Revert "KVM: x86: check for cr3 validity in ioctl_set_sregs"
[deliverable/linux.git] / arch / x86 / kvm / x86.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <trace/events/kvm.h>
41 #undef TRACE_INCLUDE_FILE
42 #define CREATE_TRACE_POINTS
43 #include "trace.h"
44
45 #include <asm/uaccess.h>
46 #include <asm/msr.h>
47 #include <asm/desc.h>
48 #include <asm/mtrr.h>
49 #include <asm/mce.h>
50
51 #define MAX_IO_MSRS 256
52 #define CR0_RESERVED_BITS \
53 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
54 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
55 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
56 #define CR4_RESERVED_BITS \
57 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
58 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
59 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
60 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
61
62 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
63
64 #define KVM_MAX_MCE_BANKS 32
65 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
66
67 /* EFER defaults:
68 * - enable syscall per default because its emulated by KVM
69 * - enable LME and LMA per default on 64 bit KVM
70 */
71 #ifdef CONFIG_X86_64
72 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
73 #else
74 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
75 #endif
76
77 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
78 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
79
80 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
81 struct kvm_cpuid_entry2 __user *entries);
82
83 struct kvm_x86_ops *kvm_x86_ops;
84 EXPORT_SYMBOL_GPL(kvm_x86_ops);
85
86 int ignore_msrs = 0;
87 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
88
89 struct kvm_stats_debugfs_item debugfs_entries[] = {
90 { "pf_fixed", VCPU_STAT(pf_fixed) },
91 { "pf_guest", VCPU_STAT(pf_guest) },
92 { "tlb_flush", VCPU_STAT(tlb_flush) },
93 { "invlpg", VCPU_STAT(invlpg) },
94 { "exits", VCPU_STAT(exits) },
95 { "io_exits", VCPU_STAT(io_exits) },
96 { "mmio_exits", VCPU_STAT(mmio_exits) },
97 { "signal_exits", VCPU_STAT(signal_exits) },
98 { "irq_window", VCPU_STAT(irq_window_exits) },
99 { "nmi_window", VCPU_STAT(nmi_window_exits) },
100 { "halt_exits", VCPU_STAT(halt_exits) },
101 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
102 { "hypercalls", VCPU_STAT(hypercalls) },
103 { "request_irq", VCPU_STAT(request_irq_exits) },
104 { "irq_exits", VCPU_STAT(irq_exits) },
105 { "host_state_reload", VCPU_STAT(host_state_reload) },
106 { "efer_reload", VCPU_STAT(efer_reload) },
107 { "fpu_reload", VCPU_STAT(fpu_reload) },
108 { "insn_emulation", VCPU_STAT(insn_emulation) },
109 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
110 { "irq_injections", VCPU_STAT(irq_injections) },
111 { "nmi_injections", VCPU_STAT(nmi_injections) },
112 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
113 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
114 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
115 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
116 { "mmu_flooded", VM_STAT(mmu_flooded) },
117 { "mmu_recycled", VM_STAT(mmu_recycled) },
118 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
119 { "mmu_unsync", VM_STAT(mmu_unsync) },
120 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
121 { "largepages", VM_STAT(lpages) },
122 { NULL }
123 };
124
125 unsigned long segment_base(u16 selector)
126 {
127 struct descriptor_table gdt;
128 struct desc_struct *d;
129 unsigned long table_base;
130 unsigned long v;
131
132 if (selector == 0)
133 return 0;
134
135 asm("sgdt %0" : "=m"(gdt));
136 table_base = gdt.base;
137
138 if (selector & 4) { /* from ldt */
139 u16 ldt_selector;
140
141 asm("sldt %0" : "=g"(ldt_selector));
142 table_base = segment_base(ldt_selector);
143 }
144 d = (struct desc_struct *)(table_base + (selector & ~7));
145 v = d->base0 | ((unsigned long)d->base1 << 16) |
146 ((unsigned long)d->base2 << 24);
147 #ifdef CONFIG_X86_64
148 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
149 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
150 #endif
151 return v;
152 }
153 EXPORT_SYMBOL_GPL(segment_base);
154
155 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
156 {
157 if (irqchip_in_kernel(vcpu->kvm))
158 return vcpu->arch.apic_base;
159 else
160 return vcpu->arch.apic_base;
161 }
162 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
163
164 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
165 {
166 /* TODO: reserve bits check */
167 if (irqchip_in_kernel(vcpu->kvm))
168 kvm_lapic_set_base(vcpu, data);
169 else
170 vcpu->arch.apic_base = data;
171 }
172 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
173
174 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
175 {
176 WARN_ON(vcpu->arch.exception.pending);
177 vcpu->arch.exception.pending = true;
178 vcpu->arch.exception.has_error_code = false;
179 vcpu->arch.exception.nr = nr;
180 }
181 EXPORT_SYMBOL_GPL(kvm_queue_exception);
182
183 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
184 u32 error_code)
185 {
186 ++vcpu->stat.pf_guest;
187
188 if (vcpu->arch.exception.pending) {
189 switch(vcpu->arch.exception.nr) {
190 case DF_VECTOR:
191 /* triple fault -> shutdown */
192 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
193 return;
194 case PF_VECTOR:
195 vcpu->arch.exception.nr = DF_VECTOR;
196 vcpu->arch.exception.error_code = 0;
197 return;
198 default:
199 /* replace previous exception with a new one in a hope
200 that instruction re-execution will regenerate lost
201 exception */
202 vcpu->arch.exception.pending = false;
203 break;
204 }
205 }
206 vcpu->arch.cr2 = addr;
207 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
208 }
209
210 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
211 {
212 vcpu->arch.nmi_pending = 1;
213 }
214 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
215
216 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
217 {
218 WARN_ON(vcpu->arch.exception.pending);
219 vcpu->arch.exception.pending = true;
220 vcpu->arch.exception.has_error_code = true;
221 vcpu->arch.exception.nr = nr;
222 vcpu->arch.exception.error_code = error_code;
223 }
224 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
225
226 static void __queue_exception(struct kvm_vcpu *vcpu)
227 {
228 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
229 vcpu->arch.exception.has_error_code,
230 vcpu->arch.exception.error_code);
231 }
232
233 /*
234 * Load the pae pdptrs. Return true is they are all valid.
235 */
236 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
237 {
238 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
239 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
240 int i;
241 int ret;
242 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
243
244 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
245 offset * sizeof(u64), sizeof(pdpte));
246 if (ret < 0) {
247 ret = 0;
248 goto out;
249 }
250 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
251 if (is_present_gpte(pdpte[i]) &&
252 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
253 ret = 0;
254 goto out;
255 }
256 }
257 ret = 1;
258
259 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
260 __set_bit(VCPU_EXREG_PDPTR,
261 (unsigned long *)&vcpu->arch.regs_avail);
262 __set_bit(VCPU_EXREG_PDPTR,
263 (unsigned long *)&vcpu->arch.regs_dirty);
264 out:
265
266 return ret;
267 }
268 EXPORT_SYMBOL_GPL(load_pdptrs);
269
270 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
271 {
272 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
273 bool changed = true;
274 int r;
275
276 if (is_long_mode(vcpu) || !is_pae(vcpu))
277 return false;
278
279 if (!test_bit(VCPU_EXREG_PDPTR,
280 (unsigned long *)&vcpu->arch.regs_avail))
281 return true;
282
283 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
284 if (r < 0)
285 goto out;
286 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
287 out:
288
289 return changed;
290 }
291
292 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
293 {
294 if (cr0 & CR0_RESERVED_BITS) {
295 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
296 cr0, vcpu->arch.cr0);
297 kvm_inject_gp(vcpu, 0);
298 return;
299 }
300
301 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
302 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
303 kvm_inject_gp(vcpu, 0);
304 return;
305 }
306
307 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
308 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
309 "and a clear PE flag\n");
310 kvm_inject_gp(vcpu, 0);
311 return;
312 }
313
314 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
315 #ifdef CONFIG_X86_64
316 if ((vcpu->arch.shadow_efer & EFER_LME)) {
317 int cs_db, cs_l;
318
319 if (!is_pae(vcpu)) {
320 printk(KERN_DEBUG "set_cr0: #GP, start paging "
321 "in long mode while PAE is disabled\n");
322 kvm_inject_gp(vcpu, 0);
323 return;
324 }
325 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
326 if (cs_l) {
327 printk(KERN_DEBUG "set_cr0: #GP, start paging "
328 "in long mode while CS.L == 1\n");
329 kvm_inject_gp(vcpu, 0);
330 return;
331
332 }
333 } else
334 #endif
335 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
336 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
337 "reserved bits\n");
338 kvm_inject_gp(vcpu, 0);
339 return;
340 }
341
342 }
343
344 kvm_x86_ops->set_cr0(vcpu, cr0);
345 vcpu->arch.cr0 = cr0;
346
347 kvm_mmu_reset_context(vcpu);
348 return;
349 }
350 EXPORT_SYMBOL_GPL(kvm_set_cr0);
351
352 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
353 {
354 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
355 }
356 EXPORT_SYMBOL_GPL(kvm_lmsw);
357
358 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
359 {
360 unsigned long old_cr4 = vcpu->arch.cr4;
361 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
362
363 if (cr4 & CR4_RESERVED_BITS) {
364 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
365 kvm_inject_gp(vcpu, 0);
366 return;
367 }
368
369 if (is_long_mode(vcpu)) {
370 if (!(cr4 & X86_CR4_PAE)) {
371 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
372 "in long mode\n");
373 kvm_inject_gp(vcpu, 0);
374 return;
375 }
376 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
377 && ((cr4 ^ old_cr4) & pdptr_bits)
378 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
379 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
380 kvm_inject_gp(vcpu, 0);
381 return;
382 }
383
384 if (cr4 & X86_CR4_VMXE) {
385 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
386 kvm_inject_gp(vcpu, 0);
387 return;
388 }
389 kvm_x86_ops->set_cr4(vcpu, cr4);
390 vcpu->arch.cr4 = cr4;
391 vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
392 kvm_mmu_reset_context(vcpu);
393 }
394 EXPORT_SYMBOL_GPL(kvm_set_cr4);
395
396 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
397 {
398 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
399 kvm_mmu_sync_roots(vcpu);
400 kvm_mmu_flush_tlb(vcpu);
401 return;
402 }
403
404 if (is_long_mode(vcpu)) {
405 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
406 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
407 kvm_inject_gp(vcpu, 0);
408 return;
409 }
410 } else {
411 if (is_pae(vcpu)) {
412 if (cr3 & CR3_PAE_RESERVED_BITS) {
413 printk(KERN_DEBUG
414 "set_cr3: #GP, reserved bits\n");
415 kvm_inject_gp(vcpu, 0);
416 return;
417 }
418 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
419 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
420 "reserved bits\n");
421 kvm_inject_gp(vcpu, 0);
422 return;
423 }
424 }
425 /*
426 * We don't check reserved bits in nonpae mode, because
427 * this isn't enforced, and VMware depends on this.
428 */
429 }
430
431 /*
432 * Does the new cr3 value map to physical memory? (Note, we
433 * catch an invalid cr3 even in real-mode, because it would
434 * cause trouble later on when we turn on paging anyway.)
435 *
436 * A real CPU would silently accept an invalid cr3 and would
437 * attempt to use it - with largely undefined (and often hard
438 * to debug) behavior on the guest side.
439 */
440 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
441 kvm_inject_gp(vcpu, 0);
442 else {
443 vcpu->arch.cr3 = cr3;
444 vcpu->arch.mmu.new_cr3(vcpu);
445 }
446 }
447 EXPORT_SYMBOL_GPL(kvm_set_cr3);
448
449 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
450 {
451 if (cr8 & CR8_RESERVED_BITS) {
452 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
453 kvm_inject_gp(vcpu, 0);
454 return;
455 }
456 if (irqchip_in_kernel(vcpu->kvm))
457 kvm_lapic_set_tpr(vcpu, cr8);
458 else
459 vcpu->arch.cr8 = cr8;
460 }
461 EXPORT_SYMBOL_GPL(kvm_set_cr8);
462
463 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
464 {
465 if (irqchip_in_kernel(vcpu->kvm))
466 return kvm_lapic_get_cr8(vcpu);
467 else
468 return vcpu->arch.cr8;
469 }
470 EXPORT_SYMBOL_GPL(kvm_get_cr8);
471
472 static inline u32 bit(int bitno)
473 {
474 return 1 << (bitno & 31);
475 }
476
477 /*
478 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
479 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
480 *
481 * This list is modified at module load time to reflect the
482 * capabilities of the host cpu.
483 */
484 static u32 msrs_to_save[] = {
485 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
486 MSR_K6_STAR,
487 #ifdef CONFIG_X86_64
488 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
489 #endif
490 MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
491 MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
492 };
493
494 static unsigned num_msrs_to_save;
495
496 static u32 emulated_msrs[] = {
497 MSR_IA32_MISC_ENABLE,
498 };
499
500 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
501 {
502 if (efer & efer_reserved_bits) {
503 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
504 efer);
505 kvm_inject_gp(vcpu, 0);
506 return;
507 }
508
509 if (is_paging(vcpu)
510 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
511 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
512 kvm_inject_gp(vcpu, 0);
513 return;
514 }
515
516 if (efer & EFER_FFXSR) {
517 struct kvm_cpuid_entry2 *feat;
518
519 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
520 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
521 printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
522 kvm_inject_gp(vcpu, 0);
523 return;
524 }
525 }
526
527 if (efer & EFER_SVME) {
528 struct kvm_cpuid_entry2 *feat;
529
530 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
531 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
532 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
533 kvm_inject_gp(vcpu, 0);
534 return;
535 }
536 }
537
538 kvm_x86_ops->set_efer(vcpu, efer);
539
540 efer &= ~EFER_LMA;
541 efer |= vcpu->arch.shadow_efer & EFER_LMA;
542
543 vcpu->arch.shadow_efer = efer;
544
545 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
546 kvm_mmu_reset_context(vcpu);
547 }
548
549 void kvm_enable_efer_bits(u64 mask)
550 {
551 efer_reserved_bits &= ~mask;
552 }
553 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
554
555
556 /*
557 * Writes msr value into into the appropriate "register".
558 * Returns 0 on success, non-0 otherwise.
559 * Assumes vcpu_load() was already called.
560 */
561 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
562 {
563 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
564 }
565
566 /*
567 * Adapt set_msr() to msr_io()'s calling convention
568 */
569 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
570 {
571 return kvm_set_msr(vcpu, index, *data);
572 }
573
574 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
575 {
576 static int version;
577 struct pvclock_wall_clock wc;
578 struct timespec now, sys, boot;
579
580 if (!wall_clock)
581 return;
582
583 version++;
584
585 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
586
587 /*
588 * The guest calculates current wall clock time by adding
589 * system time (updated by kvm_write_guest_time below) to the
590 * wall clock specified here. guest system time equals host
591 * system time for us, thus we must fill in host boot time here.
592 */
593 now = current_kernel_time();
594 ktime_get_ts(&sys);
595 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
596
597 wc.sec = boot.tv_sec;
598 wc.nsec = boot.tv_nsec;
599 wc.version = version;
600
601 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
602
603 version++;
604 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
605 }
606
607 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
608 {
609 uint32_t quotient, remainder;
610
611 /* Don't try to replace with do_div(), this one calculates
612 * "(dividend << 32) / divisor" */
613 __asm__ ( "divl %4"
614 : "=a" (quotient), "=d" (remainder)
615 : "0" (0), "1" (dividend), "r" (divisor) );
616 return quotient;
617 }
618
619 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
620 {
621 uint64_t nsecs = 1000000000LL;
622 int32_t shift = 0;
623 uint64_t tps64;
624 uint32_t tps32;
625
626 tps64 = tsc_khz * 1000LL;
627 while (tps64 > nsecs*2) {
628 tps64 >>= 1;
629 shift--;
630 }
631
632 tps32 = (uint32_t)tps64;
633 while (tps32 <= (uint32_t)nsecs) {
634 tps32 <<= 1;
635 shift++;
636 }
637
638 hv_clock->tsc_shift = shift;
639 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
640
641 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
642 __func__, tsc_khz, hv_clock->tsc_shift,
643 hv_clock->tsc_to_system_mul);
644 }
645
646 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
647
648 static void kvm_write_guest_time(struct kvm_vcpu *v)
649 {
650 struct timespec ts;
651 unsigned long flags;
652 struct kvm_vcpu_arch *vcpu = &v->arch;
653 void *shared_kaddr;
654 unsigned long this_tsc_khz;
655
656 if ((!vcpu->time_page))
657 return;
658
659 this_tsc_khz = get_cpu_var(cpu_tsc_khz);
660 if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
661 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
662 vcpu->hv_clock_tsc_khz = this_tsc_khz;
663 }
664 put_cpu_var(cpu_tsc_khz);
665
666 /* Keep irq disabled to prevent changes to the clock */
667 local_irq_save(flags);
668 kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
669 ktime_get_ts(&ts);
670 local_irq_restore(flags);
671
672 /* With all the info we got, fill in the values */
673
674 vcpu->hv_clock.system_time = ts.tv_nsec +
675 (NSEC_PER_SEC * (u64)ts.tv_sec);
676 /*
677 * The interface expects us to write an even number signaling that the
678 * update is finished. Since the guest won't see the intermediate
679 * state, we just increase by 2 at the end.
680 */
681 vcpu->hv_clock.version += 2;
682
683 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
684
685 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
686 sizeof(vcpu->hv_clock));
687
688 kunmap_atomic(shared_kaddr, KM_USER0);
689
690 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
691 }
692
693 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
694 {
695 struct kvm_vcpu_arch *vcpu = &v->arch;
696
697 if (!vcpu->time_page)
698 return 0;
699 set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
700 return 1;
701 }
702
703 static bool msr_mtrr_valid(unsigned msr)
704 {
705 switch (msr) {
706 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
707 case MSR_MTRRfix64K_00000:
708 case MSR_MTRRfix16K_80000:
709 case MSR_MTRRfix16K_A0000:
710 case MSR_MTRRfix4K_C0000:
711 case MSR_MTRRfix4K_C8000:
712 case MSR_MTRRfix4K_D0000:
713 case MSR_MTRRfix4K_D8000:
714 case MSR_MTRRfix4K_E0000:
715 case MSR_MTRRfix4K_E8000:
716 case MSR_MTRRfix4K_F0000:
717 case MSR_MTRRfix4K_F8000:
718 case MSR_MTRRdefType:
719 case MSR_IA32_CR_PAT:
720 return true;
721 case 0x2f8:
722 return true;
723 }
724 return false;
725 }
726
727 static bool valid_pat_type(unsigned t)
728 {
729 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
730 }
731
732 static bool valid_mtrr_type(unsigned t)
733 {
734 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
735 }
736
737 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
738 {
739 int i;
740
741 if (!msr_mtrr_valid(msr))
742 return false;
743
744 if (msr == MSR_IA32_CR_PAT) {
745 for (i = 0; i < 8; i++)
746 if (!valid_pat_type((data >> (i * 8)) & 0xff))
747 return false;
748 return true;
749 } else if (msr == MSR_MTRRdefType) {
750 if (data & ~0xcff)
751 return false;
752 return valid_mtrr_type(data & 0xff);
753 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
754 for (i = 0; i < 8 ; i++)
755 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
756 return false;
757 return true;
758 }
759
760 /* variable MTRRs */
761 return valid_mtrr_type(data & 0xff);
762 }
763
764 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
765 {
766 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
767
768 if (!mtrr_valid(vcpu, msr, data))
769 return 1;
770
771 if (msr == MSR_MTRRdefType) {
772 vcpu->arch.mtrr_state.def_type = data;
773 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
774 } else if (msr == MSR_MTRRfix64K_00000)
775 p[0] = data;
776 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
777 p[1 + msr - MSR_MTRRfix16K_80000] = data;
778 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
779 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
780 else if (msr == MSR_IA32_CR_PAT)
781 vcpu->arch.pat = data;
782 else { /* Variable MTRRs */
783 int idx, is_mtrr_mask;
784 u64 *pt;
785
786 idx = (msr - 0x200) / 2;
787 is_mtrr_mask = msr - 0x200 - 2 * idx;
788 if (!is_mtrr_mask)
789 pt =
790 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
791 else
792 pt =
793 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
794 *pt = data;
795 }
796
797 kvm_mmu_reset_context(vcpu);
798 return 0;
799 }
800
801 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
802 {
803 u64 mcg_cap = vcpu->arch.mcg_cap;
804 unsigned bank_num = mcg_cap & 0xff;
805
806 switch (msr) {
807 case MSR_IA32_MCG_STATUS:
808 vcpu->arch.mcg_status = data;
809 break;
810 case MSR_IA32_MCG_CTL:
811 if (!(mcg_cap & MCG_CTL_P))
812 return 1;
813 if (data != 0 && data != ~(u64)0)
814 return -1;
815 vcpu->arch.mcg_ctl = data;
816 break;
817 default:
818 if (msr >= MSR_IA32_MC0_CTL &&
819 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
820 u32 offset = msr - MSR_IA32_MC0_CTL;
821 /* only 0 or all 1s can be written to IA32_MCi_CTL */
822 if ((offset & 0x3) == 0 &&
823 data != 0 && data != ~(u64)0)
824 return -1;
825 vcpu->arch.mce_banks[offset] = data;
826 break;
827 }
828 return 1;
829 }
830 return 0;
831 }
832
833 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
834 {
835 switch (msr) {
836 case MSR_EFER:
837 set_efer(vcpu, data);
838 break;
839 case MSR_K7_HWCR:
840 data &= ~(u64)0x40; /* ignore flush filter disable */
841 if (data != 0) {
842 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
843 data);
844 return 1;
845 }
846 break;
847 case MSR_AMD64_NB_CFG:
848 break;
849 case MSR_IA32_DEBUGCTLMSR:
850 if (!data) {
851 /* We support the non-activated case already */
852 break;
853 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
854 /* Values other than LBR and BTF are vendor-specific,
855 thus reserved and should throw a #GP */
856 return 1;
857 }
858 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
859 __func__, data);
860 break;
861 case MSR_IA32_UCODE_REV:
862 case MSR_IA32_UCODE_WRITE:
863 case MSR_VM_HSAVE_PA:
864 case MSR_AMD64_PATCH_LOADER:
865 break;
866 case 0x200 ... 0x2ff:
867 return set_msr_mtrr(vcpu, msr, data);
868 case MSR_IA32_APICBASE:
869 kvm_set_apic_base(vcpu, data);
870 break;
871 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
872 return kvm_x2apic_msr_write(vcpu, msr, data);
873 case MSR_IA32_MISC_ENABLE:
874 vcpu->arch.ia32_misc_enable_msr = data;
875 break;
876 case MSR_KVM_WALL_CLOCK:
877 vcpu->kvm->arch.wall_clock = data;
878 kvm_write_wall_clock(vcpu->kvm, data);
879 break;
880 case MSR_KVM_SYSTEM_TIME: {
881 if (vcpu->arch.time_page) {
882 kvm_release_page_dirty(vcpu->arch.time_page);
883 vcpu->arch.time_page = NULL;
884 }
885
886 vcpu->arch.time = data;
887
888 /* we verify if the enable bit is set... */
889 if (!(data & 1))
890 break;
891
892 /* ...but clean it before doing the actual write */
893 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
894
895 vcpu->arch.time_page =
896 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
897
898 if (is_error_page(vcpu->arch.time_page)) {
899 kvm_release_page_clean(vcpu->arch.time_page);
900 vcpu->arch.time_page = NULL;
901 }
902
903 kvm_request_guest_time_update(vcpu);
904 break;
905 }
906 case MSR_IA32_MCG_CTL:
907 case MSR_IA32_MCG_STATUS:
908 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
909 return set_msr_mce(vcpu, msr, data);
910
911 /* Performance counters are not protected by a CPUID bit,
912 * so we should check all of them in the generic path for the sake of
913 * cross vendor migration.
914 * Writing a zero into the event select MSRs disables them,
915 * which we perfectly emulate ;-). Any other value should be at least
916 * reported, some guests depend on them.
917 */
918 case MSR_P6_EVNTSEL0:
919 case MSR_P6_EVNTSEL1:
920 case MSR_K7_EVNTSEL0:
921 case MSR_K7_EVNTSEL1:
922 case MSR_K7_EVNTSEL2:
923 case MSR_K7_EVNTSEL3:
924 if (data != 0)
925 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
926 "0x%x data 0x%llx\n", msr, data);
927 break;
928 /* at least RHEL 4 unconditionally writes to the perfctr registers,
929 * so we ignore writes to make it happy.
930 */
931 case MSR_P6_PERFCTR0:
932 case MSR_P6_PERFCTR1:
933 case MSR_K7_PERFCTR0:
934 case MSR_K7_PERFCTR1:
935 case MSR_K7_PERFCTR2:
936 case MSR_K7_PERFCTR3:
937 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
938 "0x%x data 0x%llx\n", msr, data);
939 break;
940 default:
941 if (!ignore_msrs) {
942 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
943 msr, data);
944 return 1;
945 } else {
946 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
947 msr, data);
948 break;
949 }
950 }
951 return 0;
952 }
953 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
954
955
956 /*
957 * Reads an msr value (of 'msr_index') into 'pdata'.
958 * Returns 0 on success, non-0 otherwise.
959 * Assumes vcpu_load() was already called.
960 */
961 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
962 {
963 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
964 }
965
966 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
967 {
968 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
969
970 if (!msr_mtrr_valid(msr))
971 return 1;
972
973 if (msr == MSR_MTRRdefType)
974 *pdata = vcpu->arch.mtrr_state.def_type +
975 (vcpu->arch.mtrr_state.enabled << 10);
976 else if (msr == MSR_MTRRfix64K_00000)
977 *pdata = p[0];
978 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
979 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
980 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
981 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
982 else if (msr == MSR_IA32_CR_PAT)
983 *pdata = vcpu->arch.pat;
984 else { /* Variable MTRRs */
985 int idx, is_mtrr_mask;
986 u64 *pt;
987
988 idx = (msr - 0x200) / 2;
989 is_mtrr_mask = msr - 0x200 - 2 * idx;
990 if (!is_mtrr_mask)
991 pt =
992 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
993 else
994 pt =
995 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
996 *pdata = *pt;
997 }
998
999 return 0;
1000 }
1001
1002 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1003 {
1004 u64 data;
1005 u64 mcg_cap = vcpu->arch.mcg_cap;
1006 unsigned bank_num = mcg_cap & 0xff;
1007
1008 switch (msr) {
1009 case MSR_IA32_P5_MC_ADDR:
1010 case MSR_IA32_P5_MC_TYPE:
1011 data = 0;
1012 break;
1013 case MSR_IA32_MCG_CAP:
1014 data = vcpu->arch.mcg_cap;
1015 break;
1016 case MSR_IA32_MCG_CTL:
1017 if (!(mcg_cap & MCG_CTL_P))
1018 return 1;
1019 data = vcpu->arch.mcg_ctl;
1020 break;
1021 case MSR_IA32_MCG_STATUS:
1022 data = vcpu->arch.mcg_status;
1023 break;
1024 default:
1025 if (msr >= MSR_IA32_MC0_CTL &&
1026 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1027 u32 offset = msr - MSR_IA32_MC0_CTL;
1028 data = vcpu->arch.mce_banks[offset];
1029 break;
1030 }
1031 return 1;
1032 }
1033 *pdata = data;
1034 return 0;
1035 }
1036
1037 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1038 {
1039 u64 data;
1040
1041 switch (msr) {
1042 case MSR_IA32_PLATFORM_ID:
1043 case MSR_IA32_UCODE_REV:
1044 case MSR_IA32_EBL_CR_POWERON:
1045 case MSR_IA32_DEBUGCTLMSR:
1046 case MSR_IA32_LASTBRANCHFROMIP:
1047 case MSR_IA32_LASTBRANCHTOIP:
1048 case MSR_IA32_LASTINTFROMIP:
1049 case MSR_IA32_LASTINTTOIP:
1050 case MSR_K8_SYSCFG:
1051 case MSR_K7_HWCR:
1052 case MSR_VM_HSAVE_PA:
1053 case MSR_P6_EVNTSEL0:
1054 case MSR_P6_EVNTSEL1:
1055 case MSR_K7_EVNTSEL0:
1056 case MSR_K8_INT_PENDING_MSG:
1057 case MSR_AMD64_NB_CFG:
1058 data = 0;
1059 break;
1060 case MSR_MTRRcap:
1061 data = 0x500 | KVM_NR_VAR_MTRR;
1062 break;
1063 case 0x200 ... 0x2ff:
1064 return get_msr_mtrr(vcpu, msr, pdata);
1065 case 0xcd: /* fsb frequency */
1066 data = 3;
1067 break;
1068 case MSR_IA32_APICBASE:
1069 data = kvm_get_apic_base(vcpu);
1070 break;
1071 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1072 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1073 break;
1074 case MSR_IA32_MISC_ENABLE:
1075 data = vcpu->arch.ia32_misc_enable_msr;
1076 break;
1077 case MSR_IA32_PERF_STATUS:
1078 /* TSC increment by tick */
1079 data = 1000ULL;
1080 /* CPU multiplier */
1081 data |= (((uint64_t)4ULL) << 40);
1082 break;
1083 case MSR_EFER:
1084 data = vcpu->arch.shadow_efer;
1085 break;
1086 case MSR_KVM_WALL_CLOCK:
1087 data = vcpu->kvm->arch.wall_clock;
1088 break;
1089 case MSR_KVM_SYSTEM_TIME:
1090 data = vcpu->arch.time;
1091 break;
1092 case MSR_IA32_P5_MC_ADDR:
1093 case MSR_IA32_P5_MC_TYPE:
1094 case MSR_IA32_MCG_CAP:
1095 case MSR_IA32_MCG_CTL:
1096 case MSR_IA32_MCG_STATUS:
1097 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1098 return get_msr_mce(vcpu, msr, pdata);
1099 default:
1100 if (!ignore_msrs) {
1101 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1102 return 1;
1103 } else {
1104 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1105 data = 0;
1106 }
1107 break;
1108 }
1109 *pdata = data;
1110 return 0;
1111 }
1112 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1113
1114 /*
1115 * Read or write a bunch of msrs. All parameters are kernel addresses.
1116 *
1117 * @return number of msrs set successfully.
1118 */
1119 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1120 struct kvm_msr_entry *entries,
1121 int (*do_msr)(struct kvm_vcpu *vcpu,
1122 unsigned index, u64 *data))
1123 {
1124 int i;
1125
1126 vcpu_load(vcpu);
1127
1128 down_read(&vcpu->kvm->slots_lock);
1129 for (i = 0; i < msrs->nmsrs; ++i)
1130 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1131 break;
1132 up_read(&vcpu->kvm->slots_lock);
1133
1134 vcpu_put(vcpu);
1135
1136 return i;
1137 }
1138
1139 /*
1140 * Read or write a bunch of msrs. Parameters are user addresses.
1141 *
1142 * @return number of msrs set successfully.
1143 */
1144 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1145 int (*do_msr)(struct kvm_vcpu *vcpu,
1146 unsigned index, u64 *data),
1147 int writeback)
1148 {
1149 struct kvm_msrs msrs;
1150 struct kvm_msr_entry *entries;
1151 int r, n;
1152 unsigned size;
1153
1154 r = -EFAULT;
1155 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1156 goto out;
1157
1158 r = -E2BIG;
1159 if (msrs.nmsrs >= MAX_IO_MSRS)
1160 goto out;
1161
1162 r = -ENOMEM;
1163 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1164 entries = vmalloc(size);
1165 if (!entries)
1166 goto out;
1167
1168 r = -EFAULT;
1169 if (copy_from_user(entries, user_msrs->entries, size))
1170 goto out_free;
1171
1172 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1173 if (r < 0)
1174 goto out_free;
1175
1176 r = -EFAULT;
1177 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1178 goto out_free;
1179
1180 r = n;
1181
1182 out_free:
1183 vfree(entries);
1184 out:
1185 return r;
1186 }
1187
1188 int kvm_dev_ioctl_check_extension(long ext)
1189 {
1190 int r;
1191
1192 switch (ext) {
1193 case KVM_CAP_IRQCHIP:
1194 case KVM_CAP_HLT:
1195 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1196 case KVM_CAP_SET_TSS_ADDR:
1197 case KVM_CAP_EXT_CPUID:
1198 case KVM_CAP_CLOCKSOURCE:
1199 case KVM_CAP_PIT:
1200 case KVM_CAP_NOP_IO_DELAY:
1201 case KVM_CAP_MP_STATE:
1202 case KVM_CAP_SYNC_MMU:
1203 case KVM_CAP_REINJECT_CONTROL:
1204 case KVM_CAP_IRQ_INJECT_STATUS:
1205 case KVM_CAP_ASSIGN_DEV_IRQ:
1206 case KVM_CAP_IRQFD:
1207 case KVM_CAP_PIT2:
1208 r = 1;
1209 break;
1210 case KVM_CAP_COALESCED_MMIO:
1211 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1212 break;
1213 case KVM_CAP_VAPIC:
1214 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1215 break;
1216 case KVM_CAP_NR_VCPUS:
1217 r = KVM_MAX_VCPUS;
1218 break;
1219 case KVM_CAP_NR_MEMSLOTS:
1220 r = KVM_MEMORY_SLOTS;
1221 break;
1222 case KVM_CAP_PV_MMU:
1223 r = !tdp_enabled;
1224 break;
1225 case KVM_CAP_IOMMU:
1226 r = iommu_found();
1227 break;
1228 case KVM_CAP_MCE:
1229 r = KVM_MAX_MCE_BANKS;
1230 break;
1231 default:
1232 r = 0;
1233 break;
1234 }
1235 return r;
1236
1237 }
1238
1239 long kvm_arch_dev_ioctl(struct file *filp,
1240 unsigned int ioctl, unsigned long arg)
1241 {
1242 void __user *argp = (void __user *)arg;
1243 long r;
1244
1245 switch (ioctl) {
1246 case KVM_GET_MSR_INDEX_LIST: {
1247 struct kvm_msr_list __user *user_msr_list = argp;
1248 struct kvm_msr_list msr_list;
1249 unsigned n;
1250
1251 r = -EFAULT;
1252 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1253 goto out;
1254 n = msr_list.nmsrs;
1255 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1256 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1257 goto out;
1258 r = -E2BIG;
1259 if (n < msr_list.nmsrs)
1260 goto out;
1261 r = -EFAULT;
1262 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1263 num_msrs_to_save * sizeof(u32)))
1264 goto out;
1265 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1266 &emulated_msrs,
1267 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1268 goto out;
1269 r = 0;
1270 break;
1271 }
1272 case KVM_GET_SUPPORTED_CPUID: {
1273 struct kvm_cpuid2 __user *cpuid_arg = argp;
1274 struct kvm_cpuid2 cpuid;
1275
1276 r = -EFAULT;
1277 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1278 goto out;
1279 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1280 cpuid_arg->entries);
1281 if (r)
1282 goto out;
1283
1284 r = -EFAULT;
1285 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1286 goto out;
1287 r = 0;
1288 break;
1289 }
1290 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1291 u64 mce_cap;
1292
1293 mce_cap = KVM_MCE_CAP_SUPPORTED;
1294 r = -EFAULT;
1295 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1296 goto out;
1297 r = 0;
1298 break;
1299 }
1300 default:
1301 r = -EINVAL;
1302 }
1303 out:
1304 return r;
1305 }
1306
1307 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1308 {
1309 kvm_x86_ops->vcpu_load(vcpu, cpu);
1310 kvm_request_guest_time_update(vcpu);
1311 }
1312
1313 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1314 {
1315 kvm_x86_ops->vcpu_put(vcpu);
1316 kvm_put_guest_fpu(vcpu);
1317 }
1318
1319 static int is_efer_nx(void)
1320 {
1321 unsigned long long efer = 0;
1322
1323 rdmsrl_safe(MSR_EFER, &efer);
1324 return efer & EFER_NX;
1325 }
1326
1327 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1328 {
1329 int i;
1330 struct kvm_cpuid_entry2 *e, *entry;
1331
1332 entry = NULL;
1333 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1334 e = &vcpu->arch.cpuid_entries[i];
1335 if (e->function == 0x80000001) {
1336 entry = e;
1337 break;
1338 }
1339 }
1340 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1341 entry->edx &= ~(1 << 20);
1342 printk(KERN_INFO "kvm: guest NX capability removed\n");
1343 }
1344 }
1345
1346 /* when an old userspace process fills a new kernel module */
1347 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1348 struct kvm_cpuid *cpuid,
1349 struct kvm_cpuid_entry __user *entries)
1350 {
1351 int r, i;
1352 struct kvm_cpuid_entry *cpuid_entries;
1353
1354 r = -E2BIG;
1355 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1356 goto out;
1357 r = -ENOMEM;
1358 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1359 if (!cpuid_entries)
1360 goto out;
1361 r = -EFAULT;
1362 if (copy_from_user(cpuid_entries, entries,
1363 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1364 goto out_free;
1365 for (i = 0; i < cpuid->nent; i++) {
1366 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1367 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1368 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1369 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1370 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1371 vcpu->arch.cpuid_entries[i].index = 0;
1372 vcpu->arch.cpuid_entries[i].flags = 0;
1373 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1374 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1375 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1376 }
1377 vcpu->arch.cpuid_nent = cpuid->nent;
1378 cpuid_fix_nx_cap(vcpu);
1379 r = 0;
1380 kvm_apic_set_version(vcpu);
1381
1382 out_free:
1383 vfree(cpuid_entries);
1384 out:
1385 return r;
1386 }
1387
1388 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1389 struct kvm_cpuid2 *cpuid,
1390 struct kvm_cpuid_entry2 __user *entries)
1391 {
1392 int r;
1393
1394 r = -E2BIG;
1395 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1396 goto out;
1397 r = -EFAULT;
1398 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1399 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1400 goto out;
1401 vcpu->arch.cpuid_nent = cpuid->nent;
1402 kvm_apic_set_version(vcpu);
1403 return 0;
1404
1405 out:
1406 return r;
1407 }
1408
1409 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1410 struct kvm_cpuid2 *cpuid,
1411 struct kvm_cpuid_entry2 __user *entries)
1412 {
1413 int r;
1414
1415 r = -E2BIG;
1416 if (cpuid->nent < vcpu->arch.cpuid_nent)
1417 goto out;
1418 r = -EFAULT;
1419 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1420 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1421 goto out;
1422 return 0;
1423
1424 out:
1425 cpuid->nent = vcpu->arch.cpuid_nent;
1426 return r;
1427 }
1428
1429 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1430 u32 index)
1431 {
1432 entry->function = function;
1433 entry->index = index;
1434 cpuid_count(entry->function, entry->index,
1435 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1436 entry->flags = 0;
1437 }
1438
1439 #define F(x) bit(X86_FEATURE_##x)
1440
1441 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1442 u32 index, int *nent, int maxnent)
1443 {
1444 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1445 #ifdef CONFIG_X86_64
1446 unsigned f_lm = F(LM);
1447 #else
1448 unsigned f_lm = 0;
1449 #endif
1450
1451 /* cpuid 1.edx */
1452 const u32 kvm_supported_word0_x86_features =
1453 F(FPU) | F(VME) | F(DE) | F(PSE) |
1454 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1455 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1456 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1457 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1458 0 /* Reserved, DS, ACPI */ | F(MMX) |
1459 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1460 0 /* HTT, TM, Reserved, PBE */;
1461 /* cpuid 0x80000001.edx */
1462 const u32 kvm_supported_word1_x86_features =
1463 F(FPU) | F(VME) | F(DE) | F(PSE) |
1464 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1465 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1466 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1467 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1468 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1469 F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
1470 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1471 /* cpuid 1.ecx */
1472 const u32 kvm_supported_word4_x86_features =
1473 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1474 0 /* DS-CPL, VMX, SMX, EST */ |
1475 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1476 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1477 0 /* Reserved, DCA */ | F(XMM4_1) |
1478 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1479 0 /* Reserved, XSAVE, OSXSAVE */;
1480 /* cpuid 0x80000001.ecx */
1481 const u32 kvm_supported_word6_x86_features =
1482 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1483 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1484 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1485 0 /* SKINIT */ | 0 /* WDT */;
1486
1487 /* all calls to cpuid_count() should be made on the same cpu */
1488 get_cpu();
1489 do_cpuid_1_ent(entry, function, index);
1490 ++*nent;
1491
1492 switch (function) {
1493 case 0:
1494 entry->eax = min(entry->eax, (u32)0xb);
1495 break;
1496 case 1:
1497 entry->edx &= kvm_supported_word0_x86_features;
1498 entry->ecx &= kvm_supported_word4_x86_features;
1499 break;
1500 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1501 * may return different values. This forces us to get_cpu() before
1502 * issuing the first command, and also to emulate this annoying behavior
1503 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1504 case 2: {
1505 int t, times = entry->eax & 0xff;
1506
1507 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1508 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1509 for (t = 1; t < times && *nent < maxnent; ++t) {
1510 do_cpuid_1_ent(&entry[t], function, 0);
1511 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1512 ++*nent;
1513 }
1514 break;
1515 }
1516 /* function 4 and 0xb have additional index. */
1517 case 4: {
1518 int i, cache_type;
1519
1520 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1521 /* read more entries until cache_type is zero */
1522 for (i = 1; *nent < maxnent; ++i) {
1523 cache_type = entry[i - 1].eax & 0x1f;
1524 if (!cache_type)
1525 break;
1526 do_cpuid_1_ent(&entry[i], function, i);
1527 entry[i].flags |=
1528 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1529 ++*nent;
1530 }
1531 break;
1532 }
1533 case 0xb: {
1534 int i, level_type;
1535
1536 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1537 /* read more entries until level_type is zero */
1538 for (i = 1; *nent < maxnent; ++i) {
1539 level_type = entry[i - 1].ecx & 0xff00;
1540 if (!level_type)
1541 break;
1542 do_cpuid_1_ent(&entry[i], function, i);
1543 entry[i].flags |=
1544 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1545 ++*nent;
1546 }
1547 break;
1548 }
1549 case 0x80000000:
1550 entry->eax = min(entry->eax, 0x8000001a);
1551 break;
1552 case 0x80000001:
1553 entry->edx &= kvm_supported_word1_x86_features;
1554 entry->ecx &= kvm_supported_word6_x86_features;
1555 break;
1556 }
1557 put_cpu();
1558 }
1559
1560 #undef F
1561
1562 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1563 struct kvm_cpuid_entry2 __user *entries)
1564 {
1565 struct kvm_cpuid_entry2 *cpuid_entries;
1566 int limit, nent = 0, r = -E2BIG;
1567 u32 func;
1568
1569 if (cpuid->nent < 1)
1570 goto out;
1571 r = -ENOMEM;
1572 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1573 if (!cpuid_entries)
1574 goto out;
1575
1576 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1577 limit = cpuid_entries[0].eax;
1578 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1579 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1580 &nent, cpuid->nent);
1581 r = -E2BIG;
1582 if (nent >= cpuid->nent)
1583 goto out_free;
1584
1585 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1586 limit = cpuid_entries[nent - 1].eax;
1587 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1588 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1589 &nent, cpuid->nent);
1590 r = -E2BIG;
1591 if (nent >= cpuid->nent)
1592 goto out_free;
1593
1594 r = -EFAULT;
1595 if (copy_to_user(entries, cpuid_entries,
1596 nent * sizeof(struct kvm_cpuid_entry2)))
1597 goto out_free;
1598 cpuid->nent = nent;
1599 r = 0;
1600
1601 out_free:
1602 vfree(cpuid_entries);
1603 out:
1604 return r;
1605 }
1606
1607 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1608 struct kvm_lapic_state *s)
1609 {
1610 vcpu_load(vcpu);
1611 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1612 vcpu_put(vcpu);
1613
1614 return 0;
1615 }
1616
1617 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1618 struct kvm_lapic_state *s)
1619 {
1620 vcpu_load(vcpu);
1621 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1622 kvm_apic_post_state_restore(vcpu);
1623 vcpu_put(vcpu);
1624
1625 return 0;
1626 }
1627
1628 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1629 struct kvm_interrupt *irq)
1630 {
1631 if (irq->irq < 0 || irq->irq >= 256)
1632 return -EINVAL;
1633 if (irqchip_in_kernel(vcpu->kvm))
1634 return -ENXIO;
1635 vcpu_load(vcpu);
1636
1637 kvm_queue_interrupt(vcpu, irq->irq, false);
1638
1639 vcpu_put(vcpu);
1640
1641 return 0;
1642 }
1643
1644 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1645 {
1646 vcpu_load(vcpu);
1647 kvm_inject_nmi(vcpu);
1648 vcpu_put(vcpu);
1649
1650 return 0;
1651 }
1652
1653 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1654 struct kvm_tpr_access_ctl *tac)
1655 {
1656 if (tac->flags)
1657 return -EINVAL;
1658 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1659 return 0;
1660 }
1661
1662 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1663 u64 mcg_cap)
1664 {
1665 int r;
1666 unsigned bank_num = mcg_cap & 0xff, bank;
1667
1668 r = -EINVAL;
1669 if (!bank_num)
1670 goto out;
1671 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1672 goto out;
1673 r = 0;
1674 vcpu->arch.mcg_cap = mcg_cap;
1675 /* Init IA32_MCG_CTL to all 1s */
1676 if (mcg_cap & MCG_CTL_P)
1677 vcpu->arch.mcg_ctl = ~(u64)0;
1678 /* Init IA32_MCi_CTL to all 1s */
1679 for (bank = 0; bank < bank_num; bank++)
1680 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1681 out:
1682 return r;
1683 }
1684
1685 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1686 struct kvm_x86_mce *mce)
1687 {
1688 u64 mcg_cap = vcpu->arch.mcg_cap;
1689 unsigned bank_num = mcg_cap & 0xff;
1690 u64 *banks = vcpu->arch.mce_banks;
1691
1692 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1693 return -EINVAL;
1694 /*
1695 * if IA32_MCG_CTL is not all 1s, the uncorrected error
1696 * reporting is disabled
1697 */
1698 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1699 vcpu->arch.mcg_ctl != ~(u64)0)
1700 return 0;
1701 banks += 4 * mce->bank;
1702 /*
1703 * if IA32_MCi_CTL is not all 1s, the uncorrected error
1704 * reporting is disabled for the bank
1705 */
1706 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1707 return 0;
1708 if (mce->status & MCI_STATUS_UC) {
1709 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1710 !(vcpu->arch.cr4 & X86_CR4_MCE)) {
1711 printk(KERN_DEBUG "kvm: set_mce: "
1712 "injects mce exception while "
1713 "previous one is in progress!\n");
1714 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1715 return 0;
1716 }
1717 if (banks[1] & MCI_STATUS_VAL)
1718 mce->status |= MCI_STATUS_OVER;
1719 banks[2] = mce->addr;
1720 banks[3] = mce->misc;
1721 vcpu->arch.mcg_status = mce->mcg_status;
1722 banks[1] = mce->status;
1723 kvm_queue_exception(vcpu, MC_VECTOR);
1724 } else if (!(banks[1] & MCI_STATUS_VAL)
1725 || !(banks[1] & MCI_STATUS_UC)) {
1726 if (banks[1] & MCI_STATUS_VAL)
1727 mce->status |= MCI_STATUS_OVER;
1728 banks[2] = mce->addr;
1729 banks[3] = mce->misc;
1730 banks[1] = mce->status;
1731 } else
1732 banks[1] |= MCI_STATUS_OVER;
1733 return 0;
1734 }
1735
1736 long kvm_arch_vcpu_ioctl(struct file *filp,
1737 unsigned int ioctl, unsigned long arg)
1738 {
1739 struct kvm_vcpu *vcpu = filp->private_data;
1740 void __user *argp = (void __user *)arg;
1741 int r;
1742 struct kvm_lapic_state *lapic = NULL;
1743
1744 switch (ioctl) {
1745 case KVM_GET_LAPIC: {
1746 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1747
1748 r = -ENOMEM;
1749 if (!lapic)
1750 goto out;
1751 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1752 if (r)
1753 goto out;
1754 r = -EFAULT;
1755 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1756 goto out;
1757 r = 0;
1758 break;
1759 }
1760 case KVM_SET_LAPIC: {
1761 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1762 r = -ENOMEM;
1763 if (!lapic)
1764 goto out;
1765 r = -EFAULT;
1766 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1767 goto out;
1768 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1769 if (r)
1770 goto out;
1771 r = 0;
1772 break;
1773 }
1774 case KVM_INTERRUPT: {
1775 struct kvm_interrupt irq;
1776
1777 r = -EFAULT;
1778 if (copy_from_user(&irq, argp, sizeof irq))
1779 goto out;
1780 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1781 if (r)
1782 goto out;
1783 r = 0;
1784 break;
1785 }
1786 case KVM_NMI: {
1787 r = kvm_vcpu_ioctl_nmi(vcpu);
1788 if (r)
1789 goto out;
1790 r = 0;
1791 break;
1792 }
1793 case KVM_SET_CPUID: {
1794 struct kvm_cpuid __user *cpuid_arg = argp;
1795 struct kvm_cpuid cpuid;
1796
1797 r = -EFAULT;
1798 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1799 goto out;
1800 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1801 if (r)
1802 goto out;
1803 break;
1804 }
1805 case KVM_SET_CPUID2: {
1806 struct kvm_cpuid2 __user *cpuid_arg = argp;
1807 struct kvm_cpuid2 cpuid;
1808
1809 r = -EFAULT;
1810 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1811 goto out;
1812 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1813 cpuid_arg->entries);
1814 if (r)
1815 goto out;
1816 break;
1817 }
1818 case KVM_GET_CPUID2: {
1819 struct kvm_cpuid2 __user *cpuid_arg = argp;
1820 struct kvm_cpuid2 cpuid;
1821
1822 r = -EFAULT;
1823 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1824 goto out;
1825 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1826 cpuid_arg->entries);
1827 if (r)
1828 goto out;
1829 r = -EFAULT;
1830 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1831 goto out;
1832 r = 0;
1833 break;
1834 }
1835 case KVM_GET_MSRS:
1836 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1837 break;
1838 case KVM_SET_MSRS:
1839 r = msr_io(vcpu, argp, do_set_msr, 0);
1840 break;
1841 case KVM_TPR_ACCESS_REPORTING: {
1842 struct kvm_tpr_access_ctl tac;
1843
1844 r = -EFAULT;
1845 if (copy_from_user(&tac, argp, sizeof tac))
1846 goto out;
1847 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1848 if (r)
1849 goto out;
1850 r = -EFAULT;
1851 if (copy_to_user(argp, &tac, sizeof tac))
1852 goto out;
1853 r = 0;
1854 break;
1855 };
1856 case KVM_SET_VAPIC_ADDR: {
1857 struct kvm_vapic_addr va;
1858
1859 r = -EINVAL;
1860 if (!irqchip_in_kernel(vcpu->kvm))
1861 goto out;
1862 r = -EFAULT;
1863 if (copy_from_user(&va, argp, sizeof va))
1864 goto out;
1865 r = 0;
1866 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1867 break;
1868 }
1869 case KVM_X86_SETUP_MCE: {
1870 u64 mcg_cap;
1871
1872 r = -EFAULT;
1873 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
1874 goto out;
1875 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
1876 break;
1877 }
1878 case KVM_X86_SET_MCE: {
1879 struct kvm_x86_mce mce;
1880
1881 r = -EFAULT;
1882 if (copy_from_user(&mce, argp, sizeof mce))
1883 goto out;
1884 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
1885 break;
1886 }
1887 default:
1888 r = -EINVAL;
1889 }
1890 out:
1891 kfree(lapic);
1892 return r;
1893 }
1894
1895 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1896 {
1897 int ret;
1898
1899 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1900 return -1;
1901 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1902 return ret;
1903 }
1904
1905 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1906 u32 kvm_nr_mmu_pages)
1907 {
1908 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1909 return -EINVAL;
1910
1911 down_write(&kvm->slots_lock);
1912 spin_lock(&kvm->mmu_lock);
1913
1914 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1915 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1916
1917 spin_unlock(&kvm->mmu_lock);
1918 up_write(&kvm->slots_lock);
1919 return 0;
1920 }
1921
1922 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1923 {
1924 return kvm->arch.n_alloc_mmu_pages;
1925 }
1926
1927 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1928 {
1929 int i;
1930 struct kvm_mem_alias *alias;
1931
1932 for (i = 0; i < kvm->arch.naliases; ++i) {
1933 alias = &kvm->arch.aliases[i];
1934 if (gfn >= alias->base_gfn
1935 && gfn < alias->base_gfn + alias->npages)
1936 return alias->target_gfn + gfn - alias->base_gfn;
1937 }
1938 return gfn;
1939 }
1940
1941 /*
1942 * Set a new alias region. Aliases map a portion of physical memory into
1943 * another portion. This is useful for memory windows, for example the PC
1944 * VGA region.
1945 */
1946 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1947 struct kvm_memory_alias *alias)
1948 {
1949 int r, n;
1950 struct kvm_mem_alias *p;
1951
1952 r = -EINVAL;
1953 /* General sanity checks */
1954 if (alias->memory_size & (PAGE_SIZE - 1))
1955 goto out;
1956 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1957 goto out;
1958 if (alias->slot >= KVM_ALIAS_SLOTS)
1959 goto out;
1960 if (alias->guest_phys_addr + alias->memory_size
1961 < alias->guest_phys_addr)
1962 goto out;
1963 if (alias->target_phys_addr + alias->memory_size
1964 < alias->target_phys_addr)
1965 goto out;
1966
1967 down_write(&kvm->slots_lock);
1968 spin_lock(&kvm->mmu_lock);
1969
1970 p = &kvm->arch.aliases[alias->slot];
1971 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1972 p->npages = alias->memory_size >> PAGE_SHIFT;
1973 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1974
1975 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1976 if (kvm->arch.aliases[n - 1].npages)
1977 break;
1978 kvm->arch.naliases = n;
1979
1980 spin_unlock(&kvm->mmu_lock);
1981 kvm_mmu_zap_all(kvm);
1982
1983 up_write(&kvm->slots_lock);
1984
1985 return 0;
1986
1987 out:
1988 return r;
1989 }
1990
1991 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1992 {
1993 int r;
1994
1995 r = 0;
1996 switch (chip->chip_id) {
1997 case KVM_IRQCHIP_PIC_MASTER:
1998 memcpy(&chip->chip.pic,
1999 &pic_irqchip(kvm)->pics[0],
2000 sizeof(struct kvm_pic_state));
2001 break;
2002 case KVM_IRQCHIP_PIC_SLAVE:
2003 memcpy(&chip->chip.pic,
2004 &pic_irqchip(kvm)->pics[1],
2005 sizeof(struct kvm_pic_state));
2006 break;
2007 case KVM_IRQCHIP_IOAPIC:
2008 memcpy(&chip->chip.ioapic,
2009 ioapic_irqchip(kvm),
2010 sizeof(struct kvm_ioapic_state));
2011 break;
2012 default:
2013 r = -EINVAL;
2014 break;
2015 }
2016 return r;
2017 }
2018
2019 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2020 {
2021 int r;
2022
2023 r = 0;
2024 switch (chip->chip_id) {
2025 case KVM_IRQCHIP_PIC_MASTER:
2026 spin_lock(&pic_irqchip(kvm)->lock);
2027 memcpy(&pic_irqchip(kvm)->pics[0],
2028 &chip->chip.pic,
2029 sizeof(struct kvm_pic_state));
2030 spin_unlock(&pic_irqchip(kvm)->lock);
2031 break;
2032 case KVM_IRQCHIP_PIC_SLAVE:
2033 spin_lock(&pic_irqchip(kvm)->lock);
2034 memcpy(&pic_irqchip(kvm)->pics[1],
2035 &chip->chip.pic,
2036 sizeof(struct kvm_pic_state));
2037 spin_unlock(&pic_irqchip(kvm)->lock);
2038 break;
2039 case KVM_IRQCHIP_IOAPIC:
2040 mutex_lock(&kvm->irq_lock);
2041 memcpy(ioapic_irqchip(kvm),
2042 &chip->chip.ioapic,
2043 sizeof(struct kvm_ioapic_state));
2044 mutex_unlock(&kvm->irq_lock);
2045 break;
2046 default:
2047 r = -EINVAL;
2048 break;
2049 }
2050 kvm_pic_update_irq(pic_irqchip(kvm));
2051 return r;
2052 }
2053
2054 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2055 {
2056 int r = 0;
2057
2058 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2059 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2060 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2061 return r;
2062 }
2063
2064 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2065 {
2066 int r = 0;
2067
2068 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2069 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2070 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
2071 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2072 return r;
2073 }
2074
2075 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2076 struct kvm_reinject_control *control)
2077 {
2078 if (!kvm->arch.vpit)
2079 return -ENXIO;
2080 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2081 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2082 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2083 return 0;
2084 }
2085
2086 /*
2087 * Get (and clear) the dirty memory log for a memory slot.
2088 */
2089 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2090 struct kvm_dirty_log *log)
2091 {
2092 int r;
2093 int n;
2094 struct kvm_memory_slot *memslot;
2095 int is_dirty = 0;
2096
2097 down_write(&kvm->slots_lock);
2098
2099 r = kvm_get_dirty_log(kvm, log, &is_dirty);
2100 if (r)
2101 goto out;
2102
2103 /* If nothing is dirty, don't bother messing with page tables. */
2104 if (is_dirty) {
2105 spin_lock(&kvm->mmu_lock);
2106 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2107 spin_unlock(&kvm->mmu_lock);
2108 kvm_flush_remote_tlbs(kvm);
2109 memslot = &kvm->memslots[log->slot];
2110 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2111 memset(memslot->dirty_bitmap, 0, n);
2112 }
2113 r = 0;
2114 out:
2115 up_write(&kvm->slots_lock);
2116 return r;
2117 }
2118
2119 long kvm_arch_vm_ioctl(struct file *filp,
2120 unsigned int ioctl, unsigned long arg)
2121 {
2122 struct kvm *kvm = filp->private_data;
2123 void __user *argp = (void __user *)arg;
2124 int r = -EINVAL;
2125 /*
2126 * This union makes it completely explicit to gcc-3.x
2127 * that these two variables' stack usage should be
2128 * combined, not added together.
2129 */
2130 union {
2131 struct kvm_pit_state ps;
2132 struct kvm_memory_alias alias;
2133 struct kvm_pit_config pit_config;
2134 } u;
2135
2136 switch (ioctl) {
2137 case KVM_SET_TSS_ADDR:
2138 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2139 if (r < 0)
2140 goto out;
2141 break;
2142 case KVM_SET_MEMORY_REGION: {
2143 struct kvm_memory_region kvm_mem;
2144 struct kvm_userspace_memory_region kvm_userspace_mem;
2145
2146 r = -EFAULT;
2147 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2148 goto out;
2149 kvm_userspace_mem.slot = kvm_mem.slot;
2150 kvm_userspace_mem.flags = kvm_mem.flags;
2151 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2152 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2153 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2154 if (r)
2155 goto out;
2156 break;
2157 }
2158 case KVM_SET_NR_MMU_PAGES:
2159 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2160 if (r)
2161 goto out;
2162 break;
2163 case KVM_GET_NR_MMU_PAGES:
2164 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2165 break;
2166 case KVM_SET_MEMORY_ALIAS:
2167 r = -EFAULT;
2168 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2169 goto out;
2170 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2171 if (r)
2172 goto out;
2173 break;
2174 case KVM_CREATE_IRQCHIP:
2175 r = -ENOMEM;
2176 kvm->arch.vpic = kvm_create_pic(kvm);
2177 if (kvm->arch.vpic) {
2178 r = kvm_ioapic_init(kvm);
2179 if (r) {
2180 kfree(kvm->arch.vpic);
2181 kvm->arch.vpic = NULL;
2182 goto out;
2183 }
2184 } else
2185 goto out;
2186 r = kvm_setup_default_irq_routing(kvm);
2187 if (r) {
2188 kfree(kvm->arch.vpic);
2189 kfree(kvm->arch.vioapic);
2190 goto out;
2191 }
2192 break;
2193 case KVM_CREATE_PIT:
2194 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2195 goto create_pit;
2196 case KVM_CREATE_PIT2:
2197 r = -EFAULT;
2198 if (copy_from_user(&u.pit_config, argp,
2199 sizeof(struct kvm_pit_config)))
2200 goto out;
2201 create_pit:
2202 down_write(&kvm->slots_lock);
2203 r = -EEXIST;
2204 if (kvm->arch.vpit)
2205 goto create_pit_unlock;
2206 r = -ENOMEM;
2207 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2208 if (kvm->arch.vpit)
2209 r = 0;
2210 create_pit_unlock:
2211 up_write(&kvm->slots_lock);
2212 break;
2213 case KVM_IRQ_LINE_STATUS:
2214 case KVM_IRQ_LINE: {
2215 struct kvm_irq_level irq_event;
2216
2217 r = -EFAULT;
2218 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2219 goto out;
2220 if (irqchip_in_kernel(kvm)) {
2221 __s32 status;
2222 mutex_lock(&kvm->irq_lock);
2223 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2224 irq_event.irq, irq_event.level);
2225 mutex_unlock(&kvm->irq_lock);
2226 if (ioctl == KVM_IRQ_LINE_STATUS) {
2227 irq_event.status = status;
2228 if (copy_to_user(argp, &irq_event,
2229 sizeof irq_event))
2230 goto out;
2231 }
2232 r = 0;
2233 }
2234 break;
2235 }
2236 case KVM_GET_IRQCHIP: {
2237 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2238 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2239
2240 r = -ENOMEM;
2241 if (!chip)
2242 goto out;
2243 r = -EFAULT;
2244 if (copy_from_user(chip, argp, sizeof *chip))
2245 goto get_irqchip_out;
2246 r = -ENXIO;
2247 if (!irqchip_in_kernel(kvm))
2248 goto get_irqchip_out;
2249 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2250 if (r)
2251 goto get_irqchip_out;
2252 r = -EFAULT;
2253 if (copy_to_user(argp, chip, sizeof *chip))
2254 goto get_irqchip_out;
2255 r = 0;
2256 get_irqchip_out:
2257 kfree(chip);
2258 if (r)
2259 goto out;
2260 break;
2261 }
2262 case KVM_SET_IRQCHIP: {
2263 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2264 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2265
2266 r = -ENOMEM;
2267 if (!chip)
2268 goto out;
2269 r = -EFAULT;
2270 if (copy_from_user(chip, argp, sizeof *chip))
2271 goto set_irqchip_out;
2272 r = -ENXIO;
2273 if (!irqchip_in_kernel(kvm))
2274 goto set_irqchip_out;
2275 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2276 if (r)
2277 goto set_irqchip_out;
2278 r = 0;
2279 set_irqchip_out:
2280 kfree(chip);
2281 if (r)
2282 goto out;
2283 break;
2284 }
2285 case KVM_GET_PIT: {
2286 r = -EFAULT;
2287 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2288 goto out;
2289 r = -ENXIO;
2290 if (!kvm->arch.vpit)
2291 goto out;
2292 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2293 if (r)
2294 goto out;
2295 r = -EFAULT;
2296 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2297 goto out;
2298 r = 0;
2299 break;
2300 }
2301 case KVM_SET_PIT: {
2302 r = -EFAULT;
2303 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2304 goto out;
2305 r = -ENXIO;
2306 if (!kvm->arch.vpit)
2307 goto out;
2308 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2309 if (r)
2310 goto out;
2311 r = 0;
2312 break;
2313 }
2314 case KVM_REINJECT_CONTROL: {
2315 struct kvm_reinject_control control;
2316 r = -EFAULT;
2317 if (copy_from_user(&control, argp, sizeof(control)))
2318 goto out;
2319 r = kvm_vm_ioctl_reinject(kvm, &control);
2320 if (r)
2321 goto out;
2322 r = 0;
2323 break;
2324 }
2325 default:
2326 ;
2327 }
2328 out:
2329 return r;
2330 }
2331
2332 static void kvm_init_msr_list(void)
2333 {
2334 u32 dummy[2];
2335 unsigned i, j;
2336
2337 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2338 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2339 continue;
2340 if (j < i)
2341 msrs_to_save[j] = msrs_to_save[i];
2342 j++;
2343 }
2344 num_msrs_to_save = j;
2345 }
2346
2347 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
2348 const void *v)
2349 {
2350 if (vcpu->arch.apic &&
2351 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
2352 return 0;
2353
2354 return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
2355 }
2356
2357 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
2358 {
2359 if (vcpu->arch.apic &&
2360 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
2361 return 0;
2362
2363 return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
2364 }
2365
2366 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2367 struct kvm_vcpu *vcpu)
2368 {
2369 void *data = val;
2370 int r = X86EMUL_CONTINUE;
2371
2372 while (bytes) {
2373 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2374 unsigned offset = addr & (PAGE_SIZE-1);
2375 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2376 int ret;
2377
2378 if (gpa == UNMAPPED_GVA) {
2379 r = X86EMUL_PROPAGATE_FAULT;
2380 goto out;
2381 }
2382 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2383 if (ret < 0) {
2384 r = X86EMUL_UNHANDLEABLE;
2385 goto out;
2386 }
2387
2388 bytes -= toread;
2389 data += toread;
2390 addr += toread;
2391 }
2392 out:
2393 return r;
2394 }
2395
2396 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2397 struct kvm_vcpu *vcpu)
2398 {
2399 void *data = val;
2400 int r = X86EMUL_CONTINUE;
2401
2402 while (bytes) {
2403 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2404 unsigned offset = addr & (PAGE_SIZE-1);
2405 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2406 int ret;
2407
2408 if (gpa == UNMAPPED_GVA) {
2409 r = X86EMUL_PROPAGATE_FAULT;
2410 goto out;
2411 }
2412 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2413 if (ret < 0) {
2414 r = X86EMUL_UNHANDLEABLE;
2415 goto out;
2416 }
2417
2418 bytes -= towrite;
2419 data += towrite;
2420 addr += towrite;
2421 }
2422 out:
2423 return r;
2424 }
2425
2426
2427 static int emulator_read_emulated(unsigned long addr,
2428 void *val,
2429 unsigned int bytes,
2430 struct kvm_vcpu *vcpu)
2431 {
2432 gpa_t gpa;
2433
2434 if (vcpu->mmio_read_completed) {
2435 memcpy(val, vcpu->mmio_data, bytes);
2436 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
2437 vcpu->mmio_phys_addr, *(u64 *)val);
2438 vcpu->mmio_read_completed = 0;
2439 return X86EMUL_CONTINUE;
2440 }
2441
2442 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2443
2444 /* For APIC access vmexit */
2445 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2446 goto mmio;
2447
2448 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2449 == X86EMUL_CONTINUE)
2450 return X86EMUL_CONTINUE;
2451 if (gpa == UNMAPPED_GVA)
2452 return X86EMUL_PROPAGATE_FAULT;
2453
2454 mmio:
2455 /*
2456 * Is this MMIO handled locally?
2457 */
2458 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
2459 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
2460 return X86EMUL_CONTINUE;
2461 }
2462
2463 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
2464
2465 vcpu->mmio_needed = 1;
2466 vcpu->mmio_phys_addr = gpa;
2467 vcpu->mmio_size = bytes;
2468 vcpu->mmio_is_write = 0;
2469
2470 return X86EMUL_UNHANDLEABLE;
2471 }
2472
2473 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2474 const void *val, int bytes)
2475 {
2476 int ret;
2477
2478 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2479 if (ret < 0)
2480 return 0;
2481 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2482 return 1;
2483 }
2484
2485 static int emulator_write_emulated_onepage(unsigned long addr,
2486 const void *val,
2487 unsigned int bytes,
2488 struct kvm_vcpu *vcpu)
2489 {
2490 gpa_t gpa;
2491
2492 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2493
2494 if (gpa == UNMAPPED_GVA) {
2495 kvm_inject_page_fault(vcpu, addr, 2);
2496 return X86EMUL_PROPAGATE_FAULT;
2497 }
2498
2499 /* For APIC access vmexit */
2500 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2501 goto mmio;
2502
2503 if (emulator_write_phys(vcpu, gpa, val, bytes))
2504 return X86EMUL_CONTINUE;
2505
2506 mmio:
2507 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
2508 /*
2509 * Is this MMIO handled locally?
2510 */
2511 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
2512 return X86EMUL_CONTINUE;
2513
2514 vcpu->mmio_needed = 1;
2515 vcpu->mmio_phys_addr = gpa;
2516 vcpu->mmio_size = bytes;
2517 vcpu->mmio_is_write = 1;
2518 memcpy(vcpu->mmio_data, val, bytes);
2519
2520 return X86EMUL_CONTINUE;
2521 }
2522
2523 int emulator_write_emulated(unsigned long addr,
2524 const void *val,
2525 unsigned int bytes,
2526 struct kvm_vcpu *vcpu)
2527 {
2528 /* Crossing a page boundary? */
2529 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2530 int rc, now;
2531
2532 now = -addr & ~PAGE_MASK;
2533 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2534 if (rc != X86EMUL_CONTINUE)
2535 return rc;
2536 addr += now;
2537 val += now;
2538 bytes -= now;
2539 }
2540 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2541 }
2542 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2543
2544 static int emulator_cmpxchg_emulated(unsigned long addr,
2545 const void *old,
2546 const void *new,
2547 unsigned int bytes,
2548 struct kvm_vcpu *vcpu)
2549 {
2550 static int reported;
2551
2552 if (!reported) {
2553 reported = 1;
2554 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2555 }
2556 #ifndef CONFIG_X86_64
2557 /* guests cmpxchg8b have to be emulated atomically */
2558 if (bytes == 8) {
2559 gpa_t gpa;
2560 struct page *page;
2561 char *kaddr;
2562 u64 val;
2563
2564 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2565
2566 if (gpa == UNMAPPED_GVA ||
2567 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2568 goto emul_write;
2569
2570 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2571 goto emul_write;
2572
2573 val = *(u64 *)new;
2574
2575 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2576
2577 kaddr = kmap_atomic(page, KM_USER0);
2578 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2579 kunmap_atomic(kaddr, KM_USER0);
2580 kvm_release_page_dirty(page);
2581 }
2582 emul_write:
2583 #endif
2584
2585 return emulator_write_emulated(addr, new, bytes, vcpu);
2586 }
2587
2588 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2589 {
2590 return kvm_x86_ops->get_segment_base(vcpu, seg);
2591 }
2592
2593 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2594 {
2595 kvm_mmu_invlpg(vcpu, address);
2596 return X86EMUL_CONTINUE;
2597 }
2598
2599 int emulate_clts(struct kvm_vcpu *vcpu)
2600 {
2601 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2602 return X86EMUL_CONTINUE;
2603 }
2604
2605 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2606 {
2607 struct kvm_vcpu *vcpu = ctxt->vcpu;
2608
2609 switch (dr) {
2610 case 0 ... 3:
2611 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2612 return X86EMUL_CONTINUE;
2613 default:
2614 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2615 return X86EMUL_UNHANDLEABLE;
2616 }
2617 }
2618
2619 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2620 {
2621 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2622 int exception;
2623
2624 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2625 if (exception) {
2626 /* FIXME: better handling */
2627 return X86EMUL_UNHANDLEABLE;
2628 }
2629 return X86EMUL_CONTINUE;
2630 }
2631
2632 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2633 {
2634 u8 opcodes[4];
2635 unsigned long rip = kvm_rip_read(vcpu);
2636 unsigned long rip_linear;
2637
2638 if (!printk_ratelimit())
2639 return;
2640
2641 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2642
2643 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2644
2645 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2646 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2647 }
2648 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2649
2650 static struct x86_emulate_ops emulate_ops = {
2651 .read_std = kvm_read_guest_virt,
2652 .read_emulated = emulator_read_emulated,
2653 .write_emulated = emulator_write_emulated,
2654 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2655 };
2656
2657 static void cache_all_regs(struct kvm_vcpu *vcpu)
2658 {
2659 kvm_register_read(vcpu, VCPU_REGS_RAX);
2660 kvm_register_read(vcpu, VCPU_REGS_RSP);
2661 kvm_register_read(vcpu, VCPU_REGS_RIP);
2662 vcpu->arch.regs_dirty = ~0;
2663 }
2664
2665 int emulate_instruction(struct kvm_vcpu *vcpu,
2666 struct kvm_run *run,
2667 unsigned long cr2,
2668 u16 error_code,
2669 int emulation_type)
2670 {
2671 int r, shadow_mask;
2672 struct decode_cache *c;
2673
2674 kvm_clear_exception_queue(vcpu);
2675 vcpu->arch.mmio_fault_cr2 = cr2;
2676 /*
2677 * TODO: fix x86_emulate.c to use guest_read/write_register
2678 * instead of direct ->regs accesses, can save hundred cycles
2679 * on Intel for instructions that don't read/change RSP, for
2680 * for example.
2681 */
2682 cache_all_regs(vcpu);
2683
2684 vcpu->mmio_is_write = 0;
2685 vcpu->arch.pio.string = 0;
2686
2687 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2688 int cs_db, cs_l;
2689 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2690
2691 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2692 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2693 vcpu->arch.emulate_ctxt.mode =
2694 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2695 ? X86EMUL_MODE_REAL : cs_l
2696 ? X86EMUL_MODE_PROT64 : cs_db
2697 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2698
2699 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2700
2701 /* Only allow emulation of specific instructions on #UD
2702 * (namely VMMCALL, sysenter, sysexit, syscall)*/
2703 c = &vcpu->arch.emulate_ctxt.decode;
2704 if (emulation_type & EMULTYPE_TRAP_UD) {
2705 if (!c->twobyte)
2706 return EMULATE_FAIL;
2707 switch (c->b) {
2708 case 0x01: /* VMMCALL */
2709 if (c->modrm_mod != 3 || c->modrm_rm != 1)
2710 return EMULATE_FAIL;
2711 break;
2712 case 0x34: /* sysenter */
2713 case 0x35: /* sysexit */
2714 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2715 return EMULATE_FAIL;
2716 break;
2717 case 0x05: /* syscall */
2718 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2719 return EMULATE_FAIL;
2720 break;
2721 default:
2722 return EMULATE_FAIL;
2723 }
2724
2725 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
2726 return EMULATE_FAIL;
2727 }
2728
2729 ++vcpu->stat.insn_emulation;
2730 if (r) {
2731 ++vcpu->stat.insn_emulation_fail;
2732 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2733 return EMULATE_DONE;
2734 return EMULATE_FAIL;
2735 }
2736 }
2737
2738 if (emulation_type & EMULTYPE_SKIP) {
2739 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2740 return EMULATE_DONE;
2741 }
2742
2743 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2744 shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2745
2746 if (r == 0)
2747 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2748
2749 if (vcpu->arch.pio.string)
2750 return EMULATE_DO_MMIO;
2751
2752 if ((r || vcpu->mmio_is_write) && run) {
2753 run->exit_reason = KVM_EXIT_MMIO;
2754 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2755 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2756 run->mmio.len = vcpu->mmio_size;
2757 run->mmio.is_write = vcpu->mmio_is_write;
2758 }
2759
2760 if (r) {
2761 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2762 return EMULATE_DONE;
2763 if (!vcpu->mmio_needed) {
2764 kvm_report_emulation_failure(vcpu, "mmio");
2765 return EMULATE_FAIL;
2766 }
2767 return EMULATE_DO_MMIO;
2768 }
2769
2770 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2771
2772 if (vcpu->mmio_is_write) {
2773 vcpu->mmio_needed = 0;
2774 return EMULATE_DO_MMIO;
2775 }
2776
2777 return EMULATE_DONE;
2778 }
2779 EXPORT_SYMBOL_GPL(emulate_instruction);
2780
2781 static int pio_copy_data(struct kvm_vcpu *vcpu)
2782 {
2783 void *p = vcpu->arch.pio_data;
2784 gva_t q = vcpu->arch.pio.guest_gva;
2785 unsigned bytes;
2786 int ret;
2787
2788 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2789 if (vcpu->arch.pio.in)
2790 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2791 else
2792 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2793 return ret;
2794 }
2795
2796 int complete_pio(struct kvm_vcpu *vcpu)
2797 {
2798 struct kvm_pio_request *io = &vcpu->arch.pio;
2799 long delta;
2800 int r;
2801 unsigned long val;
2802
2803 if (!io->string) {
2804 if (io->in) {
2805 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2806 memcpy(&val, vcpu->arch.pio_data, io->size);
2807 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2808 }
2809 } else {
2810 if (io->in) {
2811 r = pio_copy_data(vcpu);
2812 if (r)
2813 return r;
2814 }
2815
2816 delta = 1;
2817 if (io->rep) {
2818 delta *= io->cur_count;
2819 /*
2820 * The size of the register should really depend on
2821 * current address size.
2822 */
2823 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2824 val -= delta;
2825 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2826 }
2827 if (io->down)
2828 delta = -delta;
2829 delta *= io->size;
2830 if (io->in) {
2831 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2832 val += delta;
2833 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2834 } else {
2835 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2836 val += delta;
2837 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2838 }
2839 }
2840
2841 io->count -= io->cur_count;
2842 io->cur_count = 0;
2843
2844 return 0;
2845 }
2846
2847 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
2848 {
2849 /* TODO: String I/O for in kernel device */
2850 int r;
2851
2852 if (vcpu->arch.pio.in)
2853 r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2854 vcpu->arch.pio.size, pd);
2855 else
2856 r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2857 vcpu->arch.pio.size, pd);
2858 return r;
2859 }
2860
2861 static int pio_string_write(struct kvm_vcpu *vcpu)
2862 {
2863 struct kvm_pio_request *io = &vcpu->arch.pio;
2864 void *pd = vcpu->arch.pio_data;
2865 int i, r = 0;
2866
2867 for (i = 0; i < io->cur_count; i++) {
2868 if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
2869 io->port, io->size, pd)) {
2870 r = -EOPNOTSUPP;
2871 break;
2872 }
2873 pd += io->size;
2874 }
2875 return r;
2876 }
2877
2878 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2879 int size, unsigned port)
2880 {
2881 unsigned long val;
2882
2883 vcpu->run->exit_reason = KVM_EXIT_IO;
2884 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2885 vcpu->run->io.size = vcpu->arch.pio.size = size;
2886 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2887 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2888 vcpu->run->io.port = vcpu->arch.pio.port = port;
2889 vcpu->arch.pio.in = in;
2890 vcpu->arch.pio.string = 0;
2891 vcpu->arch.pio.down = 0;
2892 vcpu->arch.pio.rep = 0;
2893
2894 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
2895 size, 1);
2896
2897 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2898 memcpy(vcpu->arch.pio_data, &val, 4);
2899
2900 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
2901 complete_pio(vcpu);
2902 return 1;
2903 }
2904 return 0;
2905 }
2906 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2907
2908 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2909 int size, unsigned long count, int down,
2910 gva_t address, int rep, unsigned port)
2911 {
2912 unsigned now, in_page;
2913 int ret = 0;
2914
2915 vcpu->run->exit_reason = KVM_EXIT_IO;
2916 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2917 vcpu->run->io.size = vcpu->arch.pio.size = size;
2918 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2919 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2920 vcpu->run->io.port = vcpu->arch.pio.port = port;
2921 vcpu->arch.pio.in = in;
2922 vcpu->arch.pio.string = 1;
2923 vcpu->arch.pio.down = down;
2924 vcpu->arch.pio.rep = rep;
2925
2926 trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
2927 size, count);
2928
2929 if (!count) {
2930 kvm_x86_ops->skip_emulated_instruction(vcpu);
2931 return 1;
2932 }
2933
2934 if (!down)
2935 in_page = PAGE_SIZE - offset_in_page(address);
2936 else
2937 in_page = offset_in_page(address) + size;
2938 now = min(count, (unsigned long)in_page / size);
2939 if (!now)
2940 now = 1;
2941 if (down) {
2942 /*
2943 * String I/O in reverse. Yuck. Kill the guest, fix later.
2944 */
2945 pr_unimpl(vcpu, "guest string pio down\n");
2946 kvm_inject_gp(vcpu, 0);
2947 return 1;
2948 }
2949 vcpu->run->io.count = now;
2950 vcpu->arch.pio.cur_count = now;
2951
2952 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2953 kvm_x86_ops->skip_emulated_instruction(vcpu);
2954
2955 vcpu->arch.pio.guest_gva = address;
2956
2957 if (!vcpu->arch.pio.in) {
2958 /* string PIO write */
2959 ret = pio_copy_data(vcpu);
2960 if (ret == X86EMUL_PROPAGATE_FAULT) {
2961 kvm_inject_gp(vcpu, 0);
2962 return 1;
2963 }
2964 if (ret == 0 && !pio_string_write(vcpu)) {
2965 complete_pio(vcpu);
2966 if (vcpu->arch.pio.count == 0)
2967 ret = 1;
2968 }
2969 }
2970 /* no string PIO read support yet */
2971
2972 return ret;
2973 }
2974 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2975
2976 static void bounce_off(void *info)
2977 {
2978 /* nothing */
2979 }
2980
2981 static unsigned int ref_freq;
2982 static unsigned long tsc_khz_ref;
2983
2984 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
2985 void *data)
2986 {
2987 struct cpufreq_freqs *freq = data;
2988 struct kvm *kvm;
2989 struct kvm_vcpu *vcpu;
2990 int i, send_ipi = 0;
2991
2992 if (!ref_freq)
2993 ref_freq = freq->old;
2994
2995 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
2996 return 0;
2997 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
2998 return 0;
2999 per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
3000
3001 spin_lock(&kvm_lock);
3002 list_for_each_entry(kvm, &vm_list, vm_list) {
3003 kvm_for_each_vcpu(i, vcpu, kvm) {
3004 if (vcpu->cpu != freq->cpu)
3005 continue;
3006 if (!kvm_request_guest_time_update(vcpu))
3007 continue;
3008 if (vcpu->cpu != smp_processor_id())
3009 send_ipi++;
3010 }
3011 }
3012 spin_unlock(&kvm_lock);
3013
3014 if (freq->old < freq->new && send_ipi) {
3015 /*
3016 * We upscale the frequency. Must make the guest
3017 * doesn't see old kvmclock values while running with
3018 * the new frequency, otherwise we risk the guest sees
3019 * time go backwards.
3020 *
3021 * In case we update the frequency for another cpu
3022 * (which might be in guest context) send an interrupt
3023 * to kick the cpu out of guest context. Next time
3024 * guest context is entered kvmclock will be updated,
3025 * so the guest will not see stale values.
3026 */
3027 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3028 }
3029 return 0;
3030 }
3031
3032 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3033 .notifier_call = kvmclock_cpufreq_notifier
3034 };
3035
3036 int kvm_arch_init(void *opaque)
3037 {
3038 int r, cpu;
3039 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3040
3041 if (kvm_x86_ops) {
3042 printk(KERN_ERR "kvm: already loaded the other module\n");
3043 r = -EEXIST;
3044 goto out;
3045 }
3046
3047 if (!ops->cpu_has_kvm_support()) {
3048 printk(KERN_ERR "kvm: no hardware support\n");
3049 r = -EOPNOTSUPP;
3050 goto out;
3051 }
3052 if (ops->disabled_by_bios()) {
3053 printk(KERN_ERR "kvm: disabled by bios\n");
3054 r = -EOPNOTSUPP;
3055 goto out;
3056 }
3057
3058 r = kvm_mmu_module_init();
3059 if (r)
3060 goto out;
3061
3062 kvm_init_msr_list();
3063
3064 kvm_x86_ops = ops;
3065 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3066 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3067 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3068 PT_DIRTY_MASK, PT64_NX_MASK, 0);
3069
3070 for_each_possible_cpu(cpu)
3071 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3072 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3073 tsc_khz_ref = tsc_khz;
3074 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3075 CPUFREQ_TRANSITION_NOTIFIER);
3076 }
3077
3078 return 0;
3079
3080 out:
3081 return r;
3082 }
3083
3084 void kvm_arch_exit(void)
3085 {
3086 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3087 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3088 CPUFREQ_TRANSITION_NOTIFIER);
3089 kvm_x86_ops = NULL;
3090 kvm_mmu_module_exit();
3091 }
3092
3093 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3094 {
3095 ++vcpu->stat.halt_exits;
3096 if (irqchip_in_kernel(vcpu->kvm)) {
3097 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3098 return 1;
3099 } else {
3100 vcpu->run->exit_reason = KVM_EXIT_HLT;
3101 return 0;
3102 }
3103 }
3104 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3105
3106 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3107 unsigned long a1)
3108 {
3109 if (is_long_mode(vcpu))
3110 return a0;
3111 else
3112 return a0 | ((gpa_t)a1 << 32);
3113 }
3114
3115 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3116 {
3117 unsigned long nr, a0, a1, a2, a3, ret;
3118 int r = 1;
3119
3120 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3121 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3122 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3123 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3124 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3125
3126 trace_kvm_hypercall(nr, a0, a1, a2, a3);
3127
3128 if (!is_long_mode(vcpu)) {
3129 nr &= 0xFFFFFFFF;
3130 a0 &= 0xFFFFFFFF;
3131 a1 &= 0xFFFFFFFF;
3132 a2 &= 0xFFFFFFFF;
3133 a3 &= 0xFFFFFFFF;
3134 }
3135
3136 switch (nr) {
3137 case KVM_HC_VAPIC_POLL_IRQ:
3138 ret = 0;
3139 break;
3140 case KVM_HC_MMU_OP:
3141 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3142 break;
3143 default:
3144 ret = -KVM_ENOSYS;
3145 break;
3146 }
3147 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3148 ++vcpu->stat.hypercalls;
3149 return r;
3150 }
3151 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3152
3153 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3154 {
3155 char instruction[3];
3156 int ret = 0;
3157 unsigned long rip = kvm_rip_read(vcpu);
3158
3159
3160 /*
3161 * Blow out the MMU to ensure that no other VCPU has an active mapping
3162 * to ensure that the updated hypercall appears atomically across all
3163 * VCPUs.
3164 */
3165 kvm_mmu_zap_all(vcpu->kvm);
3166
3167 kvm_x86_ops->patch_hypercall(vcpu, instruction);
3168 if (emulator_write_emulated(rip, instruction, 3, vcpu)
3169 != X86EMUL_CONTINUE)
3170 ret = -EFAULT;
3171
3172 return ret;
3173 }
3174
3175 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3176 {
3177 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3178 }
3179
3180 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3181 {
3182 struct descriptor_table dt = { limit, base };
3183
3184 kvm_x86_ops->set_gdt(vcpu, &dt);
3185 }
3186
3187 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3188 {
3189 struct descriptor_table dt = { limit, base };
3190
3191 kvm_x86_ops->set_idt(vcpu, &dt);
3192 }
3193
3194 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3195 unsigned long *rflags)
3196 {
3197 kvm_lmsw(vcpu, msw);
3198 *rflags = kvm_x86_ops->get_rflags(vcpu);
3199 }
3200
3201 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3202 {
3203 unsigned long value;
3204
3205 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3206 switch (cr) {
3207 case 0:
3208 value = vcpu->arch.cr0;
3209 break;
3210 case 2:
3211 value = vcpu->arch.cr2;
3212 break;
3213 case 3:
3214 value = vcpu->arch.cr3;
3215 break;
3216 case 4:
3217 value = vcpu->arch.cr4;
3218 break;
3219 case 8:
3220 value = kvm_get_cr8(vcpu);
3221 break;
3222 default:
3223 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3224 return 0;
3225 }
3226
3227 return value;
3228 }
3229
3230 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3231 unsigned long *rflags)
3232 {
3233 switch (cr) {
3234 case 0:
3235 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3236 *rflags = kvm_x86_ops->get_rflags(vcpu);
3237 break;
3238 case 2:
3239 vcpu->arch.cr2 = val;
3240 break;
3241 case 3:
3242 kvm_set_cr3(vcpu, val);
3243 break;
3244 case 4:
3245 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3246 break;
3247 case 8:
3248 kvm_set_cr8(vcpu, val & 0xfUL);
3249 break;
3250 default:
3251 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3252 }
3253 }
3254
3255 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3256 {
3257 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3258 int j, nent = vcpu->arch.cpuid_nent;
3259
3260 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3261 /* when no next entry is found, the current entry[i] is reselected */
3262 for (j = i + 1; ; j = (j + 1) % nent) {
3263 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3264 if (ej->function == e->function) {
3265 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3266 return j;
3267 }
3268 }
3269 return 0; /* silence gcc, even though control never reaches here */
3270 }
3271
3272 /* find an entry with matching function, matching index (if needed), and that
3273 * should be read next (if it's stateful) */
3274 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3275 u32 function, u32 index)
3276 {
3277 if (e->function != function)
3278 return 0;
3279 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3280 return 0;
3281 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3282 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3283 return 0;
3284 return 1;
3285 }
3286
3287 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3288 u32 function, u32 index)
3289 {
3290 int i;
3291 struct kvm_cpuid_entry2 *best = NULL;
3292
3293 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3294 struct kvm_cpuid_entry2 *e;
3295
3296 e = &vcpu->arch.cpuid_entries[i];
3297 if (is_matching_cpuid_entry(e, function, index)) {
3298 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3299 move_to_next_stateful_cpuid_entry(vcpu, i);
3300 best = e;
3301 break;
3302 }
3303 /*
3304 * Both basic or both extended?
3305 */
3306 if (((e->function ^ function) & 0x80000000) == 0)
3307 if (!best || e->function > best->function)
3308 best = e;
3309 }
3310 return best;
3311 }
3312
3313 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3314 {
3315 struct kvm_cpuid_entry2 *best;
3316
3317 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3318 if (best)
3319 return best->eax & 0xff;
3320 return 36;
3321 }
3322
3323 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3324 {
3325 u32 function, index;
3326 struct kvm_cpuid_entry2 *best;
3327
3328 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3329 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3330 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3331 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3332 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3333 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3334 best = kvm_find_cpuid_entry(vcpu, function, index);
3335 if (best) {
3336 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3337 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3338 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3339 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3340 }
3341 kvm_x86_ops->skip_emulated_instruction(vcpu);
3342 trace_kvm_cpuid(function,
3343 kvm_register_read(vcpu, VCPU_REGS_RAX),
3344 kvm_register_read(vcpu, VCPU_REGS_RBX),
3345 kvm_register_read(vcpu, VCPU_REGS_RCX),
3346 kvm_register_read(vcpu, VCPU_REGS_RDX));
3347 }
3348 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3349
3350 /*
3351 * Check if userspace requested an interrupt window, and that the
3352 * interrupt window is open.
3353 *
3354 * No need to exit to userspace if we already have an interrupt queued.
3355 */
3356 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3357 struct kvm_run *kvm_run)
3358 {
3359 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3360 kvm_run->request_interrupt_window &&
3361 kvm_arch_interrupt_allowed(vcpu));
3362 }
3363
3364 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3365 struct kvm_run *kvm_run)
3366 {
3367 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3368 kvm_run->cr8 = kvm_get_cr8(vcpu);
3369 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3370 if (irqchip_in_kernel(vcpu->kvm))
3371 kvm_run->ready_for_interrupt_injection = 1;
3372 else
3373 kvm_run->ready_for_interrupt_injection =
3374 kvm_arch_interrupt_allowed(vcpu) &&
3375 !kvm_cpu_has_interrupt(vcpu) &&
3376 !kvm_event_needs_reinjection(vcpu);
3377 }
3378
3379 static void vapic_enter(struct kvm_vcpu *vcpu)
3380 {
3381 struct kvm_lapic *apic = vcpu->arch.apic;
3382 struct page *page;
3383
3384 if (!apic || !apic->vapic_addr)
3385 return;
3386
3387 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3388
3389 vcpu->arch.apic->vapic_page = page;
3390 }
3391
3392 static void vapic_exit(struct kvm_vcpu *vcpu)
3393 {
3394 struct kvm_lapic *apic = vcpu->arch.apic;
3395
3396 if (!apic || !apic->vapic_addr)
3397 return;
3398
3399 down_read(&vcpu->kvm->slots_lock);
3400 kvm_release_page_dirty(apic->vapic_page);
3401 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3402 up_read(&vcpu->kvm->slots_lock);
3403 }
3404
3405 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3406 {
3407 int max_irr, tpr;
3408
3409 if (!kvm_x86_ops->update_cr8_intercept)
3410 return;
3411
3412 if (!vcpu->arch.apic->vapic_addr)
3413 max_irr = kvm_lapic_find_highest_irr(vcpu);
3414 else
3415 max_irr = -1;
3416
3417 if (max_irr != -1)
3418 max_irr >>= 4;
3419
3420 tpr = kvm_lapic_get_cr8(vcpu);
3421
3422 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3423 }
3424
3425 static void inject_pending_irq(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3426 {
3427 /* try to reinject previous events if any */
3428 if (vcpu->arch.nmi_injected) {
3429 kvm_x86_ops->set_nmi(vcpu);
3430 return;
3431 }
3432
3433 if (vcpu->arch.interrupt.pending) {
3434 kvm_x86_ops->set_irq(vcpu);
3435 return;
3436 }
3437
3438 /* try to inject new event if pending */
3439 if (vcpu->arch.nmi_pending) {
3440 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3441 vcpu->arch.nmi_pending = false;
3442 vcpu->arch.nmi_injected = true;
3443 kvm_x86_ops->set_nmi(vcpu);
3444 }
3445 } else if (kvm_cpu_has_interrupt(vcpu)) {
3446 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3447 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3448 false);
3449 kvm_x86_ops->set_irq(vcpu);
3450 }
3451 }
3452 }
3453
3454 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3455 {
3456 int r;
3457 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3458 kvm_run->request_interrupt_window;
3459
3460 if (vcpu->requests)
3461 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3462 kvm_mmu_unload(vcpu);
3463
3464 r = kvm_mmu_reload(vcpu);
3465 if (unlikely(r))
3466 goto out;
3467
3468 if (vcpu->requests) {
3469 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3470 __kvm_migrate_timers(vcpu);
3471 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3472 kvm_write_guest_time(vcpu);
3473 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3474 kvm_mmu_sync_roots(vcpu);
3475 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3476 kvm_x86_ops->tlb_flush(vcpu);
3477 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3478 &vcpu->requests)) {
3479 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3480 r = 0;
3481 goto out;
3482 }
3483 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3484 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3485 r = 0;
3486 goto out;
3487 }
3488 }
3489
3490 preempt_disable();
3491
3492 kvm_x86_ops->prepare_guest_switch(vcpu);
3493 kvm_load_guest_fpu(vcpu);
3494
3495 local_irq_disable();
3496
3497 clear_bit(KVM_REQ_KICK, &vcpu->requests);
3498 smp_mb__after_clear_bit();
3499
3500 if (vcpu->requests || need_resched() || signal_pending(current)) {
3501 local_irq_enable();
3502 preempt_enable();
3503 r = 1;
3504 goto out;
3505 }
3506
3507 if (vcpu->arch.exception.pending)
3508 __queue_exception(vcpu);
3509 else
3510 inject_pending_irq(vcpu, kvm_run);
3511
3512 /* enable NMI/IRQ window open exits if needed */
3513 if (vcpu->arch.nmi_pending)
3514 kvm_x86_ops->enable_nmi_window(vcpu);
3515 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3516 kvm_x86_ops->enable_irq_window(vcpu);
3517
3518 if (kvm_lapic_enabled(vcpu)) {
3519 update_cr8_intercept(vcpu);
3520 kvm_lapic_sync_to_vapic(vcpu);
3521 }
3522
3523 up_read(&vcpu->kvm->slots_lock);
3524
3525 kvm_guest_enter();
3526
3527 get_debugreg(vcpu->arch.host_dr6, 6);
3528 get_debugreg(vcpu->arch.host_dr7, 7);
3529 if (unlikely(vcpu->arch.switch_db_regs)) {
3530 get_debugreg(vcpu->arch.host_db[0], 0);
3531 get_debugreg(vcpu->arch.host_db[1], 1);
3532 get_debugreg(vcpu->arch.host_db[2], 2);
3533 get_debugreg(vcpu->arch.host_db[3], 3);
3534
3535 set_debugreg(0, 7);
3536 set_debugreg(vcpu->arch.eff_db[0], 0);
3537 set_debugreg(vcpu->arch.eff_db[1], 1);
3538 set_debugreg(vcpu->arch.eff_db[2], 2);
3539 set_debugreg(vcpu->arch.eff_db[3], 3);
3540 }
3541
3542 trace_kvm_entry(vcpu->vcpu_id);
3543 kvm_x86_ops->run(vcpu, kvm_run);
3544
3545 if (unlikely(vcpu->arch.switch_db_regs)) {
3546 set_debugreg(0, 7);
3547 set_debugreg(vcpu->arch.host_db[0], 0);
3548 set_debugreg(vcpu->arch.host_db[1], 1);
3549 set_debugreg(vcpu->arch.host_db[2], 2);
3550 set_debugreg(vcpu->arch.host_db[3], 3);
3551 }
3552 set_debugreg(vcpu->arch.host_dr6, 6);
3553 set_debugreg(vcpu->arch.host_dr7, 7);
3554
3555 set_bit(KVM_REQ_KICK, &vcpu->requests);
3556 local_irq_enable();
3557
3558 ++vcpu->stat.exits;
3559
3560 /*
3561 * We must have an instruction between local_irq_enable() and
3562 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3563 * the interrupt shadow. The stat.exits increment will do nicely.
3564 * But we need to prevent reordering, hence this barrier():
3565 */
3566 barrier();
3567
3568 kvm_guest_exit();
3569
3570 preempt_enable();
3571
3572 down_read(&vcpu->kvm->slots_lock);
3573
3574 /*
3575 * Profile KVM exit RIPs:
3576 */
3577 if (unlikely(prof_on == KVM_PROFILING)) {
3578 unsigned long rip = kvm_rip_read(vcpu);
3579 profile_hit(KVM_PROFILING, (void *)rip);
3580 }
3581
3582
3583 kvm_lapic_sync_from_vapic(vcpu);
3584
3585 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3586 out:
3587 return r;
3588 }
3589
3590
3591 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3592 {
3593 int r;
3594
3595 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3596 pr_debug("vcpu %d received sipi with vector # %x\n",
3597 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3598 kvm_lapic_reset(vcpu);
3599 r = kvm_arch_vcpu_reset(vcpu);
3600 if (r)
3601 return r;
3602 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3603 }
3604
3605 down_read(&vcpu->kvm->slots_lock);
3606 vapic_enter(vcpu);
3607
3608 r = 1;
3609 while (r > 0) {
3610 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3611 r = vcpu_enter_guest(vcpu, kvm_run);
3612 else {
3613 up_read(&vcpu->kvm->slots_lock);
3614 kvm_vcpu_block(vcpu);
3615 down_read(&vcpu->kvm->slots_lock);
3616 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3617 {
3618 switch(vcpu->arch.mp_state) {
3619 case KVM_MP_STATE_HALTED:
3620 vcpu->arch.mp_state =
3621 KVM_MP_STATE_RUNNABLE;
3622 case KVM_MP_STATE_RUNNABLE:
3623 break;
3624 case KVM_MP_STATE_SIPI_RECEIVED:
3625 default:
3626 r = -EINTR;
3627 break;
3628 }
3629 }
3630 }
3631
3632 if (r <= 0)
3633 break;
3634
3635 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3636 if (kvm_cpu_has_pending_timer(vcpu))
3637 kvm_inject_pending_timer_irqs(vcpu);
3638
3639 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3640 r = -EINTR;
3641 kvm_run->exit_reason = KVM_EXIT_INTR;
3642 ++vcpu->stat.request_irq_exits;
3643 }
3644 if (signal_pending(current)) {
3645 r = -EINTR;
3646 kvm_run->exit_reason = KVM_EXIT_INTR;
3647 ++vcpu->stat.signal_exits;
3648 }
3649 if (need_resched()) {
3650 up_read(&vcpu->kvm->slots_lock);
3651 kvm_resched(vcpu);
3652 down_read(&vcpu->kvm->slots_lock);
3653 }
3654 }
3655
3656 up_read(&vcpu->kvm->slots_lock);
3657 post_kvm_run_save(vcpu, kvm_run);
3658
3659 vapic_exit(vcpu);
3660
3661 return r;
3662 }
3663
3664 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3665 {
3666 int r;
3667 sigset_t sigsaved;
3668
3669 vcpu_load(vcpu);
3670
3671 if (vcpu->sigset_active)
3672 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3673
3674 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3675 kvm_vcpu_block(vcpu);
3676 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3677 r = -EAGAIN;
3678 goto out;
3679 }
3680
3681 /* re-sync apic's tpr */
3682 if (!irqchip_in_kernel(vcpu->kvm))
3683 kvm_set_cr8(vcpu, kvm_run->cr8);
3684
3685 if (vcpu->arch.pio.cur_count) {
3686 r = complete_pio(vcpu);
3687 if (r)
3688 goto out;
3689 }
3690 #if CONFIG_HAS_IOMEM
3691 if (vcpu->mmio_needed) {
3692 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3693 vcpu->mmio_read_completed = 1;
3694 vcpu->mmio_needed = 0;
3695
3696 down_read(&vcpu->kvm->slots_lock);
3697 r = emulate_instruction(vcpu, kvm_run,
3698 vcpu->arch.mmio_fault_cr2, 0,
3699 EMULTYPE_NO_DECODE);
3700 up_read(&vcpu->kvm->slots_lock);
3701 if (r == EMULATE_DO_MMIO) {
3702 /*
3703 * Read-modify-write. Back to userspace.
3704 */
3705 r = 0;
3706 goto out;
3707 }
3708 }
3709 #endif
3710 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3711 kvm_register_write(vcpu, VCPU_REGS_RAX,
3712 kvm_run->hypercall.ret);
3713
3714 r = __vcpu_run(vcpu, kvm_run);
3715
3716 out:
3717 if (vcpu->sigset_active)
3718 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3719
3720 vcpu_put(vcpu);
3721 return r;
3722 }
3723
3724 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3725 {
3726 vcpu_load(vcpu);
3727
3728 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3729 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3730 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3731 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3732 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3733 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3734 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3735 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3736 #ifdef CONFIG_X86_64
3737 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3738 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3739 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3740 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3741 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3742 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3743 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3744 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3745 #endif
3746
3747 regs->rip = kvm_rip_read(vcpu);
3748 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3749
3750 /*
3751 * Don't leak debug flags in case they were set for guest debugging
3752 */
3753 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3754 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3755
3756 vcpu_put(vcpu);
3757
3758 return 0;
3759 }
3760
3761 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3762 {
3763 vcpu_load(vcpu);
3764
3765 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3766 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3767 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3768 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3769 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3770 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3771 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3772 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3773 #ifdef CONFIG_X86_64
3774 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3775 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3776 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3777 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3778 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3779 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3780 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3781 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3782
3783 #endif
3784
3785 kvm_rip_write(vcpu, regs->rip);
3786 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3787
3788
3789 vcpu->arch.exception.pending = false;
3790
3791 vcpu_put(vcpu);
3792
3793 return 0;
3794 }
3795
3796 void kvm_get_segment(struct kvm_vcpu *vcpu,
3797 struct kvm_segment *var, int seg)
3798 {
3799 kvm_x86_ops->get_segment(vcpu, var, seg);
3800 }
3801
3802 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3803 {
3804 struct kvm_segment cs;
3805
3806 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3807 *db = cs.db;
3808 *l = cs.l;
3809 }
3810 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3811
3812 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3813 struct kvm_sregs *sregs)
3814 {
3815 struct descriptor_table dt;
3816
3817 vcpu_load(vcpu);
3818
3819 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3820 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3821 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3822 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3823 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3824 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3825
3826 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3827 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3828
3829 kvm_x86_ops->get_idt(vcpu, &dt);
3830 sregs->idt.limit = dt.limit;
3831 sregs->idt.base = dt.base;
3832 kvm_x86_ops->get_gdt(vcpu, &dt);
3833 sregs->gdt.limit = dt.limit;
3834 sregs->gdt.base = dt.base;
3835
3836 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3837 sregs->cr0 = vcpu->arch.cr0;
3838 sregs->cr2 = vcpu->arch.cr2;
3839 sregs->cr3 = vcpu->arch.cr3;
3840 sregs->cr4 = vcpu->arch.cr4;
3841 sregs->cr8 = kvm_get_cr8(vcpu);
3842 sregs->efer = vcpu->arch.shadow_efer;
3843 sregs->apic_base = kvm_get_apic_base(vcpu);
3844
3845 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
3846
3847 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
3848 set_bit(vcpu->arch.interrupt.nr,
3849 (unsigned long *)sregs->interrupt_bitmap);
3850
3851 vcpu_put(vcpu);
3852
3853 return 0;
3854 }
3855
3856 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3857 struct kvm_mp_state *mp_state)
3858 {
3859 vcpu_load(vcpu);
3860 mp_state->mp_state = vcpu->arch.mp_state;
3861 vcpu_put(vcpu);
3862 return 0;
3863 }
3864
3865 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3866 struct kvm_mp_state *mp_state)
3867 {
3868 vcpu_load(vcpu);
3869 vcpu->arch.mp_state = mp_state->mp_state;
3870 vcpu_put(vcpu);
3871 return 0;
3872 }
3873
3874 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3875 struct kvm_segment *var, int seg)
3876 {
3877 kvm_x86_ops->set_segment(vcpu, var, seg);
3878 }
3879
3880 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3881 struct kvm_segment *kvm_desct)
3882 {
3883 kvm_desct->base = seg_desc->base0;
3884 kvm_desct->base |= seg_desc->base1 << 16;
3885 kvm_desct->base |= seg_desc->base2 << 24;
3886 kvm_desct->limit = seg_desc->limit0;
3887 kvm_desct->limit |= seg_desc->limit << 16;
3888 if (seg_desc->g) {
3889 kvm_desct->limit <<= 12;
3890 kvm_desct->limit |= 0xfff;
3891 }
3892 kvm_desct->selector = selector;
3893 kvm_desct->type = seg_desc->type;
3894 kvm_desct->present = seg_desc->p;
3895 kvm_desct->dpl = seg_desc->dpl;
3896 kvm_desct->db = seg_desc->d;
3897 kvm_desct->s = seg_desc->s;
3898 kvm_desct->l = seg_desc->l;
3899 kvm_desct->g = seg_desc->g;
3900 kvm_desct->avl = seg_desc->avl;
3901 if (!selector)
3902 kvm_desct->unusable = 1;
3903 else
3904 kvm_desct->unusable = 0;
3905 kvm_desct->padding = 0;
3906 }
3907
3908 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3909 u16 selector,
3910 struct descriptor_table *dtable)
3911 {
3912 if (selector & 1 << 2) {
3913 struct kvm_segment kvm_seg;
3914
3915 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3916
3917 if (kvm_seg.unusable)
3918 dtable->limit = 0;
3919 else
3920 dtable->limit = kvm_seg.limit;
3921 dtable->base = kvm_seg.base;
3922 }
3923 else
3924 kvm_x86_ops->get_gdt(vcpu, dtable);
3925 }
3926
3927 /* allowed just for 8 bytes segments */
3928 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3929 struct desc_struct *seg_desc)
3930 {
3931 gpa_t gpa;
3932 struct descriptor_table dtable;
3933 u16 index = selector >> 3;
3934
3935 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3936
3937 if (dtable.limit < index * 8 + 7) {
3938 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3939 return 1;
3940 }
3941 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3942 gpa += index * 8;
3943 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3944 }
3945
3946 /* allowed just for 8 bytes segments */
3947 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3948 struct desc_struct *seg_desc)
3949 {
3950 gpa_t gpa;
3951 struct descriptor_table dtable;
3952 u16 index = selector >> 3;
3953
3954 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3955
3956 if (dtable.limit < index * 8 + 7)
3957 return 1;
3958 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3959 gpa += index * 8;
3960 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3961 }
3962
3963 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3964 struct desc_struct *seg_desc)
3965 {
3966 u32 base_addr;
3967
3968 base_addr = seg_desc->base0;
3969 base_addr |= (seg_desc->base1 << 16);
3970 base_addr |= (seg_desc->base2 << 24);
3971
3972 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3973 }
3974
3975 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3976 {
3977 struct kvm_segment kvm_seg;
3978
3979 kvm_get_segment(vcpu, &kvm_seg, seg);
3980 return kvm_seg.selector;
3981 }
3982
3983 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3984 u16 selector,
3985 struct kvm_segment *kvm_seg)
3986 {
3987 struct desc_struct seg_desc;
3988
3989 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3990 return 1;
3991 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3992 return 0;
3993 }
3994
3995 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3996 {
3997 struct kvm_segment segvar = {
3998 .base = selector << 4,
3999 .limit = 0xffff,
4000 .selector = selector,
4001 .type = 3,
4002 .present = 1,
4003 .dpl = 3,
4004 .db = 0,
4005 .s = 1,
4006 .l = 0,
4007 .g = 0,
4008 .avl = 0,
4009 .unusable = 0,
4010 };
4011 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4012 return 0;
4013 }
4014
4015 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4016 int type_bits, int seg)
4017 {
4018 struct kvm_segment kvm_seg;
4019
4020 if (!(vcpu->arch.cr0 & X86_CR0_PE))
4021 return kvm_load_realmode_segment(vcpu, selector, seg);
4022 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4023 return 1;
4024 kvm_seg.type |= type_bits;
4025
4026 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4027 seg != VCPU_SREG_LDTR)
4028 if (!kvm_seg.s)
4029 kvm_seg.unusable = 1;
4030
4031 kvm_set_segment(vcpu, &kvm_seg, seg);
4032 return 0;
4033 }
4034
4035 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4036 struct tss_segment_32 *tss)
4037 {
4038 tss->cr3 = vcpu->arch.cr3;
4039 tss->eip = kvm_rip_read(vcpu);
4040 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
4041 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4042 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4043 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4044 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4045 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4046 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4047 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4048 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4049 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4050 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4051 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4052 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4053 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4054 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4055 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4056 }
4057
4058 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4059 struct tss_segment_32 *tss)
4060 {
4061 kvm_set_cr3(vcpu, tss->cr3);
4062
4063 kvm_rip_write(vcpu, tss->eip);
4064 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
4065
4066 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4067 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4068 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4069 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4070 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4071 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4072 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4073 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4074
4075 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4076 return 1;
4077
4078 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4079 return 1;
4080
4081 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4082 return 1;
4083
4084 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4085 return 1;
4086
4087 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4088 return 1;
4089
4090 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4091 return 1;
4092
4093 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4094 return 1;
4095 return 0;
4096 }
4097
4098 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4099 struct tss_segment_16 *tss)
4100 {
4101 tss->ip = kvm_rip_read(vcpu);
4102 tss->flag = kvm_x86_ops->get_rflags(vcpu);
4103 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4104 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4105 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4106 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4107 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4108 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4109 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4110 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4111
4112 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4113 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4114 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4115 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4116 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4117 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
4118 }
4119
4120 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4121 struct tss_segment_16 *tss)
4122 {
4123 kvm_rip_write(vcpu, tss->ip);
4124 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
4125 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4126 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4127 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4128 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4129 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4130 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4131 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4132 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4133
4134 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4135 return 1;
4136
4137 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4138 return 1;
4139
4140 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4141 return 1;
4142
4143 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4144 return 1;
4145
4146 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4147 return 1;
4148 return 0;
4149 }
4150
4151 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4152 u16 old_tss_sel, u32 old_tss_base,
4153 struct desc_struct *nseg_desc)
4154 {
4155 struct tss_segment_16 tss_segment_16;
4156 int ret = 0;
4157
4158 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4159 sizeof tss_segment_16))
4160 goto out;
4161
4162 save_state_to_tss16(vcpu, &tss_segment_16);
4163
4164 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4165 sizeof tss_segment_16))
4166 goto out;
4167
4168 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4169 &tss_segment_16, sizeof tss_segment_16))
4170 goto out;
4171
4172 if (old_tss_sel != 0xffff) {
4173 tss_segment_16.prev_task_link = old_tss_sel;
4174
4175 if (kvm_write_guest(vcpu->kvm,
4176 get_tss_base_addr(vcpu, nseg_desc),
4177 &tss_segment_16.prev_task_link,
4178 sizeof tss_segment_16.prev_task_link))
4179 goto out;
4180 }
4181
4182 if (load_state_from_tss16(vcpu, &tss_segment_16))
4183 goto out;
4184
4185 ret = 1;
4186 out:
4187 return ret;
4188 }
4189
4190 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4191 u16 old_tss_sel, u32 old_tss_base,
4192 struct desc_struct *nseg_desc)
4193 {
4194 struct tss_segment_32 tss_segment_32;
4195 int ret = 0;
4196
4197 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4198 sizeof tss_segment_32))
4199 goto out;
4200
4201 save_state_to_tss32(vcpu, &tss_segment_32);
4202
4203 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4204 sizeof tss_segment_32))
4205 goto out;
4206
4207 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4208 &tss_segment_32, sizeof tss_segment_32))
4209 goto out;
4210
4211 if (old_tss_sel != 0xffff) {
4212 tss_segment_32.prev_task_link = old_tss_sel;
4213
4214 if (kvm_write_guest(vcpu->kvm,
4215 get_tss_base_addr(vcpu, nseg_desc),
4216 &tss_segment_32.prev_task_link,
4217 sizeof tss_segment_32.prev_task_link))
4218 goto out;
4219 }
4220
4221 if (load_state_from_tss32(vcpu, &tss_segment_32))
4222 goto out;
4223
4224 ret = 1;
4225 out:
4226 return ret;
4227 }
4228
4229 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4230 {
4231 struct kvm_segment tr_seg;
4232 struct desc_struct cseg_desc;
4233 struct desc_struct nseg_desc;
4234 int ret = 0;
4235 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4236 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4237
4238 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4239
4240 /* FIXME: Handle errors. Failure to read either TSS or their
4241 * descriptors should generate a pagefault.
4242 */
4243 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4244 goto out;
4245
4246 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4247 goto out;
4248
4249 if (reason != TASK_SWITCH_IRET) {
4250 int cpl;
4251
4252 cpl = kvm_x86_ops->get_cpl(vcpu);
4253 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4254 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4255 return 1;
4256 }
4257 }
4258
4259 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
4260 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4261 return 1;
4262 }
4263
4264 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4265 cseg_desc.type &= ~(1 << 1); //clear the B flag
4266 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4267 }
4268
4269 if (reason == TASK_SWITCH_IRET) {
4270 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4271 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4272 }
4273
4274 /* set back link to prev task only if NT bit is set in eflags
4275 note that old_tss_sel is not used afetr this point */
4276 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4277 old_tss_sel = 0xffff;
4278
4279 /* set back link to prev task only if NT bit is set in eflags
4280 note that old_tss_sel is not used afetr this point */
4281 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4282 old_tss_sel = 0xffff;
4283
4284 if (nseg_desc.type & 8)
4285 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4286 old_tss_base, &nseg_desc);
4287 else
4288 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4289 old_tss_base, &nseg_desc);
4290
4291 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4292 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4293 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4294 }
4295
4296 if (reason != TASK_SWITCH_IRET) {
4297 nseg_desc.type |= (1 << 1);
4298 save_guest_segment_descriptor(vcpu, tss_selector,
4299 &nseg_desc);
4300 }
4301
4302 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4303 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4304 tr_seg.type = 11;
4305 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4306 out:
4307 return ret;
4308 }
4309 EXPORT_SYMBOL_GPL(kvm_task_switch);
4310
4311 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4312 struct kvm_sregs *sregs)
4313 {
4314 int mmu_reset_needed = 0;
4315 int pending_vec, max_bits;
4316 struct descriptor_table dt;
4317
4318 vcpu_load(vcpu);
4319
4320 dt.limit = sregs->idt.limit;
4321 dt.base = sregs->idt.base;
4322 kvm_x86_ops->set_idt(vcpu, &dt);
4323 dt.limit = sregs->gdt.limit;
4324 dt.base = sregs->gdt.base;
4325 kvm_x86_ops->set_gdt(vcpu, &dt);
4326
4327 vcpu->arch.cr2 = sregs->cr2;
4328 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4329 vcpu->arch.cr3 = sregs->cr3;
4330
4331 kvm_set_cr8(vcpu, sregs->cr8);
4332
4333 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4334 kvm_x86_ops->set_efer(vcpu, sregs->efer);
4335 kvm_set_apic_base(vcpu, sregs->apic_base);
4336
4337 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4338
4339 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4340 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4341 vcpu->arch.cr0 = sregs->cr0;
4342
4343 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4344 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4345 if (!is_long_mode(vcpu) && is_pae(vcpu))
4346 load_pdptrs(vcpu, vcpu->arch.cr3);
4347
4348 if (mmu_reset_needed)
4349 kvm_mmu_reset_context(vcpu);
4350
4351 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4352 pending_vec = find_first_bit(
4353 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4354 if (pending_vec < max_bits) {
4355 kvm_queue_interrupt(vcpu, pending_vec, false);
4356 pr_debug("Set back pending irq %d\n", pending_vec);
4357 if (irqchip_in_kernel(vcpu->kvm))
4358 kvm_pic_clear_isr_ack(vcpu->kvm);
4359 }
4360
4361 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4362 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4363 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4364 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4365 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4366 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4367
4368 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4369 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4370
4371 /* Older userspace won't unhalt the vcpu on reset. */
4372 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4373 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4374 !(vcpu->arch.cr0 & X86_CR0_PE))
4375 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4376
4377 vcpu_put(vcpu);
4378
4379 return 0;
4380 }
4381
4382 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4383 struct kvm_guest_debug *dbg)
4384 {
4385 int i, r;
4386
4387 vcpu_load(vcpu);
4388
4389 if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4390 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4391 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4392 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4393 vcpu->arch.switch_db_regs =
4394 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4395 } else {
4396 for (i = 0; i < KVM_NR_DB_REGS; i++)
4397 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4398 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4399 }
4400
4401 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4402
4403 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4404 kvm_queue_exception(vcpu, DB_VECTOR);
4405 else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4406 kvm_queue_exception(vcpu, BP_VECTOR);
4407
4408 vcpu_put(vcpu);
4409
4410 return r;
4411 }
4412
4413 /*
4414 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4415 * we have asm/x86/processor.h
4416 */
4417 struct fxsave {
4418 u16 cwd;
4419 u16 swd;
4420 u16 twd;
4421 u16 fop;
4422 u64 rip;
4423 u64 rdp;
4424 u32 mxcsr;
4425 u32 mxcsr_mask;
4426 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4427 #ifdef CONFIG_X86_64
4428 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4429 #else
4430 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4431 #endif
4432 };
4433
4434 /*
4435 * Translate a guest virtual address to a guest physical address.
4436 */
4437 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4438 struct kvm_translation *tr)
4439 {
4440 unsigned long vaddr = tr->linear_address;
4441 gpa_t gpa;
4442
4443 vcpu_load(vcpu);
4444 down_read(&vcpu->kvm->slots_lock);
4445 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4446 up_read(&vcpu->kvm->slots_lock);
4447 tr->physical_address = gpa;
4448 tr->valid = gpa != UNMAPPED_GVA;
4449 tr->writeable = 1;
4450 tr->usermode = 0;
4451 vcpu_put(vcpu);
4452
4453 return 0;
4454 }
4455
4456 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4457 {
4458 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4459
4460 vcpu_load(vcpu);
4461
4462 memcpy(fpu->fpr, fxsave->st_space, 128);
4463 fpu->fcw = fxsave->cwd;
4464 fpu->fsw = fxsave->swd;
4465 fpu->ftwx = fxsave->twd;
4466 fpu->last_opcode = fxsave->fop;
4467 fpu->last_ip = fxsave->rip;
4468 fpu->last_dp = fxsave->rdp;
4469 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4470
4471 vcpu_put(vcpu);
4472
4473 return 0;
4474 }
4475
4476 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4477 {
4478 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4479
4480 vcpu_load(vcpu);
4481
4482 memcpy(fxsave->st_space, fpu->fpr, 128);
4483 fxsave->cwd = fpu->fcw;
4484 fxsave->swd = fpu->fsw;
4485 fxsave->twd = fpu->ftwx;
4486 fxsave->fop = fpu->last_opcode;
4487 fxsave->rip = fpu->last_ip;
4488 fxsave->rdp = fpu->last_dp;
4489 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4490
4491 vcpu_put(vcpu);
4492
4493 return 0;
4494 }
4495
4496 void fx_init(struct kvm_vcpu *vcpu)
4497 {
4498 unsigned after_mxcsr_mask;
4499
4500 /*
4501 * Touch the fpu the first time in non atomic context as if
4502 * this is the first fpu instruction the exception handler
4503 * will fire before the instruction returns and it'll have to
4504 * allocate ram with GFP_KERNEL.
4505 */
4506 if (!used_math())
4507 kvm_fx_save(&vcpu->arch.host_fx_image);
4508
4509 /* Initialize guest FPU by resetting ours and saving into guest's */
4510 preempt_disable();
4511 kvm_fx_save(&vcpu->arch.host_fx_image);
4512 kvm_fx_finit();
4513 kvm_fx_save(&vcpu->arch.guest_fx_image);
4514 kvm_fx_restore(&vcpu->arch.host_fx_image);
4515 preempt_enable();
4516
4517 vcpu->arch.cr0 |= X86_CR0_ET;
4518 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4519 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4520 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4521 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4522 }
4523 EXPORT_SYMBOL_GPL(fx_init);
4524
4525 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4526 {
4527 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4528 return;
4529
4530 vcpu->guest_fpu_loaded = 1;
4531 kvm_fx_save(&vcpu->arch.host_fx_image);
4532 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4533 }
4534 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4535
4536 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4537 {
4538 if (!vcpu->guest_fpu_loaded)
4539 return;
4540
4541 vcpu->guest_fpu_loaded = 0;
4542 kvm_fx_save(&vcpu->arch.guest_fx_image);
4543 kvm_fx_restore(&vcpu->arch.host_fx_image);
4544 ++vcpu->stat.fpu_reload;
4545 }
4546 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4547
4548 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4549 {
4550 if (vcpu->arch.time_page) {
4551 kvm_release_page_dirty(vcpu->arch.time_page);
4552 vcpu->arch.time_page = NULL;
4553 }
4554
4555 kvm_x86_ops->vcpu_free(vcpu);
4556 }
4557
4558 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4559 unsigned int id)
4560 {
4561 return kvm_x86_ops->vcpu_create(kvm, id);
4562 }
4563
4564 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4565 {
4566 int r;
4567
4568 /* We do fxsave: this must be aligned. */
4569 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4570
4571 vcpu->arch.mtrr_state.have_fixed = 1;
4572 vcpu_load(vcpu);
4573 r = kvm_arch_vcpu_reset(vcpu);
4574 if (r == 0)
4575 r = kvm_mmu_setup(vcpu);
4576 vcpu_put(vcpu);
4577 if (r < 0)
4578 goto free_vcpu;
4579
4580 return 0;
4581 free_vcpu:
4582 kvm_x86_ops->vcpu_free(vcpu);
4583 return r;
4584 }
4585
4586 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4587 {
4588 vcpu_load(vcpu);
4589 kvm_mmu_unload(vcpu);
4590 vcpu_put(vcpu);
4591
4592 kvm_x86_ops->vcpu_free(vcpu);
4593 }
4594
4595 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4596 {
4597 vcpu->arch.nmi_pending = false;
4598 vcpu->arch.nmi_injected = false;
4599
4600 vcpu->arch.switch_db_regs = 0;
4601 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4602 vcpu->arch.dr6 = DR6_FIXED_1;
4603 vcpu->arch.dr7 = DR7_FIXED_1;
4604
4605 return kvm_x86_ops->vcpu_reset(vcpu);
4606 }
4607
4608 void kvm_arch_hardware_enable(void *garbage)
4609 {
4610 kvm_x86_ops->hardware_enable(garbage);
4611 }
4612
4613 void kvm_arch_hardware_disable(void *garbage)
4614 {
4615 kvm_x86_ops->hardware_disable(garbage);
4616 }
4617
4618 int kvm_arch_hardware_setup(void)
4619 {
4620 return kvm_x86_ops->hardware_setup();
4621 }
4622
4623 void kvm_arch_hardware_unsetup(void)
4624 {
4625 kvm_x86_ops->hardware_unsetup();
4626 }
4627
4628 void kvm_arch_check_processor_compat(void *rtn)
4629 {
4630 kvm_x86_ops->check_processor_compatibility(rtn);
4631 }
4632
4633 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4634 {
4635 struct page *page;
4636 struct kvm *kvm;
4637 int r;
4638
4639 BUG_ON(vcpu->kvm == NULL);
4640 kvm = vcpu->kvm;
4641
4642 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4643 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
4644 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4645 else
4646 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4647
4648 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4649 if (!page) {
4650 r = -ENOMEM;
4651 goto fail;
4652 }
4653 vcpu->arch.pio_data = page_address(page);
4654
4655 r = kvm_mmu_create(vcpu);
4656 if (r < 0)
4657 goto fail_free_pio_data;
4658
4659 if (irqchip_in_kernel(kvm)) {
4660 r = kvm_create_lapic(vcpu);
4661 if (r < 0)
4662 goto fail_mmu_destroy;
4663 }
4664
4665 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
4666 GFP_KERNEL);
4667 if (!vcpu->arch.mce_banks) {
4668 r = -ENOMEM;
4669 goto fail_mmu_destroy;
4670 }
4671 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
4672
4673 return 0;
4674
4675 fail_mmu_destroy:
4676 kvm_mmu_destroy(vcpu);
4677 fail_free_pio_data:
4678 free_page((unsigned long)vcpu->arch.pio_data);
4679 fail:
4680 return r;
4681 }
4682
4683 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4684 {
4685 kvm_free_lapic(vcpu);
4686 down_read(&vcpu->kvm->slots_lock);
4687 kvm_mmu_destroy(vcpu);
4688 up_read(&vcpu->kvm->slots_lock);
4689 free_page((unsigned long)vcpu->arch.pio_data);
4690 }
4691
4692 struct kvm *kvm_arch_create_vm(void)
4693 {
4694 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4695
4696 if (!kvm)
4697 return ERR_PTR(-ENOMEM);
4698
4699 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4700 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4701
4702 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4703 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4704
4705 rdtscll(kvm->arch.vm_init_tsc);
4706
4707 return kvm;
4708 }
4709
4710 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4711 {
4712 vcpu_load(vcpu);
4713 kvm_mmu_unload(vcpu);
4714 vcpu_put(vcpu);
4715 }
4716
4717 static void kvm_free_vcpus(struct kvm *kvm)
4718 {
4719 unsigned int i;
4720 struct kvm_vcpu *vcpu;
4721
4722 /*
4723 * Unpin any mmu pages first.
4724 */
4725 kvm_for_each_vcpu(i, vcpu, kvm)
4726 kvm_unload_vcpu_mmu(vcpu);
4727 kvm_for_each_vcpu(i, vcpu, kvm)
4728 kvm_arch_vcpu_free(vcpu);
4729
4730 mutex_lock(&kvm->lock);
4731 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
4732 kvm->vcpus[i] = NULL;
4733
4734 atomic_set(&kvm->online_vcpus, 0);
4735 mutex_unlock(&kvm->lock);
4736 }
4737
4738 void kvm_arch_sync_events(struct kvm *kvm)
4739 {
4740 kvm_free_all_assigned_devices(kvm);
4741 }
4742
4743 void kvm_arch_destroy_vm(struct kvm *kvm)
4744 {
4745 kvm_iommu_unmap_guest(kvm);
4746 kvm_free_pit(kvm);
4747 kfree(kvm->arch.vpic);
4748 kfree(kvm->arch.vioapic);
4749 kvm_free_vcpus(kvm);
4750 kvm_free_physmem(kvm);
4751 if (kvm->arch.apic_access_page)
4752 put_page(kvm->arch.apic_access_page);
4753 if (kvm->arch.ept_identity_pagetable)
4754 put_page(kvm->arch.ept_identity_pagetable);
4755 kfree(kvm);
4756 }
4757
4758 int kvm_arch_set_memory_region(struct kvm *kvm,
4759 struct kvm_userspace_memory_region *mem,
4760 struct kvm_memory_slot old,
4761 int user_alloc)
4762 {
4763 int npages = mem->memory_size >> PAGE_SHIFT;
4764 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4765
4766 /*To keep backward compatibility with older userspace,
4767 *x86 needs to hanlde !user_alloc case.
4768 */
4769 if (!user_alloc) {
4770 if (npages && !old.rmap) {
4771 unsigned long userspace_addr;
4772
4773 down_write(&current->mm->mmap_sem);
4774 userspace_addr = do_mmap(NULL, 0,
4775 npages * PAGE_SIZE,
4776 PROT_READ | PROT_WRITE,
4777 MAP_PRIVATE | MAP_ANONYMOUS,
4778 0);
4779 up_write(&current->mm->mmap_sem);
4780
4781 if (IS_ERR((void *)userspace_addr))
4782 return PTR_ERR((void *)userspace_addr);
4783
4784 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4785 spin_lock(&kvm->mmu_lock);
4786 memslot->userspace_addr = userspace_addr;
4787 spin_unlock(&kvm->mmu_lock);
4788 } else {
4789 if (!old.user_alloc && old.rmap) {
4790 int ret;
4791
4792 down_write(&current->mm->mmap_sem);
4793 ret = do_munmap(current->mm, old.userspace_addr,
4794 old.npages * PAGE_SIZE);
4795 up_write(&current->mm->mmap_sem);
4796 if (ret < 0)
4797 printk(KERN_WARNING
4798 "kvm_vm_ioctl_set_memory_region: "
4799 "failed to munmap memory\n");
4800 }
4801 }
4802 }
4803
4804 spin_lock(&kvm->mmu_lock);
4805 if (!kvm->arch.n_requested_mmu_pages) {
4806 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4807 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4808 }
4809
4810 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4811 spin_unlock(&kvm->mmu_lock);
4812 kvm_flush_remote_tlbs(kvm);
4813
4814 return 0;
4815 }
4816
4817 void kvm_arch_flush_shadow(struct kvm *kvm)
4818 {
4819 kvm_mmu_zap_all(kvm);
4820 kvm_reload_remote_mmus(kvm);
4821 }
4822
4823 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4824 {
4825 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4826 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4827 || vcpu->arch.nmi_pending;
4828 }
4829
4830 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4831 {
4832 int me;
4833 int cpu = vcpu->cpu;
4834
4835 if (waitqueue_active(&vcpu->wq)) {
4836 wake_up_interruptible(&vcpu->wq);
4837 ++vcpu->stat.halt_wakeup;
4838 }
4839
4840 me = get_cpu();
4841 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
4842 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
4843 smp_send_reschedule(cpu);
4844 put_cpu();
4845 }
4846
4847 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4848 {
4849 return kvm_x86_ops->interrupt_allowed(vcpu);
4850 }
4851
4852 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
4853 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
4854 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
4855 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
4856 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
This page took 0.124638 seconds and 6 git commands to generate.