x86: irq: fix apicinterrupts on 64 bits
[deliverable/linux.git] / arch / x86 / mach-voyager / voyager_smp.c
1 /* -*- mode: c; c-basic-offset: 8 -*- */
2
3 /* Copyright (C) 1999,2001
4 *
5 * Author: J.E.J.Bottomley@HansenPartnership.com
6 *
7 * This file provides all the same external entries as smp.c but uses
8 * the voyager hal to provide the functionality
9 */
10 #include <linux/module.h>
11 #include <linux/mm.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/delay.h>
14 #include <linux/mc146818rtc.h>
15 #include <linux/cache.h>
16 #include <linux/interrupt.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/bootmem.h>
20 #include <linux/completion.h>
21 #include <asm/desc.h>
22 #include <asm/voyager.h>
23 #include <asm/vic.h>
24 #include <asm/mtrr.h>
25 #include <asm/pgalloc.h>
26 #include <asm/tlbflush.h>
27 #include <asm/arch_hooks.h>
28 #include <asm/trampoline.h>
29
30 /* TLB state -- visible externally, indexed physically */
31 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { &init_mm, 0 };
32
33 /* CPU IRQ affinity -- set to all ones initially */
34 static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned =
35 {[0 ... NR_CPUS-1] = ~0UL };
36
37 /* per CPU data structure (for /proc/cpuinfo et al), visible externally
38 * indexed physically */
39 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
40 EXPORT_PER_CPU_SYMBOL(cpu_info);
41
42 /* physical ID of the CPU used to boot the system */
43 unsigned char boot_cpu_id;
44
45 /* The memory line addresses for the Quad CPIs */
46 struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
47
48 /* The masks for the Extended VIC processors, filled in by cat_init */
49 __u32 voyager_extended_vic_processors = 0;
50
51 /* Masks for the extended Quad processors which cannot be VIC booted */
52 __u32 voyager_allowed_boot_processors = 0;
53
54 /* The mask for the Quad Processors (both extended and non-extended) */
55 __u32 voyager_quad_processors = 0;
56
57 /* Total count of live CPUs, used in process.c to display
58 * the CPU information and in irq.c for the per CPU irq
59 * activity count. Finally exported by i386_ksyms.c */
60 static int voyager_extended_cpus = 1;
61
62 /* Used for the invalidate map that's also checked in the spinlock */
63 static volatile unsigned long smp_invalidate_needed;
64
65 /* Bitmask of currently online CPUs - used by setup.c for
66 /proc/cpuinfo, visible externally but still physical */
67 cpumask_t cpu_online_map = CPU_MASK_NONE;
68 EXPORT_SYMBOL(cpu_online_map);
69
70 /* Bitmask of CPUs present in the system - exported by i386_syms.c, used
71 * by scheduler but indexed physically */
72 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
73
74 /* The internal functions */
75 static void send_CPI(__u32 cpuset, __u8 cpi);
76 static void ack_CPI(__u8 cpi);
77 static int ack_QIC_CPI(__u8 cpi);
78 static void ack_special_QIC_CPI(__u8 cpi);
79 static void ack_VIC_CPI(__u8 cpi);
80 static void send_CPI_allbutself(__u8 cpi);
81 static void mask_vic_irq(unsigned int irq);
82 static void unmask_vic_irq(unsigned int irq);
83 static unsigned int startup_vic_irq(unsigned int irq);
84 static void enable_local_vic_irq(unsigned int irq);
85 static void disable_local_vic_irq(unsigned int irq);
86 static void before_handle_vic_irq(unsigned int irq);
87 static void after_handle_vic_irq(unsigned int irq);
88 static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask);
89 static void ack_vic_irq(unsigned int irq);
90 static void vic_enable_cpi(void);
91 static void do_boot_cpu(__u8 cpuid);
92 static void do_quad_bootstrap(void);
93 static void initialize_secondary(void);
94
95 int hard_smp_processor_id(void);
96 int safe_smp_processor_id(void);
97
98 /* Inline functions */
99 static inline void send_one_QIC_CPI(__u8 cpu, __u8 cpi)
100 {
101 voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
102 (smp_processor_id() << 16) + cpi;
103 }
104
105 static inline void send_QIC_CPI(__u32 cpuset, __u8 cpi)
106 {
107 int cpu;
108
109 for_each_online_cpu(cpu) {
110 if (cpuset & (1 << cpu)) {
111 #ifdef VOYAGER_DEBUG
112 if (!cpu_online(cpu))
113 VDEBUG(("CPU%d sending cpi %d to CPU%d not in "
114 "cpu_online_map\n",
115 hard_smp_processor_id(), cpi, cpu));
116 #endif
117 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
118 }
119 }
120 }
121
122 static inline void wrapper_smp_local_timer_interrupt(void)
123 {
124 irq_enter();
125 smp_local_timer_interrupt();
126 irq_exit();
127 }
128
129 static inline void send_one_CPI(__u8 cpu, __u8 cpi)
130 {
131 if (voyager_quad_processors & (1 << cpu))
132 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
133 else
134 send_CPI(1 << cpu, cpi);
135 }
136
137 static inline void send_CPI_allbutself(__u8 cpi)
138 {
139 __u8 cpu = smp_processor_id();
140 __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
141 send_CPI(mask, cpi);
142 }
143
144 static inline int is_cpu_quad(void)
145 {
146 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
147 return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
148 }
149
150 static inline int is_cpu_extended(void)
151 {
152 __u8 cpu = hard_smp_processor_id();
153
154 return (voyager_extended_vic_processors & (1 << cpu));
155 }
156
157 static inline int is_cpu_vic_boot(void)
158 {
159 __u8 cpu = hard_smp_processor_id();
160
161 return (voyager_extended_vic_processors
162 & voyager_allowed_boot_processors & (1 << cpu));
163 }
164
165 static inline void ack_CPI(__u8 cpi)
166 {
167 switch (cpi) {
168 case VIC_CPU_BOOT_CPI:
169 if (is_cpu_quad() && !is_cpu_vic_boot())
170 ack_QIC_CPI(cpi);
171 else
172 ack_VIC_CPI(cpi);
173 break;
174 case VIC_SYS_INT:
175 case VIC_CMN_INT:
176 /* These are slightly strange. Even on the Quad card,
177 * They are vectored as VIC CPIs */
178 if (is_cpu_quad())
179 ack_special_QIC_CPI(cpi);
180 else
181 ack_VIC_CPI(cpi);
182 break;
183 default:
184 printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
185 break;
186 }
187 }
188
189 /* local variables */
190
191 /* The VIC IRQ descriptors -- these look almost identical to the
192 * 8259 IRQs except that masks and things must be kept per processor
193 */
194 static struct irq_chip vic_chip = {
195 .name = "VIC",
196 .startup = startup_vic_irq,
197 .mask = mask_vic_irq,
198 .unmask = unmask_vic_irq,
199 .set_affinity = set_vic_irq_affinity,
200 };
201
202 /* used to count up as CPUs are brought on line (starts at 0) */
203 static int cpucount = 0;
204
205 /* The per cpu profile stuff - used in smp_local_timer_interrupt */
206 static DEFINE_PER_CPU(int, prof_multiplier) = 1;
207 static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
208 static DEFINE_PER_CPU(int, prof_counter) = 1;
209
210 /* the map used to check if a CPU has booted */
211 static __u32 cpu_booted_map;
212
213 /* the synchronize flag used to hold all secondary CPUs spinning in
214 * a tight loop until the boot sequence is ready for them */
215 static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
216
217 /* This is for the new dynamic CPU boot code */
218 cpumask_t cpu_callin_map = CPU_MASK_NONE;
219 cpumask_t cpu_callout_map = CPU_MASK_NONE;
220 cpumask_t cpu_possible_map = CPU_MASK_NONE;
221 EXPORT_SYMBOL(cpu_possible_map);
222
223 /* The per processor IRQ masks (these are usually kept in sync) */
224 static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
225
226 /* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
227 static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
228
229 /* Lock for enable/disable of VIC interrupts */
230 static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
231
232 /* The boot processor is correctly set up in PC mode when it
233 * comes up, but the secondaries need their master/slave 8259
234 * pairs initializing correctly */
235
236 /* Interrupt counters (per cpu) and total - used to try to
237 * even up the interrupt handling routines */
238 static long vic_intr_total = 0;
239 static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
240 static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
241
242 /* Since we can only use CPI0, we fake all the other CPIs */
243 static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
244
245 /* debugging routine to read the isr of the cpu's pic */
246 static inline __u16 vic_read_isr(void)
247 {
248 __u16 isr;
249
250 outb(0x0b, 0xa0);
251 isr = inb(0xa0) << 8;
252 outb(0x0b, 0x20);
253 isr |= inb(0x20);
254
255 return isr;
256 }
257
258 static __init void qic_setup(void)
259 {
260 if (!is_cpu_quad()) {
261 /* not a quad, no setup */
262 return;
263 }
264 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
265 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
266
267 if (is_cpu_extended()) {
268 /* the QIC duplicate of the VIC base register */
269 outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
270 outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
271
272 /* FIXME: should set up the QIC timer and memory parity
273 * error vectors here */
274 }
275 }
276
277 static __init void vic_setup_pic(void)
278 {
279 outb(1, VIC_REDIRECT_REGISTER_1);
280 /* clear the claim registers for dynamic routing */
281 outb(0, VIC_CLAIM_REGISTER_0);
282 outb(0, VIC_CLAIM_REGISTER_1);
283
284 outb(0, VIC_PRIORITY_REGISTER);
285 /* Set the Primary and Secondary Microchannel vector
286 * bases to be the same as the ordinary interrupts
287 *
288 * FIXME: This would be more efficient using separate
289 * vectors. */
290 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
291 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
292 /* Now initiallise the master PIC belonging to this CPU by
293 * sending the four ICWs */
294
295 /* ICW1: level triggered, ICW4 needed */
296 outb(0x19, 0x20);
297
298 /* ICW2: vector base */
299 outb(FIRST_EXTERNAL_VECTOR, 0x21);
300
301 /* ICW3: slave at line 2 */
302 outb(0x04, 0x21);
303
304 /* ICW4: 8086 mode */
305 outb(0x01, 0x21);
306
307 /* now the same for the slave PIC */
308
309 /* ICW1: level trigger, ICW4 needed */
310 outb(0x19, 0xA0);
311
312 /* ICW2: slave vector base */
313 outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
314
315 /* ICW3: slave ID */
316 outb(0x02, 0xA1);
317
318 /* ICW4: 8086 mode */
319 outb(0x01, 0xA1);
320 }
321
322 static void do_quad_bootstrap(void)
323 {
324 if (is_cpu_quad() && is_cpu_vic_boot()) {
325 int i;
326 unsigned long flags;
327 __u8 cpuid = hard_smp_processor_id();
328
329 local_irq_save(flags);
330
331 for (i = 0; i < 4; i++) {
332 /* FIXME: this would be >>3 &0x7 on the 32 way */
333 if (((cpuid >> 2) & 0x03) == i)
334 /* don't lower our own mask! */
335 continue;
336
337 /* masquerade as local Quad CPU */
338 outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
339 /* enable the startup CPI */
340 outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
341 /* restore cpu id */
342 outb(0, QIC_PROCESSOR_ID);
343 }
344 local_irq_restore(flags);
345 }
346 }
347
348 void prefill_possible_map(void)
349 {
350 /* This is empty on voyager because we need a much
351 * earlier detection which is done in find_smp_config */
352 }
353
354 /* Set up all the basic stuff: read the SMP config and make all the
355 * SMP information reflect only the boot cpu. All others will be
356 * brought on-line later. */
357 void __init find_smp_config(void)
358 {
359 int i;
360
361 boot_cpu_id = hard_smp_processor_id();
362
363 printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
364
365 /* initialize the CPU structures (moved from smp_boot_cpus) */
366 for (i = 0; i < NR_CPUS; i++) {
367 cpu_irq_affinity[i] = ~0;
368 }
369 cpu_online_map = cpumask_of_cpu(boot_cpu_id);
370
371 /* The boot CPU must be extended */
372 voyager_extended_vic_processors = 1 << boot_cpu_id;
373 /* initially, all of the first 8 CPUs can boot */
374 voyager_allowed_boot_processors = 0xff;
375 /* set up everything for just this CPU, we can alter
376 * this as we start the other CPUs later */
377 /* now get the CPU disposition from the extended CMOS */
378 cpus_addr(phys_cpu_present_map)[0] =
379 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
380 cpus_addr(phys_cpu_present_map)[0] |=
381 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
382 cpus_addr(phys_cpu_present_map)[0] |=
383 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
384 2) << 16;
385 cpus_addr(phys_cpu_present_map)[0] |=
386 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
387 3) << 24;
388 cpu_possible_map = phys_cpu_present_map;
389 printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n",
390 cpus_addr(phys_cpu_present_map)[0]);
391 /* Here we set up the VIC to enable SMP */
392 /* enable the CPIs by writing the base vector to their register */
393 outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
394 outb(1, VIC_REDIRECT_REGISTER_1);
395 /* set the claim registers for static routing --- Boot CPU gets
396 * all interrupts untill all other CPUs started */
397 outb(0xff, VIC_CLAIM_REGISTER_0);
398 outb(0xff, VIC_CLAIM_REGISTER_1);
399 /* Set the Primary and Secondary Microchannel vector
400 * bases to be the same as the ordinary interrupts
401 *
402 * FIXME: This would be more efficient using separate
403 * vectors. */
404 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
405 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
406
407 /* Finally tell the firmware that we're driving */
408 outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
409 VOYAGER_SUS_IN_CONTROL_PORT);
410
411 current_thread_info()->cpu = boot_cpu_id;
412 x86_write_percpu(cpu_number, boot_cpu_id);
413 }
414
415 /*
416 * The bootstrap kernel entry code has set these up. Save them
417 * for a given CPU, id is physical */
418 void __init smp_store_cpu_info(int id)
419 {
420 struct cpuinfo_x86 *c = &cpu_data(id);
421
422 *c = boot_cpu_data;
423 c->cpu_index = id;
424
425 identify_secondary_cpu(c);
426 }
427
428 /* Routine initially called when a non-boot CPU is brought online */
429 static void __init start_secondary(void *unused)
430 {
431 __u8 cpuid = hard_smp_processor_id();
432
433 cpu_init();
434
435 /* OK, we're in the routine */
436 ack_CPI(VIC_CPU_BOOT_CPI);
437
438 /* setup the 8259 master slave pair belonging to this CPU ---
439 * we won't actually receive any until the boot CPU
440 * relinquishes it's static routing mask */
441 vic_setup_pic();
442
443 qic_setup();
444
445 if (is_cpu_quad() && !is_cpu_vic_boot()) {
446 /* clear the boot CPI */
447 __u8 dummy;
448
449 dummy =
450 voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
451 printk("read dummy %d\n", dummy);
452 }
453
454 /* lower the mask to receive CPIs */
455 vic_enable_cpi();
456
457 VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
458
459 notify_cpu_starting(cpuid);
460
461 /* enable interrupts */
462 local_irq_enable();
463
464 /* get our bogomips */
465 calibrate_delay();
466
467 /* save our processor parameters */
468 smp_store_cpu_info(cpuid);
469
470 /* if we're a quad, we may need to bootstrap other CPUs */
471 do_quad_bootstrap();
472
473 /* FIXME: this is rather a poor hack to prevent the CPU
474 * activating softirqs while it's supposed to be waiting for
475 * permission to proceed. Without this, the new per CPU stuff
476 * in the softirqs will fail */
477 local_irq_disable();
478 cpu_set(cpuid, cpu_callin_map);
479
480 /* signal that we're done */
481 cpu_booted_map = 1;
482
483 while (!cpu_isset(cpuid, smp_commenced_mask))
484 rep_nop();
485 local_irq_enable();
486
487 local_flush_tlb();
488
489 cpu_set(cpuid, cpu_online_map);
490 wmb();
491 cpu_idle();
492 }
493
494 /* Routine to kick start the given CPU and wait for it to report ready
495 * (or timeout in startup). When this routine returns, the requested
496 * CPU is either fully running and configured or known to be dead.
497 *
498 * We call this routine sequentially 1 CPU at a time, so no need for
499 * locking */
500
501 static void __init do_boot_cpu(__u8 cpu)
502 {
503 struct task_struct *idle;
504 int timeout;
505 unsigned long flags;
506 int quad_boot = (1 << cpu) & voyager_quad_processors
507 & ~(voyager_extended_vic_processors
508 & voyager_allowed_boot_processors);
509
510 /* This is the format of the CPI IDT gate (in real mode) which
511 * we're hijacking to boot the CPU */
512 union IDTFormat {
513 struct seg {
514 __u16 Offset;
515 __u16 Segment;
516 } idt;
517 __u32 val;
518 } hijack_source;
519
520 __u32 *hijack_vector;
521 __u32 start_phys_address = setup_trampoline();
522
523 /* There's a clever trick to this: The linux trampoline is
524 * compiled to begin at absolute location zero, so make the
525 * address zero but have the data segment selector compensate
526 * for the actual address */
527 hijack_source.idt.Offset = start_phys_address & 0x000F;
528 hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
529
530 cpucount++;
531 alternatives_smp_switch(1);
532
533 idle = fork_idle(cpu);
534 if (IS_ERR(idle))
535 panic("failed fork for CPU%d", cpu);
536 idle->thread.ip = (unsigned long)start_secondary;
537 /* init_tasks (in sched.c) is indexed logically */
538 stack_start.sp = (void *)idle->thread.sp;
539
540 init_gdt(cpu);
541 per_cpu(current_task, cpu) = idle;
542 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
543 irq_ctx_init(cpu);
544
545 /* Note: Don't modify initial ss override */
546 VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu,
547 (unsigned long)hijack_source.val, hijack_source.idt.Segment,
548 hijack_source.idt.Offset, stack_start.sp));
549
550 /* init lowmem identity mapping */
551 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + KERNEL_PGD_BOUNDARY,
552 min_t(unsigned long, KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
553 flush_tlb_all();
554
555 if (quad_boot) {
556 printk("CPU %d: non extended Quad boot\n", cpu);
557 hijack_vector =
558 (__u32 *)
559 phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE) * 4);
560 *hijack_vector = hijack_source.val;
561 } else {
562 printk("CPU%d: extended VIC boot\n", cpu);
563 hijack_vector =
564 (__u32 *)
565 phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE) * 4);
566 *hijack_vector = hijack_source.val;
567 /* VIC errata, may also receive interrupt at this address */
568 hijack_vector =
569 (__u32 *)
570 phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI +
571 VIC_DEFAULT_CPI_BASE) * 4);
572 *hijack_vector = hijack_source.val;
573 }
574 /* All non-boot CPUs start with interrupts fully masked. Need
575 * to lower the mask of the CPI we're about to send. We do
576 * this in the VIC by masquerading as the processor we're
577 * about to boot and lowering its interrupt mask */
578 local_irq_save(flags);
579 if (quad_boot) {
580 send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
581 } else {
582 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
583 /* here we're altering registers belonging to `cpu' */
584
585 outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
586 /* now go back to our original identity */
587 outb(boot_cpu_id, VIC_PROCESSOR_ID);
588
589 /* and boot the CPU */
590
591 send_CPI((1 << cpu), VIC_CPU_BOOT_CPI);
592 }
593 cpu_booted_map = 0;
594 local_irq_restore(flags);
595
596 /* now wait for it to become ready (or timeout) */
597 for (timeout = 0; timeout < 50000; timeout++) {
598 if (cpu_booted_map)
599 break;
600 udelay(100);
601 }
602 /* reset the page table */
603 zap_low_mappings();
604
605 if (cpu_booted_map) {
606 VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
607 cpu, smp_processor_id()));
608
609 printk("CPU%d: ", cpu);
610 print_cpu_info(&cpu_data(cpu));
611 wmb();
612 cpu_set(cpu, cpu_callout_map);
613 cpu_set(cpu, cpu_present_map);
614 } else {
615 printk("CPU%d FAILED TO BOOT: ", cpu);
616 if (*
617 ((volatile unsigned char *)phys_to_virt(start_phys_address))
618 == 0xA5)
619 printk("Stuck.\n");
620 else
621 printk("Not responding.\n");
622
623 cpucount--;
624 }
625 }
626
627 void __init smp_boot_cpus(void)
628 {
629 int i;
630
631 /* CAT BUS initialisation must be done after the memory */
632 /* FIXME: The L4 has a catbus too, it just needs to be
633 * accessed in a totally different way */
634 if (voyager_level == 5) {
635 voyager_cat_init();
636
637 /* now that the cat has probed the Voyager System Bus, sanity
638 * check the cpu map */
639 if (((voyager_quad_processors | voyager_extended_vic_processors)
640 & cpus_addr(phys_cpu_present_map)[0]) !=
641 cpus_addr(phys_cpu_present_map)[0]) {
642 /* should panic */
643 printk("\n\n***WARNING*** "
644 "Sanity check of CPU present map FAILED\n");
645 }
646 } else if (voyager_level == 4)
647 voyager_extended_vic_processors =
648 cpus_addr(phys_cpu_present_map)[0];
649
650 /* this sets up the idle task to run on the current cpu */
651 voyager_extended_cpus = 1;
652 /* Remove the global_irq_holder setting, it triggers a BUG() on
653 * schedule at the moment */
654 //global_irq_holder = boot_cpu_id;
655
656 /* FIXME: Need to do something about this but currently only works
657 * on CPUs with a tsc which none of mine have.
658 smp_tune_scheduling();
659 */
660 smp_store_cpu_info(boot_cpu_id);
661 /* setup the jump vector */
662 initial_code = (unsigned long)initialize_secondary;
663 printk("CPU%d: ", boot_cpu_id);
664 print_cpu_info(&cpu_data(boot_cpu_id));
665
666 if (is_cpu_quad()) {
667 /* booting on a Quad CPU */
668 printk("VOYAGER SMP: Boot CPU is Quad\n");
669 qic_setup();
670 do_quad_bootstrap();
671 }
672
673 /* enable our own CPIs */
674 vic_enable_cpi();
675
676 cpu_set(boot_cpu_id, cpu_online_map);
677 cpu_set(boot_cpu_id, cpu_callout_map);
678
679 /* loop over all the extended VIC CPUs and boot them. The
680 * Quad CPUs must be bootstrapped by their extended VIC cpu */
681 for (i = 0; i < NR_CPUS; i++) {
682 if (i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map))
683 continue;
684 do_boot_cpu(i);
685 /* This udelay seems to be needed for the Quad boots
686 * don't remove unless you know what you're doing */
687 udelay(1000);
688 }
689 /* we could compute the total bogomips here, but why bother?,
690 * Code added from smpboot.c */
691 {
692 unsigned long bogosum = 0;
693
694 for_each_online_cpu(i)
695 bogosum += cpu_data(i).loops_per_jiffy;
696 printk(KERN_INFO "Total of %d processors activated "
697 "(%lu.%02lu BogoMIPS).\n",
698 cpucount + 1, bogosum / (500000 / HZ),
699 (bogosum / (5000 / HZ)) % 100);
700 }
701 voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
702 printk("VOYAGER: Extended (interrupt handling CPUs): "
703 "%d, non-extended: %d\n", voyager_extended_cpus,
704 num_booting_cpus() - voyager_extended_cpus);
705 /* that's it, switch to symmetric mode */
706 outb(0, VIC_PRIORITY_REGISTER);
707 outb(0, VIC_CLAIM_REGISTER_0);
708 outb(0, VIC_CLAIM_REGISTER_1);
709
710 VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
711 }
712
713 /* Reload the secondary CPUs task structure (this function does not
714 * return ) */
715 static void __init initialize_secondary(void)
716 {
717 #if 0
718 // AC kernels only
719 set_current(hard_get_current());
720 #endif
721
722 /*
723 * We don't actually need to load the full TSS,
724 * basically just the stack pointer and the eip.
725 */
726
727 asm volatile ("movl %0,%%esp\n\t"
728 "jmp *%1"::"r" (current->thread.sp),
729 "r"(current->thread.ip));
730 }
731
732 /* handle a Voyager SYS_INT -- If we don't, the base board will
733 * panic the system.
734 *
735 * System interrupts occur because some problem was detected on the
736 * various busses. To find out what you have to probe all the
737 * hardware via the CAT bus. FIXME: At the moment we do nothing. */
738 void smp_vic_sys_interrupt(struct pt_regs *regs)
739 {
740 ack_CPI(VIC_SYS_INT);
741 printk("Voyager SYSTEM INTERRUPT\n");
742 }
743
744 /* Handle a voyager CMN_INT; These interrupts occur either because of
745 * a system status change or because a single bit memory error
746 * occurred. FIXME: At the moment, ignore all this. */
747 void smp_vic_cmn_interrupt(struct pt_regs *regs)
748 {
749 static __u8 in_cmn_int = 0;
750 static DEFINE_SPINLOCK(cmn_int_lock);
751
752 /* common ints are broadcast, so make sure we only do this once */
753 _raw_spin_lock(&cmn_int_lock);
754 if (in_cmn_int)
755 goto unlock_end;
756
757 in_cmn_int++;
758 _raw_spin_unlock(&cmn_int_lock);
759
760 VDEBUG(("Voyager COMMON INTERRUPT\n"));
761
762 if (voyager_level == 5)
763 voyager_cat_do_common_interrupt();
764
765 _raw_spin_lock(&cmn_int_lock);
766 in_cmn_int = 0;
767 unlock_end:
768 _raw_spin_unlock(&cmn_int_lock);
769 ack_CPI(VIC_CMN_INT);
770 }
771
772 /*
773 * Reschedule call back. Nothing to do, all the work is done
774 * automatically when we return from the interrupt. */
775 static void smp_reschedule_interrupt(void)
776 {
777 /* do nothing */
778 }
779
780 static struct mm_struct *flush_mm;
781 static unsigned long flush_va;
782 static DEFINE_SPINLOCK(tlbstate_lock);
783
784 /*
785 * We cannot call mmdrop() because we are in interrupt context,
786 * instead update mm->cpu_vm_mask.
787 *
788 * We need to reload %cr3 since the page tables may be going
789 * away from under us..
790 */
791 static inline void voyager_leave_mm(unsigned long cpu)
792 {
793 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
794 BUG();
795 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
796 load_cr3(swapper_pg_dir);
797 }
798
799 /*
800 * Invalidate call-back
801 */
802 static void smp_invalidate_interrupt(void)
803 {
804 __u8 cpu = smp_processor_id();
805
806 if (!test_bit(cpu, &smp_invalidate_needed))
807 return;
808 /* This will flood messages. Don't uncomment unless you see
809 * Problems with cross cpu invalidation
810 VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
811 smp_processor_id()));
812 */
813
814 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
815 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
816 if (flush_va == TLB_FLUSH_ALL)
817 local_flush_tlb();
818 else
819 __flush_tlb_one(flush_va);
820 } else
821 voyager_leave_mm(cpu);
822 }
823 smp_mb__before_clear_bit();
824 clear_bit(cpu, &smp_invalidate_needed);
825 smp_mb__after_clear_bit();
826 }
827
828 /* All the new flush operations for 2.4 */
829
830 /* This routine is called with a physical cpu mask */
831 static void
832 voyager_flush_tlb_others(unsigned long cpumask, struct mm_struct *mm,
833 unsigned long va)
834 {
835 int stuck = 50000;
836
837 if (!cpumask)
838 BUG();
839 if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
840 BUG();
841 if (cpumask & (1 << smp_processor_id()))
842 BUG();
843 if (!mm)
844 BUG();
845
846 spin_lock(&tlbstate_lock);
847
848 flush_mm = mm;
849 flush_va = va;
850 atomic_set_mask(cpumask, &smp_invalidate_needed);
851 /*
852 * We have to send the CPI only to
853 * CPUs affected.
854 */
855 send_CPI(cpumask, VIC_INVALIDATE_CPI);
856
857 while (smp_invalidate_needed) {
858 mb();
859 if (--stuck == 0) {
860 printk("***WARNING*** Stuck doing invalidate CPI "
861 "(CPU%d)\n", smp_processor_id());
862 break;
863 }
864 }
865
866 /* Uncomment only to debug invalidation problems
867 VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
868 */
869
870 flush_mm = NULL;
871 flush_va = 0;
872 spin_unlock(&tlbstate_lock);
873 }
874
875 void flush_tlb_current_task(void)
876 {
877 struct mm_struct *mm = current->mm;
878 unsigned long cpu_mask;
879
880 preempt_disable();
881
882 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
883 local_flush_tlb();
884 if (cpu_mask)
885 voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
886
887 preempt_enable();
888 }
889
890 void flush_tlb_mm(struct mm_struct *mm)
891 {
892 unsigned long cpu_mask;
893
894 preempt_disable();
895
896 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
897
898 if (current->active_mm == mm) {
899 if (current->mm)
900 local_flush_tlb();
901 else
902 voyager_leave_mm(smp_processor_id());
903 }
904 if (cpu_mask)
905 voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
906
907 preempt_enable();
908 }
909
910 void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
911 {
912 struct mm_struct *mm = vma->vm_mm;
913 unsigned long cpu_mask;
914
915 preempt_disable();
916
917 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
918 if (current->active_mm == mm) {
919 if (current->mm)
920 __flush_tlb_one(va);
921 else
922 voyager_leave_mm(smp_processor_id());
923 }
924
925 if (cpu_mask)
926 voyager_flush_tlb_others(cpu_mask, mm, va);
927
928 preempt_enable();
929 }
930
931 EXPORT_SYMBOL(flush_tlb_page);
932
933 /* enable the requested IRQs */
934 static void smp_enable_irq_interrupt(void)
935 {
936 __u8 irq;
937 __u8 cpu = get_cpu();
938
939 VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
940 vic_irq_enable_mask[cpu]));
941
942 spin_lock(&vic_irq_lock);
943 for (irq = 0; irq < 16; irq++) {
944 if (vic_irq_enable_mask[cpu] & (1 << irq))
945 enable_local_vic_irq(irq);
946 }
947 vic_irq_enable_mask[cpu] = 0;
948 spin_unlock(&vic_irq_lock);
949
950 put_cpu_no_resched();
951 }
952
953 /*
954 * CPU halt call-back
955 */
956 static void smp_stop_cpu_function(void *dummy)
957 {
958 VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
959 cpu_clear(smp_processor_id(), cpu_online_map);
960 local_irq_disable();
961 for (;;)
962 halt();
963 }
964
965 /* execute a thread on a new CPU. The function to be called must be
966 * previously set up. This is used to schedule a function for
967 * execution on all CPUs - set up the function then broadcast a
968 * function_interrupt CPI to come here on each CPU */
969 static void smp_call_function_interrupt(void)
970 {
971 irq_enter();
972 generic_smp_call_function_interrupt();
973 __get_cpu_var(irq_stat).irq_call_count++;
974 irq_exit();
975 }
976
977 static void smp_call_function_single_interrupt(void)
978 {
979 irq_enter();
980 generic_smp_call_function_single_interrupt();
981 __get_cpu_var(irq_stat).irq_call_count++;
982 irq_exit();
983 }
984
985 /* Sorry about the name. In an APIC based system, the APICs
986 * themselves are programmed to send a timer interrupt. This is used
987 * by linux to reschedule the processor. Voyager doesn't have this,
988 * so we use the system clock to interrupt one processor, which in
989 * turn, broadcasts a timer CPI to all the others --- we receive that
990 * CPI here. We don't use this actually for counting so losing
991 * ticks doesn't matter
992 *
993 * FIXME: For those CPUs which actually have a local APIC, we could
994 * try to use it to trigger this interrupt instead of having to
995 * broadcast the timer tick. Unfortunately, all my pentium DYADs have
996 * no local APIC, so I can't do this
997 *
998 * This function is currently a placeholder and is unused in the code */
999 void smp_apic_timer_interrupt(struct pt_regs *regs)
1000 {
1001 struct pt_regs *old_regs = set_irq_regs(regs);
1002 wrapper_smp_local_timer_interrupt();
1003 set_irq_regs(old_regs);
1004 }
1005
1006 /* All of the QUAD interrupt GATES */
1007 void smp_qic_timer_interrupt(struct pt_regs *regs)
1008 {
1009 struct pt_regs *old_regs = set_irq_regs(regs);
1010 ack_QIC_CPI(QIC_TIMER_CPI);
1011 wrapper_smp_local_timer_interrupt();
1012 set_irq_regs(old_regs);
1013 }
1014
1015 void smp_qic_invalidate_interrupt(struct pt_regs *regs)
1016 {
1017 ack_QIC_CPI(QIC_INVALIDATE_CPI);
1018 smp_invalidate_interrupt();
1019 }
1020
1021 void smp_qic_reschedule_interrupt(struct pt_regs *regs)
1022 {
1023 ack_QIC_CPI(QIC_RESCHEDULE_CPI);
1024 smp_reschedule_interrupt();
1025 }
1026
1027 void smp_qic_enable_irq_interrupt(struct pt_regs *regs)
1028 {
1029 ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
1030 smp_enable_irq_interrupt();
1031 }
1032
1033 void smp_qic_call_function_interrupt(struct pt_regs *regs)
1034 {
1035 ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
1036 smp_call_function_interrupt();
1037 }
1038
1039 void smp_qic_call_function_single_interrupt(struct pt_regs *regs)
1040 {
1041 ack_QIC_CPI(QIC_CALL_FUNCTION_SINGLE_CPI);
1042 smp_call_function_single_interrupt();
1043 }
1044
1045 void smp_vic_cpi_interrupt(struct pt_regs *regs)
1046 {
1047 struct pt_regs *old_regs = set_irq_regs(regs);
1048 __u8 cpu = smp_processor_id();
1049
1050 if (is_cpu_quad())
1051 ack_QIC_CPI(VIC_CPI_LEVEL0);
1052 else
1053 ack_VIC_CPI(VIC_CPI_LEVEL0);
1054
1055 if (test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
1056 wrapper_smp_local_timer_interrupt();
1057 if (test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
1058 smp_invalidate_interrupt();
1059 if (test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
1060 smp_reschedule_interrupt();
1061 if (test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
1062 smp_enable_irq_interrupt();
1063 if (test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
1064 smp_call_function_interrupt();
1065 if (test_and_clear_bit(VIC_CALL_FUNCTION_SINGLE_CPI, &vic_cpi_mailbox[cpu]))
1066 smp_call_function_single_interrupt();
1067 set_irq_regs(old_regs);
1068 }
1069
1070 static void do_flush_tlb_all(void *info)
1071 {
1072 unsigned long cpu = smp_processor_id();
1073
1074 __flush_tlb_all();
1075 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
1076 voyager_leave_mm(cpu);
1077 }
1078
1079 /* flush the TLB of every active CPU in the system */
1080 void flush_tlb_all(void)
1081 {
1082 on_each_cpu(do_flush_tlb_all, 0, 1);
1083 }
1084
1085 /* send a reschedule CPI to one CPU by physical CPU number*/
1086 static void voyager_smp_send_reschedule(int cpu)
1087 {
1088 send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
1089 }
1090
1091 int hard_smp_processor_id(void)
1092 {
1093 __u8 i;
1094 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
1095 if ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
1096 return cpumask & 0x1F;
1097
1098 for (i = 0; i < 8; i++) {
1099 if (cpumask & (1 << i))
1100 return i;
1101 }
1102 printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
1103 return 0;
1104 }
1105
1106 int safe_smp_processor_id(void)
1107 {
1108 return hard_smp_processor_id();
1109 }
1110
1111 /* broadcast a halt to all other CPUs */
1112 static void voyager_smp_send_stop(void)
1113 {
1114 smp_call_function(smp_stop_cpu_function, NULL, 1);
1115 }
1116
1117 /* this function is triggered in time.c when a clock tick fires
1118 * we need to re-broadcast the tick to all CPUs */
1119 void smp_vic_timer_interrupt(void)
1120 {
1121 send_CPI_allbutself(VIC_TIMER_CPI);
1122 smp_local_timer_interrupt();
1123 }
1124
1125 /* local (per CPU) timer interrupt. It does both profiling and
1126 * process statistics/rescheduling.
1127 *
1128 * We do profiling in every local tick, statistics/rescheduling
1129 * happen only every 'profiling multiplier' ticks. The default
1130 * multiplier is 1 and it can be changed by writing the new multiplier
1131 * value into /proc/profile.
1132 */
1133 void smp_local_timer_interrupt(void)
1134 {
1135 int cpu = smp_processor_id();
1136 long weight;
1137
1138 profile_tick(CPU_PROFILING);
1139 if (--per_cpu(prof_counter, cpu) <= 0) {
1140 /*
1141 * The multiplier may have changed since the last time we got
1142 * to this point as a result of the user writing to
1143 * /proc/profile. In this case we need to adjust the APIC
1144 * timer accordingly.
1145 *
1146 * Interrupts are already masked off at this point.
1147 */
1148 per_cpu(prof_counter, cpu) = per_cpu(prof_multiplier, cpu);
1149 if (per_cpu(prof_counter, cpu) !=
1150 per_cpu(prof_old_multiplier, cpu)) {
1151 /* FIXME: need to update the vic timer tick here */
1152 per_cpu(prof_old_multiplier, cpu) =
1153 per_cpu(prof_counter, cpu);
1154 }
1155
1156 update_process_times(user_mode_vm(get_irq_regs()));
1157 }
1158
1159 if (((1 << cpu) & voyager_extended_vic_processors) == 0)
1160 /* only extended VIC processors participate in
1161 * interrupt distribution */
1162 return;
1163
1164 /*
1165 * We take the 'long' return path, and there every subsystem
1166 * grabs the appropriate locks (kernel lock/ irq lock).
1167 *
1168 * we might want to decouple profiling from the 'long path',
1169 * and do the profiling totally in assembly.
1170 *
1171 * Currently this isn't too much of an issue (performance wise),
1172 * we can take more than 100K local irqs per second on a 100 MHz P5.
1173 */
1174
1175 if ((++vic_tick[cpu] & 0x7) != 0)
1176 return;
1177 /* get here every 16 ticks (about every 1/6 of a second) */
1178
1179 /* Change our priority to give someone else a chance at getting
1180 * the IRQ. The algorithm goes like this:
1181 *
1182 * In the VIC, the dynamically routed interrupt is always
1183 * handled by the lowest priority eligible (i.e. receiving
1184 * interrupts) CPU. If >1 eligible CPUs are equal lowest, the
1185 * lowest processor number gets it.
1186 *
1187 * The priority of a CPU is controlled by a special per-CPU
1188 * VIC priority register which is 3 bits wide 0 being lowest
1189 * and 7 highest priority..
1190 *
1191 * Therefore we subtract the average number of interrupts from
1192 * the number we've fielded. If this number is negative, we
1193 * lower the activity count and if it is positive, we raise
1194 * it.
1195 *
1196 * I'm afraid this still leads to odd looking interrupt counts:
1197 * the totals are all roughly equal, but the individual ones
1198 * look rather skewed.
1199 *
1200 * FIXME: This algorithm is total crap when mixed with SMP
1201 * affinity code since we now try to even up the interrupt
1202 * counts when an affinity binding is keeping them on a
1203 * particular CPU*/
1204 weight = (vic_intr_count[cpu] * voyager_extended_cpus
1205 - vic_intr_total) >> 4;
1206 weight += 4;
1207 if (weight > 7)
1208 weight = 7;
1209 if (weight < 0)
1210 weight = 0;
1211
1212 outb((__u8) weight, VIC_PRIORITY_REGISTER);
1213
1214 #ifdef VOYAGER_DEBUG
1215 if ((vic_tick[cpu] & 0xFFF) == 0) {
1216 /* print this message roughly every 25 secs */
1217 printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
1218 cpu, vic_tick[cpu], weight);
1219 }
1220 #endif
1221 }
1222
1223 /* setup the profiling timer */
1224 int setup_profiling_timer(unsigned int multiplier)
1225 {
1226 int i;
1227
1228 if ((!multiplier))
1229 return -EINVAL;
1230
1231 /*
1232 * Set the new multiplier for each CPU. CPUs don't start using the
1233 * new values until the next timer interrupt in which they do process
1234 * accounting.
1235 */
1236 for (i = 0; i < NR_CPUS; ++i)
1237 per_cpu(prof_multiplier, i) = multiplier;
1238
1239 return 0;
1240 }
1241
1242 /* This is a bit of a mess, but forced on us by the genirq changes
1243 * there's no genirq handler that really does what voyager wants
1244 * so hack it up with the simple IRQ handler */
1245 static void handle_vic_irq(unsigned int irq, struct irq_desc *desc)
1246 {
1247 before_handle_vic_irq(irq);
1248 handle_simple_irq(irq, desc);
1249 after_handle_vic_irq(irq);
1250 }
1251
1252 /* The CPIs are handled in the per cpu 8259s, so they must be
1253 * enabled to be received: FIX: enabling the CPIs in the early
1254 * boot sequence interferes with bug checking; enable them later
1255 * on in smp_init */
1256 #define VIC_SET_GATE(cpi, vector) \
1257 set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
1258 #define QIC_SET_GATE(cpi, vector) \
1259 set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
1260
1261 void __init voyager_smp_intr_init(void)
1262 {
1263 int i;
1264
1265 /* initialize the per cpu irq mask to all disabled */
1266 for (i = 0; i < NR_CPUS; i++)
1267 vic_irq_mask[i] = 0xFFFF;
1268
1269 VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
1270
1271 VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
1272 VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
1273
1274 QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
1275 QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
1276 QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
1277 QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
1278 QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
1279
1280 /* now put the VIC descriptor into the first 48 IRQs
1281 *
1282 * This is for later: first 16 correspond to PC IRQs; next 16
1283 * are Primary MC IRQs and final 16 are Secondary MC IRQs */
1284 for (i = 0; i < 48; i++)
1285 set_irq_chip_and_handler(i, &vic_chip, handle_vic_irq);
1286 }
1287
1288 /* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
1289 * processor to receive CPI */
1290 static void send_CPI(__u32 cpuset, __u8 cpi)
1291 {
1292 int cpu;
1293 __u32 quad_cpuset = (cpuset & voyager_quad_processors);
1294
1295 if (cpi < VIC_START_FAKE_CPI) {
1296 /* fake CPI are only used for booting, so send to the
1297 * extended quads as well---Quads must be VIC booted */
1298 outb((__u8) (cpuset), VIC_CPI_Registers[cpi]);
1299 return;
1300 }
1301 if (quad_cpuset)
1302 send_QIC_CPI(quad_cpuset, cpi);
1303 cpuset &= ~quad_cpuset;
1304 cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */
1305 if (cpuset == 0)
1306 return;
1307 for_each_online_cpu(cpu) {
1308 if (cpuset & (1 << cpu))
1309 set_bit(cpi, &vic_cpi_mailbox[cpu]);
1310 }
1311 if (cpuset)
1312 outb((__u8) cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
1313 }
1314
1315 /* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
1316 * set the cache line to shared by reading it.
1317 *
1318 * DON'T make this inline otherwise the cache line read will be
1319 * optimised away
1320 * */
1321 static int ack_QIC_CPI(__u8 cpi)
1322 {
1323 __u8 cpu = hard_smp_processor_id();
1324
1325 cpi &= 7;
1326
1327 outb(1 << cpi, QIC_INTERRUPT_CLEAR1);
1328 return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
1329 }
1330
1331 static void ack_special_QIC_CPI(__u8 cpi)
1332 {
1333 switch (cpi) {
1334 case VIC_CMN_INT:
1335 outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
1336 break;
1337 case VIC_SYS_INT:
1338 outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
1339 break;
1340 }
1341 /* also clear at the VIC, just in case (nop for non-extended proc) */
1342 ack_VIC_CPI(cpi);
1343 }
1344
1345 /* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
1346 static void ack_VIC_CPI(__u8 cpi)
1347 {
1348 #ifdef VOYAGER_DEBUG
1349 unsigned long flags;
1350 __u16 isr;
1351 __u8 cpu = smp_processor_id();
1352
1353 local_irq_save(flags);
1354 isr = vic_read_isr();
1355 if ((isr & (1 << (cpi & 7))) == 0) {
1356 printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
1357 }
1358 #endif
1359 /* send specific EOI; the two system interrupts have
1360 * bit 4 set for a separate vector but behave as the
1361 * corresponding 3 bit intr */
1362 outb_p(0x60 | (cpi & 7), 0x20);
1363
1364 #ifdef VOYAGER_DEBUG
1365 if ((vic_read_isr() & (1 << (cpi & 7))) != 0) {
1366 printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
1367 }
1368 local_irq_restore(flags);
1369 #endif
1370 }
1371
1372 /* cribbed with thanks from irq.c */
1373 #define __byte(x,y) (((unsigned char *)&(y))[x])
1374 #define cached_21(cpu) (__byte(0,vic_irq_mask[cpu]))
1375 #define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu]))
1376
1377 static unsigned int startup_vic_irq(unsigned int irq)
1378 {
1379 unmask_vic_irq(irq);
1380
1381 return 0;
1382 }
1383
1384 /* The enable and disable routines. This is where we run into
1385 * conflicting architectural philosophy. Fundamentally, the voyager
1386 * architecture does not expect to have to disable interrupts globally
1387 * (the IRQ controllers belong to each CPU). The processor masquerade
1388 * which is used to start the system shouldn't be used in a running OS
1389 * since it will cause great confusion if two separate CPUs drive to
1390 * the same IRQ controller (I know, I've tried it).
1391 *
1392 * The solution is a variant on the NCR lazy SPL design:
1393 *
1394 * 1) To disable an interrupt, do nothing (other than set the
1395 * IRQ_DISABLED flag). This dares the interrupt actually to arrive.
1396 *
1397 * 2) If the interrupt dares to come in, raise the local mask against
1398 * it (this will result in all the CPU masks being raised
1399 * eventually).
1400 *
1401 * 3) To enable the interrupt, lower the mask on the local CPU and
1402 * broadcast an Interrupt enable CPI which causes all other CPUs to
1403 * adjust their masks accordingly. */
1404
1405 static void unmask_vic_irq(unsigned int irq)
1406 {
1407 /* linux doesn't to processor-irq affinity, so enable on
1408 * all CPUs we know about */
1409 int cpu = smp_processor_id(), real_cpu;
1410 __u16 mask = (1 << irq);
1411 __u32 processorList = 0;
1412 unsigned long flags;
1413
1414 VDEBUG(("VOYAGER: unmask_vic_irq(%d) CPU%d affinity 0x%lx\n",
1415 irq, cpu, cpu_irq_affinity[cpu]));
1416 spin_lock_irqsave(&vic_irq_lock, flags);
1417 for_each_online_cpu(real_cpu) {
1418 if (!(voyager_extended_vic_processors & (1 << real_cpu)))
1419 continue;
1420 if (!(cpu_irq_affinity[real_cpu] & mask)) {
1421 /* irq has no affinity for this CPU, ignore */
1422 continue;
1423 }
1424 if (real_cpu == cpu) {
1425 enable_local_vic_irq(irq);
1426 } else if (vic_irq_mask[real_cpu] & mask) {
1427 vic_irq_enable_mask[real_cpu] |= mask;
1428 processorList |= (1 << real_cpu);
1429 }
1430 }
1431 spin_unlock_irqrestore(&vic_irq_lock, flags);
1432 if (processorList)
1433 send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
1434 }
1435
1436 static void mask_vic_irq(unsigned int irq)
1437 {
1438 /* lazy disable, do nothing */
1439 }
1440
1441 static void enable_local_vic_irq(unsigned int irq)
1442 {
1443 __u8 cpu = smp_processor_id();
1444 __u16 mask = ~(1 << irq);
1445 __u16 old_mask = vic_irq_mask[cpu];
1446
1447 vic_irq_mask[cpu] &= mask;
1448 if (vic_irq_mask[cpu] == old_mask)
1449 return;
1450
1451 VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
1452 irq, cpu));
1453
1454 if (irq & 8) {
1455 outb_p(cached_A1(cpu), 0xA1);
1456 (void)inb_p(0xA1);
1457 } else {
1458 outb_p(cached_21(cpu), 0x21);
1459 (void)inb_p(0x21);
1460 }
1461 }
1462
1463 static void disable_local_vic_irq(unsigned int irq)
1464 {
1465 __u8 cpu = smp_processor_id();
1466 __u16 mask = (1 << irq);
1467 __u16 old_mask = vic_irq_mask[cpu];
1468
1469 if (irq == 7)
1470 return;
1471
1472 vic_irq_mask[cpu] |= mask;
1473 if (old_mask == vic_irq_mask[cpu])
1474 return;
1475
1476 VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
1477 irq, cpu));
1478
1479 if (irq & 8) {
1480 outb_p(cached_A1(cpu), 0xA1);
1481 (void)inb_p(0xA1);
1482 } else {
1483 outb_p(cached_21(cpu), 0x21);
1484 (void)inb_p(0x21);
1485 }
1486 }
1487
1488 /* The VIC is level triggered, so the ack can only be issued after the
1489 * interrupt completes. However, we do Voyager lazy interrupt
1490 * handling here: It is an extremely expensive operation to mask an
1491 * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If
1492 * this interrupt actually comes in, then we mask and ack here to push
1493 * the interrupt off to another CPU */
1494 static void before_handle_vic_irq(unsigned int irq)
1495 {
1496 irq_desc_t *desc = irq_to_desc(irq);
1497 __u8 cpu = smp_processor_id();
1498
1499 _raw_spin_lock(&vic_irq_lock);
1500 vic_intr_total++;
1501 vic_intr_count[cpu]++;
1502
1503 if (!(cpu_irq_affinity[cpu] & (1 << irq))) {
1504 /* The irq is not in our affinity mask, push it off
1505 * onto another CPU */
1506 VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d "
1507 "on cpu %d\n", irq, cpu));
1508 disable_local_vic_irq(irq);
1509 /* set IRQ_INPROGRESS to prevent the handler in irq.c from
1510 * actually calling the interrupt routine */
1511 desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
1512 } else if (desc->status & IRQ_DISABLED) {
1513 /* Damn, the interrupt actually arrived, do the lazy
1514 * disable thing. The interrupt routine in irq.c will
1515 * not handle a IRQ_DISABLED interrupt, so nothing more
1516 * need be done here */
1517 VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
1518 irq, cpu));
1519 disable_local_vic_irq(irq);
1520 desc->status |= IRQ_REPLAY;
1521 } else {
1522 desc->status &= ~IRQ_REPLAY;
1523 }
1524
1525 _raw_spin_unlock(&vic_irq_lock);
1526 }
1527
1528 /* Finish the VIC interrupt: basically mask */
1529 static void after_handle_vic_irq(unsigned int irq)
1530 {
1531 irq_desc_t *desc = irq_to_desc(irq);
1532
1533 _raw_spin_lock(&vic_irq_lock);
1534 {
1535 unsigned int status = desc->status & ~IRQ_INPROGRESS;
1536 #ifdef VOYAGER_DEBUG
1537 __u16 isr;
1538 #endif
1539
1540 desc->status = status;
1541 if ((status & IRQ_DISABLED))
1542 disable_local_vic_irq(irq);
1543 #ifdef VOYAGER_DEBUG
1544 /* DEBUG: before we ack, check what's in progress */
1545 isr = vic_read_isr();
1546 if ((isr & (1 << irq) && !(status & IRQ_REPLAY)) == 0) {
1547 int i;
1548 __u8 cpu = smp_processor_id();
1549 __u8 real_cpu;
1550 int mask; /* Um... initialize me??? --RR */
1551
1552 printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
1553 cpu, irq);
1554 for_each_possible_cpu(real_cpu, mask) {
1555
1556 outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
1557 VIC_PROCESSOR_ID);
1558 isr = vic_read_isr();
1559 if (isr & (1 << irq)) {
1560 printk
1561 ("VOYAGER SMP: CPU%d ack irq %d\n",
1562 real_cpu, irq);
1563 ack_vic_irq(irq);
1564 }
1565 outb(cpu, VIC_PROCESSOR_ID);
1566 }
1567 }
1568 #endif /* VOYAGER_DEBUG */
1569 /* as soon as we ack, the interrupt is eligible for
1570 * receipt by another CPU so everything must be in
1571 * order here */
1572 ack_vic_irq(irq);
1573 if (status & IRQ_REPLAY) {
1574 /* replay is set if we disable the interrupt
1575 * in the before_handle_vic_irq() routine, so
1576 * clear the in progress bit here to allow the
1577 * next CPU to handle this correctly */
1578 desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
1579 }
1580 #ifdef VOYAGER_DEBUG
1581 isr = vic_read_isr();
1582 if ((isr & (1 << irq)) != 0)
1583 printk("VOYAGER SMP: after_handle_vic_irq() after "
1584 "ack irq=%d, isr=0x%x\n", irq, isr);
1585 #endif /* VOYAGER_DEBUG */
1586 }
1587 _raw_spin_unlock(&vic_irq_lock);
1588
1589 /* All code after this point is out of the main path - the IRQ
1590 * may be intercepted by another CPU if reasserted */
1591 }
1592
1593 /* Linux processor - interrupt affinity manipulations.
1594 *
1595 * For each processor, we maintain a 32 bit irq affinity mask.
1596 * Initially it is set to all 1's so every processor accepts every
1597 * interrupt. In this call, we change the processor's affinity mask:
1598 *
1599 * Change from enable to disable:
1600 *
1601 * If the interrupt ever comes in to the processor, we will disable it
1602 * and ack it to push it off to another CPU, so just accept the mask here.
1603 *
1604 * Change from disable to enable:
1605 *
1606 * change the mask and then do an interrupt enable CPI to re-enable on
1607 * the selected processors */
1608
1609 void set_vic_irq_affinity(unsigned int irq, cpumask_t mask)
1610 {
1611 /* Only extended processors handle interrupts */
1612 unsigned long real_mask;
1613 unsigned long irq_mask = 1 << irq;
1614 int cpu;
1615
1616 real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors;
1617
1618 if (cpus_addr(mask)[0] == 0)
1619 /* can't have no CPUs to accept the interrupt -- extremely
1620 * bad things will happen */
1621 return;
1622
1623 if (irq == 0)
1624 /* can't change the affinity of the timer IRQ. This
1625 * is due to the constraint in the voyager
1626 * architecture that the CPI also comes in on and IRQ
1627 * line and we have chosen IRQ0 for this. If you
1628 * raise the mask on this interrupt, the processor
1629 * will no-longer be able to accept VIC CPIs */
1630 return;
1631
1632 if (irq >= 32)
1633 /* You can only have 32 interrupts in a voyager system
1634 * (and 32 only if you have a secondary microchannel
1635 * bus) */
1636 return;
1637
1638 for_each_online_cpu(cpu) {
1639 unsigned long cpu_mask = 1 << cpu;
1640
1641 if (cpu_mask & real_mask) {
1642 /* enable the interrupt for this cpu */
1643 cpu_irq_affinity[cpu] |= irq_mask;
1644 } else {
1645 /* disable the interrupt for this cpu */
1646 cpu_irq_affinity[cpu] &= ~irq_mask;
1647 }
1648 }
1649 /* this is magic, we now have the correct affinity maps, so
1650 * enable the interrupt. This will send an enable CPI to
1651 * those CPUs who need to enable it in their local masks,
1652 * causing them to correct for the new affinity . If the
1653 * interrupt is currently globally disabled, it will simply be
1654 * disabled again as it comes in (voyager lazy disable). If
1655 * the affinity map is tightened to disable the interrupt on a
1656 * cpu, it will be pushed off when it comes in */
1657 unmask_vic_irq(irq);
1658 }
1659
1660 static void ack_vic_irq(unsigned int irq)
1661 {
1662 if (irq & 8) {
1663 outb(0x62, 0x20); /* Specific EOI to cascade */
1664 outb(0x60 | (irq & 7), 0xA0);
1665 } else {
1666 outb(0x60 | (irq & 7), 0x20);
1667 }
1668 }
1669
1670 /* enable the CPIs. In the VIC, the CPIs are delivered by the 8259
1671 * but are not vectored by it. This means that the 8259 mask must be
1672 * lowered to receive them */
1673 static __init void vic_enable_cpi(void)
1674 {
1675 __u8 cpu = smp_processor_id();
1676
1677 /* just take a copy of the current mask (nop for boot cpu) */
1678 vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
1679
1680 enable_local_vic_irq(VIC_CPI_LEVEL0);
1681 enable_local_vic_irq(VIC_CPI_LEVEL1);
1682 /* for sys int and cmn int */
1683 enable_local_vic_irq(7);
1684
1685 if (is_cpu_quad()) {
1686 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
1687 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
1688 VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
1689 cpu, QIC_CPI_ENABLE));
1690 }
1691
1692 VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
1693 cpu, vic_irq_mask[cpu]));
1694 }
1695
1696 void voyager_smp_dump()
1697 {
1698 int old_cpu = smp_processor_id(), cpu;
1699
1700 /* dump the interrupt masks of each processor */
1701 for_each_online_cpu(cpu) {
1702 __u16 imr, isr, irr;
1703 unsigned long flags;
1704
1705 local_irq_save(flags);
1706 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
1707 imr = (inb(0xa1) << 8) | inb(0x21);
1708 outb(0x0a, 0xa0);
1709 irr = inb(0xa0) << 8;
1710 outb(0x0a, 0x20);
1711 irr |= inb(0x20);
1712 outb(0x0b, 0xa0);
1713 isr = inb(0xa0) << 8;
1714 outb(0x0b, 0x20);
1715 isr |= inb(0x20);
1716 outb(old_cpu, VIC_PROCESSOR_ID);
1717 local_irq_restore(flags);
1718 printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
1719 cpu, vic_irq_mask[cpu], imr, irr, isr);
1720 #if 0
1721 /* These lines are put in to try to unstick an un ack'd irq */
1722 if (isr != 0) {
1723 int irq;
1724 for (irq = 0; irq < 16; irq++) {
1725 if (isr & (1 << irq)) {
1726 printk("\tCPU%d: ack irq %d\n",
1727 cpu, irq);
1728 local_irq_save(flags);
1729 outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
1730 VIC_PROCESSOR_ID);
1731 ack_vic_irq(irq);
1732 outb(old_cpu, VIC_PROCESSOR_ID);
1733 local_irq_restore(flags);
1734 }
1735 }
1736 }
1737 #endif
1738 }
1739 }
1740
1741 void smp_voyager_power_off(void *dummy)
1742 {
1743 if (smp_processor_id() == boot_cpu_id)
1744 voyager_power_off();
1745 else
1746 smp_stop_cpu_function(NULL);
1747 }
1748
1749 static void __init voyager_smp_prepare_cpus(unsigned int max_cpus)
1750 {
1751 /* FIXME: ignore max_cpus for now */
1752 smp_boot_cpus();
1753 }
1754
1755 static void __cpuinit voyager_smp_prepare_boot_cpu(void)
1756 {
1757 init_gdt(smp_processor_id());
1758 switch_to_new_gdt();
1759
1760 cpu_set(smp_processor_id(), cpu_online_map);
1761 cpu_set(smp_processor_id(), cpu_callout_map);
1762 cpu_set(smp_processor_id(), cpu_possible_map);
1763 cpu_set(smp_processor_id(), cpu_present_map);
1764 }
1765
1766 static int __cpuinit voyager_cpu_up(unsigned int cpu)
1767 {
1768 /* This only works at boot for x86. See "rewrite" above. */
1769 if (cpu_isset(cpu, smp_commenced_mask))
1770 return -ENOSYS;
1771
1772 /* In case one didn't come up */
1773 if (!cpu_isset(cpu, cpu_callin_map))
1774 return -EIO;
1775 /* Unleash the CPU! */
1776 cpu_set(cpu, smp_commenced_mask);
1777 while (!cpu_online(cpu))
1778 mb();
1779 return 0;
1780 }
1781
1782 static void __init voyager_smp_cpus_done(unsigned int max_cpus)
1783 {
1784 zap_low_mappings();
1785 }
1786
1787 void __init smp_setup_processor_id(void)
1788 {
1789 current_thread_info()->cpu = hard_smp_processor_id();
1790 x86_write_percpu(cpu_number, hard_smp_processor_id());
1791 }
1792
1793 struct smp_ops smp_ops = {
1794 .smp_prepare_boot_cpu = voyager_smp_prepare_boot_cpu,
1795 .smp_prepare_cpus = voyager_smp_prepare_cpus,
1796 .cpu_up = voyager_cpu_up,
1797 .smp_cpus_done = voyager_smp_cpus_done,
1798
1799 .smp_send_stop = voyager_smp_send_stop,
1800 .smp_send_reschedule = voyager_smp_send_reschedule,
1801
1802 .send_call_func_ipi = native_send_call_func_ipi,
1803 .send_call_func_single_ipi = native_send_call_func_single_ipi,
1804 };
This page took 0.097611 seconds and 5 git commands to generate.