x86: unify __set_fixmap
[deliverable/linux.git] / arch / x86 / mm / init_64.c
1 /*
2 * linux/arch/x86_64/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pci.h>
25 #include <linux/pfn.h>
26 #include <linux/poison.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/module.h>
29 #include <linux/memory_hotplug.h>
30 #include <linux/nmi.h>
31
32 #include <asm/processor.h>
33 #include <asm/system.h>
34 #include <asm/uaccess.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgalloc.h>
37 #include <asm/dma.h>
38 #include <asm/fixmap.h>
39 #include <asm/e820.h>
40 #include <asm/apic.h>
41 #include <asm/tlb.h>
42 #include <asm/mmu_context.h>
43 #include <asm/proto.h>
44 #include <asm/smp.h>
45 #include <asm/sections.h>
46 #include <asm/kdebug.h>
47 #include <asm/numa.h>
48 #include <asm/cacheflush.h>
49
50 static unsigned long dma_reserve __initdata;
51
52 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
53
54 int direct_gbpages __meminitdata
55 #ifdef CONFIG_DIRECT_GBPAGES
56 = 1
57 #endif
58 ;
59
60 static int __init parse_direct_gbpages_off(char *arg)
61 {
62 direct_gbpages = 0;
63 return 0;
64 }
65 early_param("nogbpages", parse_direct_gbpages_off);
66
67 static int __init parse_direct_gbpages_on(char *arg)
68 {
69 direct_gbpages = 1;
70 return 0;
71 }
72 early_param("gbpages", parse_direct_gbpages_on);
73
74 /*
75 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
76 * physical space so we can cache the place of the first one and move
77 * around without checking the pgd every time.
78 */
79
80 void show_mem(void)
81 {
82 long i, total = 0, reserved = 0;
83 long shared = 0, cached = 0;
84 struct page *page;
85 pg_data_t *pgdat;
86
87 printk(KERN_INFO "Mem-info:\n");
88 show_free_areas();
89 for_each_online_pgdat(pgdat) {
90 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
91 /*
92 * This loop can take a while with 256 GB and
93 * 4k pages so defer the NMI watchdog:
94 */
95 if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
96 touch_nmi_watchdog();
97
98 if (!pfn_valid(pgdat->node_start_pfn + i))
99 continue;
100
101 page = pfn_to_page(pgdat->node_start_pfn + i);
102 total++;
103 if (PageReserved(page))
104 reserved++;
105 else if (PageSwapCache(page))
106 cached++;
107 else if (page_count(page))
108 shared += page_count(page) - 1;
109 }
110 }
111 printk(KERN_INFO "%lu pages of RAM\n", total);
112 printk(KERN_INFO "%lu reserved pages\n", reserved);
113 printk(KERN_INFO "%lu pages shared\n", shared);
114 printk(KERN_INFO "%lu pages swap cached\n", cached);
115 }
116
117 int after_bootmem;
118
119 static __init void *spp_getpage(void)
120 {
121 void *ptr;
122
123 if (after_bootmem)
124 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
125 else
126 ptr = alloc_bootmem_pages(PAGE_SIZE);
127
128 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
129 panic("set_pte_phys: cannot allocate page data %s\n",
130 after_bootmem ? "after bootmem" : "");
131 }
132
133 pr_debug("spp_getpage %p\n", ptr);
134
135 return ptr;
136 }
137
138 static void
139 set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot)
140 {
141 pgd_t *pgd;
142 pud_t *pud;
143 pmd_t *pmd;
144 pte_t *pte, new_pte;
145
146 pr_debug("set_pte_phys %lx to %lx\n", vaddr, phys);
147
148 pgd = pgd_offset_k(vaddr);
149 if (pgd_none(*pgd)) {
150 printk(KERN_ERR
151 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
152 return;
153 }
154 pud = pud_offset(pgd, vaddr);
155 if (pud_none(*pud)) {
156 pmd = (pmd_t *) spp_getpage();
157 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
158 if (pmd != pmd_offset(pud, 0)) {
159 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
160 pmd, pmd_offset(pud, 0));
161 return;
162 }
163 }
164 pmd = pmd_offset(pud, vaddr);
165 if (pmd_none(*pmd)) {
166 pte = (pte_t *) spp_getpage();
167 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
168 if (pte != pte_offset_kernel(pmd, 0)) {
169 printk(KERN_ERR "PAGETABLE BUG #02!\n");
170 return;
171 }
172 }
173 new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
174
175 pte = pte_offset_kernel(pmd, vaddr);
176 if (!pte_none(*pte) && pte_val(new_pte) &&
177 pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
178 pte_ERROR(*pte);
179 set_pte(pte, new_pte);
180
181 /*
182 * It's enough to flush this one mapping.
183 * (PGE mappings get flushed as well)
184 */
185 __flush_tlb_one(vaddr);
186 }
187
188 /*
189 * The head.S code sets up the kernel high mapping:
190 *
191 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
192 *
193 * phys_addr holds the negative offset to the kernel, which is added
194 * to the compile time generated pmds. This results in invalid pmds up
195 * to the point where we hit the physaddr 0 mapping.
196 *
197 * We limit the mappings to the region from _text to _end. _end is
198 * rounded up to the 2MB boundary. This catches the invalid pmds as
199 * well, as they are located before _text:
200 */
201 void __init cleanup_highmap(void)
202 {
203 unsigned long vaddr = __START_KERNEL_map;
204 unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
205 pmd_t *pmd = level2_kernel_pgt;
206 pmd_t *last_pmd = pmd + PTRS_PER_PMD;
207
208 for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
209 if (pmd_none(*pmd))
210 continue;
211 if (vaddr < (unsigned long) _text || vaddr > end)
212 set_pmd(pmd, __pmd(0));
213 }
214 }
215
216 static unsigned long __initdata table_start;
217 static unsigned long __meminitdata table_end;
218
219 static __meminit void *alloc_low_page(unsigned long *phys)
220 {
221 unsigned long pfn = table_end++;
222 void *adr;
223
224 if (after_bootmem) {
225 adr = (void *)get_zeroed_page(GFP_ATOMIC);
226 *phys = __pa(adr);
227
228 return adr;
229 }
230
231 if (pfn >= end_pfn)
232 panic("alloc_low_page: ran out of memory");
233
234 adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
235 memset(adr, 0, PAGE_SIZE);
236 *phys = pfn * PAGE_SIZE;
237 return adr;
238 }
239
240 static __meminit void unmap_low_page(void *adr)
241 {
242 if (after_bootmem)
243 return;
244
245 early_iounmap(adr, PAGE_SIZE);
246 }
247
248 /* Must run before zap_low_mappings */
249 __meminit void *early_ioremap(unsigned long addr, unsigned long size)
250 {
251 pmd_t *pmd, *last_pmd;
252 unsigned long vaddr;
253 int i, pmds;
254
255 pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
256 vaddr = __START_KERNEL_map;
257 pmd = level2_kernel_pgt;
258 last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
259
260 for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
261 for (i = 0; i < pmds; i++) {
262 if (pmd_present(pmd[i]))
263 goto continue_outer_loop;
264 }
265 vaddr += addr & ~PMD_MASK;
266 addr &= PMD_MASK;
267
268 for (i = 0; i < pmds; i++, addr += PMD_SIZE)
269 set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
270 __flush_tlb_all();
271
272 return (void *)vaddr;
273 continue_outer_loop:
274 ;
275 }
276 printk(KERN_ERR "early_ioremap(0x%lx, %lu) failed\n", addr, size);
277
278 return NULL;
279 }
280
281 /*
282 * To avoid virtual aliases later:
283 */
284 __meminit void early_iounmap(void *addr, unsigned long size)
285 {
286 unsigned long vaddr;
287 pmd_t *pmd;
288 int i, pmds;
289
290 vaddr = (unsigned long)addr;
291 pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
292 pmd = level2_kernel_pgt + pmd_index(vaddr);
293
294 for (i = 0; i < pmds; i++)
295 pmd_clear(pmd + i);
296
297 __flush_tlb_all();
298 }
299
300 static unsigned long __meminit
301 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
302 {
303 int i = pmd_index(address);
304
305 for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
306 pmd_t *pmd = pmd_page + pmd_index(address);
307
308 if (address >= end) {
309 if (!after_bootmem) {
310 for (; i < PTRS_PER_PMD; i++, pmd++)
311 set_pmd(pmd, __pmd(0));
312 }
313 break;
314 }
315
316 if (pmd_val(*pmd))
317 continue;
318
319 set_pte((pte_t *)pmd,
320 pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
321 }
322 return address;
323 }
324
325 static unsigned long __meminit
326 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
327 {
328 pmd_t *pmd = pmd_offset(pud, 0);
329 unsigned long last_map_addr;
330
331 spin_lock(&init_mm.page_table_lock);
332 last_map_addr = phys_pmd_init(pmd, address, end);
333 spin_unlock(&init_mm.page_table_lock);
334 __flush_tlb_all();
335 return last_map_addr;
336 }
337
338 static unsigned long __meminit
339 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
340 {
341 unsigned long last_map_addr = end;
342 int i = pud_index(addr);
343
344 for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
345 unsigned long pmd_phys;
346 pud_t *pud = pud_page + pud_index(addr);
347 pmd_t *pmd;
348
349 if (addr >= end)
350 break;
351
352 if (!after_bootmem &&
353 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
354 set_pud(pud, __pud(0));
355 continue;
356 }
357
358 if (pud_val(*pud)) {
359 if (!pud_large(*pud))
360 last_map_addr = phys_pmd_update(pud, addr, end);
361 continue;
362 }
363
364 if (direct_gbpages) {
365 set_pte((pte_t *)pud,
366 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
367 last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
368 continue;
369 }
370
371 pmd = alloc_low_page(&pmd_phys);
372
373 spin_lock(&init_mm.page_table_lock);
374 set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
375 last_map_addr = phys_pmd_init(pmd, addr, end);
376 spin_unlock(&init_mm.page_table_lock);
377
378 unmap_low_page(pmd);
379 }
380 __flush_tlb_all();
381
382 return last_map_addr >> PAGE_SHIFT;
383 }
384
385 static void __init find_early_table_space(unsigned long end)
386 {
387 unsigned long puds, pmds, tables, start;
388
389 puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
390 tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
391 if (!direct_gbpages) {
392 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
393 tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
394 }
395
396 /*
397 * RED-PEN putting page tables only on node 0 could
398 * cause a hotspot and fill up ZONE_DMA. The page tables
399 * need roughly 0.5KB per GB.
400 */
401 start = 0x8000;
402 table_start = find_e820_area(start, end, tables, PAGE_SIZE);
403 if (table_start == -1UL)
404 panic("Cannot find space for the kernel page tables");
405
406 table_start >>= PAGE_SHIFT;
407 table_end = table_start;
408
409 early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
410 end, table_start << PAGE_SHIFT,
411 (table_start << PAGE_SHIFT) + tables);
412 }
413
414 static void __init init_gbpages(void)
415 {
416 if (direct_gbpages && cpu_has_gbpages)
417 printk(KERN_INFO "Using GB pages for direct mapping\n");
418 else
419 direct_gbpages = 0;
420 }
421
422 #ifdef CONFIG_MEMTEST_BOOTPARAM
423
424 static void __init memtest(unsigned long start_phys, unsigned long size,
425 unsigned pattern)
426 {
427 unsigned long i;
428 unsigned long *start;
429 unsigned long start_bad;
430 unsigned long last_bad;
431 unsigned long val;
432 unsigned long start_phys_aligned;
433 unsigned long count;
434 unsigned long incr;
435
436 switch (pattern) {
437 case 0:
438 val = 0UL;
439 break;
440 case 1:
441 val = -1UL;
442 break;
443 case 2:
444 val = 0x5555555555555555UL;
445 break;
446 case 3:
447 val = 0xaaaaaaaaaaaaaaaaUL;
448 break;
449 default:
450 return;
451 }
452
453 incr = sizeof(unsigned long);
454 start_phys_aligned = ALIGN(start_phys, incr);
455 count = (size - (start_phys_aligned - start_phys))/incr;
456 start = __va(start_phys_aligned);
457 start_bad = 0;
458 last_bad = 0;
459
460 for (i = 0; i < count; i++)
461 start[i] = val;
462 for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
463 if (*start != val) {
464 if (start_phys_aligned == last_bad + incr) {
465 last_bad += incr;
466 } else {
467 if (start_bad) {
468 printk(KERN_CONT "\n %016lx bad mem addr %016lx - %016lx reserved",
469 val, start_bad, last_bad + incr);
470 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
471 }
472 start_bad = last_bad = start_phys_aligned;
473 }
474 }
475 }
476 if (start_bad) {
477 printk(KERN_CONT "\n %016lx bad mem addr %016lx - %016lx reserved",
478 val, start_bad, last_bad + incr);
479 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
480 }
481
482 }
483
484 static int memtest_pattern __initdata = CONFIG_MEMTEST_BOOTPARAM_VALUE;
485
486 static int __init parse_memtest(char *arg)
487 {
488 if (arg)
489 memtest_pattern = simple_strtoul(arg, NULL, 0);
490 return 0;
491 }
492
493 early_param("memtest", parse_memtest);
494
495 static void __init early_memtest(unsigned long start, unsigned long end)
496 {
497 u64 t_start, t_size;
498 unsigned pattern;
499
500 if (!memtest_pattern)
501 return;
502
503 printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
504 for (pattern = 0; pattern < memtest_pattern; pattern++) {
505 t_start = start;
506 t_size = 0;
507 while (t_start < end) {
508 t_start = find_e820_area_size(t_start, &t_size, 1);
509
510 /* done ? */
511 if (t_start >= end)
512 break;
513 if (t_start + t_size > end)
514 t_size = end - t_start;
515
516 printk(KERN_CONT "\n %016llx - %016llx pattern %d",
517 t_start, t_start + t_size, pattern);
518
519 memtest(t_start, t_size, pattern);
520
521 t_start += t_size;
522 }
523 }
524 printk(KERN_CONT "\n");
525 }
526 #else
527 static void __init early_memtest(unsigned long start, unsigned long end)
528 {
529 }
530 #endif
531
532 /*
533 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
534 * This runs before bootmem is initialized and gets pages directly from
535 * the physical memory. To access them they are temporarily mapped.
536 */
537 unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end)
538 {
539 unsigned long next, last_map_addr = end;
540 unsigned long start_phys = start, end_phys = end;
541
542 printk(KERN_INFO "init_memory_mapping\n");
543
544 /*
545 * Find space for the kernel direct mapping tables.
546 *
547 * Later we should allocate these tables in the local node of the
548 * memory mapped. Unfortunately this is done currently before the
549 * nodes are discovered.
550 */
551 if (!after_bootmem) {
552 init_gbpages();
553 find_early_table_space(end);
554 }
555
556 start = (unsigned long)__va(start);
557 end = (unsigned long)__va(end);
558
559 for (; start < end; start = next) {
560 pgd_t *pgd = pgd_offset_k(start);
561 unsigned long pud_phys;
562 pud_t *pud;
563
564 if (after_bootmem)
565 pud = pud_offset(pgd, start & PGDIR_MASK);
566 else
567 pud = alloc_low_page(&pud_phys);
568
569 next = start + PGDIR_SIZE;
570 if (next > end)
571 next = end;
572 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next));
573 if (!after_bootmem)
574 set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
575 unmap_low_page(pud);
576 }
577
578 if (!after_bootmem)
579 mmu_cr4_features = read_cr4();
580 __flush_tlb_all();
581
582 if (!after_bootmem)
583 reserve_early(table_start << PAGE_SHIFT,
584 table_end << PAGE_SHIFT, "PGTABLE");
585
586 if (!after_bootmem)
587 early_memtest(start_phys, end_phys);
588
589 return last_map_addr;
590 }
591
592 #ifndef CONFIG_NUMA
593 void __init paging_init(void)
594 {
595 unsigned long max_zone_pfns[MAX_NR_ZONES];
596
597 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
598 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
599 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
600 max_zone_pfns[ZONE_NORMAL] = end_pfn;
601
602 memory_present(0, 0, end_pfn);
603 sparse_init();
604 free_area_init_nodes(max_zone_pfns);
605 }
606 #endif
607
608 /*
609 * Memory hotplug specific functions
610 */
611 #ifdef CONFIG_MEMORY_HOTPLUG
612 /*
613 * Memory is added always to NORMAL zone. This means you will never get
614 * additional DMA/DMA32 memory.
615 */
616 int arch_add_memory(int nid, u64 start, u64 size)
617 {
618 struct pglist_data *pgdat = NODE_DATA(nid);
619 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
620 unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
621 unsigned long nr_pages = size >> PAGE_SHIFT;
622 int ret;
623
624 last_mapped_pfn = init_memory_mapping(start, start + size-1);
625 if (last_mapped_pfn > max_pfn_mapped)
626 max_pfn_mapped = last_mapped_pfn;
627
628 ret = __add_pages(zone, start_pfn, nr_pages);
629 WARN_ON(1);
630
631 return ret;
632 }
633 EXPORT_SYMBOL_GPL(arch_add_memory);
634
635 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
636 int memory_add_physaddr_to_nid(u64 start)
637 {
638 return 0;
639 }
640 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
641 #endif
642
643 #endif /* CONFIG_MEMORY_HOTPLUG */
644
645 /*
646 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
647 * is valid. The argument is a physical page number.
648 *
649 *
650 * On x86, access has to be given to the first megabyte of ram because that area
651 * contains bios code and data regions used by X and dosemu and similar apps.
652 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
653 * mmio resources as well as potential bios/acpi data regions.
654 */
655 int devmem_is_allowed(unsigned long pagenr)
656 {
657 if (pagenr <= 256)
658 return 1;
659 if (!page_is_ram(pagenr))
660 return 1;
661 return 0;
662 }
663
664
665 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
666 kcore_modules, kcore_vsyscall;
667
668 void __init mem_init(void)
669 {
670 long codesize, reservedpages, datasize, initsize;
671
672 pci_iommu_alloc();
673
674 /* clear_bss() already clear the empty_zero_page */
675
676 reservedpages = 0;
677
678 /* this will put all low memory onto the freelists */
679 #ifdef CONFIG_NUMA
680 totalram_pages = numa_free_all_bootmem();
681 #else
682 totalram_pages = free_all_bootmem();
683 #endif
684 reservedpages = end_pfn - totalram_pages -
685 absent_pages_in_range(0, end_pfn);
686 after_bootmem = 1;
687
688 codesize = (unsigned long) &_etext - (unsigned long) &_text;
689 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
690 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
691
692 /* Register memory areas for /proc/kcore */
693 kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
694 kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
695 VMALLOC_END-VMALLOC_START);
696 kclist_add(&kcore_kernel, &_stext, _end - _stext);
697 kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
698 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
699 VSYSCALL_END - VSYSCALL_START);
700
701 printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
702 "%ldk reserved, %ldk data, %ldk init)\n",
703 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
704 end_pfn << (PAGE_SHIFT-10),
705 codesize >> 10,
706 reservedpages << (PAGE_SHIFT-10),
707 datasize >> 10,
708 initsize >> 10);
709
710 cpa_init();
711 }
712
713 void free_init_pages(char *what, unsigned long begin, unsigned long end)
714 {
715 unsigned long addr = begin;
716
717 if (addr >= end)
718 return;
719
720 /*
721 * If debugging page accesses then do not free this memory but
722 * mark them not present - any buggy init-section access will
723 * create a kernel page fault:
724 */
725 #ifdef CONFIG_DEBUG_PAGEALLOC
726 printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
727 begin, PAGE_ALIGN(end));
728 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
729 #else
730 printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
731
732 for (; addr < end; addr += PAGE_SIZE) {
733 ClearPageReserved(virt_to_page(addr));
734 init_page_count(virt_to_page(addr));
735 memset((void *)(addr & ~(PAGE_SIZE-1)),
736 POISON_FREE_INITMEM, PAGE_SIZE);
737 free_page(addr);
738 totalram_pages++;
739 }
740 #endif
741 }
742
743 void free_initmem(void)
744 {
745 free_init_pages("unused kernel memory",
746 (unsigned long)(&__init_begin),
747 (unsigned long)(&__init_end));
748 }
749
750 #ifdef CONFIG_DEBUG_RODATA
751 const int rodata_test_data = 0xC3;
752 EXPORT_SYMBOL_GPL(rodata_test_data);
753
754 void mark_rodata_ro(void)
755 {
756 unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
757
758 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
759 (end - start) >> 10);
760 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
761
762 /*
763 * The rodata section (but not the kernel text!) should also be
764 * not-executable.
765 */
766 start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
767 set_memory_nx(start, (end - start) >> PAGE_SHIFT);
768
769 rodata_test();
770
771 #ifdef CONFIG_CPA_DEBUG
772 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
773 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
774
775 printk(KERN_INFO "Testing CPA: again\n");
776 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
777 #endif
778 }
779
780 #endif
781
782 #ifdef CONFIG_BLK_DEV_INITRD
783 void free_initrd_mem(unsigned long start, unsigned long end)
784 {
785 free_init_pages("initrd memory", start, end);
786 }
787 #endif
788
789 void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
790 {
791 #ifdef CONFIG_NUMA
792 int nid, next_nid;
793 #endif
794 unsigned long pfn = phys >> PAGE_SHIFT;
795
796 if (pfn >= end_pfn) {
797 /*
798 * This can happen with kdump kernels when accessing
799 * firmware tables:
800 */
801 if (pfn < max_pfn_mapped)
802 return;
803
804 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
805 phys, len);
806 return;
807 }
808
809 /* Should check here against the e820 map to avoid double free */
810 #ifdef CONFIG_NUMA
811 nid = phys_to_nid(phys);
812 next_nid = phys_to_nid(phys + len - 1);
813 if (nid == next_nid)
814 reserve_bootmem_node(NODE_DATA(nid), phys, len, BOOTMEM_DEFAULT);
815 else
816 reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
817 #else
818 reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
819 #endif
820
821 if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
822 dma_reserve += len / PAGE_SIZE;
823 set_dma_reserve(dma_reserve);
824 }
825 }
826
827 int kern_addr_valid(unsigned long addr)
828 {
829 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
830 pgd_t *pgd;
831 pud_t *pud;
832 pmd_t *pmd;
833 pte_t *pte;
834
835 if (above != 0 && above != -1UL)
836 return 0;
837
838 pgd = pgd_offset_k(addr);
839 if (pgd_none(*pgd))
840 return 0;
841
842 pud = pud_offset(pgd, addr);
843 if (pud_none(*pud))
844 return 0;
845
846 pmd = pmd_offset(pud, addr);
847 if (pmd_none(*pmd))
848 return 0;
849
850 if (pmd_large(*pmd))
851 return pfn_valid(pmd_pfn(*pmd));
852
853 pte = pte_offset_kernel(pmd, addr);
854 if (pte_none(*pte))
855 return 0;
856
857 return pfn_valid(pte_pfn(*pte));
858 }
859
860 /*
861 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
862 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
863 * not need special handling anymore:
864 */
865 static struct vm_area_struct gate_vma = {
866 .vm_start = VSYSCALL_START,
867 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
868 .vm_page_prot = PAGE_READONLY_EXEC,
869 .vm_flags = VM_READ | VM_EXEC
870 };
871
872 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
873 {
874 #ifdef CONFIG_IA32_EMULATION
875 if (test_tsk_thread_flag(tsk, TIF_IA32))
876 return NULL;
877 #endif
878 return &gate_vma;
879 }
880
881 int in_gate_area(struct task_struct *task, unsigned long addr)
882 {
883 struct vm_area_struct *vma = get_gate_vma(task);
884
885 if (!vma)
886 return 0;
887
888 return (addr >= vma->vm_start) && (addr < vma->vm_end);
889 }
890
891 /*
892 * Use this when you have no reliable task/vma, typically from interrupt
893 * context. It is less reliable than using the task's vma and may give
894 * false positives:
895 */
896 int in_gate_area_no_task(unsigned long addr)
897 {
898 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
899 }
900
901 const char *arch_vma_name(struct vm_area_struct *vma)
902 {
903 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
904 return "[vdso]";
905 if (vma == &gate_vma)
906 return "[vsyscall]";
907 return NULL;
908 }
909
910 #ifdef CONFIG_SPARSEMEM_VMEMMAP
911 /*
912 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
913 */
914 static long __meminitdata addr_start, addr_end;
915 static void __meminitdata *p_start, *p_end;
916 static int __meminitdata node_start;
917
918 int __meminit
919 vmemmap_populate(struct page *start_page, unsigned long size, int node)
920 {
921 unsigned long addr = (unsigned long)start_page;
922 unsigned long end = (unsigned long)(start_page + size);
923 unsigned long next;
924 pgd_t *pgd;
925 pud_t *pud;
926 pmd_t *pmd;
927
928 for (; addr < end; addr = next) {
929 next = pmd_addr_end(addr, end);
930
931 pgd = vmemmap_pgd_populate(addr, node);
932 if (!pgd)
933 return -ENOMEM;
934
935 pud = vmemmap_pud_populate(pgd, addr, node);
936 if (!pud)
937 return -ENOMEM;
938
939 pmd = pmd_offset(pud, addr);
940 if (pmd_none(*pmd)) {
941 pte_t entry;
942 void *p;
943
944 p = vmemmap_alloc_block(PMD_SIZE, node);
945 if (!p)
946 return -ENOMEM;
947
948 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
949 PAGE_KERNEL_LARGE);
950 set_pmd(pmd, __pmd(pte_val(entry)));
951
952 /* check to see if we have contiguous blocks */
953 if (p_end != p || node_start != node) {
954 if (p_start)
955 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
956 addr_start, addr_end-1, p_start, p_end-1, node_start);
957 addr_start = addr;
958 node_start = node;
959 p_start = p;
960 }
961 addr_end = addr + PMD_SIZE;
962 p_end = p + PMD_SIZE;
963 } else {
964 vmemmap_verify((pte_t *)pmd, node, addr, next);
965 }
966 }
967 return 0;
968 }
969
970 void __meminit vmemmap_populate_print_last(void)
971 {
972 if (p_start) {
973 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
974 addr_start, addr_end-1, p_start, p_end-1, node_start);
975 p_start = NULL;
976 p_end = NULL;
977 node_start = 0;
978 }
979 }
980 #endif
This page took 0.089175 seconds and 5 git commands to generate.