x86: Remove old bootmem code
[deliverable/linux.git] / arch / x86 / mm / numa_32.c
1 /*
2 * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
3 * August 2002: added remote node KVA remap - Martin J. Bligh
4 *
5 * Copyright (C) 2002, IBM Corp.
6 *
7 * All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
17 * NON INFRINGEMENT. See the GNU General Public License for more
18 * details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/mm.h>
26 #include <linux/bootmem.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/highmem.h>
30 #include <linux/initrd.h>
31 #include <linux/nodemask.h>
32 #include <linux/module.h>
33 #include <linux/kexec.h>
34 #include <linux/pfn.h>
35 #include <linux/swap.h>
36 #include <linux/acpi.h>
37
38 #include <asm/e820.h>
39 #include <asm/setup.h>
40 #include <asm/mmzone.h>
41 #include <asm/bios_ebda.h>
42 #include <asm/proto.h>
43
44 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
45 EXPORT_SYMBOL(node_data);
46
47 /*
48 * numa interface - we expect the numa architecture specific code to have
49 * populated the following initialisation.
50 *
51 * 1) node_online_map - the map of all nodes configured (online) in the system
52 * 2) node_start_pfn - the starting page frame number for a node
53 * 3) node_end_pfn - the ending page fram number for a node
54 */
55 unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;
56 unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;
57
58
59 #ifdef CONFIG_DISCONTIGMEM
60 /*
61 * 4) physnode_map - the mapping between a pfn and owning node
62 * physnode_map keeps track of the physical memory layout of a generic
63 * numa node on a 64Mb break (each element of the array will
64 * represent 64Mb of memory and will be marked by the node id. so,
65 * if the first gig is on node 0, and the second gig is on node 1
66 * physnode_map will contain:
67 *
68 * physnode_map[0-15] = 0;
69 * physnode_map[16-31] = 1;
70 * physnode_map[32- ] = -1;
71 */
72 s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
73 EXPORT_SYMBOL(physnode_map);
74
75 void memory_present(int nid, unsigned long start, unsigned long end)
76 {
77 unsigned long pfn;
78
79 printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n",
80 nid, start, end);
81 printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
82 printk(KERN_DEBUG " ");
83 for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
84 physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
85 printk(KERN_CONT "%lx ", pfn);
86 }
87 printk(KERN_CONT "\n");
88 }
89
90 unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
91 unsigned long end_pfn)
92 {
93 unsigned long nr_pages = end_pfn - start_pfn;
94
95 if (!nr_pages)
96 return 0;
97
98 return (nr_pages + 1) * sizeof(struct page);
99 }
100 #endif
101
102 extern unsigned long find_max_low_pfn(void);
103 extern unsigned long highend_pfn, highstart_pfn;
104
105 #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
106
107 unsigned long node_remap_size[MAX_NUMNODES];
108 static void *node_remap_start_vaddr[MAX_NUMNODES];
109 void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
110
111 static unsigned long kva_start_pfn;
112 static unsigned long kva_pages;
113 /*
114 * FLAT - support for basic PC memory model with discontig enabled, essentially
115 * a single node with all available processors in it with a flat
116 * memory map.
117 */
118 int __init get_memcfg_numa_flat(void)
119 {
120 printk(KERN_DEBUG "NUMA - single node, flat memory mode\n");
121
122 node_start_pfn[0] = 0;
123 node_end_pfn[0] = max_pfn;
124 memblock_x86_register_active_regions(0, 0, max_pfn);
125 memory_present(0, 0, max_pfn);
126 node_remap_size[0] = node_memmap_size_bytes(0, 0, max_pfn);
127
128 /* Indicate there is one node available. */
129 nodes_clear(node_online_map);
130 node_set_online(0);
131 return 1;
132 }
133
134 /*
135 * Find the highest page frame number we have available for the node
136 */
137 static void __init propagate_e820_map_node(int nid)
138 {
139 if (node_end_pfn[nid] > max_pfn)
140 node_end_pfn[nid] = max_pfn;
141 /*
142 * if a user has given mem=XXXX, then we need to make sure
143 * that the node _starts_ before that, too, not just ends
144 */
145 if (node_start_pfn[nid] > max_pfn)
146 node_start_pfn[nid] = max_pfn;
147 BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]);
148 }
149
150 /*
151 * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
152 * method. For node zero take this from the bottom of memory, for
153 * subsequent nodes place them at node_remap_start_vaddr which contains
154 * node local data in physically node local memory. See setup_memory()
155 * for details.
156 */
157 static void __init allocate_pgdat(int nid)
158 {
159 char buf[16];
160
161 if (node_has_online_mem(nid) && node_remap_start_vaddr[nid])
162 NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
163 else {
164 unsigned long pgdat_phys;
165 pgdat_phys = memblock_find_in_range(min_low_pfn<<PAGE_SHIFT,
166 max_pfn_mapped<<PAGE_SHIFT,
167 sizeof(pg_data_t),
168 PAGE_SIZE);
169 NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(pgdat_phys>>PAGE_SHIFT));
170 memset(buf, 0, sizeof(buf));
171 sprintf(buf, "NODE_DATA %d", nid);
172 memblock_x86_reserve_range(pgdat_phys, pgdat_phys + sizeof(pg_data_t), buf);
173 }
174 printk(KERN_DEBUG "allocate_pgdat: node %d NODE_DATA %08lx\n",
175 nid, (unsigned long)NODE_DATA(nid));
176 }
177
178 /*
179 * In the DISCONTIGMEM and SPARSEMEM memory model, a portion of the kernel
180 * virtual address space (KVA) is reserved and portions of nodes are mapped
181 * using it. This is to allow node-local memory to be allocated for
182 * structures that would normally require ZONE_NORMAL. The memory is
183 * allocated with alloc_remap() and callers should be prepared to allocate
184 * from the bootmem allocator instead.
185 */
186 static unsigned long node_remap_start_pfn[MAX_NUMNODES];
187 static void *node_remap_end_vaddr[MAX_NUMNODES];
188 static void *node_remap_alloc_vaddr[MAX_NUMNODES];
189 static unsigned long node_remap_offset[MAX_NUMNODES];
190
191 void *alloc_remap(int nid, unsigned long size)
192 {
193 void *allocation = node_remap_alloc_vaddr[nid];
194
195 size = ALIGN(size, L1_CACHE_BYTES);
196
197 if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid])
198 return NULL;
199
200 node_remap_alloc_vaddr[nid] += size;
201 memset(allocation, 0, size);
202
203 return allocation;
204 }
205
206 static void __init remap_numa_kva(void)
207 {
208 void *vaddr;
209 unsigned long pfn;
210 int node;
211
212 for_each_online_node(node) {
213 printk(KERN_DEBUG "remap_numa_kva: node %d\n", node);
214 for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
215 vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
216 printk(KERN_DEBUG "remap_numa_kva: %08lx to pfn %08lx\n",
217 (unsigned long)vaddr,
218 node_remap_start_pfn[node] + pfn);
219 set_pmd_pfn((ulong) vaddr,
220 node_remap_start_pfn[node] + pfn,
221 PAGE_KERNEL_LARGE);
222 }
223 }
224 }
225
226 #ifdef CONFIG_HIBERNATION
227 /**
228 * resume_map_numa_kva - add KVA mapping to the temporary page tables created
229 * during resume from hibernation
230 * @pgd_base - temporary resume page directory
231 */
232 void resume_map_numa_kva(pgd_t *pgd_base)
233 {
234 int node;
235
236 for_each_online_node(node) {
237 unsigned long start_va, start_pfn, size, pfn;
238
239 start_va = (unsigned long)node_remap_start_vaddr[node];
240 start_pfn = node_remap_start_pfn[node];
241 size = node_remap_size[node];
242
243 printk(KERN_DEBUG "%s: node %d\n", __func__, node);
244
245 for (pfn = 0; pfn < size; pfn += PTRS_PER_PTE) {
246 unsigned long vaddr = start_va + (pfn << PAGE_SHIFT);
247 pgd_t *pgd = pgd_base + pgd_index(vaddr);
248 pud_t *pud = pud_offset(pgd, vaddr);
249 pmd_t *pmd = pmd_offset(pud, vaddr);
250
251 set_pmd(pmd, pfn_pmd(start_pfn + pfn,
252 PAGE_KERNEL_LARGE_EXEC));
253
254 printk(KERN_DEBUG "%s: %08lx -> pfn %08lx\n",
255 __func__, vaddr, start_pfn + pfn);
256 }
257 }
258 }
259 #endif
260
261 static __init unsigned long calculate_numa_remap_pages(void)
262 {
263 int nid;
264 unsigned long size, reserve_pages = 0;
265
266 for_each_online_node(nid) {
267 u64 node_kva_target;
268 u64 node_kva_final;
269
270 /*
271 * The acpi/srat node info can show hot-add memroy zones
272 * where memory could be added but not currently present.
273 */
274 printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n",
275 nid, node_start_pfn[nid], node_end_pfn[nid]);
276 if (node_start_pfn[nid] > max_pfn)
277 continue;
278 if (!node_end_pfn[nid])
279 continue;
280 if (node_end_pfn[nid] > max_pfn)
281 node_end_pfn[nid] = max_pfn;
282
283 /* ensure the remap includes space for the pgdat. */
284 size = node_remap_size[nid] + sizeof(pg_data_t);
285
286 /* convert size to large (pmd size) pages, rounding up */
287 size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
288 /* now the roundup is correct, convert to PAGE_SIZE pages */
289 size = size * PTRS_PER_PTE;
290
291 node_kva_target = round_down(node_end_pfn[nid] - size,
292 PTRS_PER_PTE);
293 node_kva_target <<= PAGE_SHIFT;
294 do {
295 node_kva_final = memblock_find_in_range(node_kva_target,
296 ((u64)node_end_pfn[nid])<<PAGE_SHIFT,
297 ((u64)size)<<PAGE_SHIFT,
298 LARGE_PAGE_BYTES);
299 node_kva_target -= LARGE_PAGE_BYTES;
300 } while (node_kva_final == MEMBLOCK_ERROR &&
301 (node_kva_target>>PAGE_SHIFT) > (node_start_pfn[nid]));
302
303 if (node_kva_final == MEMBLOCK_ERROR)
304 panic("Can not get kva ram\n");
305
306 node_remap_size[nid] = size;
307 node_remap_offset[nid] = reserve_pages;
308 reserve_pages += size;
309 printk(KERN_DEBUG "Reserving %ld pages of KVA for lmem_map of"
310 " node %d at %llx\n",
311 size, nid, node_kva_final>>PAGE_SHIFT);
312
313 /*
314 * prevent kva address below max_low_pfn want it on system
315 * with less memory later.
316 * layout will be: KVA address , KVA RAM
317 *
318 * we are supposed to only record the one less then max_low_pfn
319 * but we could have some hole in high memory, and it will only
320 * check page_is_ram(pfn) && !page_is_reserved_early(pfn) to decide
321 * to use it as free.
322 * So memblock_x86_reserve_range here, hope we don't run out of that array
323 */
324 memblock_x86_reserve_range(node_kva_final,
325 node_kva_final+(((u64)size)<<PAGE_SHIFT),
326 "KVA RAM");
327
328 node_remap_start_pfn[nid] = node_kva_final>>PAGE_SHIFT;
329 remove_active_range(nid, node_remap_start_pfn[nid],
330 node_remap_start_pfn[nid] + size);
331 }
332 printk(KERN_INFO "Reserving total of %lx pages for numa KVA remap\n",
333 reserve_pages);
334 return reserve_pages;
335 }
336
337 static void init_remap_allocator(int nid)
338 {
339 node_remap_start_vaddr[nid] = pfn_to_kaddr(
340 kva_start_pfn + node_remap_offset[nid]);
341 node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +
342 (node_remap_size[nid] * PAGE_SIZE);
343 node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
344 ALIGN(sizeof(pg_data_t), PAGE_SIZE);
345
346 printk(KERN_DEBUG "node %d will remap to vaddr %08lx - %08lx\n", nid,
347 (ulong) node_remap_start_vaddr[nid],
348 (ulong) node_remap_end_vaddr[nid]);
349 }
350
351 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn,
352 int acpi, int k8)
353 {
354 int nid;
355 long kva_target_pfn;
356
357 /*
358 * When mapping a NUMA machine we allocate the node_mem_map arrays
359 * from node local memory. They are then mapped directly into KVA
360 * between zone normal and vmalloc space. Calculate the size of
361 * this space and use it to adjust the boundary between ZONE_NORMAL
362 * and ZONE_HIGHMEM.
363 */
364
365 get_memcfg_numa();
366
367 kva_pages = roundup(calculate_numa_remap_pages(), PTRS_PER_PTE);
368
369 kva_target_pfn = round_down(max_low_pfn - kva_pages, PTRS_PER_PTE);
370 do {
371 kva_start_pfn = memblock_find_in_range(kva_target_pfn<<PAGE_SHIFT,
372 max_low_pfn<<PAGE_SHIFT,
373 kva_pages<<PAGE_SHIFT,
374 PTRS_PER_PTE<<PAGE_SHIFT) >> PAGE_SHIFT;
375 kva_target_pfn -= PTRS_PER_PTE;
376 } while (kva_start_pfn == MEMBLOCK_ERROR && kva_target_pfn > min_low_pfn);
377
378 if (kva_start_pfn == MEMBLOCK_ERROR)
379 panic("Can not get kva space\n");
380
381 printk(KERN_INFO "kva_start_pfn ~ %lx max_low_pfn ~ %lx\n",
382 kva_start_pfn, max_low_pfn);
383 printk(KERN_INFO "max_pfn = %lx\n", max_pfn);
384
385 /* avoid clash with initrd */
386 memblock_x86_reserve_range(kva_start_pfn<<PAGE_SHIFT,
387 (kva_start_pfn + kva_pages)<<PAGE_SHIFT,
388 "KVA PG");
389 #ifdef CONFIG_HIGHMEM
390 highstart_pfn = highend_pfn = max_pfn;
391 if (max_pfn > max_low_pfn)
392 highstart_pfn = max_low_pfn;
393 printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
394 pages_to_mb(highend_pfn - highstart_pfn));
395 num_physpages = highend_pfn;
396 high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
397 #else
398 num_physpages = max_low_pfn;
399 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
400 #endif
401 printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
402 pages_to_mb(max_low_pfn));
403 printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
404 max_low_pfn, highstart_pfn);
405
406 printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
407 (ulong) pfn_to_kaddr(max_low_pfn));
408 for_each_online_node(nid) {
409 init_remap_allocator(nid);
410
411 allocate_pgdat(nid);
412 }
413 remap_numa_kva();
414
415 printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
416 (ulong) pfn_to_kaddr(highstart_pfn));
417 for_each_online_node(nid)
418 propagate_e820_map_node(nid);
419
420 for_each_online_node(nid) {
421 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
422 NODE_DATA(nid)->node_id = nid;
423 }
424
425 setup_bootmem_allocator();
426 }
427
428 #ifdef CONFIG_MEMORY_HOTPLUG
429 static int paddr_to_nid(u64 addr)
430 {
431 int nid;
432 unsigned long pfn = PFN_DOWN(addr);
433
434 for_each_node(nid)
435 if (node_start_pfn[nid] <= pfn &&
436 pfn < node_end_pfn[nid])
437 return nid;
438
439 return -1;
440 }
441
442 /*
443 * This function is used to ask node id BEFORE memmap and mem_section's
444 * initialization (pfn_to_nid() can't be used yet).
445 * If _PXM is not defined on ACPI's DSDT, node id must be found by this.
446 */
447 int memory_add_physaddr_to_nid(u64 addr)
448 {
449 int nid = paddr_to_nid(addr);
450 return (nid >= 0) ? nid : 0;
451 }
452
453 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
454 #endif
455
This page took 0.04842 seconds and 5 git commands to generate.