seg, seg);
3506 return 0;
3507 }
3508
3509 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3510 struct tss_segment_32 *tss)
3511 {
3512 tss->cr3 = vcpu->arch.cr3;
3513 tss->eip = kvm_rip_read(vcpu);
3514 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3515 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3516 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3517 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3518 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3519 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3520 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3521 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3522 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3523 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3524 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3525 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3526 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3527 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3528 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3529 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3530 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3531 }
3532
3533 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3534 struct tss_segment_32 *tss)
3535 {
3536 kvm_set_cr3(vcpu, tss->cr3);
3537
3538 kvm_rip_write(vcpu, tss->eip);
3539 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3540
3541 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3542 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3543 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3544 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3545 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3546 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3547 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3548 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3549
3550 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3551 return 1;
3552
3553 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3554 return 1;
3555
3556 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3557 return 1;
3558
3559 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3560 return 1;
3561
3562 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3563 return 1;
3564
3565 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3566 return 1;
3567
3568 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3569 return 1;
3570 return 0;
3571 }
3572
3573 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3574 struct tss_segment_16 *tss)
3575 {
3576 tss->ip = kvm_rip_read(vcpu);
3577 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3578 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3579 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3580 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3581 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3582 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3583 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3584 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3585 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3586
3587 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3588 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3589 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3590 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3591 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3592 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3593 }
3594
3595 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3596 struct tss_segment_16 *tss)
3597 {
3598 kvm_rip_write(vcpu, tss->ip);
3599 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3600 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3601 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3602 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3603 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3604 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3605 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3606 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3607 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3608
3609 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3610 return 1;
3611
3612 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3613 return 1;
3614
3615 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3616 return 1;
3617
3618 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3619 return 1;
3620
3621 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3622 return 1;
3623 return 0;
3624 }
3625
3626 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3627 u32 old_tss_base,
3628 struct desc_struct *nseg_desc)
3629 {
3630 struct tss_segment_16 tss_segment_16;
3631 int ret = 0;
3632
3633 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3634 sizeof tss_segment_16))
3635 goto out;
3636
3637 save_state_to_tss16(vcpu, &tss_segment_16);
3638
3639 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3640 sizeof tss_segment_16))
3641 goto out;
3642
3643 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3644 &tss_segment_16, sizeof tss_segment_16))
3645 goto out;
3646
3647 if (load_state_from_tss16(vcpu, &tss_segment_16))
3648 goto out;
3649
3650 ret = 1;
3651 out:
3652 return ret;
3653 }
3654
3655 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3656 u32 old_tss_base,
3657 struct desc_struct *nseg_desc)
3658 {
3659 struct tss_segment_32 tss_segment_32;
3660 int ret = 0;
3661
3662 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3663 sizeof tss_segment_32))
3664 goto out;
3665
3666 save_state_to_tss32(vcpu, &tss_segment_32);
3667
3668 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3669 sizeof tss_segment_32))
3670 goto out;
3671
3672 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3673 &tss_segment_32, sizeof tss_segment_32))
3674 goto out;
3675
3676 if (load_state_from_tss32(vcpu, &tss_segment_32))
3677 goto out;
3678
3679 ret = 1;
3680 out:
3681 return ret;
3682 }
3683
3684 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3685 {
3686 struct kvm_segment tr_seg;
3687 struct desc_struct cseg_desc;
3688 struct desc_struct nseg_desc;
3689 int ret = 0;
3690 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3691 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3692
3693 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3694
3695 /* FIXME: Handle errors. Failure to read either TSS or their
3696 * descriptors should generate a pagefault.
3697 */
3698 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3699 goto out;
3700
3701 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3702 goto out;
3703
3704 if (reason != TASK_SWITCH_IRET) {
3705 int cpl;
3706
3707 cpl = kvm_x86_ops->get_cpl(vcpu);
3708 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3709 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3710 return 1;
3711 }
3712 }
3713
3714 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3715 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3716 return 1;
3717 }
3718
3719 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3720 cseg_desc.type &= ~(1 << 1); //clear the B flag
3721 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3722 }
3723
3724 if (reason == TASK_SWITCH_IRET) {
3725 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3726 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3727 }
3728
3729 kvm_x86_ops->skip_emulated_instruction(vcpu);
3730
3731 if (nseg_desc.type & 8)
3732 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3733 &nseg_desc);
3734 else
3735 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3736 &nseg_desc);
3737
3738 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3739 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3740 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3741 }
3742
3743 if (reason != TASK_SWITCH_IRET) {
3744 nseg_desc.type |= (1 << 1);
3745 save_guest_segment_descriptor(vcpu, tss_selector,
3746 &nseg_desc);
3747 }
3748
3749 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3750 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3751 tr_seg.type = 11;
3752 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3753 out:
3754 return ret;
3755 }
3756 EXPORT_SYMBOL_GPL(kvm_task_switch);
3757
3758 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3759 struct kvm_sregs *sregs)
3760 {
3761 int mmu_reset_needed = 0;
3762 int i, pending_vec, max_bits;
3763 struct descriptor_table dt;
3764
3765 vcpu_load(vcpu);
3766
3767 dt.limit = sregs->idt.limit;
3768 dt.base = sregs->idt.base;
3769 kvm_x86_ops->set_idt(vcpu, &dt);
3770 dt.limit = sregs->gdt.limit;
3771 dt.base = sregs->gdt.base;
3772 kvm_x86_ops->set_gdt(vcpu, &dt);
3773
3774 vcpu->arch.cr2 = sregs->cr2;
3775 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3776 vcpu->arch.cr3 = sregs->cr3;
3777
3778 kvm_set_cr8(vcpu, sregs->cr8);
3779
3780 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3781 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3782 kvm_set_apic_base(vcpu, sregs->apic_base);
3783
3784 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3785
3786 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3787 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3788 vcpu->arch.cr0 = sregs->cr0;
3789
3790 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3791 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3792 if (!is_long_mode(vcpu) && is_pae(vcpu))
3793 load_pdptrs(vcpu, vcpu->arch.cr3);
3794
3795 if (mmu_reset_needed)
3796 kvm_mmu_reset_context(vcpu);
3797
3798 if (!irqchip_in_kernel(vcpu->kvm)) {
3799 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3800 sizeof vcpu->arch.irq_pending);
3801 vcpu->arch.irq_summary = 0;
3802 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3803 if (vcpu->arch.irq_pending[i])
3804 __set_bit(i, &vcpu->arch.irq_summary);
3805 } else {
3806 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3807 pending_vec = find_first_bit(
3808 (const unsigned long *)sregs->interrupt_bitmap,
3809 max_bits);
3810 /* Only pending external irq is handled here */
3811 if (pending_vec < max_bits) {
3812 kvm_x86_ops->set_irq(vcpu, pending_vec);
3813 pr_debug("Set back pending irq %d\n",
3814 pending_vec);
3815 }
3816 kvm_pic_clear_isr_ack(vcpu->kvm);
3817 }
3818
3819 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3820 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3821 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3822 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3823 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3824 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3825
3826 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3827 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3828
3829 /* Older userspace won't unhalt the vcpu on reset. */
3830 if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
3831 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
3832 !(vcpu->arch.cr0 & X86_CR0_PE))
3833 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3834
3835 vcpu_put(vcpu);
3836
3837 return 0;
3838 }
3839
3840 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3841 struct kvm_debug_guest *dbg)
3842 {
3843 int r;
3844
3845 vcpu_load(vcpu);
3846
3847 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3848
3849 vcpu_put(vcpu);
3850
3851 return r;
3852 }
3853
3854 /*
3855 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3856 * we have asm/x86/processor.h
3857 */
3858 struct fxsave {
3859 u16 cwd;
3860 u16 swd;
3861 u16 twd;
3862 u16 fop;
3863 u64 rip;
3864 u64 rdp;
3865 u32 mxcsr;
3866 u32 mxcsr_mask;
3867 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3868 #ifdef CONFIG_X86_64
3869 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3870 #else
3871 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3872 #endif
3873 };
3874
3875 /*
3876 * Translate a guest virtual address to a guest physical address.
3877 */
3878 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3879 struct kvm_translation *tr)
3880 {
3881 unsigned long vaddr = tr->linear_address;
3882 gpa_t gpa;
3883
3884 vcpu_load(vcpu);
3885 down_read(&vcpu->kvm->slots_lock);
3886 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3887 up_read(&vcpu->kvm->slots_lock);
3888 tr->physical_address = gpa;
3889 tr->valid = gpa != UNMAPPED_GVA;
3890 tr->writeable = 1;
3891 tr->usermode = 0;
3892 vcpu_put(vcpu);
3893
3894 return 0;
3895 }
3896
3897 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3898 {
3899 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3900
3901 vcpu_load(vcpu);
3902
3903 memcpy(fpu->fpr, fxsave->st_space, 128);
3904 fpu->fcw = fxsave->cwd;
3905 fpu->fsw = fxsave->swd;
3906 fpu->ftwx = fxsave->twd;
3907 fpu->last_opcode = fxsave->fop;
3908 fpu->last_ip = fxsave->rip;
3909 fpu->last_dp = fxsave->rdp;
3910 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3911
3912 vcpu_put(vcpu);
3913
3914 return 0;
3915 }
3916
3917 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3918 {
3919 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3920
3921 vcpu_load(vcpu);
3922
3923 memcpy(fxsave->st_space, fpu->fpr, 128);
3924 fxsave->cwd = fpu->fcw;
3925 fxsave->swd = fpu->fsw;
3926 fxsave->twd = fpu->ftwx;
3927 fxsave->fop = fpu->last_opcode;
3928 fxsave->rip = fpu->last_ip;
3929 fxsave->rdp = fpu->last_dp;
3930 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3931
3932 vcpu_put(vcpu);
3933
3934 return 0;
3935 }
3936
3937 void fx_init(struct kvm_vcpu *vcpu)
3938 {
3939 unsigned after_mxcsr_mask;
3940
3941 /*
3942 * Touch the fpu the first time in non atomic context as if
3943 * this is the first fpu instruction the exception handler
3944 * will fire before the instruction returns and it'll have to
3945 * allocate ram with GFP_KERNEL.
3946 */
3947 if (!used_math())
3948 kvm_fx_save(&vcpu->arch.host_fx_image);
3949
3950 /* Initialize guest FPU by resetting ours and saving into guest's */
3951 preempt_disable();
3952 kvm_fx_save(&vcpu->arch.host_fx_image);
3953 kvm_fx_finit();
3954 kvm_fx_save(&vcpu->arch.guest_fx_image);
3955 kvm_fx_restore(&vcpu->arch.host_fx_image);
3956 preempt_enable();
3957
3958 vcpu->arch.cr0 |= X86_CR0_ET;
3959 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3960 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3961 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3962 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3963 }
3964 EXPORT_SYMBOL_GPL(fx_init);
3965
3966 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3967 {
3968 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3969 return;
3970
3971 vcpu->guest_fpu_loaded = 1;
3972 kvm_fx_save(&vcpu->arch.host_fx_image);
3973 kvm_fx_restore(&vcpu->arch.guest_fx_image);
3974 }
3975 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3976
3977 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3978 {
3979 if (!vcpu->guest_fpu_loaded)
3980 return;
3981
3982 vcpu->guest_fpu_loaded = 0;
3983 kvm_fx_save(&vcpu->arch.guest_fx_image);
3984 kvm_fx_restore(&vcpu->arch.host_fx_image);
3985 ++vcpu->stat.fpu_reload;
3986 }
3987 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3988
3989 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3990 {
3991 kvm_x86_ops->vcpu_free(vcpu);
3992 }
3993
3994 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3995 unsigned int id)
3996 {
3997 return kvm_x86_ops->vcpu_create(kvm, id);
3998 }
3999
4000 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4001 {
4002 int r;
4003
4004 /* We do fxsave: this must be aligned. */
4005 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4006
4007 vcpu->arch.mtrr_state.have_fixed = 1;
4008 vcpu_load(vcpu);
4009 r = kvm_arch_vcpu_reset(vcpu);
4010 if (r == 0)
4011 r = kvm_mmu_setup(vcpu);
4012 vcpu_put(vcpu);
4013 if (r < 0)
4014 goto free_vcpu;
4015
4016 return 0;
4017 free_vcpu:
4018 kvm_x86_ops->vcpu_free(vcpu);
4019 return r;
4020 }
4021
4022 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4023 {
4024 vcpu_load(vcpu);
4025 kvm_mmu_unload(vcpu);
4026 vcpu_put(vcpu);
4027
4028 kvm_x86_ops->vcpu_free(vcpu);
4029 }
4030
4031 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4032 {
4033 vcpu->arch.nmi_pending = false;
4034 vcpu->arch.nmi_injected = false;
4035
4036 return kvm_x86_ops->vcpu_reset(vcpu);
4037 }
4038
4039 void kvm_arch_hardware_enable(void *garbage)
4040 {
4041 kvm_x86_ops->hardware_enable(garbage);
4042 }
4043
4044 void kvm_arch_hardware_disable(void *garbage)
4045 {
4046 kvm_x86_ops->hardware_disable(garbage);
4047 }
4048
4049 int kvm_arch_hardware_setup(void)
4050 {
4051 return kvm_x86_ops->hardware_setup();
4052 }
4053
4054 void kvm_arch_hardware_unsetup(void)
4055 {
4056 kvm_x86_ops->hardware_unsetup();
4057 }
4058
4059 void kvm_arch_check_processor_compat(void *rtn)
4060 {
4061 kvm_x86_ops->check_processor_compatibility(rtn);
4062 }
4063
4064 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4065 {
4066 struct page *page;
4067 struct kvm *kvm;
4068 int r;
4069
4070 BUG_ON(vcpu->kvm == NULL);
4071 kvm = vcpu->kvm;
4072
4073 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4074 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4075 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4076 else
4077 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4078
4079 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4080 if (!page) {
4081 r = -ENOMEM;
4082 goto fail;
4083 }
4084 vcpu->arch.pio_data = page_address(page);
4085
4086 r = kvm_mmu_create(vcpu);
4087 if (r < 0)
4088 goto fail_free_pio_data;
4089
4090 if (irqchip_in_kernel(kvm)) {
4091 r = kvm_create_lapic(vcpu);
4092 if (r < 0)
4093 goto fail_mmu_destroy;
4094 }
4095
4096 return 0;
4097
4098 fail_mmu_destroy:
4099 kvm_mmu_destroy(vcpu);
4100 fail_free_pio_data:
4101 free_page((unsigned long)vcpu->arch.pio_data);
4102 fail:
4103 return r;
4104 }
4105
4106 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4107 {
4108 kvm_free_lapic(vcpu);
4109 down_read(&vcpu->kvm->slots_lock);
4110 kvm_mmu_destroy(vcpu);
4111 up_read(&vcpu->kvm->slots_lock);
4112 free_page((unsigned long)vcpu->arch.pio_data);
4113 }
4114
4115 struct kvm *kvm_arch_create_vm(void)
4116 {
4117 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4118
4119 if (!kvm)
4120 return ERR_PTR(-ENOMEM);
4121
4122 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4123 INIT_LIST_HEAD(&kvm->arch.oos_global_pages);
4124 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4125
4126 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4127 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4128
4129 return kvm;
4130 }
4131
4132 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4133 {
4134 vcpu_load(vcpu);
4135 kvm_mmu_unload(vcpu);
4136 vcpu_put(vcpu);
4137 }
4138
4139 static void kvm_free_vcpus(struct kvm *kvm)
4140 {
4141 unsigned int i;
4142
4143 /*
4144 * Unpin any mmu pages first.
4145 */
4146 for (i = 0; i < KVM_MAX_VCPUS; ++i)
4147 if (kvm->vcpus[i])
4148 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4149 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4150 if (kvm->vcpus[i]) {
4151 kvm_arch_vcpu_free(kvm->vcpus[i]);
4152 kvm->vcpus[i] = NULL;
4153 }
4154 }
4155
4156 }
4157
4158 void kvm_arch_sync_events(struct kvm *kvm)
4159 {
4160 kvm_free_all_assigned_devices(kvm);
4161 }
4162
4163 void kvm_arch_destroy_vm(struct kvm *kvm)
4164 {
4165 kvm_iommu_unmap_guest(kvm);
4166 kvm_free_pit(kvm);
4167 kfree(kvm->arch.vpic);
4168 kfree(kvm->arch.vioapic);
4169 kvm_free_vcpus(kvm);
4170 kvm_free_physmem(kvm);
4171 if (kvm->arch.apic_access_page)
4172 put_page(kvm->arch.apic_access_page);
4173 if (kvm->arch.ept_identity_pagetable)
4174 put_page(kvm->arch.ept_identity_pagetable);
4175 kfree(kvm);
4176 }
4177
4178 int kvm_arch_set_memory_region(struct kvm *kvm,
4179 struct kvm_userspace_memory_region *mem,
4180 struct kvm_memory_slot old,
4181 int user_alloc)
4182 {
4183 int npages = mem->memory_size >> PAGE_SHIFT;
4184 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4185
4186 /*To keep backward compatibility with older userspace,
4187 *x86 needs to hanlde !user_alloc case.
4188 */
4189 if (!user_alloc) {
4190 if (npages && !old.rmap) {
4191 unsigned long userspace_addr;
4192
4193 down_write(&current->mm->mmap_sem);
4194 userspace_addr = do_mmap(NULL, 0,
4195 npages * PAGE_SIZE,
4196 PROT_READ | PROT_WRITE,
4197 MAP_PRIVATE | MAP_ANONYMOUS,
4198 0);
4199 up_write(&current->mm->mmap_sem);
4200
4201 if (IS_ERR((void *)userspace_addr))
4202 return PTR_ERR((void *)userspace_addr);
4203
4204 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4205 spin_lock(&kvm->mmu_lock);
4206 memslot->userspace_addr = userspace_addr;
4207 spin_unlock(&kvm->mmu_lock);
4208 } else {
4209 if (!old.user_alloc && old.rmap) {
4210 int ret;
4211
4212 down_write(&current->mm->mmap_sem);
4213 ret = do_munmap(current->mm, old.userspace_addr,
4214 old.npages * PAGE_SIZE);
4215 up_write(&current->mm->mmap_sem);
4216 if (ret < 0)
4217 printk(KERN_WARNING
4218 "kvm_vm_ioctl_set_memory_region: "
4219 "failed to munmap memory\n");
4220 }
4221 }
4222 }
4223
4224 if (!kvm->arch.n_requested_mmu_pages) {
4225 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4226 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4227 }
4228
4229 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4230 kvm_flush_remote_tlbs(kvm);
4231
4232 return 0;
4233 }
4234
4235 void kvm_arch_flush_shadow(struct kvm *kvm)
4236 {
4237 kvm_mmu_zap_all(kvm);
4238 }
4239
4240 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4241 {
4242 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4243 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4244 || vcpu->arch.nmi_pending;
4245 }
4246
4247 static void vcpu_kick_intr(void *info)
4248 {
4249 #ifdef DEBUG
4250 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4251 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4252 #endif
4253 }
4254
4255 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4256 {
4257 int ipi_pcpu = vcpu->cpu;
4258 int cpu = get_cpu();
4259
4260 if (waitqueue_active(&vcpu->wq)) {
4261 wake_up_interruptible(&vcpu->wq);
4262 ++vcpu->stat.halt_wakeup;
4263 }
4264 /*
4265 * We may be called synchronously with irqs disabled in guest mode,
4266 * So need not to call smp_call_function_single() in that case.
4267 */
4268 if (vcpu->guest_mode && vcpu->cpu != cpu)
4269 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4270 put_cpu();
4271 }
This page took 0.112491 seconds and 6 git commands to generate.