x86: mach-voyager, lindent
[deliverable/linux.git] / arch / x86 / mach-voyager / voyager_smp.c
1 /* -*- mode: c; c-basic-offset: 8 -*- */
2
3 /* Copyright (C) 1999,2001
4 *
5 * Author: J.E.J.Bottomley@HansenPartnership.com
6 *
7 * linux/arch/i386/kernel/voyager_smp.c
8 *
9 * This file provides all the same external entries as smp.c but uses
10 * the voyager hal to provide the functionality
11 */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/mc146818rtc.h>
17 #include <linux/cache.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/bootmem.h>
22 #include <linux/completion.h>
23 #include <asm/desc.h>
24 #include <asm/voyager.h>
25 #include <asm/vic.h>
26 #include <asm/mtrr.h>
27 #include <asm/pgalloc.h>
28 #include <asm/tlbflush.h>
29 #include <asm/arch_hooks.h>
30
31 /* TLB state -- visible externally, indexed physically */
32 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { &init_mm, 0 };
33
34 /* CPU IRQ affinity -- set to all ones initially */
35 static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned =
36 {[0 ... NR_CPUS-1] = ~0UL };
37
38 /* per CPU data structure (for /proc/cpuinfo et al), visible externally
39 * indexed physically */
40 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
41 EXPORT_PER_CPU_SYMBOL(cpu_info);
42
43 /* physical ID of the CPU used to boot the system */
44 unsigned char boot_cpu_id;
45
46 /* The memory line addresses for the Quad CPIs */
47 struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
48
49 /* The masks for the Extended VIC processors, filled in by cat_init */
50 __u32 voyager_extended_vic_processors = 0;
51
52 /* Masks for the extended Quad processors which cannot be VIC booted */
53 __u32 voyager_allowed_boot_processors = 0;
54
55 /* The mask for the Quad Processors (both extended and non-extended) */
56 __u32 voyager_quad_processors = 0;
57
58 /* Total count of live CPUs, used in process.c to display
59 * the CPU information and in irq.c for the per CPU irq
60 * activity count. Finally exported by i386_ksyms.c */
61 static int voyager_extended_cpus = 1;
62
63 /* Have we found an SMP box - used by time.c to do the profiling
64 interrupt for timeslicing; do not set to 1 until the per CPU timer
65 interrupt is active */
66 int smp_found_config = 0;
67
68 /* Used for the invalidate map that's also checked in the spinlock */
69 static volatile unsigned long smp_invalidate_needed;
70
71 /* Bitmask of currently online CPUs - used by setup.c for
72 /proc/cpuinfo, visible externally but still physical */
73 cpumask_t cpu_online_map = CPU_MASK_NONE;
74 EXPORT_SYMBOL(cpu_online_map);
75
76 /* Bitmask of CPUs present in the system - exported by i386_syms.c, used
77 * by scheduler but indexed physically */
78 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
79
80 /* The internal functions */
81 static void send_CPI(__u32 cpuset, __u8 cpi);
82 static void ack_CPI(__u8 cpi);
83 static int ack_QIC_CPI(__u8 cpi);
84 static void ack_special_QIC_CPI(__u8 cpi);
85 static void ack_VIC_CPI(__u8 cpi);
86 static void send_CPI_allbutself(__u8 cpi);
87 static void mask_vic_irq(unsigned int irq);
88 static void unmask_vic_irq(unsigned int irq);
89 static unsigned int startup_vic_irq(unsigned int irq);
90 static void enable_local_vic_irq(unsigned int irq);
91 static void disable_local_vic_irq(unsigned int irq);
92 static void before_handle_vic_irq(unsigned int irq);
93 static void after_handle_vic_irq(unsigned int irq);
94 static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask);
95 static void ack_vic_irq(unsigned int irq);
96 static void vic_enable_cpi(void);
97 static void do_boot_cpu(__u8 cpuid);
98 static void do_quad_bootstrap(void);
99
100 int hard_smp_processor_id(void);
101 int safe_smp_processor_id(void);
102
103 /* Inline functions */
104 static inline void send_one_QIC_CPI(__u8 cpu, __u8 cpi)
105 {
106 voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
107 (smp_processor_id() << 16) + cpi;
108 }
109
110 static inline void send_QIC_CPI(__u32 cpuset, __u8 cpi)
111 {
112 int cpu;
113
114 for_each_online_cpu(cpu) {
115 if (cpuset & (1 << cpu)) {
116 #ifdef VOYAGER_DEBUG
117 if (!cpu_isset(cpu, cpu_online_map))
118 VDEBUG(("CPU%d sending cpi %d to CPU%d not in "
119 "cpu_online_map\n",
120 hard_smp_processor_id(), cpi, cpu));
121 #endif
122 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
123 }
124 }
125 }
126
127 static inline void wrapper_smp_local_timer_interrupt(void)
128 {
129 irq_enter();
130 smp_local_timer_interrupt();
131 irq_exit();
132 }
133
134 static inline void send_one_CPI(__u8 cpu, __u8 cpi)
135 {
136 if (voyager_quad_processors & (1 << cpu))
137 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
138 else
139 send_CPI(1 << cpu, cpi);
140 }
141
142 static inline void send_CPI_allbutself(__u8 cpi)
143 {
144 __u8 cpu = smp_processor_id();
145 __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
146 send_CPI(mask, cpi);
147 }
148
149 static inline int is_cpu_quad(void)
150 {
151 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
152 return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
153 }
154
155 static inline int is_cpu_extended(void)
156 {
157 __u8 cpu = hard_smp_processor_id();
158
159 return (voyager_extended_vic_processors & (1 << cpu));
160 }
161
162 static inline int is_cpu_vic_boot(void)
163 {
164 __u8 cpu = hard_smp_processor_id();
165
166 return (voyager_extended_vic_processors
167 & voyager_allowed_boot_processors & (1 << cpu));
168 }
169
170 static inline void ack_CPI(__u8 cpi)
171 {
172 switch (cpi) {
173 case VIC_CPU_BOOT_CPI:
174 if (is_cpu_quad() && !is_cpu_vic_boot())
175 ack_QIC_CPI(cpi);
176 else
177 ack_VIC_CPI(cpi);
178 break;
179 case VIC_SYS_INT:
180 case VIC_CMN_INT:
181 /* These are slightly strange. Even on the Quad card,
182 * They are vectored as VIC CPIs */
183 if (is_cpu_quad())
184 ack_special_QIC_CPI(cpi);
185 else
186 ack_VIC_CPI(cpi);
187 break;
188 default:
189 printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
190 break;
191 }
192 }
193
194 /* local variables */
195
196 /* The VIC IRQ descriptors -- these look almost identical to the
197 * 8259 IRQs except that masks and things must be kept per processor
198 */
199 static struct irq_chip vic_chip = {
200 .name = "VIC",
201 .startup = startup_vic_irq,
202 .mask = mask_vic_irq,
203 .unmask = unmask_vic_irq,
204 .set_affinity = set_vic_irq_affinity,
205 };
206
207 /* used to count up as CPUs are brought on line (starts at 0) */
208 static int cpucount = 0;
209
210 /* steal a page from the bottom of memory for the trampoline and
211 * squirrel its address away here. This will be in kernel virtual
212 * space */
213 static __u32 trampoline_base;
214
215 /* The per cpu profile stuff - used in smp_local_timer_interrupt */
216 static DEFINE_PER_CPU(int, prof_multiplier) = 1;
217 static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
218 static DEFINE_PER_CPU(int, prof_counter) = 1;
219
220 /* the map used to check if a CPU has booted */
221 static __u32 cpu_booted_map;
222
223 /* the synchronize flag used to hold all secondary CPUs spinning in
224 * a tight loop until the boot sequence is ready for them */
225 static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
226
227 /* This is for the new dynamic CPU boot code */
228 cpumask_t cpu_callin_map = CPU_MASK_NONE;
229 cpumask_t cpu_callout_map = CPU_MASK_NONE;
230 EXPORT_SYMBOL(cpu_callout_map);
231 cpumask_t cpu_possible_map = CPU_MASK_NONE;
232 EXPORT_SYMBOL(cpu_possible_map);
233
234 /* The per processor IRQ masks (these are usually kept in sync) */
235 static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
236
237 /* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
238 static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
239
240 /* Lock for enable/disable of VIC interrupts */
241 static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
242
243 /* The boot processor is correctly set up in PC mode when it
244 * comes up, but the secondaries need their master/slave 8259
245 * pairs initializing correctly */
246
247 /* Interrupt counters (per cpu) and total - used to try to
248 * even up the interrupt handling routines */
249 static long vic_intr_total = 0;
250 static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
251 static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
252
253 /* Since we can only use CPI0, we fake all the other CPIs */
254 static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
255
256 /* debugging routine to read the isr of the cpu's pic */
257 static inline __u16 vic_read_isr(void)
258 {
259 __u16 isr;
260
261 outb(0x0b, 0xa0);
262 isr = inb(0xa0) << 8;
263 outb(0x0b, 0x20);
264 isr |= inb(0x20);
265
266 return isr;
267 }
268
269 static __init void qic_setup(void)
270 {
271 if (!is_cpu_quad()) {
272 /* not a quad, no setup */
273 return;
274 }
275 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
276 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
277
278 if (is_cpu_extended()) {
279 /* the QIC duplicate of the VIC base register */
280 outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
281 outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
282
283 /* FIXME: should set up the QIC timer and memory parity
284 * error vectors here */
285 }
286 }
287
288 static __init void vic_setup_pic(void)
289 {
290 outb(1, VIC_REDIRECT_REGISTER_1);
291 /* clear the claim registers for dynamic routing */
292 outb(0, VIC_CLAIM_REGISTER_0);
293 outb(0, VIC_CLAIM_REGISTER_1);
294
295 outb(0, VIC_PRIORITY_REGISTER);
296 /* Set the Primary and Secondary Microchannel vector
297 * bases to be the same as the ordinary interrupts
298 *
299 * FIXME: This would be more efficient using separate
300 * vectors. */
301 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
302 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
303 /* Now initiallise the master PIC belonging to this CPU by
304 * sending the four ICWs */
305
306 /* ICW1: level triggered, ICW4 needed */
307 outb(0x19, 0x20);
308
309 /* ICW2: vector base */
310 outb(FIRST_EXTERNAL_VECTOR, 0x21);
311
312 /* ICW3: slave at line 2 */
313 outb(0x04, 0x21);
314
315 /* ICW4: 8086 mode */
316 outb(0x01, 0x21);
317
318 /* now the same for the slave PIC */
319
320 /* ICW1: level trigger, ICW4 needed */
321 outb(0x19, 0xA0);
322
323 /* ICW2: slave vector base */
324 outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
325
326 /* ICW3: slave ID */
327 outb(0x02, 0xA1);
328
329 /* ICW4: 8086 mode */
330 outb(0x01, 0xA1);
331 }
332
333 static void do_quad_bootstrap(void)
334 {
335 if (is_cpu_quad() && is_cpu_vic_boot()) {
336 int i;
337 unsigned long flags;
338 __u8 cpuid = hard_smp_processor_id();
339
340 local_irq_save(flags);
341
342 for (i = 0; i < 4; i++) {
343 /* FIXME: this would be >>3 &0x7 on the 32 way */
344 if (((cpuid >> 2) & 0x03) == i)
345 /* don't lower our own mask! */
346 continue;
347
348 /* masquerade as local Quad CPU */
349 outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
350 /* enable the startup CPI */
351 outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
352 /* restore cpu id */
353 outb(0, QIC_PROCESSOR_ID);
354 }
355 local_irq_restore(flags);
356 }
357 }
358
359 /* Set up all the basic stuff: read the SMP config and make all the
360 * SMP information reflect only the boot cpu. All others will be
361 * brought on-line later. */
362 void __init find_smp_config(void)
363 {
364 int i;
365
366 boot_cpu_id = hard_smp_processor_id();
367
368 printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
369
370 /* initialize the CPU structures (moved from smp_boot_cpus) */
371 for (i = 0; i < NR_CPUS; i++) {
372 cpu_irq_affinity[i] = ~0;
373 }
374 cpu_online_map = cpumask_of_cpu(boot_cpu_id);
375
376 /* The boot CPU must be extended */
377 voyager_extended_vic_processors = 1 << boot_cpu_id;
378 /* initially, all of the first 8 CPUs can boot */
379 voyager_allowed_boot_processors = 0xff;
380 /* set up everything for just this CPU, we can alter
381 * this as we start the other CPUs later */
382 /* now get the CPU disposition from the extended CMOS */
383 cpus_addr(phys_cpu_present_map)[0] =
384 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
385 cpus_addr(phys_cpu_present_map)[0] |=
386 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
387 cpus_addr(phys_cpu_present_map)[0] |=
388 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
389 2) << 16;
390 cpus_addr(phys_cpu_present_map)[0] |=
391 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
392 3) << 24;
393 cpu_possible_map = phys_cpu_present_map;
394 printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n",
395 cpus_addr(phys_cpu_present_map)[0]);
396 /* Here we set up the VIC to enable SMP */
397 /* enable the CPIs by writing the base vector to their register */
398 outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
399 outb(1, VIC_REDIRECT_REGISTER_1);
400 /* set the claim registers for static routing --- Boot CPU gets
401 * all interrupts untill all other CPUs started */
402 outb(0xff, VIC_CLAIM_REGISTER_0);
403 outb(0xff, VIC_CLAIM_REGISTER_1);
404 /* Set the Primary and Secondary Microchannel vector
405 * bases to be the same as the ordinary interrupts
406 *
407 * FIXME: This would be more efficient using separate
408 * vectors. */
409 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
410 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
411
412 /* Finally tell the firmware that we're driving */
413 outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
414 VOYAGER_SUS_IN_CONTROL_PORT);
415
416 current_thread_info()->cpu = boot_cpu_id;
417 x86_write_percpu(cpu_number, boot_cpu_id);
418 }
419
420 /*
421 * The bootstrap kernel entry code has set these up. Save them
422 * for a given CPU, id is physical */
423 void __init smp_store_cpu_info(int id)
424 {
425 struct cpuinfo_x86 *c = &cpu_data(id);
426
427 *c = boot_cpu_data;
428
429 identify_secondary_cpu(c);
430 }
431
432 /* set up the trampoline and return the physical address of the code */
433 static __u32 __init setup_trampoline(void)
434 {
435 /* these two are global symbols in trampoline.S */
436 extern const __u8 trampoline_end[];
437 extern const __u8 trampoline_data[];
438
439 memcpy((__u8 *) trampoline_base, trampoline_data,
440 trampoline_end - trampoline_data);
441 return virt_to_phys((__u8 *) trampoline_base);
442 }
443
444 /* Routine initially called when a non-boot CPU is brought online */
445 static void __init start_secondary(void *unused)
446 {
447 __u8 cpuid = hard_smp_processor_id();
448 /* external functions not defined in the headers */
449 extern void calibrate_delay(void);
450
451 cpu_init();
452
453 /* OK, we're in the routine */
454 ack_CPI(VIC_CPU_BOOT_CPI);
455
456 /* setup the 8259 master slave pair belonging to this CPU ---
457 * we won't actually receive any until the boot CPU
458 * relinquishes it's static routing mask */
459 vic_setup_pic();
460
461 qic_setup();
462
463 if (is_cpu_quad() && !is_cpu_vic_boot()) {
464 /* clear the boot CPI */
465 __u8 dummy;
466
467 dummy =
468 voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
469 printk("read dummy %d\n", dummy);
470 }
471
472 /* lower the mask to receive CPIs */
473 vic_enable_cpi();
474
475 VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
476
477 /* enable interrupts */
478 local_irq_enable();
479
480 /* get our bogomips */
481 calibrate_delay();
482
483 /* save our processor parameters */
484 smp_store_cpu_info(cpuid);
485
486 /* if we're a quad, we may need to bootstrap other CPUs */
487 do_quad_bootstrap();
488
489 /* FIXME: this is rather a poor hack to prevent the CPU
490 * activating softirqs while it's supposed to be waiting for
491 * permission to proceed. Without this, the new per CPU stuff
492 * in the softirqs will fail */
493 local_irq_disable();
494 cpu_set(cpuid, cpu_callin_map);
495
496 /* signal that we're done */
497 cpu_booted_map = 1;
498
499 while (!cpu_isset(cpuid, smp_commenced_mask))
500 rep_nop();
501 local_irq_enable();
502
503 local_flush_tlb();
504
505 cpu_set(cpuid, cpu_online_map);
506 wmb();
507 cpu_idle();
508 }
509
510 /* Routine to kick start the given CPU and wait for it to report ready
511 * (or timeout in startup). When this routine returns, the requested
512 * CPU is either fully running and configured or known to be dead.
513 *
514 * We call this routine sequentially 1 CPU at a time, so no need for
515 * locking */
516
517 static void __init do_boot_cpu(__u8 cpu)
518 {
519 struct task_struct *idle;
520 int timeout;
521 unsigned long flags;
522 int quad_boot = (1 << cpu) & voyager_quad_processors
523 & ~(voyager_extended_vic_processors
524 & voyager_allowed_boot_processors);
525
526 /* This is an area in head.S which was used to set up the
527 * initial kernel stack. We need to alter this to give the
528 * booting CPU a new stack (taken from its idle process) */
529 extern struct {
530 __u8 *esp;
531 unsigned short ss;
532 } stack_start;
533 /* This is the format of the CPI IDT gate (in real mode) which
534 * we're hijacking to boot the CPU */
535 union IDTFormat {
536 struct seg {
537 __u16 Offset;
538 __u16 Segment;
539 } idt;
540 __u32 val;
541 } hijack_source;
542
543 __u32 *hijack_vector;
544 __u32 start_phys_address = setup_trampoline();
545
546 /* There's a clever trick to this: The linux trampoline is
547 * compiled to begin at absolute location zero, so make the
548 * address zero but have the data segment selector compensate
549 * for the actual address */
550 hijack_source.idt.Offset = start_phys_address & 0x000F;
551 hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
552
553 cpucount++;
554 alternatives_smp_switch(1);
555
556 idle = fork_idle(cpu);
557 if (IS_ERR(idle))
558 panic("failed fork for CPU%d", cpu);
559 idle->thread.eip = (unsigned long)start_secondary;
560 /* init_tasks (in sched.c) is indexed logically */
561 stack_start.esp = (void *)idle->thread.esp;
562
563 init_gdt(cpu);
564 per_cpu(current_task, cpu) = idle;
565 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
566 irq_ctx_init(cpu);
567
568 /* Note: Don't modify initial ss override */
569 VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu,
570 (unsigned long)hijack_source.val, hijack_source.idt.Segment,
571 hijack_source.idt.Offset, stack_start.esp));
572
573 /* init lowmem identity mapping */
574 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
575 min_t(unsigned long, KERNEL_PGD_PTRS, USER_PGD_PTRS));
576 flush_tlb_all();
577
578 if (quad_boot) {
579 printk("CPU %d: non extended Quad boot\n", cpu);
580 hijack_vector =
581 (__u32 *)
582 phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE) * 4);
583 *hijack_vector = hijack_source.val;
584 } else {
585 printk("CPU%d: extended VIC boot\n", cpu);
586 hijack_vector =
587 (__u32 *)
588 phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE) * 4);
589 *hijack_vector = hijack_source.val;
590 /* VIC errata, may also receive interrupt at this address */
591 hijack_vector =
592 (__u32 *)
593 phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI +
594 VIC_DEFAULT_CPI_BASE) * 4);
595 *hijack_vector = hijack_source.val;
596 }
597 /* All non-boot CPUs start with interrupts fully masked. Need
598 * to lower the mask of the CPI we're about to send. We do
599 * this in the VIC by masquerading as the processor we're
600 * about to boot and lowering its interrupt mask */
601 local_irq_save(flags);
602 if (quad_boot) {
603 send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
604 } else {
605 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
606 /* here we're altering registers belonging to `cpu' */
607
608 outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
609 /* now go back to our original identity */
610 outb(boot_cpu_id, VIC_PROCESSOR_ID);
611
612 /* and boot the CPU */
613
614 send_CPI((1 << cpu), VIC_CPU_BOOT_CPI);
615 }
616 cpu_booted_map = 0;
617 local_irq_restore(flags);
618
619 /* now wait for it to become ready (or timeout) */
620 for (timeout = 0; timeout < 50000; timeout++) {
621 if (cpu_booted_map)
622 break;
623 udelay(100);
624 }
625 /* reset the page table */
626 zap_low_mappings();
627
628 if (cpu_booted_map) {
629 VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
630 cpu, smp_processor_id()));
631
632 printk("CPU%d: ", cpu);
633 print_cpu_info(&cpu_data(cpu));
634 wmb();
635 cpu_set(cpu, cpu_callout_map);
636 cpu_set(cpu, cpu_present_map);
637 } else {
638 printk("CPU%d FAILED TO BOOT: ", cpu);
639 if (*
640 ((volatile unsigned char *)phys_to_virt(start_phys_address))
641 == 0xA5)
642 printk("Stuck.\n");
643 else
644 printk("Not responding.\n");
645
646 cpucount--;
647 }
648 }
649
650 void __init smp_boot_cpus(void)
651 {
652 int i;
653
654 /* CAT BUS initialisation must be done after the memory */
655 /* FIXME: The L4 has a catbus too, it just needs to be
656 * accessed in a totally different way */
657 if (voyager_level == 5) {
658 voyager_cat_init();
659
660 /* now that the cat has probed the Voyager System Bus, sanity
661 * check the cpu map */
662 if (((voyager_quad_processors | voyager_extended_vic_processors)
663 & cpus_addr(phys_cpu_present_map)[0]) !=
664 cpus_addr(phys_cpu_present_map)[0]) {
665 /* should panic */
666 printk("\n\n***WARNING*** "
667 "Sanity check of CPU present map FAILED\n");
668 }
669 } else if (voyager_level == 4)
670 voyager_extended_vic_processors =
671 cpus_addr(phys_cpu_present_map)[0];
672
673 /* this sets up the idle task to run on the current cpu */
674 voyager_extended_cpus = 1;
675 /* Remove the global_irq_holder setting, it triggers a BUG() on
676 * schedule at the moment */
677 //global_irq_holder = boot_cpu_id;
678
679 /* FIXME: Need to do something about this but currently only works
680 * on CPUs with a tsc which none of mine have.
681 smp_tune_scheduling();
682 */
683 smp_store_cpu_info(boot_cpu_id);
684 printk("CPU%d: ", boot_cpu_id);
685 print_cpu_info(&cpu_data(boot_cpu_id));
686
687 if (is_cpu_quad()) {
688 /* booting on a Quad CPU */
689 printk("VOYAGER SMP: Boot CPU is Quad\n");
690 qic_setup();
691 do_quad_bootstrap();
692 }
693
694 /* enable our own CPIs */
695 vic_enable_cpi();
696
697 cpu_set(boot_cpu_id, cpu_online_map);
698 cpu_set(boot_cpu_id, cpu_callout_map);
699
700 /* loop over all the extended VIC CPUs and boot them. The
701 * Quad CPUs must be bootstrapped by their extended VIC cpu */
702 for (i = 0; i < NR_CPUS; i++) {
703 if (i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map))
704 continue;
705 do_boot_cpu(i);
706 /* This udelay seems to be needed for the Quad boots
707 * don't remove unless you know what you're doing */
708 udelay(1000);
709 }
710 /* we could compute the total bogomips here, but why bother?,
711 * Code added from smpboot.c */
712 {
713 unsigned long bogosum = 0;
714 for (i = 0; i < NR_CPUS; i++)
715 if (cpu_isset(i, cpu_online_map))
716 bogosum += cpu_data(i).loops_per_jiffy;
717 printk(KERN_INFO "Total of %d processors activated "
718 "(%lu.%02lu BogoMIPS).\n",
719 cpucount + 1, bogosum / (500000 / HZ),
720 (bogosum / (5000 / HZ)) % 100);
721 }
722 voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
723 printk("VOYAGER: Extended (interrupt handling CPUs): "
724 "%d, non-extended: %d\n", voyager_extended_cpus,
725 num_booting_cpus() - voyager_extended_cpus);
726 /* that's it, switch to symmetric mode */
727 outb(0, VIC_PRIORITY_REGISTER);
728 outb(0, VIC_CLAIM_REGISTER_0);
729 outb(0, VIC_CLAIM_REGISTER_1);
730
731 VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
732 }
733
734 /* Reload the secondary CPUs task structure (this function does not
735 * return ) */
736 void __init initialize_secondary(void)
737 {
738 #if 0
739 // AC kernels only
740 set_current(hard_get_current());
741 #endif
742
743 /*
744 * We don't actually need to load the full TSS,
745 * basically just the stack pointer and the eip.
746 */
747
748 asm volatile ("movl %0,%%esp\n\t"
749 "jmp *%1"::"r" (current->thread.esp),
750 "r"(current->thread.eip));
751 }
752
753 /* handle a Voyager SYS_INT -- If we don't, the base board will
754 * panic the system.
755 *
756 * System interrupts occur because some problem was detected on the
757 * various busses. To find out what you have to probe all the
758 * hardware via the CAT bus. FIXME: At the moment we do nothing. */
759 fastcall void smp_vic_sys_interrupt(struct pt_regs *regs)
760 {
761 ack_CPI(VIC_SYS_INT);
762 printk("Voyager SYSTEM INTERRUPT\n");
763 }
764
765 /* Handle a voyager CMN_INT; These interrupts occur either because of
766 * a system status change or because a single bit memory error
767 * occurred. FIXME: At the moment, ignore all this. */
768 fastcall void smp_vic_cmn_interrupt(struct pt_regs *regs)
769 {
770 static __u8 in_cmn_int = 0;
771 static DEFINE_SPINLOCK(cmn_int_lock);
772
773 /* common ints are broadcast, so make sure we only do this once */
774 _raw_spin_lock(&cmn_int_lock);
775 if (in_cmn_int)
776 goto unlock_end;
777
778 in_cmn_int++;
779 _raw_spin_unlock(&cmn_int_lock);
780
781 VDEBUG(("Voyager COMMON INTERRUPT\n"));
782
783 if (voyager_level == 5)
784 voyager_cat_do_common_interrupt();
785
786 _raw_spin_lock(&cmn_int_lock);
787 in_cmn_int = 0;
788 unlock_end:
789 _raw_spin_unlock(&cmn_int_lock);
790 ack_CPI(VIC_CMN_INT);
791 }
792
793 /*
794 * Reschedule call back. Nothing to do, all the work is done
795 * automatically when we return from the interrupt. */
796 static void smp_reschedule_interrupt(void)
797 {
798 /* do nothing */
799 }
800
801 static struct mm_struct *flush_mm;
802 static unsigned long flush_va;
803 static DEFINE_SPINLOCK(tlbstate_lock);
804 #define FLUSH_ALL 0xffffffff
805
806 /*
807 * We cannot call mmdrop() because we are in interrupt context,
808 * instead update mm->cpu_vm_mask.
809 *
810 * We need to reload %cr3 since the page tables may be going
811 * away from under us..
812 */
813 static inline void leave_mm(unsigned long cpu)
814 {
815 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
816 BUG();
817 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
818 load_cr3(swapper_pg_dir);
819 }
820
821 /*
822 * Invalidate call-back
823 */
824 static void smp_invalidate_interrupt(void)
825 {
826 __u8 cpu = smp_processor_id();
827
828 if (!test_bit(cpu, &smp_invalidate_needed))
829 return;
830 /* This will flood messages. Don't uncomment unless you see
831 * Problems with cross cpu invalidation
832 VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
833 smp_processor_id()));
834 */
835
836 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
837 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
838 if (flush_va == FLUSH_ALL)
839 local_flush_tlb();
840 else
841 __flush_tlb_one(flush_va);
842 } else
843 leave_mm(cpu);
844 }
845 smp_mb__before_clear_bit();
846 clear_bit(cpu, &smp_invalidate_needed);
847 smp_mb__after_clear_bit();
848 }
849
850 /* All the new flush operations for 2.4 */
851
852 /* This routine is called with a physical cpu mask */
853 static void
854 voyager_flush_tlb_others(unsigned long cpumask, struct mm_struct *mm,
855 unsigned long va)
856 {
857 int stuck = 50000;
858
859 if (!cpumask)
860 BUG();
861 if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
862 BUG();
863 if (cpumask & (1 << smp_processor_id()))
864 BUG();
865 if (!mm)
866 BUG();
867
868 spin_lock(&tlbstate_lock);
869
870 flush_mm = mm;
871 flush_va = va;
872 atomic_set_mask(cpumask, &smp_invalidate_needed);
873 /*
874 * We have to send the CPI only to
875 * CPUs affected.
876 */
877 send_CPI(cpumask, VIC_INVALIDATE_CPI);
878
879 while (smp_invalidate_needed) {
880 mb();
881 if (--stuck == 0) {
882 printk("***WARNING*** Stuck doing invalidate CPI "
883 "(CPU%d)\n", smp_processor_id());
884 break;
885 }
886 }
887
888 /* Uncomment only to debug invalidation problems
889 VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
890 */
891
892 flush_mm = NULL;
893 flush_va = 0;
894 spin_unlock(&tlbstate_lock);
895 }
896
897 void flush_tlb_current_task(void)
898 {
899 struct mm_struct *mm = current->mm;
900 unsigned long cpu_mask;
901
902 preempt_disable();
903
904 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
905 local_flush_tlb();
906 if (cpu_mask)
907 voyager_flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
908
909 preempt_enable();
910 }
911
912 void flush_tlb_mm(struct mm_struct *mm)
913 {
914 unsigned long cpu_mask;
915
916 preempt_disable();
917
918 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
919
920 if (current->active_mm == mm) {
921 if (current->mm)
922 local_flush_tlb();
923 else
924 leave_mm(smp_processor_id());
925 }
926 if (cpu_mask)
927 voyager_flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
928
929 preempt_enable();
930 }
931
932 void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
933 {
934 struct mm_struct *mm = vma->vm_mm;
935 unsigned long cpu_mask;
936
937 preempt_disable();
938
939 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
940 if (current->active_mm == mm) {
941 if (current->mm)
942 __flush_tlb_one(va);
943 else
944 leave_mm(smp_processor_id());
945 }
946
947 if (cpu_mask)
948 voyager_flush_tlb_others(cpu_mask, mm, va);
949
950 preempt_enable();
951 }
952
953 EXPORT_SYMBOL(flush_tlb_page);
954
955 /* enable the requested IRQs */
956 static void smp_enable_irq_interrupt(void)
957 {
958 __u8 irq;
959 __u8 cpu = get_cpu();
960
961 VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
962 vic_irq_enable_mask[cpu]));
963
964 spin_lock(&vic_irq_lock);
965 for (irq = 0; irq < 16; irq++) {
966 if (vic_irq_enable_mask[cpu] & (1 << irq))
967 enable_local_vic_irq(irq);
968 }
969 vic_irq_enable_mask[cpu] = 0;
970 spin_unlock(&vic_irq_lock);
971
972 put_cpu_no_resched();
973 }
974
975 /*
976 * CPU halt call-back
977 */
978 static void smp_stop_cpu_function(void *dummy)
979 {
980 VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
981 cpu_clear(smp_processor_id(), cpu_online_map);
982 local_irq_disable();
983 for (;;)
984 halt();
985 }
986
987 static DEFINE_SPINLOCK(call_lock);
988
989 struct call_data_struct {
990 void (*func) (void *info);
991 void *info;
992 volatile unsigned long started;
993 volatile unsigned long finished;
994 int wait;
995 };
996
997 static struct call_data_struct *call_data;
998
999 /* execute a thread on a new CPU. The function to be called must be
1000 * previously set up. This is used to schedule a function for
1001 * execution on all CPUs - set up the function then broadcast a
1002 * function_interrupt CPI to come here on each CPU */
1003 static void smp_call_function_interrupt(void)
1004 {
1005 void (*func) (void *info) = call_data->func;
1006 void *info = call_data->info;
1007 /* must take copy of wait because call_data may be replaced
1008 * unless the function is waiting for us to finish */
1009 int wait = call_data->wait;
1010 __u8 cpu = smp_processor_id();
1011
1012 /*
1013 * Notify initiating CPU that I've grabbed the data and am
1014 * about to execute the function
1015 */
1016 mb();
1017 if (!test_and_clear_bit(cpu, &call_data->started)) {
1018 /* If the bit wasn't set, this could be a replay */
1019 printk(KERN_WARNING "VOYAGER SMP: CPU %d received call funtion"
1020 " with no call pending\n", cpu);
1021 return;
1022 }
1023 /*
1024 * At this point the info structure may be out of scope unless wait==1
1025 */
1026 irq_enter();
1027 (*func) (info);
1028 __get_cpu_var(irq_stat).irq_call_count++;
1029 irq_exit();
1030 if (wait) {
1031 mb();
1032 clear_bit(cpu, &call_data->finished);
1033 }
1034 }
1035
1036 static int
1037 voyager_smp_call_function_mask(cpumask_t cpumask,
1038 void (*func) (void *info), void *info, int wait)
1039 {
1040 struct call_data_struct data;
1041 u32 mask = cpus_addr(cpumask)[0];
1042
1043 mask &= ~(1 << smp_processor_id());
1044
1045 if (!mask)
1046 return 0;
1047
1048 /* Can deadlock when called with interrupts disabled */
1049 WARN_ON(irqs_disabled());
1050
1051 data.func = func;
1052 data.info = info;
1053 data.started = mask;
1054 data.wait = wait;
1055 if (wait)
1056 data.finished = mask;
1057
1058 spin_lock(&call_lock);
1059 call_data = &data;
1060 wmb();
1061 /* Send a message to all other CPUs and wait for them to respond */
1062 send_CPI(mask, VIC_CALL_FUNCTION_CPI);
1063
1064 /* Wait for response */
1065 while (data.started)
1066 barrier();
1067
1068 if (wait)
1069 while (data.finished)
1070 barrier();
1071
1072 spin_unlock(&call_lock);
1073
1074 return 0;
1075 }
1076
1077 /* Sorry about the name. In an APIC based system, the APICs
1078 * themselves are programmed to send a timer interrupt. This is used
1079 * by linux to reschedule the processor. Voyager doesn't have this,
1080 * so we use the system clock to interrupt one processor, which in
1081 * turn, broadcasts a timer CPI to all the others --- we receive that
1082 * CPI here. We don't use this actually for counting so losing
1083 * ticks doesn't matter
1084 *
1085 * FIXME: For those CPUs which actually have a local APIC, we could
1086 * try to use it to trigger this interrupt instead of having to
1087 * broadcast the timer tick. Unfortunately, all my pentium DYADs have
1088 * no local APIC, so I can't do this
1089 *
1090 * This function is currently a placeholder and is unused in the code */
1091 fastcall void smp_apic_timer_interrupt(struct pt_regs *regs)
1092 {
1093 struct pt_regs *old_regs = set_irq_regs(regs);
1094 wrapper_smp_local_timer_interrupt();
1095 set_irq_regs(old_regs);
1096 }
1097
1098 /* All of the QUAD interrupt GATES */
1099 fastcall void smp_qic_timer_interrupt(struct pt_regs *regs)
1100 {
1101 struct pt_regs *old_regs = set_irq_regs(regs);
1102 ack_QIC_CPI(QIC_TIMER_CPI);
1103 wrapper_smp_local_timer_interrupt();
1104 set_irq_regs(old_regs);
1105 }
1106
1107 fastcall void smp_qic_invalidate_interrupt(struct pt_regs *regs)
1108 {
1109 ack_QIC_CPI(QIC_INVALIDATE_CPI);
1110 smp_invalidate_interrupt();
1111 }
1112
1113 fastcall void smp_qic_reschedule_interrupt(struct pt_regs *regs)
1114 {
1115 ack_QIC_CPI(QIC_RESCHEDULE_CPI);
1116 smp_reschedule_interrupt();
1117 }
1118
1119 fastcall void smp_qic_enable_irq_interrupt(struct pt_regs *regs)
1120 {
1121 ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
1122 smp_enable_irq_interrupt();
1123 }
1124
1125 fastcall void smp_qic_call_function_interrupt(struct pt_regs *regs)
1126 {
1127 ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
1128 smp_call_function_interrupt();
1129 }
1130
1131 fastcall void smp_vic_cpi_interrupt(struct pt_regs *regs)
1132 {
1133 struct pt_regs *old_regs = set_irq_regs(regs);
1134 __u8 cpu = smp_processor_id();
1135
1136 if (is_cpu_quad())
1137 ack_QIC_CPI(VIC_CPI_LEVEL0);
1138 else
1139 ack_VIC_CPI(VIC_CPI_LEVEL0);
1140
1141 if (test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
1142 wrapper_smp_local_timer_interrupt();
1143 if (test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
1144 smp_invalidate_interrupt();
1145 if (test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
1146 smp_reschedule_interrupt();
1147 if (test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
1148 smp_enable_irq_interrupt();
1149 if (test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
1150 smp_call_function_interrupt();
1151 set_irq_regs(old_regs);
1152 }
1153
1154 static void do_flush_tlb_all(void *info)
1155 {
1156 unsigned long cpu = smp_processor_id();
1157
1158 __flush_tlb_all();
1159 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
1160 leave_mm(cpu);
1161 }
1162
1163 /* flush the TLB of every active CPU in the system */
1164 void flush_tlb_all(void)
1165 {
1166 on_each_cpu(do_flush_tlb_all, 0, 1, 1);
1167 }
1168
1169 /* used to set up the trampoline for other CPUs when the memory manager
1170 * is sorted out */
1171 void __init smp_alloc_memory(void)
1172 {
1173 trampoline_base = (__u32) alloc_bootmem_low_pages(PAGE_SIZE);
1174 if (__pa(trampoline_base) >= 0x93000)
1175 BUG();
1176 }
1177
1178 /* send a reschedule CPI to one CPU by physical CPU number*/
1179 static void voyager_smp_send_reschedule(int cpu)
1180 {
1181 send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
1182 }
1183
1184 int hard_smp_processor_id(void)
1185 {
1186 __u8 i;
1187 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
1188 if ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
1189 return cpumask & 0x1F;
1190
1191 for (i = 0; i < 8; i++) {
1192 if (cpumask & (1 << i))
1193 return i;
1194 }
1195 printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
1196 return 0;
1197 }
1198
1199 int safe_smp_processor_id(void)
1200 {
1201 return hard_smp_processor_id();
1202 }
1203
1204 /* broadcast a halt to all other CPUs */
1205 static void voyager_smp_send_stop(void)
1206 {
1207 smp_call_function(smp_stop_cpu_function, NULL, 1, 1);
1208 }
1209
1210 /* this function is triggered in time.c when a clock tick fires
1211 * we need to re-broadcast the tick to all CPUs */
1212 void smp_vic_timer_interrupt(void)
1213 {
1214 send_CPI_allbutself(VIC_TIMER_CPI);
1215 smp_local_timer_interrupt();
1216 }
1217
1218 /* local (per CPU) timer interrupt. It does both profiling and
1219 * process statistics/rescheduling.
1220 *
1221 * We do profiling in every local tick, statistics/rescheduling
1222 * happen only every 'profiling multiplier' ticks. The default
1223 * multiplier is 1 and it can be changed by writing the new multiplier
1224 * value into /proc/profile.
1225 */
1226 void smp_local_timer_interrupt(void)
1227 {
1228 int cpu = smp_processor_id();
1229 long weight;
1230
1231 profile_tick(CPU_PROFILING);
1232 if (--per_cpu(prof_counter, cpu) <= 0) {
1233 /*
1234 * The multiplier may have changed since the last time we got
1235 * to this point as a result of the user writing to
1236 * /proc/profile. In this case we need to adjust the APIC
1237 * timer accordingly.
1238 *
1239 * Interrupts are already masked off at this point.
1240 */
1241 per_cpu(prof_counter, cpu) = per_cpu(prof_multiplier, cpu);
1242 if (per_cpu(prof_counter, cpu) !=
1243 per_cpu(prof_old_multiplier, cpu)) {
1244 /* FIXME: need to update the vic timer tick here */
1245 per_cpu(prof_old_multiplier, cpu) =
1246 per_cpu(prof_counter, cpu);
1247 }
1248
1249 update_process_times(user_mode_vm(get_irq_regs()));
1250 }
1251
1252 if (((1 << cpu) & voyager_extended_vic_processors) == 0)
1253 /* only extended VIC processors participate in
1254 * interrupt distribution */
1255 return;
1256
1257 /*
1258 * We take the 'long' return path, and there every subsystem
1259 * grabs the appropriate locks (kernel lock/ irq lock).
1260 *
1261 * we might want to decouple profiling from the 'long path',
1262 * and do the profiling totally in assembly.
1263 *
1264 * Currently this isn't too much of an issue (performance wise),
1265 * we can take more than 100K local irqs per second on a 100 MHz P5.
1266 */
1267
1268 if ((++vic_tick[cpu] & 0x7) != 0)
1269 return;
1270 /* get here every 16 ticks (about every 1/6 of a second) */
1271
1272 /* Change our priority to give someone else a chance at getting
1273 * the IRQ. The algorithm goes like this:
1274 *
1275 * In the VIC, the dynamically routed interrupt is always
1276 * handled by the lowest priority eligible (i.e. receiving
1277 * interrupts) CPU. If >1 eligible CPUs are equal lowest, the
1278 * lowest processor number gets it.
1279 *
1280 * The priority of a CPU is controlled by a special per-CPU
1281 * VIC priority register which is 3 bits wide 0 being lowest
1282 * and 7 highest priority..
1283 *
1284 * Therefore we subtract the average number of interrupts from
1285 * the number we've fielded. If this number is negative, we
1286 * lower the activity count and if it is positive, we raise
1287 * it.
1288 *
1289 * I'm afraid this still leads to odd looking interrupt counts:
1290 * the totals are all roughly equal, but the individual ones
1291 * look rather skewed.
1292 *
1293 * FIXME: This algorithm is total crap when mixed with SMP
1294 * affinity code since we now try to even up the interrupt
1295 * counts when an affinity binding is keeping them on a
1296 * particular CPU*/
1297 weight = (vic_intr_count[cpu] * voyager_extended_cpus
1298 - vic_intr_total) >> 4;
1299 weight += 4;
1300 if (weight > 7)
1301 weight = 7;
1302 if (weight < 0)
1303 weight = 0;
1304
1305 outb((__u8) weight, VIC_PRIORITY_REGISTER);
1306
1307 #ifdef VOYAGER_DEBUG
1308 if ((vic_tick[cpu] & 0xFFF) == 0) {
1309 /* print this message roughly every 25 secs */
1310 printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
1311 cpu, vic_tick[cpu], weight);
1312 }
1313 #endif
1314 }
1315
1316 /* setup the profiling timer */
1317 int setup_profiling_timer(unsigned int multiplier)
1318 {
1319 int i;
1320
1321 if ((!multiplier))
1322 return -EINVAL;
1323
1324 /*
1325 * Set the new multiplier for each CPU. CPUs don't start using the
1326 * new values until the next timer interrupt in which they do process
1327 * accounting.
1328 */
1329 for (i = 0; i < NR_CPUS; ++i)
1330 per_cpu(prof_multiplier, i) = multiplier;
1331
1332 return 0;
1333 }
1334
1335 /* This is a bit of a mess, but forced on us by the genirq changes
1336 * there's no genirq handler that really does what voyager wants
1337 * so hack it up with the simple IRQ handler */
1338 static void fastcall handle_vic_irq(unsigned int irq, struct irq_desc *desc)
1339 {
1340 before_handle_vic_irq(irq);
1341 handle_simple_irq(irq, desc);
1342 after_handle_vic_irq(irq);
1343 }
1344
1345 /* The CPIs are handled in the per cpu 8259s, so they must be
1346 * enabled to be received: FIX: enabling the CPIs in the early
1347 * boot sequence interferes with bug checking; enable them later
1348 * on in smp_init */
1349 #define VIC_SET_GATE(cpi, vector) \
1350 set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
1351 #define QIC_SET_GATE(cpi, vector) \
1352 set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
1353
1354 void __init smp_intr_init(void)
1355 {
1356 int i;
1357
1358 /* initialize the per cpu irq mask to all disabled */
1359 for (i = 0; i < NR_CPUS; i++)
1360 vic_irq_mask[i] = 0xFFFF;
1361
1362 VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
1363
1364 VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
1365 VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
1366
1367 QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
1368 QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
1369 QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
1370 QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
1371 QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
1372
1373 /* now put the VIC descriptor into the first 48 IRQs
1374 *
1375 * This is for later: first 16 correspond to PC IRQs; next 16
1376 * are Primary MC IRQs and final 16 are Secondary MC IRQs */
1377 for (i = 0; i < 48; i++)
1378 set_irq_chip_and_handler(i, &vic_chip, handle_vic_irq);
1379 }
1380
1381 /* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
1382 * processor to receive CPI */
1383 static void send_CPI(__u32 cpuset, __u8 cpi)
1384 {
1385 int cpu;
1386 __u32 quad_cpuset = (cpuset & voyager_quad_processors);
1387
1388 if (cpi < VIC_START_FAKE_CPI) {
1389 /* fake CPI are only used for booting, so send to the
1390 * extended quads as well---Quads must be VIC booted */
1391 outb((__u8) (cpuset), VIC_CPI_Registers[cpi]);
1392 return;
1393 }
1394 if (quad_cpuset)
1395 send_QIC_CPI(quad_cpuset, cpi);
1396 cpuset &= ~quad_cpuset;
1397 cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */
1398 if (cpuset == 0)
1399 return;
1400 for_each_online_cpu(cpu) {
1401 if (cpuset & (1 << cpu))
1402 set_bit(cpi, &vic_cpi_mailbox[cpu]);
1403 }
1404 if (cpuset)
1405 outb((__u8) cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
1406 }
1407
1408 /* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
1409 * set the cache line to shared by reading it.
1410 *
1411 * DON'T make this inline otherwise the cache line read will be
1412 * optimised away
1413 * */
1414 static int ack_QIC_CPI(__u8 cpi)
1415 {
1416 __u8 cpu = hard_smp_processor_id();
1417
1418 cpi &= 7;
1419
1420 outb(1 << cpi, QIC_INTERRUPT_CLEAR1);
1421 return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
1422 }
1423
1424 static void ack_special_QIC_CPI(__u8 cpi)
1425 {
1426 switch (cpi) {
1427 case VIC_CMN_INT:
1428 outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
1429 break;
1430 case VIC_SYS_INT:
1431 outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
1432 break;
1433 }
1434 /* also clear at the VIC, just in case (nop for non-extended proc) */
1435 ack_VIC_CPI(cpi);
1436 }
1437
1438 /* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
1439 static void ack_VIC_CPI(__u8 cpi)
1440 {
1441 #ifdef VOYAGER_DEBUG
1442 unsigned long flags;
1443 __u16 isr;
1444 __u8 cpu = smp_processor_id();
1445
1446 local_irq_save(flags);
1447 isr = vic_read_isr();
1448 if ((isr & (1 << (cpi & 7))) == 0) {
1449 printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
1450 }
1451 #endif
1452 /* send specific EOI; the two system interrupts have
1453 * bit 4 set for a separate vector but behave as the
1454 * corresponding 3 bit intr */
1455 outb_p(0x60 | (cpi & 7), 0x20);
1456
1457 #ifdef VOYAGER_DEBUG
1458 if ((vic_read_isr() & (1 << (cpi & 7))) != 0) {
1459 printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
1460 }
1461 local_irq_restore(flags);
1462 #endif
1463 }
1464
1465 /* cribbed with thanks from irq.c */
1466 #define __byte(x,y) (((unsigned char *)&(y))[x])
1467 #define cached_21(cpu) (__byte(0,vic_irq_mask[cpu]))
1468 #define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu]))
1469
1470 static unsigned int startup_vic_irq(unsigned int irq)
1471 {
1472 unmask_vic_irq(irq);
1473
1474 return 0;
1475 }
1476
1477 /* The enable and disable routines. This is where we run into
1478 * conflicting architectural philosophy. Fundamentally, the voyager
1479 * architecture does not expect to have to disable interrupts globally
1480 * (the IRQ controllers belong to each CPU). The processor masquerade
1481 * which is used to start the system shouldn't be used in a running OS
1482 * since it will cause great confusion if two separate CPUs drive to
1483 * the same IRQ controller (I know, I've tried it).
1484 *
1485 * The solution is a variant on the NCR lazy SPL design:
1486 *
1487 * 1) To disable an interrupt, do nothing (other than set the
1488 * IRQ_DISABLED flag). This dares the interrupt actually to arrive.
1489 *
1490 * 2) If the interrupt dares to come in, raise the local mask against
1491 * it (this will result in all the CPU masks being raised
1492 * eventually).
1493 *
1494 * 3) To enable the interrupt, lower the mask on the local CPU and
1495 * broadcast an Interrupt enable CPI which causes all other CPUs to
1496 * adjust their masks accordingly. */
1497
1498 static void unmask_vic_irq(unsigned int irq)
1499 {
1500 /* linux doesn't to processor-irq affinity, so enable on
1501 * all CPUs we know about */
1502 int cpu = smp_processor_id(), real_cpu;
1503 __u16 mask = (1 << irq);
1504 __u32 processorList = 0;
1505 unsigned long flags;
1506
1507 VDEBUG(("VOYAGER: unmask_vic_irq(%d) CPU%d affinity 0x%lx\n",
1508 irq, cpu, cpu_irq_affinity[cpu]));
1509 spin_lock_irqsave(&vic_irq_lock, flags);
1510 for_each_online_cpu(real_cpu) {
1511 if (!(voyager_extended_vic_processors & (1 << real_cpu)))
1512 continue;
1513 if (!(cpu_irq_affinity[real_cpu] & mask)) {
1514 /* irq has no affinity for this CPU, ignore */
1515 continue;
1516 }
1517 if (real_cpu == cpu) {
1518 enable_local_vic_irq(irq);
1519 } else if (vic_irq_mask[real_cpu] & mask) {
1520 vic_irq_enable_mask[real_cpu] |= mask;
1521 processorList |= (1 << real_cpu);
1522 }
1523 }
1524 spin_unlock_irqrestore(&vic_irq_lock, flags);
1525 if (processorList)
1526 send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
1527 }
1528
1529 static void mask_vic_irq(unsigned int irq)
1530 {
1531 /* lazy disable, do nothing */
1532 }
1533
1534 static void enable_local_vic_irq(unsigned int irq)
1535 {
1536 __u8 cpu = smp_processor_id();
1537 __u16 mask = ~(1 << irq);
1538 __u16 old_mask = vic_irq_mask[cpu];
1539
1540 vic_irq_mask[cpu] &= mask;
1541 if (vic_irq_mask[cpu] == old_mask)
1542 return;
1543
1544 VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
1545 irq, cpu));
1546
1547 if (irq & 8) {
1548 outb_p(cached_A1(cpu), 0xA1);
1549 (void)inb_p(0xA1);
1550 } else {
1551 outb_p(cached_21(cpu), 0x21);
1552 (void)inb_p(0x21);
1553 }
1554 }
1555
1556 static void disable_local_vic_irq(unsigned int irq)
1557 {
1558 __u8 cpu = smp_processor_id();
1559 __u16 mask = (1 << irq);
1560 __u16 old_mask = vic_irq_mask[cpu];
1561
1562 if (irq == 7)
1563 return;
1564
1565 vic_irq_mask[cpu] |= mask;
1566 if (old_mask == vic_irq_mask[cpu])
1567 return;
1568
1569 VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
1570 irq, cpu));
1571
1572 if (irq & 8) {
1573 outb_p(cached_A1(cpu), 0xA1);
1574 (void)inb_p(0xA1);
1575 } else {
1576 outb_p(cached_21(cpu), 0x21);
1577 (void)inb_p(0x21);
1578 }
1579 }
1580
1581 /* The VIC is level triggered, so the ack can only be issued after the
1582 * interrupt completes. However, we do Voyager lazy interrupt
1583 * handling here: It is an extremely expensive operation to mask an
1584 * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If
1585 * this interrupt actually comes in, then we mask and ack here to push
1586 * the interrupt off to another CPU */
1587 static void before_handle_vic_irq(unsigned int irq)
1588 {
1589 irq_desc_t *desc = irq_desc + irq;
1590 __u8 cpu = smp_processor_id();
1591
1592 _raw_spin_lock(&vic_irq_lock);
1593 vic_intr_total++;
1594 vic_intr_count[cpu]++;
1595
1596 if (!(cpu_irq_affinity[cpu] & (1 << irq))) {
1597 /* The irq is not in our affinity mask, push it off
1598 * onto another CPU */
1599 VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d "
1600 "on cpu %d\n", irq, cpu));
1601 disable_local_vic_irq(irq);
1602 /* set IRQ_INPROGRESS to prevent the handler in irq.c from
1603 * actually calling the interrupt routine */
1604 desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
1605 } else if (desc->status & IRQ_DISABLED) {
1606 /* Damn, the interrupt actually arrived, do the lazy
1607 * disable thing. The interrupt routine in irq.c will
1608 * not handle a IRQ_DISABLED interrupt, so nothing more
1609 * need be done here */
1610 VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
1611 irq, cpu));
1612 disable_local_vic_irq(irq);
1613 desc->status |= IRQ_REPLAY;
1614 } else {
1615 desc->status &= ~IRQ_REPLAY;
1616 }
1617
1618 _raw_spin_unlock(&vic_irq_lock);
1619 }
1620
1621 /* Finish the VIC interrupt: basically mask */
1622 static void after_handle_vic_irq(unsigned int irq)
1623 {
1624 irq_desc_t *desc = irq_desc + irq;
1625
1626 _raw_spin_lock(&vic_irq_lock);
1627 {
1628 unsigned int status = desc->status & ~IRQ_INPROGRESS;
1629 #ifdef VOYAGER_DEBUG
1630 __u16 isr;
1631 #endif
1632
1633 desc->status = status;
1634 if ((status & IRQ_DISABLED))
1635 disable_local_vic_irq(irq);
1636 #ifdef VOYAGER_DEBUG
1637 /* DEBUG: before we ack, check what's in progress */
1638 isr = vic_read_isr();
1639 if ((isr & (1 << irq) && !(status & IRQ_REPLAY)) == 0) {
1640 int i;
1641 __u8 cpu = smp_processor_id();
1642 __u8 real_cpu;
1643 int mask; /* Um... initialize me??? --RR */
1644
1645 printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
1646 cpu, irq);
1647 for_each_possible_cpu(real_cpu, mask) {
1648
1649 outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
1650 VIC_PROCESSOR_ID);
1651 isr = vic_read_isr();
1652 if (isr & (1 << irq)) {
1653 printk
1654 ("VOYAGER SMP: CPU%d ack irq %d\n",
1655 real_cpu, irq);
1656 ack_vic_irq(irq);
1657 }
1658 outb(cpu, VIC_PROCESSOR_ID);
1659 }
1660 }
1661 #endif /* VOYAGER_DEBUG */
1662 /* as soon as we ack, the interrupt is eligible for
1663 * receipt by another CPU so everything must be in
1664 * order here */
1665 ack_vic_irq(irq);
1666 if (status & IRQ_REPLAY) {
1667 /* replay is set if we disable the interrupt
1668 * in the before_handle_vic_irq() routine, so
1669 * clear the in progress bit here to allow the
1670 * next CPU to handle this correctly */
1671 desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
1672 }
1673 #ifdef VOYAGER_DEBUG
1674 isr = vic_read_isr();
1675 if ((isr & (1 << irq)) != 0)
1676 printk("VOYAGER SMP: after_handle_vic_irq() after "
1677 "ack irq=%d, isr=0x%x\n", irq, isr);
1678 #endif /* VOYAGER_DEBUG */
1679 }
1680 _raw_spin_unlock(&vic_irq_lock);
1681
1682 /* All code after this point is out of the main path - the IRQ
1683 * may be intercepted by another CPU if reasserted */
1684 }
1685
1686 /* Linux processor - interrupt affinity manipulations.
1687 *
1688 * For each processor, we maintain a 32 bit irq affinity mask.
1689 * Initially it is set to all 1's so every processor accepts every
1690 * interrupt. In this call, we change the processor's affinity mask:
1691 *
1692 * Change from enable to disable:
1693 *
1694 * If the interrupt ever comes in to the processor, we will disable it
1695 * and ack it to push it off to another CPU, so just accept the mask here.
1696 *
1697 * Change from disable to enable:
1698 *
1699 * change the mask and then do an interrupt enable CPI to re-enable on
1700 * the selected processors */
1701
1702 void set_vic_irq_affinity(unsigned int irq, cpumask_t mask)
1703 {
1704 /* Only extended processors handle interrupts */
1705 unsigned long real_mask;
1706 unsigned long irq_mask = 1 << irq;
1707 int cpu;
1708
1709 real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors;
1710
1711 if (cpus_addr(mask)[0] == 0)
1712 /* can't have no CPUs to accept the interrupt -- extremely
1713 * bad things will happen */
1714 return;
1715
1716 if (irq == 0)
1717 /* can't change the affinity of the timer IRQ. This
1718 * is due to the constraint in the voyager
1719 * architecture that the CPI also comes in on and IRQ
1720 * line and we have chosen IRQ0 for this. If you
1721 * raise the mask on this interrupt, the processor
1722 * will no-longer be able to accept VIC CPIs */
1723 return;
1724
1725 if (irq >= 32)
1726 /* You can only have 32 interrupts in a voyager system
1727 * (and 32 only if you have a secondary microchannel
1728 * bus) */
1729 return;
1730
1731 for_each_online_cpu(cpu) {
1732 unsigned long cpu_mask = 1 << cpu;
1733
1734 if (cpu_mask & real_mask) {
1735 /* enable the interrupt for this cpu */
1736 cpu_irq_affinity[cpu] |= irq_mask;
1737 } else {
1738 /* disable the interrupt for this cpu */
1739 cpu_irq_affinity[cpu] &= ~irq_mask;
1740 }
1741 }
1742 /* this is magic, we now have the correct affinity maps, so
1743 * enable the interrupt. This will send an enable CPI to
1744 * those CPUs who need to enable it in their local masks,
1745 * causing them to correct for the new affinity . If the
1746 * interrupt is currently globally disabled, it will simply be
1747 * disabled again as it comes in (voyager lazy disable). If
1748 * the affinity map is tightened to disable the interrupt on a
1749 * cpu, it will be pushed off when it comes in */
1750 unmask_vic_irq(irq);
1751 }
1752
1753 static void ack_vic_irq(unsigned int irq)
1754 {
1755 if (irq & 8) {
1756 outb(0x62, 0x20); /* Specific EOI to cascade */
1757 outb(0x60 | (irq & 7), 0xA0);
1758 } else {
1759 outb(0x60 | (irq & 7), 0x20);
1760 }
1761 }
1762
1763 /* enable the CPIs. In the VIC, the CPIs are delivered by the 8259
1764 * but are not vectored by it. This means that the 8259 mask must be
1765 * lowered to receive them */
1766 static __init void vic_enable_cpi(void)
1767 {
1768 __u8 cpu = smp_processor_id();
1769
1770 /* just take a copy of the current mask (nop for boot cpu) */
1771 vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
1772
1773 enable_local_vic_irq(VIC_CPI_LEVEL0);
1774 enable_local_vic_irq(VIC_CPI_LEVEL1);
1775 /* for sys int and cmn int */
1776 enable_local_vic_irq(7);
1777
1778 if (is_cpu_quad()) {
1779 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
1780 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
1781 VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
1782 cpu, QIC_CPI_ENABLE));
1783 }
1784
1785 VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
1786 cpu, vic_irq_mask[cpu]));
1787 }
1788
1789 void voyager_smp_dump()
1790 {
1791 int old_cpu = smp_processor_id(), cpu;
1792
1793 /* dump the interrupt masks of each processor */
1794 for_each_online_cpu(cpu) {
1795 __u16 imr, isr, irr;
1796 unsigned long flags;
1797
1798 local_irq_save(flags);
1799 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
1800 imr = (inb(0xa1) << 8) | inb(0x21);
1801 outb(0x0a, 0xa0);
1802 irr = inb(0xa0) << 8;
1803 outb(0x0a, 0x20);
1804 irr |= inb(0x20);
1805 outb(0x0b, 0xa0);
1806 isr = inb(0xa0) << 8;
1807 outb(0x0b, 0x20);
1808 isr |= inb(0x20);
1809 outb(old_cpu, VIC_PROCESSOR_ID);
1810 local_irq_restore(flags);
1811 printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
1812 cpu, vic_irq_mask[cpu], imr, irr, isr);
1813 #if 0
1814 /* These lines are put in to try to unstick an un ack'd irq */
1815 if (isr != 0) {
1816 int irq;
1817 for (irq = 0; irq < 16; irq++) {
1818 if (isr & (1 << irq)) {
1819 printk("\tCPU%d: ack irq %d\n",
1820 cpu, irq);
1821 local_irq_save(flags);
1822 outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
1823 VIC_PROCESSOR_ID);
1824 ack_vic_irq(irq);
1825 outb(old_cpu, VIC_PROCESSOR_ID);
1826 local_irq_restore(flags);
1827 }
1828 }
1829 }
1830 #endif
1831 }
1832 }
1833
1834 void smp_voyager_power_off(void *dummy)
1835 {
1836 if (smp_processor_id() == boot_cpu_id)
1837 voyager_power_off();
1838 else
1839 smp_stop_cpu_function(NULL);
1840 }
1841
1842 static void __init voyager_smp_prepare_cpus(unsigned int max_cpus)
1843 {
1844 /* FIXME: ignore max_cpus for now */
1845 smp_boot_cpus();
1846 }
1847
1848 static void __cpuinit voyager_smp_prepare_boot_cpu(void)
1849 {
1850 init_gdt(smp_processor_id());
1851 switch_to_new_gdt();
1852
1853 cpu_set(smp_processor_id(), cpu_online_map);
1854 cpu_set(smp_processor_id(), cpu_callout_map);
1855 cpu_set(smp_processor_id(), cpu_possible_map);
1856 cpu_set(smp_processor_id(), cpu_present_map);
1857 }
1858
1859 static int __cpuinit voyager_cpu_up(unsigned int cpu)
1860 {
1861 /* This only works at boot for x86. See "rewrite" above. */
1862 if (cpu_isset(cpu, smp_commenced_mask))
1863 return -ENOSYS;
1864
1865 /* In case one didn't come up */
1866 if (!cpu_isset(cpu, cpu_callin_map))
1867 return -EIO;
1868 /* Unleash the CPU! */
1869 cpu_set(cpu, smp_commenced_mask);
1870 while (!cpu_isset(cpu, cpu_online_map))
1871 mb();
1872 return 0;
1873 }
1874
1875 static void __init voyager_smp_cpus_done(unsigned int max_cpus)
1876 {
1877 zap_low_mappings();
1878 }
1879
1880 void __init smp_setup_processor_id(void)
1881 {
1882 current_thread_info()->cpu = hard_smp_processor_id();
1883 x86_write_percpu(cpu_number, hard_smp_processor_id());
1884 }
1885
1886 struct smp_ops smp_ops = {
1887 .smp_prepare_boot_cpu = voyager_smp_prepare_boot_cpu,
1888 .smp_prepare_cpus = voyager_smp_prepare_cpus,
1889 .cpu_up = voyager_cpu_up,
1890 .smp_cpus_done = voyager_smp_cpus_done,
1891
1892 .smp_send_stop = voyager_smp_send_stop,
1893 .smp_send_reschedule = voyager_smp_send_reschedule,
1894 .smp_call_function_mask = voyager_smp_call_function_mask,
1895 };
This page took 0.1193 seconds and 5 git commands to generate.