x86/gup: Replace ACCESS_ONCE with READ_ONCE
[deliverable/linux.git] / arch / x86 / mm / init_64.c
1 /*
2 * linux/arch/x86_64/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/cacheflush.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57
58 #include "mm_internal.h"
59
60 static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
61 unsigned long addr, unsigned long end)
62 {
63 addr &= PMD_MASK;
64 for (; addr < end; addr += PMD_SIZE) {
65 pmd_t *pmd = pmd_page + pmd_index(addr);
66
67 if (!pmd_present(*pmd))
68 set_pmd(pmd, __pmd(addr | pmd_flag));
69 }
70 }
71 static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
72 unsigned long addr, unsigned long end)
73 {
74 unsigned long next;
75
76 for (; addr < end; addr = next) {
77 pud_t *pud = pud_page + pud_index(addr);
78 pmd_t *pmd;
79
80 next = (addr & PUD_MASK) + PUD_SIZE;
81 if (next > end)
82 next = end;
83
84 if (pud_present(*pud)) {
85 pmd = pmd_offset(pud, 0);
86 ident_pmd_init(info->pmd_flag, pmd, addr, next);
87 continue;
88 }
89 pmd = (pmd_t *)info->alloc_pgt_page(info->context);
90 if (!pmd)
91 return -ENOMEM;
92 ident_pmd_init(info->pmd_flag, pmd, addr, next);
93 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
94 }
95
96 return 0;
97 }
98
99 int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
100 unsigned long addr, unsigned long end)
101 {
102 unsigned long next;
103 int result;
104 int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
105
106 for (; addr < end; addr = next) {
107 pgd_t *pgd = pgd_page + pgd_index(addr) + off;
108 pud_t *pud;
109
110 next = (addr & PGDIR_MASK) + PGDIR_SIZE;
111 if (next > end)
112 next = end;
113
114 if (pgd_present(*pgd)) {
115 pud = pud_offset(pgd, 0);
116 result = ident_pud_init(info, pud, addr, next);
117 if (result)
118 return result;
119 continue;
120 }
121
122 pud = (pud_t *)info->alloc_pgt_page(info->context);
123 if (!pud)
124 return -ENOMEM;
125 result = ident_pud_init(info, pud, addr, next);
126 if (result)
127 return result;
128 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
129 }
130
131 return 0;
132 }
133
134 static int __init parse_direct_gbpages_off(char *arg)
135 {
136 direct_gbpages = 0;
137 return 0;
138 }
139 early_param("nogbpages", parse_direct_gbpages_off);
140
141 static int __init parse_direct_gbpages_on(char *arg)
142 {
143 direct_gbpages = 1;
144 return 0;
145 }
146 early_param("gbpages", parse_direct_gbpages_on);
147
148 /*
149 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
150 * physical space so we can cache the place of the first one and move
151 * around without checking the pgd every time.
152 */
153
154 pteval_t __supported_pte_mask __read_mostly = ~0;
155 EXPORT_SYMBOL_GPL(__supported_pte_mask);
156
157 int force_personality32;
158
159 /*
160 * noexec32=on|off
161 * Control non executable heap for 32bit processes.
162 * To control the stack too use noexec=off
163 *
164 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
165 * off PROT_READ implies PROT_EXEC
166 */
167 static int __init nonx32_setup(char *str)
168 {
169 if (!strcmp(str, "on"))
170 force_personality32 &= ~READ_IMPLIES_EXEC;
171 else if (!strcmp(str, "off"))
172 force_personality32 |= READ_IMPLIES_EXEC;
173 return 1;
174 }
175 __setup("noexec32=", nonx32_setup);
176
177 /*
178 * When memory was added/removed make sure all the processes MM have
179 * suitable PGD entries in the local PGD level page.
180 */
181 void sync_global_pgds(unsigned long start, unsigned long end, int removed)
182 {
183 unsigned long address;
184
185 for (address = start; address <= end; address += PGDIR_SIZE) {
186 const pgd_t *pgd_ref = pgd_offset_k(address);
187 struct page *page;
188
189 /*
190 * When it is called after memory hot remove, pgd_none()
191 * returns true. In this case (removed == 1), we must clear
192 * the PGD entries in the local PGD level page.
193 */
194 if (pgd_none(*pgd_ref) && !removed)
195 continue;
196
197 spin_lock(&pgd_lock);
198 list_for_each_entry(page, &pgd_list, lru) {
199 pgd_t *pgd;
200 spinlock_t *pgt_lock;
201
202 pgd = (pgd_t *)page_address(page) + pgd_index(address);
203 /* the pgt_lock only for Xen */
204 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
205 spin_lock(pgt_lock);
206
207 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
208 BUG_ON(pgd_page_vaddr(*pgd)
209 != pgd_page_vaddr(*pgd_ref));
210
211 if (removed) {
212 if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
213 pgd_clear(pgd);
214 } else {
215 if (pgd_none(*pgd))
216 set_pgd(pgd, *pgd_ref);
217 }
218
219 spin_unlock(pgt_lock);
220 }
221 spin_unlock(&pgd_lock);
222 }
223 }
224
225 /*
226 * NOTE: This function is marked __ref because it calls __init function
227 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
228 */
229 static __ref void *spp_getpage(void)
230 {
231 void *ptr;
232
233 if (after_bootmem)
234 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
235 else
236 ptr = alloc_bootmem_pages(PAGE_SIZE);
237
238 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
239 panic("set_pte_phys: cannot allocate page data %s\n",
240 after_bootmem ? "after bootmem" : "");
241 }
242
243 pr_debug("spp_getpage %p\n", ptr);
244
245 return ptr;
246 }
247
248 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
249 {
250 if (pgd_none(*pgd)) {
251 pud_t *pud = (pud_t *)spp_getpage();
252 pgd_populate(&init_mm, pgd, pud);
253 if (pud != pud_offset(pgd, 0))
254 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
255 pud, pud_offset(pgd, 0));
256 }
257 return pud_offset(pgd, vaddr);
258 }
259
260 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
261 {
262 if (pud_none(*pud)) {
263 pmd_t *pmd = (pmd_t *) spp_getpage();
264 pud_populate(&init_mm, pud, pmd);
265 if (pmd != pmd_offset(pud, 0))
266 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
267 pmd, pmd_offset(pud, 0));
268 }
269 return pmd_offset(pud, vaddr);
270 }
271
272 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
273 {
274 if (pmd_none(*pmd)) {
275 pte_t *pte = (pte_t *) spp_getpage();
276 pmd_populate_kernel(&init_mm, pmd, pte);
277 if (pte != pte_offset_kernel(pmd, 0))
278 printk(KERN_ERR "PAGETABLE BUG #02!\n");
279 }
280 return pte_offset_kernel(pmd, vaddr);
281 }
282
283 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
284 {
285 pud_t *pud;
286 pmd_t *pmd;
287 pte_t *pte;
288
289 pud = pud_page + pud_index(vaddr);
290 pmd = fill_pmd(pud, vaddr);
291 pte = fill_pte(pmd, vaddr);
292
293 set_pte(pte, new_pte);
294
295 /*
296 * It's enough to flush this one mapping.
297 * (PGE mappings get flushed as well)
298 */
299 __flush_tlb_one(vaddr);
300 }
301
302 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
303 {
304 pgd_t *pgd;
305 pud_t *pud_page;
306
307 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
308
309 pgd = pgd_offset_k(vaddr);
310 if (pgd_none(*pgd)) {
311 printk(KERN_ERR
312 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
313 return;
314 }
315 pud_page = (pud_t*)pgd_page_vaddr(*pgd);
316 set_pte_vaddr_pud(pud_page, vaddr, pteval);
317 }
318
319 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
320 {
321 pgd_t *pgd;
322 pud_t *pud;
323
324 pgd = pgd_offset_k(vaddr);
325 pud = fill_pud(pgd, vaddr);
326 return fill_pmd(pud, vaddr);
327 }
328
329 pte_t * __init populate_extra_pte(unsigned long vaddr)
330 {
331 pmd_t *pmd;
332
333 pmd = populate_extra_pmd(vaddr);
334 return fill_pte(pmd, vaddr);
335 }
336
337 /*
338 * Create large page table mappings for a range of physical addresses.
339 */
340 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
341 pgprot_t prot)
342 {
343 pgd_t *pgd;
344 pud_t *pud;
345 pmd_t *pmd;
346
347 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
348 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
349 pgd = pgd_offset_k((unsigned long)__va(phys));
350 if (pgd_none(*pgd)) {
351 pud = (pud_t *) spp_getpage();
352 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
353 _PAGE_USER));
354 }
355 pud = pud_offset(pgd, (unsigned long)__va(phys));
356 if (pud_none(*pud)) {
357 pmd = (pmd_t *) spp_getpage();
358 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
359 _PAGE_USER));
360 }
361 pmd = pmd_offset(pud, phys);
362 BUG_ON(!pmd_none(*pmd));
363 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
364 }
365 }
366
367 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
368 {
369 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
370 }
371
372 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
373 {
374 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
375 }
376
377 /*
378 * The head.S code sets up the kernel high mapping:
379 *
380 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
381 *
382 * phys_base holds the negative offset to the kernel, which is added
383 * to the compile time generated pmds. This results in invalid pmds up
384 * to the point where we hit the physaddr 0 mapping.
385 *
386 * We limit the mappings to the region from _text to _brk_end. _brk_end
387 * is rounded up to the 2MB boundary. This catches the invalid pmds as
388 * well, as they are located before _text:
389 */
390 void __init cleanup_highmap(void)
391 {
392 unsigned long vaddr = __START_KERNEL_map;
393 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
394 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
395 pmd_t *pmd = level2_kernel_pgt;
396
397 /*
398 * Native path, max_pfn_mapped is not set yet.
399 * Xen has valid max_pfn_mapped set in
400 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
401 */
402 if (max_pfn_mapped)
403 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
404
405 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
406 if (pmd_none(*pmd))
407 continue;
408 if (vaddr < (unsigned long) _text || vaddr > end)
409 set_pmd(pmd, __pmd(0));
410 }
411 }
412
413 static unsigned long __meminit
414 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
415 pgprot_t prot)
416 {
417 unsigned long pages = 0, next;
418 unsigned long last_map_addr = end;
419 int i;
420
421 pte_t *pte = pte_page + pte_index(addr);
422
423 for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
424 next = (addr & PAGE_MASK) + PAGE_SIZE;
425 if (addr >= end) {
426 if (!after_bootmem &&
427 !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
428 !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
429 set_pte(pte, __pte(0));
430 continue;
431 }
432
433 /*
434 * We will re-use the existing mapping.
435 * Xen for example has some special requirements, like mapping
436 * pagetable pages as RO. So assume someone who pre-setup
437 * these mappings are more intelligent.
438 */
439 if (pte_val(*pte)) {
440 if (!after_bootmem)
441 pages++;
442 continue;
443 }
444
445 if (0)
446 printk(" pte=%p addr=%lx pte=%016lx\n",
447 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
448 pages++;
449 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
450 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
451 }
452
453 update_page_count(PG_LEVEL_4K, pages);
454
455 return last_map_addr;
456 }
457
458 static unsigned long __meminit
459 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
460 unsigned long page_size_mask, pgprot_t prot)
461 {
462 unsigned long pages = 0, next;
463 unsigned long last_map_addr = end;
464
465 int i = pmd_index(address);
466
467 for (; i < PTRS_PER_PMD; i++, address = next) {
468 pmd_t *pmd = pmd_page + pmd_index(address);
469 pte_t *pte;
470 pgprot_t new_prot = prot;
471
472 next = (address & PMD_MASK) + PMD_SIZE;
473 if (address >= end) {
474 if (!after_bootmem &&
475 !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
476 !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
477 set_pmd(pmd, __pmd(0));
478 continue;
479 }
480
481 if (pmd_val(*pmd)) {
482 if (!pmd_large(*pmd)) {
483 spin_lock(&init_mm.page_table_lock);
484 pte = (pte_t *)pmd_page_vaddr(*pmd);
485 last_map_addr = phys_pte_init(pte, address,
486 end, prot);
487 spin_unlock(&init_mm.page_table_lock);
488 continue;
489 }
490 /*
491 * If we are ok with PG_LEVEL_2M mapping, then we will
492 * use the existing mapping,
493 *
494 * Otherwise, we will split the large page mapping but
495 * use the same existing protection bits except for
496 * large page, so that we don't violate Intel's TLB
497 * Application note (317080) which says, while changing
498 * the page sizes, new and old translations should
499 * not differ with respect to page frame and
500 * attributes.
501 */
502 if (page_size_mask & (1 << PG_LEVEL_2M)) {
503 if (!after_bootmem)
504 pages++;
505 last_map_addr = next;
506 continue;
507 }
508 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
509 }
510
511 if (page_size_mask & (1<<PG_LEVEL_2M)) {
512 pages++;
513 spin_lock(&init_mm.page_table_lock);
514 set_pte((pte_t *)pmd,
515 pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
516 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
517 spin_unlock(&init_mm.page_table_lock);
518 last_map_addr = next;
519 continue;
520 }
521
522 pte = alloc_low_page();
523 last_map_addr = phys_pte_init(pte, address, end, new_prot);
524
525 spin_lock(&init_mm.page_table_lock);
526 pmd_populate_kernel(&init_mm, pmd, pte);
527 spin_unlock(&init_mm.page_table_lock);
528 }
529 update_page_count(PG_LEVEL_2M, pages);
530 return last_map_addr;
531 }
532
533 static unsigned long __meminit
534 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
535 unsigned long page_size_mask)
536 {
537 unsigned long pages = 0, next;
538 unsigned long last_map_addr = end;
539 int i = pud_index(addr);
540
541 for (; i < PTRS_PER_PUD; i++, addr = next) {
542 pud_t *pud = pud_page + pud_index(addr);
543 pmd_t *pmd;
544 pgprot_t prot = PAGE_KERNEL;
545
546 next = (addr & PUD_MASK) + PUD_SIZE;
547 if (addr >= end) {
548 if (!after_bootmem &&
549 !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
550 !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
551 set_pud(pud, __pud(0));
552 continue;
553 }
554
555 if (pud_val(*pud)) {
556 if (!pud_large(*pud)) {
557 pmd = pmd_offset(pud, 0);
558 last_map_addr = phys_pmd_init(pmd, addr, end,
559 page_size_mask, prot);
560 __flush_tlb_all();
561 continue;
562 }
563 /*
564 * If we are ok with PG_LEVEL_1G mapping, then we will
565 * use the existing mapping.
566 *
567 * Otherwise, we will split the gbpage mapping but use
568 * the same existing protection bits except for large
569 * page, so that we don't violate Intel's TLB
570 * Application note (317080) which says, while changing
571 * the page sizes, new and old translations should
572 * not differ with respect to page frame and
573 * attributes.
574 */
575 if (page_size_mask & (1 << PG_LEVEL_1G)) {
576 if (!after_bootmem)
577 pages++;
578 last_map_addr = next;
579 continue;
580 }
581 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
582 }
583
584 if (page_size_mask & (1<<PG_LEVEL_1G)) {
585 pages++;
586 spin_lock(&init_mm.page_table_lock);
587 set_pte((pte_t *)pud,
588 pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
589 PAGE_KERNEL_LARGE));
590 spin_unlock(&init_mm.page_table_lock);
591 last_map_addr = next;
592 continue;
593 }
594
595 pmd = alloc_low_page();
596 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
597 prot);
598
599 spin_lock(&init_mm.page_table_lock);
600 pud_populate(&init_mm, pud, pmd);
601 spin_unlock(&init_mm.page_table_lock);
602 }
603 __flush_tlb_all();
604
605 update_page_count(PG_LEVEL_1G, pages);
606
607 return last_map_addr;
608 }
609
610 unsigned long __meminit
611 kernel_physical_mapping_init(unsigned long start,
612 unsigned long end,
613 unsigned long page_size_mask)
614 {
615 bool pgd_changed = false;
616 unsigned long next, last_map_addr = end;
617 unsigned long addr;
618
619 start = (unsigned long)__va(start);
620 end = (unsigned long)__va(end);
621 addr = start;
622
623 for (; start < end; start = next) {
624 pgd_t *pgd = pgd_offset_k(start);
625 pud_t *pud;
626
627 next = (start & PGDIR_MASK) + PGDIR_SIZE;
628
629 if (pgd_val(*pgd)) {
630 pud = (pud_t *)pgd_page_vaddr(*pgd);
631 last_map_addr = phys_pud_init(pud, __pa(start),
632 __pa(end), page_size_mask);
633 continue;
634 }
635
636 pud = alloc_low_page();
637 last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
638 page_size_mask);
639
640 spin_lock(&init_mm.page_table_lock);
641 pgd_populate(&init_mm, pgd, pud);
642 spin_unlock(&init_mm.page_table_lock);
643 pgd_changed = true;
644 }
645
646 if (pgd_changed)
647 sync_global_pgds(addr, end - 1, 0);
648
649 __flush_tlb_all();
650
651 return last_map_addr;
652 }
653
654 #ifndef CONFIG_NUMA
655 void __init initmem_init(void)
656 {
657 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
658 }
659 #endif
660
661 void __init paging_init(void)
662 {
663 sparse_memory_present_with_active_regions(MAX_NUMNODES);
664 sparse_init();
665
666 /*
667 * clear the default setting with node 0
668 * note: don't use nodes_clear here, that is really clearing when
669 * numa support is not compiled in, and later node_set_state
670 * will not set it back.
671 */
672 node_clear_state(0, N_MEMORY);
673 if (N_MEMORY != N_NORMAL_MEMORY)
674 node_clear_state(0, N_NORMAL_MEMORY);
675
676 zone_sizes_init();
677 }
678
679 /*
680 * Memory hotplug specific functions
681 */
682 #ifdef CONFIG_MEMORY_HOTPLUG
683 /*
684 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
685 * updating.
686 */
687 static void update_end_of_memory_vars(u64 start, u64 size)
688 {
689 unsigned long end_pfn = PFN_UP(start + size);
690
691 if (end_pfn > max_pfn) {
692 max_pfn = end_pfn;
693 max_low_pfn = end_pfn;
694 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
695 }
696 }
697
698 /*
699 * Memory is added always to NORMAL zone. This means you will never get
700 * additional DMA/DMA32 memory.
701 */
702 int arch_add_memory(int nid, u64 start, u64 size)
703 {
704 struct pglist_data *pgdat = NODE_DATA(nid);
705 struct zone *zone = pgdat->node_zones +
706 zone_for_memory(nid, start, size, ZONE_NORMAL);
707 unsigned long start_pfn = start >> PAGE_SHIFT;
708 unsigned long nr_pages = size >> PAGE_SHIFT;
709 int ret;
710
711 init_memory_mapping(start, start + size);
712
713 ret = __add_pages(nid, zone, start_pfn, nr_pages);
714 WARN_ON_ONCE(ret);
715
716 /* update max_pfn, max_low_pfn and high_memory */
717 update_end_of_memory_vars(start, size);
718
719 return ret;
720 }
721 EXPORT_SYMBOL_GPL(arch_add_memory);
722
723 #define PAGE_INUSE 0xFD
724
725 static void __meminit free_pagetable(struct page *page, int order)
726 {
727 unsigned long magic;
728 unsigned int nr_pages = 1 << order;
729
730 /* bootmem page has reserved flag */
731 if (PageReserved(page)) {
732 __ClearPageReserved(page);
733
734 magic = (unsigned long)page->lru.next;
735 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
736 while (nr_pages--)
737 put_page_bootmem(page++);
738 } else
739 while (nr_pages--)
740 free_reserved_page(page++);
741 } else
742 free_pages((unsigned long)page_address(page), order);
743 }
744
745 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
746 {
747 pte_t *pte;
748 int i;
749
750 for (i = 0; i < PTRS_PER_PTE; i++) {
751 pte = pte_start + i;
752 if (pte_val(*pte))
753 return;
754 }
755
756 /* free a pte talbe */
757 free_pagetable(pmd_page(*pmd), 0);
758 spin_lock(&init_mm.page_table_lock);
759 pmd_clear(pmd);
760 spin_unlock(&init_mm.page_table_lock);
761 }
762
763 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
764 {
765 pmd_t *pmd;
766 int i;
767
768 for (i = 0; i < PTRS_PER_PMD; i++) {
769 pmd = pmd_start + i;
770 if (pmd_val(*pmd))
771 return;
772 }
773
774 /* free a pmd talbe */
775 free_pagetable(pud_page(*pud), 0);
776 spin_lock(&init_mm.page_table_lock);
777 pud_clear(pud);
778 spin_unlock(&init_mm.page_table_lock);
779 }
780
781 /* Return true if pgd is changed, otherwise return false. */
782 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
783 {
784 pud_t *pud;
785 int i;
786
787 for (i = 0; i < PTRS_PER_PUD; i++) {
788 pud = pud_start + i;
789 if (pud_val(*pud))
790 return false;
791 }
792
793 /* free a pud table */
794 free_pagetable(pgd_page(*pgd), 0);
795 spin_lock(&init_mm.page_table_lock);
796 pgd_clear(pgd);
797 spin_unlock(&init_mm.page_table_lock);
798
799 return true;
800 }
801
802 static void __meminit
803 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
804 bool direct)
805 {
806 unsigned long next, pages = 0;
807 pte_t *pte;
808 void *page_addr;
809 phys_addr_t phys_addr;
810
811 pte = pte_start + pte_index(addr);
812 for (; addr < end; addr = next, pte++) {
813 next = (addr + PAGE_SIZE) & PAGE_MASK;
814 if (next > end)
815 next = end;
816
817 if (!pte_present(*pte))
818 continue;
819
820 /*
821 * We mapped [0,1G) memory as identity mapping when
822 * initializing, in arch/x86/kernel/head_64.S. These
823 * pagetables cannot be removed.
824 */
825 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
826 if (phys_addr < (phys_addr_t)0x40000000)
827 return;
828
829 if (IS_ALIGNED(addr, PAGE_SIZE) &&
830 IS_ALIGNED(next, PAGE_SIZE)) {
831 /*
832 * Do not free direct mapping pages since they were
833 * freed when offlining, or simplely not in use.
834 */
835 if (!direct)
836 free_pagetable(pte_page(*pte), 0);
837
838 spin_lock(&init_mm.page_table_lock);
839 pte_clear(&init_mm, addr, pte);
840 spin_unlock(&init_mm.page_table_lock);
841
842 /* For non-direct mapping, pages means nothing. */
843 pages++;
844 } else {
845 /*
846 * If we are here, we are freeing vmemmap pages since
847 * direct mapped memory ranges to be freed are aligned.
848 *
849 * If we are not removing the whole page, it means
850 * other page structs in this page are being used and
851 * we canot remove them. So fill the unused page_structs
852 * with 0xFD, and remove the page when it is wholly
853 * filled with 0xFD.
854 */
855 memset((void *)addr, PAGE_INUSE, next - addr);
856
857 page_addr = page_address(pte_page(*pte));
858 if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
859 free_pagetable(pte_page(*pte), 0);
860
861 spin_lock(&init_mm.page_table_lock);
862 pte_clear(&init_mm, addr, pte);
863 spin_unlock(&init_mm.page_table_lock);
864 }
865 }
866 }
867
868 /* Call free_pte_table() in remove_pmd_table(). */
869 flush_tlb_all();
870 if (direct)
871 update_page_count(PG_LEVEL_4K, -pages);
872 }
873
874 static void __meminit
875 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
876 bool direct)
877 {
878 unsigned long next, pages = 0;
879 pte_t *pte_base;
880 pmd_t *pmd;
881 void *page_addr;
882
883 pmd = pmd_start + pmd_index(addr);
884 for (; addr < end; addr = next, pmd++) {
885 next = pmd_addr_end(addr, end);
886
887 if (!pmd_present(*pmd))
888 continue;
889
890 if (pmd_large(*pmd)) {
891 if (IS_ALIGNED(addr, PMD_SIZE) &&
892 IS_ALIGNED(next, PMD_SIZE)) {
893 if (!direct)
894 free_pagetable(pmd_page(*pmd),
895 get_order(PMD_SIZE));
896
897 spin_lock(&init_mm.page_table_lock);
898 pmd_clear(pmd);
899 spin_unlock(&init_mm.page_table_lock);
900 pages++;
901 } else {
902 /* If here, we are freeing vmemmap pages. */
903 memset((void *)addr, PAGE_INUSE, next - addr);
904
905 page_addr = page_address(pmd_page(*pmd));
906 if (!memchr_inv(page_addr, PAGE_INUSE,
907 PMD_SIZE)) {
908 free_pagetable(pmd_page(*pmd),
909 get_order(PMD_SIZE));
910
911 spin_lock(&init_mm.page_table_lock);
912 pmd_clear(pmd);
913 spin_unlock(&init_mm.page_table_lock);
914 }
915 }
916
917 continue;
918 }
919
920 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
921 remove_pte_table(pte_base, addr, next, direct);
922 free_pte_table(pte_base, pmd);
923 }
924
925 /* Call free_pmd_table() in remove_pud_table(). */
926 if (direct)
927 update_page_count(PG_LEVEL_2M, -pages);
928 }
929
930 static void __meminit
931 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
932 bool direct)
933 {
934 unsigned long next, pages = 0;
935 pmd_t *pmd_base;
936 pud_t *pud;
937 void *page_addr;
938
939 pud = pud_start + pud_index(addr);
940 for (; addr < end; addr = next, pud++) {
941 next = pud_addr_end(addr, end);
942
943 if (!pud_present(*pud))
944 continue;
945
946 if (pud_large(*pud)) {
947 if (IS_ALIGNED(addr, PUD_SIZE) &&
948 IS_ALIGNED(next, PUD_SIZE)) {
949 if (!direct)
950 free_pagetable(pud_page(*pud),
951 get_order(PUD_SIZE));
952
953 spin_lock(&init_mm.page_table_lock);
954 pud_clear(pud);
955 spin_unlock(&init_mm.page_table_lock);
956 pages++;
957 } else {
958 /* If here, we are freeing vmemmap pages. */
959 memset((void *)addr, PAGE_INUSE, next - addr);
960
961 page_addr = page_address(pud_page(*pud));
962 if (!memchr_inv(page_addr, PAGE_INUSE,
963 PUD_SIZE)) {
964 free_pagetable(pud_page(*pud),
965 get_order(PUD_SIZE));
966
967 spin_lock(&init_mm.page_table_lock);
968 pud_clear(pud);
969 spin_unlock(&init_mm.page_table_lock);
970 }
971 }
972
973 continue;
974 }
975
976 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
977 remove_pmd_table(pmd_base, addr, next, direct);
978 free_pmd_table(pmd_base, pud);
979 }
980
981 if (direct)
982 update_page_count(PG_LEVEL_1G, -pages);
983 }
984
985 /* start and end are both virtual address. */
986 static void __meminit
987 remove_pagetable(unsigned long start, unsigned long end, bool direct)
988 {
989 unsigned long next;
990 unsigned long addr;
991 pgd_t *pgd;
992 pud_t *pud;
993 bool pgd_changed = false;
994
995 for (addr = start; addr < end; addr = next) {
996 next = pgd_addr_end(addr, end);
997
998 pgd = pgd_offset_k(addr);
999 if (!pgd_present(*pgd))
1000 continue;
1001
1002 pud = (pud_t *)pgd_page_vaddr(*pgd);
1003 remove_pud_table(pud, addr, next, direct);
1004 if (free_pud_table(pud, pgd))
1005 pgd_changed = true;
1006 }
1007
1008 if (pgd_changed)
1009 sync_global_pgds(start, end - 1, 1);
1010
1011 flush_tlb_all();
1012 }
1013
1014 void __ref vmemmap_free(unsigned long start, unsigned long end)
1015 {
1016 remove_pagetable(start, end, false);
1017 }
1018
1019 #ifdef CONFIG_MEMORY_HOTREMOVE
1020 static void __meminit
1021 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1022 {
1023 start = (unsigned long)__va(start);
1024 end = (unsigned long)__va(end);
1025
1026 remove_pagetable(start, end, true);
1027 }
1028
1029 int __ref arch_remove_memory(u64 start, u64 size)
1030 {
1031 unsigned long start_pfn = start >> PAGE_SHIFT;
1032 unsigned long nr_pages = size >> PAGE_SHIFT;
1033 struct zone *zone;
1034 int ret;
1035
1036 zone = page_zone(pfn_to_page(start_pfn));
1037 kernel_physical_mapping_remove(start, start + size);
1038 ret = __remove_pages(zone, start_pfn, nr_pages);
1039 WARN_ON_ONCE(ret);
1040
1041 return ret;
1042 }
1043 #endif
1044 #endif /* CONFIG_MEMORY_HOTPLUG */
1045
1046 static struct kcore_list kcore_vsyscall;
1047
1048 static void __init register_page_bootmem_info(void)
1049 {
1050 #ifdef CONFIG_NUMA
1051 int i;
1052
1053 for_each_online_node(i)
1054 register_page_bootmem_info_node(NODE_DATA(i));
1055 #endif
1056 }
1057
1058 void __init mem_init(void)
1059 {
1060 pci_iommu_alloc();
1061
1062 /* clear_bss() already clear the empty_zero_page */
1063
1064 register_page_bootmem_info();
1065
1066 /* this will put all memory onto the freelists */
1067 free_all_bootmem();
1068 after_bootmem = 1;
1069
1070 /* Register memory areas for /proc/kcore */
1071 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1072 PAGE_SIZE, KCORE_OTHER);
1073
1074 mem_init_print_info(NULL);
1075 }
1076
1077 #ifdef CONFIG_DEBUG_RODATA
1078 const int rodata_test_data = 0xC3;
1079 EXPORT_SYMBOL_GPL(rodata_test_data);
1080
1081 int kernel_set_to_readonly;
1082
1083 void set_kernel_text_rw(void)
1084 {
1085 unsigned long start = PFN_ALIGN(_text);
1086 unsigned long end = PFN_ALIGN(__stop___ex_table);
1087
1088 if (!kernel_set_to_readonly)
1089 return;
1090
1091 pr_debug("Set kernel text: %lx - %lx for read write\n",
1092 start, end);
1093
1094 /*
1095 * Make the kernel identity mapping for text RW. Kernel text
1096 * mapping will always be RO. Refer to the comment in
1097 * static_protections() in pageattr.c
1098 */
1099 set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1100 }
1101
1102 void set_kernel_text_ro(void)
1103 {
1104 unsigned long start = PFN_ALIGN(_text);
1105 unsigned long end = PFN_ALIGN(__stop___ex_table);
1106
1107 if (!kernel_set_to_readonly)
1108 return;
1109
1110 pr_debug("Set kernel text: %lx - %lx for read only\n",
1111 start, end);
1112
1113 /*
1114 * Set the kernel identity mapping for text RO.
1115 */
1116 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1117 }
1118
1119 void mark_rodata_ro(void)
1120 {
1121 unsigned long start = PFN_ALIGN(_text);
1122 unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1123 unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1124 unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1125 unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1126 unsigned long all_end = PFN_ALIGN(&_end);
1127
1128 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1129 (end - start) >> 10);
1130 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1131
1132 kernel_set_to_readonly = 1;
1133
1134 /*
1135 * The rodata/data/bss/brk section (but not the kernel text!)
1136 * should also be not-executable.
1137 */
1138 set_memory_nx(rodata_start, (all_end - rodata_start) >> PAGE_SHIFT);
1139
1140 rodata_test();
1141
1142 #ifdef CONFIG_CPA_DEBUG
1143 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1144 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1145
1146 printk(KERN_INFO "Testing CPA: again\n");
1147 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1148 #endif
1149
1150 free_init_pages("unused kernel",
1151 (unsigned long) __va(__pa_symbol(text_end)),
1152 (unsigned long) __va(__pa_symbol(rodata_start)));
1153 free_init_pages("unused kernel",
1154 (unsigned long) __va(__pa_symbol(rodata_end)),
1155 (unsigned long) __va(__pa_symbol(_sdata)));
1156 }
1157
1158 #endif
1159
1160 int kern_addr_valid(unsigned long addr)
1161 {
1162 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1163 pgd_t *pgd;
1164 pud_t *pud;
1165 pmd_t *pmd;
1166 pte_t *pte;
1167
1168 if (above != 0 && above != -1UL)
1169 return 0;
1170
1171 pgd = pgd_offset_k(addr);
1172 if (pgd_none(*pgd))
1173 return 0;
1174
1175 pud = pud_offset(pgd, addr);
1176 if (pud_none(*pud))
1177 return 0;
1178
1179 if (pud_large(*pud))
1180 return pfn_valid(pud_pfn(*pud));
1181
1182 pmd = pmd_offset(pud, addr);
1183 if (pmd_none(*pmd))
1184 return 0;
1185
1186 if (pmd_large(*pmd))
1187 return pfn_valid(pmd_pfn(*pmd));
1188
1189 pte = pte_offset_kernel(pmd, addr);
1190 if (pte_none(*pte))
1191 return 0;
1192
1193 return pfn_valid(pte_pfn(*pte));
1194 }
1195
1196 /*
1197 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
1198 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1199 * not need special handling anymore:
1200 */
1201 static const char *gate_vma_name(struct vm_area_struct *vma)
1202 {
1203 return "[vsyscall]";
1204 }
1205 static struct vm_operations_struct gate_vma_ops = {
1206 .name = gate_vma_name,
1207 };
1208 static struct vm_area_struct gate_vma = {
1209 .vm_start = VSYSCALL_ADDR,
1210 .vm_end = VSYSCALL_ADDR + PAGE_SIZE,
1211 .vm_page_prot = PAGE_READONLY_EXEC,
1212 .vm_flags = VM_READ | VM_EXEC,
1213 .vm_ops = &gate_vma_ops,
1214 };
1215
1216 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1217 {
1218 #ifdef CONFIG_IA32_EMULATION
1219 if (!mm || mm->context.ia32_compat)
1220 return NULL;
1221 #endif
1222 return &gate_vma;
1223 }
1224
1225 int in_gate_area(struct mm_struct *mm, unsigned long addr)
1226 {
1227 struct vm_area_struct *vma = get_gate_vma(mm);
1228
1229 if (!vma)
1230 return 0;
1231
1232 return (addr >= vma->vm_start) && (addr < vma->vm_end);
1233 }
1234
1235 /*
1236 * Use this when you have no reliable mm, typically from interrupt
1237 * context. It is less reliable than using a task's mm and may give
1238 * false positives.
1239 */
1240 int in_gate_area_no_mm(unsigned long addr)
1241 {
1242 return (addr & PAGE_MASK) == VSYSCALL_ADDR;
1243 }
1244
1245 static unsigned long probe_memory_block_size(void)
1246 {
1247 /* start from 2g */
1248 unsigned long bz = 1UL<<31;
1249
1250 #ifdef CONFIG_X86_UV
1251 if (is_uv_system()) {
1252 printk(KERN_INFO "UV: memory block size 2GB\n");
1253 return 2UL * 1024 * 1024 * 1024;
1254 }
1255 #endif
1256
1257 /* less than 64g installed */
1258 if ((max_pfn << PAGE_SHIFT) < (16UL << 32))
1259 return MIN_MEMORY_BLOCK_SIZE;
1260
1261 /* get the tail size */
1262 while (bz > MIN_MEMORY_BLOCK_SIZE) {
1263 if (!((max_pfn << PAGE_SHIFT) & (bz - 1)))
1264 break;
1265 bz >>= 1;
1266 }
1267
1268 printk(KERN_DEBUG "memory block size : %ldMB\n", bz >> 20);
1269
1270 return bz;
1271 }
1272
1273 static unsigned long memory_block_size_probed;
1274 unsigned long memory_block_size_bytes(void)
1275 {
1276 if (!memory_block_size_probed)
1277 memory_block_size_probed = probe_memory_block_size();
1278
1279 return memory_block_size_probed;
1280 }
1281
1282 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1283 /*
1284 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1285 */
1286 static long __meminitdata addr_start, addr_end;
1287 static void __meminitdata *p_start, *p_end;
1288 static int __meminitdata node_start;
1289
1290 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1291 unsigned long end, int node)
1292 {
1293 unsigned long addr;
1294 unsigned long next;
1295 pgd_t *pgd;
1296 pud_t *pud;
1297 pmd_t *pmd;
1298
1299 for (addr = start; addr < end; addr = next) {
1300 next = pmd_addr_end(addr, end);
1301
1302 pgd = vmemmap_pgd_populate(addr, node);
1303 if (!pgd)
1304 return -ENOMEM;
1305
1306 pud = vmemmap_pud_populate(pgd, addr, node);
1307 if (!pud)
1308 return -ENOMEM;
1309
1310 pmd = pmd_offset(pud, addr);
1311 if (pmd_none(*pmd)) {
1312 void *p;
1313
1314 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
1315 if (p) {
1316 pte_t entry;
1317
1318 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1319 PAGE_KERNEL_LARGE);
1320 set_pmd(pmd, __pmd(pte_val(entry)));
1321
1322 /* check to see if we have contiguous blocks */
1323 if (p_end != p || node_start != node) {
1324 if (p_start)
1325 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1326 addr_start, addr_end-1, p_start, p_end-1, node_start);
1327 addr_start = addr;
1328 node_start = node;
1329 p_start = p;
1330 }
1331
1332 addr_end = addr + PMD_SIZE;
1333 p_end = p + PMD_SIZE;
1334 continue;
1335 }
1336 } else if (pmd_large(*pmd)) {
1337 vmemmap_verify((pte_t *)pmd, node, addr, next);
1338 continue;
1339 }
1340 pr_warn_once("vmemmap: falling back to regular page backing\n");
1341 if (vmemmap_populate_basepages(addr, next, node))
1342 return -ENOMEM;
1343 }
1344 return 0;
1345 }
1346
1347 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1348 {
1349 int err;
1350
1351 if (cpu_has_pse)
1352 err = vmemmap_populate_hugepages(start, end, node);
1353 else
1354 err = vmemmap_populate_basepages(start, end, node);
1355 if (!err)
1356 sync_global_pgds(start, end - 1, 0);
1357 return err;
1358 }
1359
1360 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1361 void register_page_bootmem_memmap(unsigned long section_nr,
1362 struct page *start_page, unsigned long size)
1363 {
1364 unsigned long addr = (unsigned long)start_page;
1365 unsigned long end = (unsigned long)(start_page + size);
1366 unsigned long next;
1367 pgd_t *pgd;
1368 pud_t *pud;
1369 pmd_t *pmd;
1370 unsigned int nr_pages;
1371 struct page *page;
1372
1373 for (; addr < end; addr = next) {
1374 pte_t *pte = NULL;
1375
1376 pgd = pgd_offset_k(addr);
1377 if (pgd_none(*pgd)) {
1378 next = (addr + PAGE_SIZE) & PAGE_MASK;
1379 continue;
1380 }
1381 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1382
1383 pud = pud_offset(pgd, addr);
1384 if (pud_none(*pud)) {
1385 next = (addr + PAGE_SIZE) & PAGE_MASK;
1386 continue;
1387 }
1388 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1389
1390 if (!cpu_has_pse) {
1391 next = (addr + PAGE_SIZE) & PAGE_MASK;
1392 pmd = pmd_offset(pud, addr);
1393 if (pmd_none(*pmd))
1394 continue;
1395 get_page_bootmem(section_nr, pmd_page(*pmd),
1396 MIX_SECTION_INFO);
1397
1398 pte = pte_offset_kernel(pmd, addr);
1399 if (pte_none(*pte))
1400 continue;
1401 get_page_bootmem(section_nr, pte_page(*pte),
1402 SECTION_INFO);
1403 } else {
1404 next = pmd_addr_end(addr, end);
1405
1406 pmd = pmd_offset(pud, addr);
1407 if (pmd_none(*pmd))
1408 continue;
1409
1410 nr_pages = 1 << (get_order(PMD_SIZE));
1411 page = pmd_page(*pmd);
1412 while (nr_pages--)
1413 get_page_bootmem(section_nr, page++,
1414 SECTION_INFO);
1415 }
1416 }
1417 }
1418 #endif
1419
1420 void __meminit vmemmap_populate_print_last(void)
1421 {
1422 if (p_start) {
1423 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1424 addr_start, addr_end-1, p_start, p_end-1, node_start);
1425 p_start = NULL;
1426 p_end = NULL;
1427 node_start = 0;
1428 }
1429 }
1430 #endif
This page took 0.103493 seconds and 5 git commands to generate.