Merge branches 'pm-avs', 'pm-clk', 'pm-devfreq' and 'pm-sleep'
[deliverable/linux.git] / arch / x86 / mm / fault.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/sched.h> /* test_thread_flag(), ... */
7 #include <linux/kdebug.h> /* oops_begin/end, ... */
8 #include <linux/module.h> /* search_exception_table */
9 #include <linux/bootmem.h> /* max_low_pfn */
10 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
11 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
12 #include <linux/perf_event.h> /* perf_sw_event */
13 #include <linux/hugetlb.h> /* hstate_index_to_shift */
14 #include <linux/prefetch.h> /* prefetchw */
15 #include <linux/context_tracking.h> /* exception_enter(), ... */
16 #include <linux/uaccess.h> /* faulthandler_disabled() */
17
18 #include <asm/traps.h> /* dotraplinkage, ... */
19 #include <asm/pgalloc.h> /* pgd_*(), ... */
20 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
21 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
22 #include <asm/vsyscall.h> /* emulate_vsyscall */
23 #include <asm/vm86.h> /* struct vm86 */
24
25 #define CREATE_TRACE_POINTS
26 #include <asm/trace/exceptions.h>
27
28 /*
29 * Page fault error code bits:
30 *
31 * bit 0 == 0: no page found 1: protection fault
32 * bit 1 == 0: read access 1: write access
33 * bit 2 == 0: kernel-mode access 1: user-mode access
34 * bit 3 == 1: use of reserved bit detected
35 * bit 4 == 1: fault was an instruction fetch
36 */
37 enum x86_pf_error_code {
38
39 PF_PROT = 1 << 0,
40 PF_WRITE = 1 << 1,
41 PF_USER = 1 << 2,
42 PF_RSVD = 1 << 3,
43 PF_INSTR = 1 << 4,
44 };
45
46 /*
47 * Returns 0 if mmiotrace is disabled, or if the fault is not
48 * handled by mmiotrace:
49 */
50 static nokprobe_inline int
51 kmmio_fault(struct pt_regs *regs, unsigned long addr)
52 {
53 if (unlikely(is_kmmio_active()))
54 if (kmmio_handler(regs, addr) == 1)
55 return -1;
56 return 0;
57 }
58
59 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
60 {
61 int ret = 0;
62
63 /* kprobe_running() needs smp_processor_id() */
64 if (kprobes_built_in() && !user_mode(regs)) {
65 preempt_disable();
66 if (kprobe_running() && kprobe_fault_handler(regs, 14))
67 ret = 1;
68 preempt_enable();
69 }
70
71 return ret;
72 }
73
74 /*
75 * Prefetch quirks:
76 *
77 * 32-bit mode:
78 *
79 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
80 * Check that here and ignore it.
81 *
82 * 64-bit mode:
83 *
84 * Sometimes the CPU reports invalid exceptions on prefetch.
85 * Check that here and ignore it.
86 *
87 * Opcode checker based on code by Richard Brunner.
88 */
89 static inline int
90 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
91 unsigned char opcode, int *prefetch)
92 {
93 unsigned char instr_hi = opcode & 0xf0;
94 unsigned char instr_lo = opcode & 0x0f;
95
96 switch (instr_hi) {
97 case 0x20:
98 case 0x30:
99 /*
100 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
101 * In X86_64 long mode, the CPU will signal invalid
102 * opcode if some of these prefixes are present so
103 * X86_64 will never get here anyway
104 */
105 return ((instr_lo & 7) == 0x6);
106 #ifdef CONFIG_X86_64
107 case 0x40:
108 /*
109 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
110 * Need to figure out under what instruction mode the
111 * instruction was issued. Could check the LDT for lm,
112 * but for now it's good enough to assume that long
113 * mode only uses well known segments or kernel.
114 */
115 return (!user_mode(regs) || user_64bit_mode(regs));
116 #endif
117 case 0x60:
118 /* 0x64 thru 0x67 are valid prefixes in all modes. */
119 return (instr_lo & 0xC) == 0x4;
120 case 0xF0:
121 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
122 return !instr_lo || (instr_lo>>1) == 1;
123 case 0x00:
124 /* Prefetch instruction is 0x0F0D or 0x0F18 */
125 if (probe_kernel_address(instr, opcode))
126 return 0;
127
128 *prefetch = (instr_lo == 0xF) &&
129 (opcode == 0x0D || opcode == 0x18);
130 return 0;
131 default:
132 return 0;
133 }
134 }
135
136 static int
137 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
138 {
139 unsigned char *max_instr;
140 unsigned char *instr;
141 int prefetch = 0;
142
143 /*
144 * If it was a exec (instruction fetch) fault on NX page, then
145 * do not ignore the fault:
146 */
147 if (error_code & PF_INSTR)
148 return 0;
149
150 instr = (void *)convert_ip_to_linear(current, regs);
151 max_instr = instr + 15;
152
153 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
154 return 0;
155
156 while (instr < max_instr) {
157 unsigned char opcode;
158
159 if (probe_kernel_address(instr, opcode))
160 break;
161
162 instr++;
163
164 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
165 break;
166 }
167 return prefetch;
168 }
169
170 static void
171 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
172 struct task_struct *tsk, int fault)
173 {
174 unsigned lsb = 0;
175 siginfo_t info;
176
177 info.si_signo = si_signo;
178 info.si_errno = 0;
179 info.si_code = si_code;
180 info.si_addr = (void __user *)address;
181 if (fault & VM_FAULT_HWPOISON_LARGE)
182 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
183 if (fault & VM_FAULT_HWPOISON)
184 lsb = PAGE_SHIFT;
185 info.si_addr_lsb = lsb;
186
187 force_sig_info(si_signo, &info, tsk);
188 }
189
190 DEFINE_SPINLOCK(pgd_lock);
191 LIST_HEAD(pgd_list);
192
193 #ifdef CONFIG_X86_32
194 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
195 {
196 unsigned index = pgd_index(address);
197 pgd_t *pgd_k;
198 pud_t *pud, *pud_k;
199 pmd_t *pmd, *pmd_k;
200
201 pgd += index;
202 pgd_k = init_mm.pgd + index;
203
204 if (!pgd_present(*pgd_k))
205 return NULL;
206
207 /*
208 * set_pgd(pgd, *pgd_k); here would be useless on PAE
209 * and redundant with the set_pmd() on non-PAE. As would
210 * set_pud.
211 */
212 pud = pud_offset(pgd, address);
213 pud_k = pud_offset(pgd_k, address);
214 if (!pud_present(*pud_k))
215 return NULL;
216
217 pmd = pmd_offset(pud, address);
218 pmd_k = pmd_offset(pud_k, address);
219 if (!pmd_present(*pmd_k))
220 return NULL;
221
222 if (!pmd_present(*pmd))
223 set_pmd(pmd, *pmd_k);
224 else
225 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
226
227 return pmd_k;
228 }
229
230 void vmalloc_sync_all(void)
231 {
232 unsigned long address;
233
234 if (SHARED_KERNEL_PMD)
235 return;
236
237 for (address = VMALLOC_START & PMD_MASK;
238 address >= TASK_SIZE && address < FIXADDR_TOP;
239 address += PMD_SIZE) {
240 struct page *page;
241
242 spin_lock(&pgd_lock);
243 list_for_each_entry(page, &pgd_list, lru) {
244 spinlock_t *pgt_lock;
245 pmd_t *ret;
246
247 /* the pgt_lock only for Xen */
248 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
249
250 spin_lock(pgt_lock);
251 ret = vmalloc_sync_one(page_address(page), address);
252 spin_unlock(pgt_lock);
253
254 if (!ret)
255 break;
256 }
257 spin_unlock(&pgd_lock);
258 }
259 }
260
261 /*
262 * 32-bit:
263 *
264 * Handle a fault on the vmalloc or module mapping area
265 */
266 static noinline int vmalloc_fault(unsigned long address)
267 {
268 unsigned long pgd_paddr;
269 pmd_t *pmd_k;
270 pte_t *pte_k;
271
272 /* Make sure we are in vmalloc area: */
273 if (!(address >= VMALLOC_START && address < VMALLOC_END))
274 return -1;
275
276 WARN_ON_ONCE(in_nmi());
277
278 /*
279 * Synchronize this task's top level page-table
280 * with the 'reference' page table.
281 *
282 * Do _not_ use "current" here. We might be inside
283 * an interrupt in the middle of a task switch..
284 */
285 pgd_paddr = read_cr3();
286 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
287 if (!pmd_k)
288 return -1;
289
290 if (pmd_huge(*pmd_k))
291 return 0;
292
293 pte_k = pte_offset_kernel(pmd_k, address);
294 if (!pte_present(*pte_k))
295 return -1;
296
297 return 0;
298 }
299 NOKPROBE_SYMBOL(vmalloc_fault);
300
301 /*
302 * Did it hit the DOS screen memory VA from vm86 mode?
303 */
304 static inline void
305 check_v8086_mode(struct pt_regs *regs, unsigned long address,
306 struct task_struct *tsk)
307 {
308 #ifdef CONFIG_VM86
309 unsigned long bit;
310
311 if (!v8086_mode(regs) || !tsk->thread.vm86)
312 return;
313
314 bit = (address - 0xA0000) >> PAGE_SHIFT;
315 if (bit < 32)
316 tsk->thread.vm86->screen_bitmap |= 1 << bit;
317 #endif
318 }
319
320 static bool low_pfn(unsigned long pfn)
321 {
322 return pfn < max_low_pfn;
323 }
324
325 static void dump_pagetable(unsigned long address)
326 {
327 pgd_t *base = __va(read_cr3());
328 pgd_t *pgd = &base[pgd_index(address)];
329 pmd_t *pmd;
330 pte_t *pte;
331
332 #ifdef CONFIG_X86_PAE
333 printk("*pdpt = %016Lx ", pgd_val(*pgd));
334 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
335 goto out;
336 #endif
337 pmd = pmd_offset(pud_offset(pgd, address), address);
338 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
339
340 /*
341 * We must not directly access the pte in the highpte
342 * case if the page table is located in highmem.
343 * And let's rather not kmap-atomic the pte, just in case
344 * it's allocated already:
345 */
346 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
347 goto out;
348
349 pte = pte_offset_kernel(pmd, address);
350 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
351 out:
352 printk("\n");
353 }
354
355 #else /* CONFIG_X86_64: */
356
357 void vmalloc_sync_all(void)
358 {
359 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
360 }
361
362 /*
363 * 64-bit:
364 *
365 * Handle a fault on the vmalloc area
366 */
367 static noinline int vmalloc_fault(unsigned long address)
368 {
369 pgd_t *pgd, *pgd_ref;
370 pud_t *pud, *pud_ref;
371 pmd_t *pmd, *pmd_ref;
372 pte_t *pte, *pte_ref;
373
374 /* Make sure we are in vmalloc area: */
375 if (!(address >= VMALLOC_START && address < VMALLOC_END))
376 return -1;
377
378 WARN_ON_ONCE(in_nmi());
379
380 /*
381 * Copy kernel mappings over when needed. This can also
382 * happen within a race in page table update. In the later
383 * case just flush:
384 */
385 pgd = pgd_offset(current->active_mm, address);
386 pgd_ref = pgd_offset_k(address);
387 if (pgd_none(*pgd_ref))
388 return -1;
389
390 if (pgd_none(*pgd)) {
391 set_pgd(pgd, *pgd_ref);
392 arch_flush_lazy_mmu_mode();
393 } else {
394 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
395 }
396
397 /*
398 * Below here mismatches are bugs because these lower tables
399 * are shared:
400 */
401
402 pud = pud_offset(pgd, address);
403 pud_ref = pud_offset(pgd_ref, address);
404 if (pud_none(*pud_ref))
405 return -1;
406
407 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
408 BUG();
409
410 if (pud_huge(*pud))
411 return 0;
412
413 pmd = pmd_offset(pud, address);
414 pmd_ref = pmd_offset(pud_ref, address);
415 if (pmd_none(*pmd_ref))
416 return -1;
417
418 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
419 BUG();
420
421 if (pmd_huge(*pmd))
422 return 0;
423
424 pte_ref = pte_offset_kernel(pmd_ref, address);
425 if (!pte_present(*pte_ref))
426 return -1;
427
428 pte = pte_offset_kernel(pmd, address);
429
430 /*
431 * Don't use pte_page here, because the mappings can point
432 * outside mem_map, and the NUMA hash lookup cannot handle
433 * that:
434 */
435 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
436 BUG();
437
438 return 0;
439 }
440 NOKPROBE_SYMBOL(vmalloc_fault);
441
442 #ifdef CONFIG_CPU_SUP_AMD
443 static const char errata93_warning[] =
444 KERN_ERR
445 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
446 "******* Working around it, but it may cause SEGVs or burn power.\n"
447 "******* Please consider a BIOS update.\n"
448 "******* Disabling USB legacy in the BIOS may also help.\n";
449 #endif
450
451 /*
452 * No vm86 mode in 64-bit mode:
453 */
454 static inline void
455 check_v8086_mode(struct pt_regs *regs, unsigned long address,
456 struct task_struct *tsk)
457 {
458 }
459
460 static int bad_address(void *p)
461 {
462 unsigned long dummy;
463
464 return probe_kernel_address((unsigned long *)p, dummy);
465 }
466
467 static void dump_pagetable(unsigned long address)
468 {
469 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
470 pgd_t *pgd = base + pgd_index(address);
471 pud_t *pud;
472 pmd_t *pmd;
473 pte_t *pte;
474
475 if (bad_address(pgd))
476 goto bad;
477
478 printk("PGD %lx ", pgd_val(*pgd));
479
480 if (!pgd_present(*pgd))
481 goto out;
482
483 pud = pud_offset(pgd, address);
484 if (bad_address(pud))
485 goto bad;
486
487 printk("PUD %lx ", pud_val(*pud));
488 if (!pud_present(*pud) || pud_large(*pud))
489 goto out;
490
491 pmd = pmd_offset(pud, address);
492 if (bad_address(pmd))
493 goto bad;
494
495 printk("PMD %lx ", pmd_val(*pmd));
496 if (!pmd_present(*pmd) || pmd_large(*pmd))
497 goto out;
498
499 pte = pte_offset_kernel(pmd, address);
500 if (bad_address(pte))
501 goto bad;
502
503 printk("PTE %lx", pte_val(*pte));
504 out:
505 printk("\n");
506 return;
507 bad:
508 printk("BAD\n");
509 }
510
511 #endif /* CONFIG_X86_64 */
512
513 /*
514 * Workaround for K8 erratum #93 & buggy BIOS.
515 *
516 * BIOS SMM functions are required to use a specific workaround
517 * to avoid corruption of the 64bit RIP register on C stepping K8.
518 *
519 * A lot of BIOS that didn't get tested properly miss this.
520 *
521 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
522 * Try to work around it here.
523 *
524 * Note we only handle faults in kernel here.
525 * Does nothing on 32-bit.
526 */
527 static int is_errata93(struct pt_regs *regs, unsigned long address)
528 {
529 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
530 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
531 || boot_cpu_data.x86 != 0xf)
532 return 0;
533
534 if (address != regs->ip)
535 return 0;
536
537 if ((address >> 32) != 0)
538 return 0;
539
540 address |= 0xffffffffUL << 32;
541 if ((address >= (u64)_stext && address <= (u64)_etext) ||
542 (address >= MODULES_VADDR && address <= MODULES_END)) {
543 printk_once(errata93_warning);
544 regs->ip = address;
545 return 1;
546 }
547 #endif
548 return 0;
549 }
550
551 /*
552 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
553 * to illegal addresses >4GB.
554 *
555 * We catch this in the page fault handler because these addresses
556 * are not reachable. Just detect this case and return. Any code
557 * segment in LDT is compatibility mode.
558 */
559 static int is_errata100(struct pt_regs *regs, unsigned long address)
560 {
561 #ifdef CONFIG_X86_64
562 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
563 return 1;
564 #endif
565 return 0;
566 }
567
568 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
569 {
570 #ifdef CONFIG_X86_F00F_BUG
571 unsigned long nr;
572
573 /*
574 * Pentium F0 0F C7 C8 bug workaround:
575 */
576 if (boot_cpu_has_bug(X86_BUG_F00F)) {
577 nr = (address - idt_descr.address) >> 3;
578
579 if (nr == 6) {
580 do_invalid_op(regs, 0);
581 return 1;
582 }
583 }
584 #endif
585 return 0;
586 }
587
588 static const char nx_warning[] = KERN_CRIT
589 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
590 static const char smep_warning[] = KERN_CRIT
591 "unable to execute userspace code (SMEP?) (uid: %d)\n";
592
593 static void
594 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
595 unsigned long address)
596 {
597 if (!oops_may_print())
598 return;
599
600 if (error_code & PF_INSTR) {
601 unsigned int level;
602 pgd_t *pgd;
603 pte_t *pte;
604
605 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
606 pgd += pgd_index(address);
607
608 pte = lookup_address_in_pgd(pgd, address, &level);
609
610 if (pte && pte_present(*pte) && !pte_exec(*pte))
611 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
612 if (pte && pte_present(*pte) && pte_exec(*pte) &&
613 (pgd_flags(*pgd) & _PAGE_USER) &&
614 (__read_cr4() & X86_CR4_SMEP))
615 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
616 }
617
618 printk(KERN_ALERT "BUG: unable to handle kernel ");
619 if (address < PAGE_SIZE)
620 printk(KERN_CONT "NULL pointer dereference");
621 else
622 printk(KERN_CONT "paging request");
623
624 printk(KERN_CONT " at %p\n", (void *) address);
625 printk(KERN_ALERT "IP:");
626 printk_address(regs->ip);
627
628 dump_pagetable(address);
629 }
630
631 static noinline void
632 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
633 unsigned long address)
634 {
635 struct task_struct *tsk;
636 unsigned long flags;
637 int sig;
638
639 flags = oops_begin();
640 tsk = current;
641 sig = SIGKILL;
642
643 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
644 tsk->comm, address);
645 dump_pagetable(address);
646
647 tsk->thread.cr2 = address;
648 tsk->thread.trap_nr = X86_TRAP_PF;
649 tsk->thread.error_code = error_code;
650
651 if (__die("Bad pagetable", regs, error_code))
652 sig = 0;
653
654 oops_end(flags, regs, sig);
655 }
656
657 static noinline void
658 no_context(struct pt_regs *regs, unsigned long error_code,
659 unsigned long address, int signal, int si_code)
660 {
661 struct task_struct *tsk = current;
662 unsigned long flags;
663 int sig;
664
665 /* Are we prepared to handle this kernel fault? */
666 if (fixup_exception(regs, X86_TRAP_PF)) {
667 /*
668 * Any interrupt that takes a fault gets the fixup. This makes
669 * the below recursive fault logic only apply to a faults from
670 * task context.
671 */
672 if (in_interrupt())
673 return;
674
675 /*
676 * Per the above we're !in_interrupt(), aka. task context.
677 *
678 * In this case we need to make sure we're not recursively
679 * faulting through the emulate_vsyscall() logic.
680 */
681 if (current_thread_info()->sig_on_uaccess_error && signal) {
682 tsk->thread.trap_nr = X86_TRAP_PF;
683 tsk->thread.error_code = error_code | PF_USER;
684 tsk->thread.cr2 = address;
685
686 /* XXX: hwpoison faults will set the wrong code. */
687 force_sig_info_fault(signal, si_code, address, tsk, 0);
688 }
689
690 /*
691 * Barring that, we can do the fixup and be happy.
692 */
693 return;
694 }
695
696 /*
697 * 32-bit:
698 *
699 * Valid to do another page fault here, because if this fault
700 * had been triggered by is_prefetch fixup_exception would have
701 * handled it.
702 *
703 * 64-bit:
704 *
705 * Hall of shame of CPU/BIOS bugs.
706 */
707 if (is_prefetch(regs, error_code, address))
708 return;
709
710 if (is_errata93(regs, address))
711 return;
712
713 /*
714 * Oops. The kernel tried to access some bad page. We'll have to
715 * terminate things with extreme prejudice:
716 */
717 flags = oops_begin();
718
719 show_fault_oops(regs, error_code, address);
720
721 if (task_stack_end_corrupted(tsk))
722 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
723
724 tsk->thread.cr2 = address;
725 tsk->thread.trap_nr = X86_TRAP_PF;
726 tsk->thread.error_code = error_code;
727
728 sig = SIGKILL;
729 if (__die("Oops", regs, error_code))
730 sig = 0;
731
732 /* Executive summary in case the body of the oops scrolled away */
733 printk(KERN_DEFAULT "CR2: %016lx\n", address);
734
735 oops_end(flags, regs, sig);
736 }
737
738 /*
739 * Print out info about fatal segfaults, if the show_unhandled_signals
740 * sysctl is set:
741 */
742 static inline void
743 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
744 unsigned long address, struct task_struct *tsk)
745 {
746 if (!unhandled_signal(tsk, SIGSEGV))
747 return;
748
749 if (!printk_ratelimit())
750 return;
751
752 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
753 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
754 tsk->comm, task_pid_nr(tsk), address,
755 (void *)regs->ip, (void *)regs->sp, error_code);
756
757 print_vma_addr(KERN_CONT " in ", regs->ip);
758
759 printk(KERN_CONT "\n");
760 }
761
762 static void
763 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
764 unsigned long address, int si_code)
765 {
766 struct task_struct *tsk = current;
767
768 /* User mode accesses just cause a SIGSEGV */
769 if (error_code & PF_USER) {
770 /*
771 * It's possible to have interrupts off here:
772 */
773 local_irq_enable();
774
775 /*
776 * Valid to do another page fault here because this one came
777 * from user space:
778 */
779 if (is_prefetch(regs, error_code, address))
780 return;
781
782 if (is_errata100(regs, address))
783 return;
784
785 #ifdef CONFIG_X86_64
786 /*
787 * Instruction fetch faults in the vsyscall page might need
788 * emulation.
789 */
790 if (unlikely((error_code & PF_INSTR) &&
791 ((address & ~0xfff) == VSYSCALL_ADDR))) {
792 if (emulate_vsyscall(regs, address))
793 return;
794 }
795 #endif
796 /* Kernel addresses are always protection faults: */
797 if (address >= TASK_SIZE)
798 error_code |= PF_PROT;
799
800 if (likely(show_unhandled_signals))
801 show_signal_msg(regs, error_code, address, tsk);
802
803 tsk->thread.cr2 = address;
804 tsk->thread.error_code = error_code;
805 tsk->thread.trap_nr = X86_TRAP_PF;
806
807 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
808
809 return;
810 }
811
812 if (is_f00f_bug(regs, address))
813 return;
814
815 no_context(regs, error_code, address, SIGSEGV, si_code);
816 }
817
818 static noinline void
819 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
820 unsigned long address)
821 {
822 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
823 }
824
825 static void
826 __bad_area(struct pt_regs *regs, unsigned long error_code,
827 unsigned long address, int si_code)
828 {
829 struct mm_struct *mm = current->mm;
830
831 /*
832 * Something tried to access memory that isn't in our memory map..
833 * Fix it, but check if it's kernel or user first..
834 */
835 up_read(&mm->mmap_sem);
836
837 __bad_area_nosemaphore(regs, error_code, address, si_code);
838 }
839
840 static noinline void
841 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
842 {
843 __bad_area(regs, error_code, address, SEGV_MAPERR);
844 }
845
846 static noinline void
847 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
848 unsigned long address)
849 {
850 __bad_area(regs, error_code, address, SEGV_ACCERR);
851 }
852
853 static void
854 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
855 unsigned int fault)
856 {
857 struct task_struct *tsk = current;
858 int code = BUS_ADRERR;
859
860 /* Kernel mode? Handle exceptions or die: */
861 if (!(error_code & PF_USER)) {
862 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
863 return;
864 }
865
866 /* User-space => ok to do another page fault: */
867 if (is_prefetch(regs, error_code, address))
868 return;
869
870 tsk->thread.cr2 = address;
871 tsk->thread.error_code = error_code;
872 tsk->thread.trap_nr = X86_TRAP_PF;
873
874 #ifdef CONFIG_MEMORY_FAILURE
875 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
876 printk(KERN_ERR
877 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
878 tsk->comm, tsk->pid, address);
879 code = BUS_MCEERR_AR;
880 }
881 #endif
882 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
883 }
884
885 static noinline void
886 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
887 unsigned long address, unsigned int fault)
888 {
889 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
890 no_context(regs, error_code, address, 0, 0);
891 return;
892 }
893
894 if (fault & VM_FAULT_OOM) {
895 /* Kernel mode? Handle exceptions or die: */
896 if (!(error_code & PF_USER)) {
897 no_context(regs, error_code, address,
898 SIGSEGV, SEGV_MAPERR);
899 return;
900 }
901
902 /*
903 * We ran out of memory, call the OOM killer, and return the
904 * userspace (which will retry the fault, or kill us if we got
905 * oom-killed):
906 */
907 pagefault_out_of_memory();
908 } else {
909 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
910 VM_FAULT_HWPOISON_LARGE))
911 do_sigbus(regs, error_code, address, fault);
912 else if (fault & VM_FAULT_SIGSEGV)
913 bad_area_nosemaphore(regs, error_code, address);
914 else
915 BUG();
916 }
917 }
918
919 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
920 {
921 if ((error_code & PF_WRITE) && !pte_write(*pte))
922 return 0;
923
924 if ((error_code & PF_INSTR) && !pte_exec(*pte))
925 return 0;
926
927 return 1;
928 }
929
930 /*
931 * Handle a spurious fault caused by a stale TLB entry.
932 *
933 * This allows us to lazily refresh the TLB when increasing the
934 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
935 * eagerly is very expensive since that implies doing a full
936 * cross-processor TLB flush, even if no stale TLB entries exist
937 * on other processors.
938 *
939 * Spurious faults may only occur if the TLB contains an entry with
940 * fewer permission than the page table entry. Non-present (P = 0)
941 * and reserved bit (R = 1) faults are never spurious.
942 *
943 * There are no security implications to leaving a stale TLB when
944 * increasing the permissions on a page.
945 *
946 * Returns non-zero if a spurious fault was handled, zero otherwise.
947 *
948 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
949 * (Optional Invalidation).
950 */
951 static noinline int
952 spurious_fault(unsigned long error_code, unsigned long address)
953 {
954 pgd_t *pgd;
955 pud_t *pud;
956 pmd_t *pmd;
957 pte_t *pte;
958 int ret;
959
960 /*
961 * Only writes to RO or instruction fetches from NX may cause
962 * spurious faults.
963 *
964 * These could be from user or supervisor accesses but the TLB
965 * is only lazily flushed after a kernel mapping protection
966 * change, so user accesses are not expected to cause spurious
967 * faults.
968 */
969 if (error_code != (PF_WRITE | PF_PROT)
970 && error_code != (PF_INSTR | PF_PROT))
971 return 0;
972
973 pgd = init_mm.pgd + pgd_index(address);
974 if (!pgd_present(*pgd))
975 return 0;
976
977 pud = pud_offset(pgd, address);
978 if (!pud_present(*pud))
979 return 0;
980
981 if (pud_large(*pud))
982 return spurious_fault_check(error_code, (pte_t *) pud);
983
984 pmd = pmd_offset(pud, address);
985 if (!pmd_present(*pmd))
986 return 0;
987
988 if (pmd_large(*pmd))
989 return spurious_fault_check(error_code, (pte_t *) pmd);
990
991 pte = pte_offset_kernel(pmd, address);
992 if (!pte_present(*pte))
993 return 0;
994
995 ret = spurious_fault_check(error_code, pte);
996 if (!ret)
997 return 0;
998
999 /*
1000 * Make sure we have permissions in PMD.
1001 * If not, then there's a bug in the page tables:
1002 */
1003 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1004 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1005
1006 return ret;
1007 }
1008 NOKPROBE_SYMBOL(spurious_fault);
1009
1010 int show_unhandled_signals = 1;
1011
1012 static inline int
1013 access_error(unsigned long error_code, struct vm_area_struct *vma)
1014 {
1015 if (error_code & PF_WRITE) {
1016 /* write, present and write, not present: */
1017 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1018 return 1;
1019 return 0;
1020 }
1021
1022 /* read, present: */
1023 if (unlikely(error_code & PF_PROT))
1024 return 1;
1025
1026 /* read, not present: */
1027 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1028 return 1;
1029
1030 return 0;
1031 }
1032
1033 static int fault_in_kernel_space(unsigned long address)
1034 {
1035 return address >= TASK_SIZE_MAX;
1036 }
1037
1038 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1039 {
1040 if (!IS_ENABLED(CONFIG_X86_SMAP))
1041 return false;
1042
1043 if (!static_cpu_has(X86_FEATURE_SMAP))
1044 return false;
1045
1046 if (error_code & PF_USER)
1047 return false;
1048
1049 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1050 return false;
1051
1052 return true;
1053 }
1054
1055 /*
1056 * This routine handles page faults. It determines the address,
1057 * and the problem, and then passes it off to one of the appropriate
1058 * routines.
1059 *
1060 * This function must have noinline because both callers
1061 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1062 * guarantees there's a function trace entry.
1063 */
1064 static noinline void
1065 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1066 unsigned long address)
1067 {
1068 struct vm_area_struct *vma;
1069 struct task_struct *tsk;
1070 struct mm_struct *mm;
1071 int fault, major = 0;
1072 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1073
1074 tsk = current;
1075 mm = tsk->mm;
1076
1077 /*
1078 * Detect and handle instructions that would cause a page fault for
1079 * both a tracked kernel page and a userspace page.
1080 */
1081 if (kmemcheck_active(regs))
1082 kmemcheck_hide(regs);
1083 prefetchw(&mm->mmap_sem);
1084
1085 if (unlikely(kmmio_fault(regs, address)))
1086 return;
1087
1088 /*
1089 * We fault-in kernel-space virtual memory on-demand. The
1090 * 'reference' page table is init_mm.pgd.
1091 *
1092 * NOTE! We MUST NOT take any locks for this case. We may
1093 * be in an interrupt or a critical region, and should
1094 * only copy the information from the master page table,
1095 * nothing more.
1096 *
1097 * This verifies that the fault happens in kernel space
1098 * (error_code & 4) == 0, and that the fault was not a
1099 * protection error (error_code & 9) == 0.
1100 */
1101 if (unlikely(fault_in_kernel_space(address))) {
1102 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1103 if (vmalloc_fault(address) >= 0)
1104 return;
1105
1106 if (kmemcheck_fault(regs, address, error_code))
1107 return;
1108 }
1109
1110 /* Can handle a stale RO->RW TLB: */
1111 if (spurious_fault(error_code, address))
1112 return;
1113
1114 /* kprobes don't want to hook the spurious faults: */
1115 if (kprobes_fault(regs))
1116 return;
1117 /*
1118 * Don't take the mm semaphore here. If we fixup a prefetch
1119 * fault we could otherwise deadlock:
1120 */
1121 bad_area_nosemaphore(regs, error_code, address);
1122
1123 return;
1124 }
1125
1126 /* kprobes don't want to hook the spurious faults: */
1127 if (unlikely(kprobes_fault(regs)))
1128 return;
1129
1130 if (unlikely(error_code & PF_RSVD))
1131 pgtable_bad(regs, error_code, address);
1132
1133 if (unlikely(smap_violation(error_code, regs))) {
1134 bad_area_nosemaphore(regs, error_code, address);
1135 return;
1136 }
1137
1138 /*
1139 * If we're in an interrupt, have no user context or are running
1140 * in a region with pagefaults disabled then we must not take the fault
1141 */
1142 if (unlikely(faulthandler_disabled() || !mm)) {
1143 bad_area_nosemaphore(regs, error_code, address);
1144 return;
1145 }
1146
1147 /*
1148 * It's safe to allow irq's after cr2 has been saved and the
1149 * vmalloc fault has been handled.
1150 *
1151 * User-mode registers count as a user access even for any
1152 * potential system fault or CPU buglet:
1153 */
1154 if (user_mode(regs)) {
1155 local_irq_enable();
1156 error_code |= PF_USER;
1157 flags |= FAULT_FLAG_USER;
1158 } else {
1159 if (regs->flags & X86_EFLAGS_IF)
1160 local_irq_enable();
1161 }
1162
1163 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1164
1165 if (error_code & PF_WRITE)
1166 flags |= FAULT_FLAG_WRITE;
1167
1168 /*
1169 * When running in the kernel we expect faults to occur only to
1170 * addresses in user space. All other faults represent errors in
1171 * the kernel and should generate an OOPS. Unfortunately, in the
1172 * case of an erroneous fault occurring in a code path which already
1173 * holds mmap_sem we will deadlock attempting to validate the fault
1174 * against the address space. Luckily the kernel only validly
1175 * references user space from well defined areas of code, which are
1176 * listed in the exceptions table.
1177 *
1178 * As the vast majority of faults will be valid we will only perform
1179 * the source reference check when there is a possibility of a
1180 * deadlock. Attempt to lock the address space, if we cannot we then
1181 * validate the source. If this is invalid we can skip the address
1182 * space check, thus avoiding the deadlock:
1183 */
1184 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1185 if ((error_code & PF_USER) == 0 &&
1186 !search_exception_tables(regs->ip)) {
1187 bad_area_nosemaphore(regs, error_code, address);
1188 return;
1189 }
1190 retry:
1191 down_read(&mm->mmap_sem);
1192 } else {
1193 /*
1194 * The above down_read_trylock() might have succeeded in
1195 * which case we'll have missed the might_sleep() from
1196 * down_read():
1197 */
1198 might_sleep();
1199 }
1200
1201 vma = find_vma(mm, address);
1202 if (unlikely(!vma)) {
1203 bad_area(regs, error_code, address);
1204 return;
1205 }
1206 if (likely(vma->vm_start <= address))
1207 goto good_area;
1208 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1209 bad_area(regs, error_code, address);
1210 return;
1211 }
1212 if (error_code & PF_USER) {
1213 /*
1214 * Accessing the stack below %sp is always a bug.
1215 * The large cushion allows instructions like enter
1216 * and pusha to work. ("enter $65535, $31" pushes
1217 * 32 pointers and then decrements %sp by 65535.)
1218 */
1219 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1220 bad_area(regs, error_code, address);
1221 return;
1222 }
1223 }
1224 if (unlikely(expand_stack(vma, address))) {
1225 bad_area(regs, error_code, address);
1226 return;
1227 }
1228
1229 /*
1230 * Ok, we have a good vm_area for this memory access, so
1231 * we can handle it..
1232 */
1233 good_area:
1234 if (unlikely(access_error(error_code, vma))) {
1235 bad_area_access_error(regs, error_code, address);
1236 return;
1237 }
1238
1239 /*
1240 * If for any reason at all we couldn't handle the fault,
1241 * make sure we exit gracefully rather than endlessly redo
1242 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1243 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1244 */
1245 fault = handle_mm_fault(mm, vma, address, flags);
1246 major |= fault & VM_FAULT_MAJOR;
1247
1248 /*
1249 * If we need to retry the mmap_sem has already been released,
1250 * and if there is a fatal signal pending there is no guarantee
1251 * that we made any progress. Handle this case first.
1252 */
1253 if (unlikely(fault & VM_FAULT_RETRY)) {
1254 /* Retry at most once */
1255 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1256 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1257 flags |= FAULT_FLAG_TRIED;
1258 if (!fatal_signal_pending(tsk))
1259 goto retry;
1260 }
1261
1262 /* User mode? Just return to handle the fatal exception */
1263 if (flags & FAULT_FLAG_USER)
1264 return;
1265
1266 /* Not returning to user mode? Handle exceptions or die: */
1267 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1268 return;
1269 }
1270
1271 up_read(&mm->mmap_sem);
1272 if (unlikely(fault & VM_FAULT_ERROR)) {
1273 mm_fault_error(regs, error_code, address, fault);
1274 return;
1275 }
1276
1277 /*
1278 * Major/minor page fault accounting. If any of the events
1279 * returned VM_FAULT_MAJOR, we account it as a major fault.
1280 */
1281 if (major) {
1282 tsk->maj_flt++;
1283 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1284 } else {
1285 tsk->min_flt++;
1286 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1287 }
1288
1289 check_v8086_mode(regs, address, tsk);
1290 }
1291 NOKPROBE_SYMBOL(__do_page_fault);
1292
1293 dotraplinkage void notrace
1294 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1295 {
1296 unsigned long address = read_cr2(); /* Get the faulting address */
1297 enum ctx_state prev_state;
1298
1299 /*
1300 * We must have this function tagged with __kprobes, notrace and call
1301 * read_cr2() before calling anything else. To avoid calling any kind
1302 * of tracing machinery before we've observed the CR2 value.
1303 *
1304 * exception_{enter,exit}() contain all sorts of tracepoints.
1305 */
1306
1307 prev_state = exception_enter();
1308 __do_page_fault(regs, error_code, address);
1309 exception_exit(prev_state);
1310 }
1311 NOKPROBE_SYMBOL(do_page_fault);
1312
1313 #ifdef CONFIG_TRACING
1314 static nokprobe_inline void
1315 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1316 unsigned long error_code)
1317 {
1318 if (user_mode(regs))
1319 trace_page_fault_user(address, regs, error_code);
1320 else
1321 trace_page_fault_kernel(address, regs, error_code);
1322 }
1323
1324 dotraplinkage void notrace
1325 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1326 {
1327 /*
1328 * The exception_enter and tracepoint processing could
1329 * trigger another page faults (user space callchain
1330 * reading) and destroy the original cr2 value, so read
1331 * the faulting address now.
1332 */
1333 unsigned long address = read_cr2();
1334 enum ctx_state prev_state;
1335
1336 prev_state = exception_enter();
1337 trace_page_fault_entries(address, regs, error_code);
1338 __do_page_fault(regs, error_code, address);
1339 exception_exit(prev_state);
1340 }
1341 NOKPROBE_SYMBOL(trace_do_page_fault);
1342 #endif /* CONFIG_TRACING */
This page took 0.114129 seconds and 6 git commands to generate.