x86: remove last user of get_segment_eip
[deliverable/linux.git] / arch / x86 / mm / fault_32.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 */
4
5 #include <linux/signal.h>
6 #include <linux/sched.h>
7 #include <linux/kernel.h>
8 #include <linux/errno.h>
9 #include <linux/string.h>
10 #include <linux/types.h>
11 #include <linux/ptrace.h>
12 #include <linux/mman.h>
13 #include <linux/mm.h>
14 #include <linux/smp.h>
15 #include <linux/interrupt.h>
16 #include <linux/init.h>
17 #include <linux/tty.h>
18 #include <linux/vt_kern.h> /* For unblank_screen() */
19 #include <linux/highmem.h>
20 #include <linux/bootmem.h> /* for max_low_pfn */
21 #include <linux/vmalloc.h>
22 #include <linux/module.h>
23 #include <linux/kprobes.h>
24 #include <linux/uaccess.h>
25 #include <linux/kdebug.h>
26
27 #include <asm/system.h>
28 #include <asm/desc.h>
29 #include <asm/segment.h>
30
31 /*
32 * Page fault error code bits
33 * bit 0 == 0 means no page found, 1 means protection fault
34 * bit 1 == 0 means read, 1 means write
35 * bit 2 == 0 means kernel, 1 means user-mode
36 * bit 3 == 1 means use of reserved bit detected
37 * bit 4 == 1 means fault was an instruction fetch
38 */
39 #define PF_PROT (1<<0)
40 #define PF_WRITE (1<<1)
41 #define PF_USER (1<<2)
42 #define PF_RSVD (1<<3)
43 #define PF_INSTR (1<<4)
44
45 static inline int notify_page_fault(struct pt_regs *regs)
46 {
47 #ifdef CONFIG_KPROBES
48 int ret = 0;
49
50 /* kprobe_running() needs smp_processor_id() */
51 if (!user_mode_vm(regs)) {
52 preempt_disable();
53 if (kprobe_running() && kprobe_fault_handler(regs, 14))
54 ret = 1;
55 preempt_enable();
56 }
57
58 return ret;
59 #else
60 return 0;
61 #endif
62 }
63
64 /*
65 * X86_32
66 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
67 * Check that here and ignore it.
68 *
69 * X86_64
70 * Sometimes the CPU reports invalid exceptions on prefetch.
71 * Check that here and ignore it.
72 *
73 * Opcode checker based on code by Richard Brunner
74 */
75 static int is_prefetch(struct pt_regs *regs, unsigned long addr,
76 unsigned long error_code)
77 {
78 unsigned char *instr;
79 int scan_more = 1;
80 int prefetch = 0;
81 unsigned char *max_instr;
82
83 #ifdef CONFIG_X86_32
84 if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
85 boot_cpu_data.x86 >= 6)) {
86 /* Catch an obscure case of prefetch inside an NX page. */
87 if (nx_enabled && (error_code & PF_INSTR))
88 return 0;
89 } else {
90 return 0;
91 }
92 #else
93 /* If it was a exec fault ignore */
94 if (error_code & PF_INSTR)
95 return 0;
96 #endif
97
98 instr = (unsigned char *)convert_ip_to_linear(current, regs);
99 max_instr = instr + 15;
100
101 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
102 return 0;
103
104 while (scan_more && instr < max_instr) {
105 unsigned char opcode;
106 unsigned char instr_hi;
107 unsigned char instr_lo;
108
109 if (probe_kernel_address(instr, opcode))
110 break;
111
112 instr_hi = opcode & 0xf0;
113 instr_lo = opcode & 0x0f;
114 instr++;
115
116 switch (instr_hi) {
117 case 0x20:
118 case 0x30:
119 /*
120 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
121 * In X86_64 long mode, the CPU will signal invalid
122 * opcode if some of these prefixes are present so
123 * X86_64 will never get here anyway
124 */
125 scan_more = ((instr_lo & 7) == 0x6);
126 break;
127 #ifdef CONFIG_X86_64
128 case 0x40:
129 /*
130 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
131 * Need to figure out under what instruction mode the
132 * instruction was issued. Could check the LDT for lm,
133 * but for now it's good enough to assume that long
134 * mode only uses well known segments or kernel.
135 */
136 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
137 break;
138 #endif
139 case 0x60:
140 /* 0x64 thru 0x67 are valid prefixes in all modes. */
141 scan_more = (instr_lo & 0xC) == 0x4;
142 break;
143 case 0xF0:
144 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
145 scan_more = !instr_lo || (instr_lo>>1) == 1;
146 break;
147 case 0x00:
148 /* Prefetch instruction is 0x0F0D or 0x0F18 */
149 scan_more = 0;
150
151 if (probe_kernel_address(instr, opcode))
152 break;
153 prefetch = (instr_lo == 0xF) &&
154 (opcode == 0x0D || opcode == 0x18);
155 break;
156 default:
157 scan_more = 0;
158 break;
159 }
160 }
161 return prefetch;
162 }
163
164 static void force_sig_info_fault(int si_signo, int si_code,
165 unsigned long address, struct task_struct *tsk)
166 {
167 siginfo_t info;
168
169 info.si_signo = si_signo;
170 info.si_errno = 0;
171 info.si_code = si_code;
172 info.si_addr = (void __user *)address;
173 force_sig_info(si_signo, &info, tsk);
174 }
175
176 void do_invalid_op(struct pt_regs *, unsigned long);
177
178 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
179 {
180 unsigned index = pgd_index(address);
181 pgd_t *pgd_k;
182 pud_t *pud, *pud_k;
183 pmd_t *pmd, *pmd_k;
184
185 pgd += index;
186 pgd_k = init_mm.pgd + index;
187
188 if (!pgd_present(*pgd_k))
189 return NULL;
190
191 /*
192 * set_pgd(pgd, *pgd_k); here would be useless on PAE
193 * and redundant with the set_pmd() on non-PAE. As would
194 * set_pud.
195 */
196
197 pud = pud_offset(pgd, address);
198 pud_k = pud_offset(pgd_k, address);
199 if (!pud_present(*pud_k))
200 return NULL;
201
202 pmd = pmd_offset(pud, address);
203 pmd_k = pmd_offset(pud_k, address);
204 if (!pmd_present(*pmd_k))
205 return NULL;
206 if (!pmd_present(*pmd)) {
207 set_pmd(pmd, *pmd_k);
208 arch_flush_lazy_mmu_mode();
209 } else
210 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
211 return pmd_k;
212 }
213
214 #ifdef CONFIG_X86_64
215 static const char errata93_warning[] =
216 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
217 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
218 KERN_ERR "******* Please consider a BIOS update.\n"
219 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
220
221 /* Workaround for K8 erratum #93 & buggy BIOS.
222 BIOS SMM functions are required to use a specific workaround
223 to avoid corruption of the 64bit RIP register on C stepping K8.
224 A lot of BIOS that didn't get tested properly miss this.
225 The OS sees this as a page fault with the upper 32bits of RIP cleared.
226 Try to work around it here.
227 Note we only handle faults in kernel here. */
228
229 static int is_errata93(struct pt_regs *regs, unsigned long address)
230 {
231 static int warned;
232 if (address != regs->ip)
233 return 0;
234 if ((address >> 32) != 0)
235 return 0;
236 address |= 0xffffffffUL << 32;
237 if ((address >= (u64)_stext && address <= (u64)_etext) ||
238 (address >= MODULES_VADDR && address <= MODULES_END)) {
239 if (!warned) {
240 printk(errata93_warning);
241 warned = 1;
242 }
243 regs->ip = address;
244 return 1;
245 }
246 return 0;
247 }
248 #endif
249
250 /*
251 * Handle a fault on the vmalloc or module mapping area
252 *
253 * This assumes no large pages in there.
254 */
255 static inline int vmalloc_fault(unsigned long address)
256 {
257 unsigned long pgd_paddr;
258 pmd_t *pmd_k;
259 pte_t *pte_k;
260 /*
261 * Synchronize this task's top level page-table
262 * with the 'reference' page table.
263 *
264 * Do _not_ use "current" here. We might be inside
265 * an interrupt in the middle of a task switch..
266 */
267 pgd_paddr = read_cr3();
268 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
269 if (!pmd_k)
270 return -1;
271 pte_k = pte_offset_kernel(pmd_k, address);
272 if (!pte_present(*pte_k))
273 return -1;
274 return 0;
275 }
276
277 int show_unhandled_signals = 1;
278
279 /*
280 * This routine handles page faults. It determines the address,
281 * and the problem, and then passes it off to one of the appropriate
282 * routines.
283 */
284 void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
285 {
286 struct task_struct *tsk;
287 struct mm_struct *mm;
288 struct vm_area_struct *vma;
289 unsigned long address;
290 int write, si_code;
291 int fault;
292
293 /*
294 * We can fault from pretty much anywhere, with unknown IRQ state.
295 */
296 trace_hardirqs_fixup();
297
298 /* get the address */
299 address = read_cr2();
300
301 tsk = current;
302
303 si_code = SEGV_MAPERR;
304
305 /*
306 * We fault-in kernel-space virtual memory on-demand. The
307 * 'reference' page table is init_mm.pgd.
308 *
309 * NOTE! We MUST NOT take any locks for this case. We may
310 * be in an interrupt or a critical region, and should
311 * only copy the information from the master page table,
312 * nothing more.
313 *
314 * This verifies that the fault happens in kernel space
315 * (error_code & 4) == 0, and that the fault was not a
316 * protection error (error_code & 9) == 0.
317 */
318 if (unlikely(address >= TASK_SIZE)) {
319 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
320 vmalloc_fault(address) >= 0)
321 return;
322 if (notify_page_fault(regs))
323 return;
324 /*
325 * Don't take the mm semaphore here. If we fixup a prefetch
326 * fault we could otherwise deadlock.
327 */
328 goto bad_area_nosemaphore;
329 }
330
331 if (notify_page_fault(regs))
332 return;
333
334 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
335 fault has been handled. */
336 if (regs->flags & (X86_EFLAGS_IF|VM_MASK))
337 local_irq_enable();
338
339 mm = tsk->mm;
340
341 /*
342 * If we're in an interrupt, have no user context or are running in an
343 * atomic region then we must not take the fault.
344 */
345 if (in_atomic() || !mm)
346 goto bad_area_nosemaphore;
347
348 /* When running in the kernel we expect faults to occur only to
349 * addresses in user space. All other faults represent errors in the
350 * kernel and should generate an OOPS. Unfortunately, in the case of an
351 * erroneous fault occurring in a code path which already holds mmap_sem
352 * we will deadlock attempting to validate the fault against the
353 * address space. Luckily the kernel only validly references user
354 * space from well defined areas of code, which are listed in the
355 * exceptions table.
356 *
357 * As the vast majority of faults will be valid we will only perform
358 * the source reference check when there is a possibility of a deadlock.
359 * Attempt to lock the address space, if we cannot we then validate the
360 * source. If this is invalid we can skip the address space check,
361 * thus avoiding the deadlock.
362 */
363 if (!down_read_trylock(&mm->mmap_sem)) {
364 if ((error_code & PF_USER) == 0 &&
365 !search_exception_tables(regs->ip))
366 goto bad_area_nosemaphore;
367 down_read(&mm->mmap_sem);
368 }
369
370 vma = find_vma(mm, address);
371 if (!vma)
372 goto bad_area;
373 if (vma->vm_start <= address)
374 goto good_area;
375 if (!(vma->vm_flags & VM_GROWSDOWN))
376 goto bad_area;
377 if (error_code & PF_USER) {
378 /*
379 * Accessing the stack below %sp is always a bug.
380 * The large cushion allows instructions like enter
381 * and pusha to work. ("enter $65535,$31" pushes
382 * 32 pointers and then decrements %sp by 65535.)
383 */
384 if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
385 goto bad_area;
386 }
387 if (expand_stack(vma, address))
388 goto bad_area;
389 /*
390 * Ok, we have a good vm_area for this memory access, so
391 * we can handle it..
392 */
393 good_area:
394 si_code = SEGV_ACCERR;
395 write = 0;
396 switch (error_code & (PF_PROT|PF_WRITE)) {
397 default: /* 3: write, present */
398 /* fall through */
399 case PF_WRITE: /* write, not present */
400 if (!(vma->vm_flags & VM_WRITE))
401 goto bad_area;
402 write++;
403 break;
404 case PF_PROT: /* read, present */
405 goto bad_area;
406 case 0: /* read, not present */
407 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
408 goto bad_area;
409 }
410
411 survive:
412 /*
413 * If for any reason at all we couldn't handle the fault,
414 * make sure we exit gracefully rather than endlessly redo
415 * the fault.
416 */
417 fault = handle_mm_fault(mm, vma, address, write);
418 if (unlikely(fault & VM_FAULT_ERROR)) {
419 if (fault & VM_FAULT_OOM)
420 goto out_of_memory;
421 else if (fault & VM_FAULT_SIGBUS)
422 goto do_sigbus;
423 BUG();
424 }
425 if (fault & VM_FAULT_MAJOR)
426 tsk->maj_flt++;
427 else
428 tsk->min_flt++;
429
430 /*
431 * Did it hit the DOS screen memory VA from vm86 mode?
432 */
433 if (regs->flags & VM_MASK) {
434 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
435 if (bit < 32)
436 tsk->thread.screen_bitmap |= 1 << bit;
437 }
438 up_read(&mm->mmap_sem);
439 return;
440
441 /*
442 * Something tried to access memory that isn't in our memory map..
443 * Fix it, but check if it's kernel or user first..
444 */
445 bad_area:
446 up_read(&mm->mmap_sem);
447
448 bad_area_nosemaphore:
449 /* User mode accesses just cause a SIGSEGV */
450 if (error_code & PF_USER) {
451 /*
452 * It's possible to have interrupts off here.
453 */
454 local_irq_enable();
455
456 /*
457 * Valid to do another page fault here because this one came
458 * from user space.
459 */
460 if (is_prefetch(regs, address, error_code))
461 return;
462
463 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
464 printk_ratelimit()) {
465 printk("%s%s[%d]: segfault at %08lx ip %08lx "
466 "sp %08lx error %lx\n",
467 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
468 tsk->comm, task_pid_nr(tsk), address, regs->ip,
469 regs->sp, error_code);
470 }
471 tsk->thread.cr2 = address;
472 /* Kernel addresses are always protection faults */
473 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
474 tsk->thread.trap_no = 14;
475 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
476 return;
477 }
478
479 #ifdef CONFIG_X86_F00F_BUG
480 /*
481 * Pentium F0 0F C7 C8 bug workaround.
482 */
483 if (boot_cpu_data.f00f_bug) {
484 unsigned long nr;
485
486 nr = (address - idt_descr.address) >> 3;
487
488 if (nr == 6) {
489 do_invalid_op(regs, 0);
490 return;
491 }
492 }
493 #endif
494
495 no_context:
496 /* Are we prepared to handle this kernel fault? */
497 if (fixup_exception(regs))
498 return;
499
500 /*
501 * Valid to do another page fault here, because if this fault
502 * had been triggered by is_prefetch fixup_exception would have
503 * handled it.
504 */
505 if (is_prefetch(regs, address, error_code))
506 return;
507
508 /*
509 * Oops. The kernel tried to access some bad page. We'll have to
510 * terminate things with extreme prejudice.
511 */
512
513 bust_spinlocks(1);
514
515 if (oops_may_print()) {
516 __typeof__(pte_val(__pte(0))) page;
517
518 #ifdef CONFIG_X86_PAE
519 if (error_code & PF_INSTR) {
520 pte_t *pte = lookup_address(address);
521
522 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
523 printk(KERN_CRIT "kernel tried to execute "
524 "NX-protected page - exploit attempt? "
525 "(uid: %d)\n", current->uid);
526 }
527 #endif
528 if (address < PAGE_SIZE)
529 printk(KERN_ALERT "BUG: unable to handle kernel NULL "
530 "pointer dereference");
531 else
532 printk(KERN_ALERT "BUG: unable to handle kernel paging"
533 " request");
534 printk(" at virtual address %08lx\n", address);
535 printk(KERN_ALERT "printing ip: %08lx ", regs->ip);
536
537 page = read_cr3();
538 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
539 #ifdef CONFIG_X86_PAE
540 printk("*pdpt = %016Lx ", page);
541 if ((page >> PAGE_SHIFT) < max_low_pfn
542 && page & _PAGE_PRESENT) {
543 page &= PAGE_MASK;
544 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
545 & (PTRS_PER_PMD - 1)];
546 printk(KERN_CONT "*pde = %016Lx ", page);
547 page &= ~_PAGE_NX;
548 }
549 #else
550 printk("*pde = %08lx ", page);
551 #endif
552
553 /*
554 * We must not directly access the pte in the highpte
555 * case if the page table is located in highmem.
556 * And let's rather not kmap-atomic the pte, just in case
557 * it's allocated already.
558 */
559 if ((page >> PAGE_SHIFT) < max_low_pfn
560 && (page & _PAGE_PRESENT)
561 && !(page & _PAGE_PSE)) {
562 page &= PAGE_MASK;
563 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
564 & (PTRS_PER_PTE - 1)];
565 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
566 }
567
568 printk("\n");
569 }
570
571 tsk->thread.cr2 = address;
572 tsk->thread.trap_no = 14;
573 tsk->thread.error_code = error_code;
574 die("Oops", regs, error_code);
575 bust_spinlocks(0);
576 do_exit(SIGKILL);
577
578 /*
579 * We ran out of memory, or some other thing happened to us that made
580 * us unable to handle the page fault gracefully.
581 */
582 out_of_memory:
583 up_read(&mm->mmap_sem);
584 if (is_global_init(tsk)) {
585 yield();
586 down_read(&mm->mmap_sem);
587 goto survive;
588 }
589 printk("VM: killing process %s\n", tsk->comm);
590 if (error_code & PF_USER)
591 do_group_exit(SIGKILL);
592 goto no_context;
593
594 do_sigbus:
595 up_read(&mm->mmap_sem);
596
597 /* Kernel mode? Handle exceptions or die */
598 if (!(error_code & PF_USER))
599 goto no_context;
600
601 /* User space => ok to do another page fault */
602 if (is_prefetch(regs, address, error_code))
603 return;
604
605 tsk->thread.cr2 = address;
606 tsk->thread.error_code = error_code;
607 tsk->thread.trap_no = 14;
608 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
609 }
610
611 void vmalloc_sync_all(void)
612 {
613 /*
614 * Note that races in the updates of insync and start aren't
615 * problematic: insync can only get set bits added, and updates to
616 * start are only improving performance (without affecting correctness
617 * if undone).
618 */
619 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
620 static unsigned long start = TASK_SIZE;
621 unsigned long address;
622
623 if (SHARED_KERNEL_PMD)
624 return;
625
626 BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
627 for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
628 if (!test_bit(pgd_index(address), insync)) {
629 unsigned long flags;
630 struct page *page;
631
632 spin_lock_irqsave(&pgd_lock, flags);
633 for (page = pgd_list; page; page =
634 (struct page *)page->index)
635 if (!vmalloc_sync_one(page_address(page),
636 address)) {
637 BUG_ON(page != pgd_list);
638 break;
639 }
640 spin_unlock_irqrestore(&pgd_lock, flags);
641 if (!page)
642 set_bit(pgd_index(address), insync);
643 }
644 if (address == start && test_bit(pgd_index(address), insync))
645 start = address + PGDIR_SIZE;
646 }
647 }
This page took 0.043633 seconds and 5 git commands to generate.