x86: CPA: fix gbpages support in try_preserve_large_page
[deliverable/linux.git] / arch / x86 / mm / pageattr.c
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12
13 #include <asm/e820.h>
14 #include <asm/processor.h>
15 #include <asm/tlbflush.h>
16 #include <asm/sections.h>
17 #include <asm/uaccess.h>
18 #include <asm/pgalloc.h>
19
20 /*
21 * The current flushing context - we pass it instead of 5 arguments:
22 */
23 struct cpa_data {
24 unsigned long vaddr;
25 pgprot_t mask_set;
26 pgprot_t mask_clr;
27 int numpages;
28 int flushtlb;
29 };
30
31 static inline int
32 within(unsigned long addr, unsigned long start, unsigned long end)
33 {
34 return addr >= start && addr < end;
35 }
36
37 /*
38 * Flushing functions
39 */
40
41 /**
42 * clflush_cache_range - flush a cache range with clflush
43 * @addr: virtual start address
44 * @size: number of bytes to flush
45 *
46 * clflush is an unordered instruction which needs fencing with mfence
47 * to avoid ordering issues.
48 */
49 void clflush_cache_range(void *vaddr, unsigned int size)
50 {
51 void *vend = vaddr + size - 1;
52
53 mb();
54
55 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
56 clflush(vaddr);
57 /*
58 * Flush any possible final partial cacheline:
59 */
60 clflush(vend);
61
62 mb();
63 }
64
65 static void __cpa_flush_all(void *arg)
66 {
67 unsigned long cache = (unsigned long)arg;
68
69 /*
70 * Flush all to work around Errata in early athlons regarding
71 * large page flushing.
72 */
73 __flush_tlb_all();
74
75 if (cache && boot_cpu_data.x86_model >= 4)
76 wbinvd();
77 }
78
79 static void cpa_flush_all(unsigned long cache)
80 {
81 BUG_ON(irqs_disabled());
82
83 on_each_cpu(__cpa_flush_all, (void *) cache, 1, 1);
84 }
85
86 static void __cpa_flush_range(void *arg)
87 {
88 /*
89 * We could optimize that further and do individual per page
90 * tlb invalidates for a low number of pages. Caveat: we must
91 * flush the high aliases on 64bit as well.
92 */
93 __flush_tlb_all();
94 }
95
96 static void cpa_flush_range(unsigned long start, int numpages, int cache)
97 {
98 unsigned int i, level;
99 unsigned long addr;
100
101 BUG_ON(irqs_disabled());
102 WARN_ON(PAGE_ALIGN(start) != start);
103
104 on_each_cpu(__cpa_flush_range, NULL, 1, 1);
105
106 if (!cache)
107 return;
108
109 /*
110 * We only need to flush on one CPU,
111 * clflush is a MESI-coherent instruction that
112 * will cause all other CPUs to flush the same
113 * cachelines:
114 */
115 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
116 pte_t *pte = lookup_address(addr, &level);
117
118 /*
119 * Only flush present addresses:
120 */
121 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
122 clflush_cache_range((void *) addr, PAGE_SIZE);
123 }
124 }
125
126 #define HIGH_MAP_START __START_KERNEL_map
127 #define HIGH_MAP_END (__START_KERNEL_map + KERNEL_TEXT_SIZE)
128
129
130 /*
131 * Converts a virtual address to a X86-64 highmap address
132 */
133 static unsigned long virt_to_highmap(void *address)
134 {
135 #ifdef CONFIG_X86_64
136 return __pa((unsigned long)address) + HIGH_MAP_START - phys_base;
137 #else
138 return (unsigned long)address;
139 #endif
140 }
141
142 /*
143 * Certain areas of memory on x86 require very specific protection flags,
144 * for example the BIOS area or kernel text. Callers don't always get this
145 * right (again, ioremap() on BIOS memory is not uncommon) so this function
146 * checks and fixes these known static required protection bits.
147 */
148 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address)
149 {
150 pgprot_t forbidden = __pgprot(0);
151
152 /*
153 * The BIOS area between 640k and 1Mb needs to be executable for
154 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
155 */
156 if (within(__pa(address), BIOS_BEGIN, BIOS_END))
157 pgprot_val(forbidden) |= _PAGE_NX;
158
159 /*
160 * The kernel text needs to be executable for obvious reasons
161 * Does not cover __inittext since that is gone later on
162 */
163 if (within(address, (unsigned long)_text, (unsigned long)_etext))
164 pgprot_val(forbidden) |= _PAGE_NX;
165 /*
166 * Do the same for the x86-64 high kernel mapping
167 */
168 if (within(address, virt_to_highmap(_text), virt_to_highmap(_etext)))
169 pgprot_val(forbidden) |= _PAGE_NX;
170
171 /* The .rodata section needs to be read-only */
172 if (within(address, (unsigned long)__start_rodata,
173 (unsigned long)__end_rodata))
174 pgprot_val(forbidden) |= _PAGE_RW;
175 /*
176 * Do the same for the x86-64 high kernel mapping
177 */
178 if (within(address, virt_to_highmap(__start_rodata),
179 virt_to_highmap(__end_rodata)))
180 pgprot_val(forbidden) |= _PAGE_RW;
181
182 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
183
184 return prot;
185 }
186
187 /*
188 * Lookup the page table entry for a virtual address. Return a pointer
189 * to the entry and the level of the mapping.
190 *
191 * Note: We return pud and pmd either when the entry is marked large
192 * or when the present bit is not set. Otherwise we would return a
193 * pointer to a nonexisting mapping.
194 */
195 pte_t *lookup_address(unsigned long address, unsigned int *level)
196 {
197 pgd_t *pgd = pgd_offset_k(address);
198 pud_t *pud;
199 pmd_t *pmd;
200
201 *level = PG_LEVEL_NONE;
202
203 if (pgd_none(*pgd))
204 return NULL;
205
206 pud = pud_offset(pgd, address);
207 if (pud_none(*pud))
208 return NULL;
209
210 *level = PG_LEVEL_1G;
211 if (pud_large(*pud) || !pud_present(*pud))
212 return (pte_t *)pud;
213
214 pmd = pmd_offset(pud, address);
215 if (pmd_none(*pmd))
216 return NULL;
217
218 *level = PG_LEVEL_2M;
219 if (pmd_large(*pmd) || !pmd_present(*pmd))
220 return (pte_t *)pmd;
221
222 *level = PG_LEVEL_4K;
223
224 return pte_offset_kernel(pmd, address);
225 }
226
227 /*
228 * Set the new pmd in all the pgds we know about:
229 */
230 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
231 {
232 /* change init_mm */
233 set_pte_atomic(kpte, pte);
234 #ifdef CONFIG_X86_32
235 if (!SHARED_KERNEL_PMD) {
236 struct page *page;
237
238 list_for_each_entry(page, &pgd_list, lru) {
239 pgd_t *pgd;
240 pud_t *pud;
241 pmd_t *pmd;
242
243 pgd = (pgd_t *)page_address(page) + pgd_index(address);
244 pud = pud_offset(pgd, address);
245 pmd = pmd_offset(pud, address);
246 set_pte_atomic((pte_t *)pmd, pte);
247 }
248 }
249 #endif
250 }
251
252 static int
253 try_preserve_large_page(pte_t *kpte, unsigned long address,
254 struct cpa_data *cpa)
255 {
256 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr;
257 pte_t new_pte, old_pte, *tmp;
258 pgprot_t old_prot, new_prot;
259 int i, do_split = 1;
260 unsigned int level;
261
262 spin_lock_irqsave(&pgd_lock, flags);
263 /*
264 * Check for races, another CPU might have split this page
265 * up already:
266 */
267 tmp = lookup_address(address, &level);
268 if (tmp != kpte)
269 goto out_unlock;
270
271 switch (level) {
272 case PG_LEVEL_2M:
273 psize = PMD_PAGE_SIZE;
274 pmask = PMD_PAGE_MASK;
275 break;
276 #ifdef CONFIG_X86_64
277 case PG_LEVEL_1G:
278 psize = PUD_PAGE_SIZE;
279 pmask = PUD_PAGE_MASK;
280 break;
281 #endif
282 default:
283 do_split = -EINVAL;
284 goto out_unlock;
285 }
286
287 /*
288 * Calculate the number of pages, which fit into this large
289 * page starting at address:
290 */
291 nextpage_addr = (address + psize) & pmask;
292 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
293 if (numpages < cpa->numpages)
294 cpa->numpages = numpages;
295
296 /*
297 * We are safe now. Check whether the new pgprot is the same:
298 */
299 old_pte = *kpte;
300 old_prot = new_prot = pte_pgprot(old_pte);
301
302 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
303 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
304 new_prot = static_protections(new_prot, address);
305
306 /*
307 * We need to check the full range, whether
308 * static_protection() requires a different pgprot for one of
309 * the pages in the range we try to preserve:
310 */
311 addr = address + PAGE_SIZE;
312 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE) {
313 pgprot_t chk_prot = static_protections(new_prot, addr);
314
315 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
316 goto out_unlock;
317 }
318
319 /*
320 * If there are no changes, return. maxpages has been updated
321 * above:
322 */
323 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
324 do_split = 0;
325 goto out_unlock;
326 }
327
328 /*
329 * We need to change the attributes. Check, whether we can
330 * change the large page in one go. We request a split, when
331 * the address is not aligned and the number of pages is
332 * smaller than the number of pages in the large page. Note
333 * that we limited the number of possible pages already to
334 * the number of pages in the large page.
335 */
336 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
337 /*
338 * The address is aligned and the number of pages
339 * covers the full page.
340 */
341 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
342 __set_pmd_pte(kpte, address, new_pte);
343 cpa->flushtlb = 1;
344 do_split = 0;
345 }
346
347 out_unlock:
348 spin_unlock_irqrestore(&pgd_lock, flags);
349
350 return do_split;
351 }
352
353 static LIST_HEAD(page_pool);
354 static unsigned long pool_size, pool_pages, pool_low;
355 static unsigned long pool_used, pool_failed, pool_refill;
356
357 static void cpa_fill_pool(void)
358 {
359 struct page *p;
360 gfp_t gfp = GFP_KERNEL;
361
362 /* Do not allocate from interrupt context */
363 if (in_irq() || irqs_disabled())
364 return;
365 /*
366 * Check unlocked. I does not matter when we have one more
367 * page in the pool. The bit lock avoids recursive pool
368 * allocations:
369 */
370 if (pool_pages >= pool_size || test_and_set_bit_lock(0, &pool_refill))
371 return;
372
373 #ifdef CONFIG_DEBUG_PAGEALLOC
374 /*
375 * We could do:
376 * gfp = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
377 * but this fails on !PREEMPT kernels
378 */
379 gfp = GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN;
380 #endif
381
382 while (pool_pages < pool_size) {
383 p = alloc_pages(gfp, 0);
384 if (!p) {
385 pool_failed++;
386 break;
387 }
388 spin_lock_irq(&pgd_lock);
389 list_add(&p->lru, &page_pool);
390 pool_pages++;
391 spin_unlock_irq(&pgd_lock);
392 }
393 clear_bit_unlock(0, &pool_refill);
394 }
395
396 #define SHIFT_MB (20 - PAGE_SHIFT)
397 #define ROUND_MB_GB ((1 << 10) - 1)
398 #define SHIFT_MB_GB 10
399 #define POOL_PAGES_PER_GB 16
400
401 void __init cpa_init(void)
402 {
403 struct sysinfo si;
404 unsigned long gb;
405
406 si_meminfo(&si);
407 /*
408 * Calculate the number of pool pages:
409 *
410 * Convert totalram (nr of pages) to MiB and round to the next
411 * GiB. Shift MiB to Gib and multiply the result by
412 * POOL_PAGES_PER_GB:
413 */
414 gb = ((si.totalram >> SHIFT_MB) + ROUND_MB_GB) >> SHIFT_MB_GB;
415 pool_size = POOL_PAGES_PER_GB * gb;
416 pool_low = pool_size;
417
418 cpa_fill_pool();
419 printk(KERN_DEBUG
420 "CPA: page pool initialized %lu of %lu pages preallocated\n",
421 pool_pages, pool_size);
422 }
423
424 static int split_large_page(pte_t *kpte, unsigned long address)
425 {
426 unsigned long flags, pfn, pfninc = 1;
427 unsigned int i, level;
428 pte_t *pbase, *tmp;
429 pgprot_t ref_prot;
430 struct page *base;
431
432 /*
433 * Get a page from the pool. The pool list is protected by the
434 * pgd_lock, which we have to take anyway for the split
435 * operation:
436 */
437 spin_lock_irqsave(&pgd_lock, flags);
438 if (list_empty(&page_pool)) {
439 spin_unlock_irqrestore(&pgd_lock, flags);
440 return -ENOMEM;
441 }
442
443 base = list_first_entry(&page_pool, struct page, lru);
444 list_del(&base->lru);
445 pool_pages--;
446
447 if (pool_pages < pool_low)
448 pool_low = pool_pages;
449
450 /*
451 * Check for races, another CPU might have split this page
452 * up for us already:
453 */
454 tmp = lookup_address(address, &level);
455 if (tmp != kpte)
456 goto out_unlock;
457
458 pbase = (pte_t *)page_address(base);
459 #ifdef CONFIG_X86_32
460 paravirt_alloc_pt(&init_mm, page_to_pfn(base));
461 #endif
462 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
463
464 #ifdef CONFIG_X86_64
465 if (level == PG_LEVEL_1G) {
466 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
467 pgprot_val(ref_prot) |= _PAGE_PSE;
468 }
469 #endif
470
471 /*
472 * Get the target pfn from the original entry:
473 */
474 pfn = pte_pfn(*kpte);
475 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
476 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
477
478 /*
479 * Install the new, split up pagetable. Important details here:
480 *
481 * On Intel the NX bit of all levels must be cleared to make a
482 * page executable. See section 4.13.2 of Intel 64 and IA-32
483 * Architectures Software Developer's Manual).
484 *
485 * Mark the entry present. The current mapping might be
486 * set to not present, which we preserved above.
487 */
488 ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
489 pgprot_val(ref_prot) |= _PAGE_PRESENT;
490 __set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
491 base = NULL;
492
493 out_unlock:
494 /*
495 * If we dropped out via the lookup_address check under
496 * pgd_lock then stick the page back into the pool:
497 */
498 if (base) {
499 list_add(&base->lru, &page_pool);
500 pool_pages++;
501 } else
502 pool_used++;
503 spin_unlock_irqrestore(&pgd_lock, flags);
504
505 return 0;
506 }
507
508 static int __change_page_attr(unsigned long address, struct cpa_data *cpa)
509 {
510 int do_split, err;
511 unsigned int level;
512 struct page *kpte_page;
513 pte_t *kpte;
514
515 repeat:
516 kpte = lookup_address(address, &level);
517 if (!kpte)
518 return -EINVAL;
519
520 kpte_page = virt_to_page(kpte);
521 BUG_ON(PageLRU(kpte_page));
522 BUG_ON(PageCompound(kpte_page));
523
524 if (level == PG_LEVEL_4K) {
525 pte_t new_pte, old_pte = *kpte;
526 pgprot_t new_prot = pte_pgprot(old_pte);
527
528 if(!pte_val(old_pte)) {
529 printk(KERN_WARNING "CPA: called for zero pte. "
530 "vaddr = %lx cpa->vaddr = %lx\n", address,
531 cpa->vaddr);
532 WARN_ON(1);
533 return -EINVAL;
534 }
535
536 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
537 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
538
539 new_prot = static_protections(new_prot, address);
540
541 /*
542 * We need to keep the pfn from the existing PTE,
543 * after all we're only going to change it's attributes
544 * not the memory it points to
545 */
546 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
547
548 /*
549 * Do we really change anything ?
550 */
551 if (pte_val(old_pte) != pte_val(new_pte)) {
552 set_pte_atomic(kpte, new_pte);
553 cpa->flushtlb = 1;
554 }
555 cpa->numpages = 1;
556 return 0;
557 }
558
559 /*
560 * Check, whether we can keep the large page intact
561 * and just change the pte:
562 */
563 do_split = try_preserve_large_page(kpte, address, cpa);
564 /*
565 * When the range fits into the existing large page,
566 * return. cp->numpages and cpa->tlbflush have been updated in
567 * try_large_page:
568 */
569 if (do_split <= 0)
570 return do_split;
571
572 /*
573 * We have to split the large page:
574 */
575 err = split_large_page(kpte, address);
576 if (!err) {
577 cpa->flushtlb = 1;
578 goto repeat;
579 }
580
581 return err;
582 }
583
584 /**
585 * change_page_attr_addr - Change page table attributes in linear mapping
586 * @address: Virtual address in linear mapping.
587 * @prot: New page table attribute (PAGE_*)
588 *
589 * Change page attributes of a page in the direct mapping. This is a variant
590 * of change_page_attr() that also works on memory holes that do not have
591 * mem_map entry (pfn_valid() is false).
592 *
593 * See change_page_attr() documentation for more details.
594 *
595 * Modules and drivers should use the set_memory_* APIs instead.
596 */
597 static int change_page_attr_addr(struct cpa_data *cpa)
598 {
599 int err;
600 unsigned long address = cpa->vaddr;
601
602 #ifdef CONFIG_X86_64
603 unsigned long phys_addr = __pa(address);
604
605 /*
606 * If we are inside the high mapped kernel range, then we
607 * fixup the low mapping first. __va() returns the virtual
608 * address in the linear mapping:
609 */
610 if (within(address, HIGH_MAP_START, HIGH_MAP_END))
611 address = (unsigned long) __va(phys_addr);
612 #endif
613
614 err = __change_page_attr(address, cpa);
615 if (err)
616 return err;
617
618 #ifdef CONFIG_X86_64
619 /*
620 * If the physical address is inside the kernel map, we need
621 * to touch the high mapped kernel as well:
622 */
623 if (within(phys_addr, 0, KERNEL_TEXT_SIZE)) {
624 /*
625 * Calc the high mapping address. See __phys_addr()
626 * for the non obvious details.
627 *
628 * Note that NX and other required permissions are
629 * checked in static_protections().
630 */
631 address = phys_addr + HIGH_MAP_START - phys_base;
632
633 /*
634 * Our high aliases are imprecise, because we check
635 * everything between 0 and KERNEL_TEXT_SIZE, so do
636 * not propagate lookup failures back to users:
637 */
638 __change_page_attr(address, cpa);
639 }
640 #endif
641 return err;
642 }
643
644 static int __change_page_attr_set_clr(struct cpa_data *cpa)
645 {
646 int ret, numpages = cpa->numpages;
647
648 while (numpages) {
649 /*
650 * Store the remaining nr of pages for the large page
651 * preservation check.
652 */
653 cpa->numpages = numpages;
654 ret = change_page_attr_addr(cpa);
655 if (ret)
656 return ret;
657
658 /*
659 * Adjust the number of pages with the result of the
660 * CPA operation. Either a large page has been
661 * preserved or a single page update happened.
662 */
663 BUG_ON(cpa->numpages > numpages);
664 numpages -= cpa->numpages;
665 cpa->vaddr += cpa->numpages * PAGE_SIZE;
666 }
667 return 0;
668 }
669
670 static inline int cache_attr(pgprot_t attr)
671 {
672 return pgprot_val(attr) &
673 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
674 }
675
676 static int change_page_attr_set_clr(unsigned long addr, int numpages,
677 pgprot_t mask_set, pgprot_t mask_clr)
678 {
679 struct cpa_data cpa;
680 int ret, cache;
681
682 /*
683 * Check, if we are requested to change a not supported
684 * feature:
685 */
686 mask_set = canon_pgprot(mask_set);
687 mask_clr = canon_pgprot(mask_clr);
688 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr))
689 return 0;
690
691 cpa.vaddr = addr;
692 cpa.numpages = numpages;
693 cpa.mask_set = mask_set;
694 cpa.mask_clr = mask_clr;
695 cpa.flushtlb = 0;
696
697 ret = __change_page_attr_set_clr(&cpa);
698
699 /*
700 * Check whether we really changed something:
701 */
702 if (!cpa.flushtlb)
703 goto out;
704
705 /*
706 * No need to flush, when we did not set any of the caching
707 * attributes:
708 */
709 cache = cache_attr(mask_set);
710
711 /*
712 * On success we use clflush, when the CPU supports it to
713 * avoid the wbindv. If the CPU does not support it and in the
714 * error case we fall back to cpa_flush_all (which uses
715 * wbindv):
716 */
717 if (!ret && cpu_has_clflush)
718 cpa_flush_range(addr, numpages, cache);
719 else
720 cpa_flush_all(cache);
721
722 out:
723 cpa_fill_pool();
724 return ret;
725 }
726
727 static inline int change_page_attr_set(unsigned long addr, int numpages,
728 pgprot_t mask)
729 {
730 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0));
731 }
732
733 static inline int change_page_attr_clear(unsigned long addr, int numpages,
734 pgprot_t mask)
735 {
736 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask);
737 }
738
739 int set_memory_uc(unsigned long addr, int numpages)
740 {
741 return change_page_attr_set(addr, numpages,
742 __pgprot(_PAGE_PCD | _PAGE_PWT));
743 }
744 EXPORT_SYMBOL(set_memory_uc);
745
746 int set_memory_wb(unsigned long addr, int numpages)
747 {
748 return change_page_attr_clear(addr, numpages,
749 __pgprot(_PAGE_PCD | _PAGE_PWT));
750 }
751 EXPORT_SYMBOL(set_memory_wb);
752
753 int set_memory_x(unsigned long addr, int numpages)
754 {
755 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX));
756 }
757 EXPORT_SYMBOL(set_memory_x);
758
759 int set_memory_nx(unsigned long addr, int numpages)
760 {
761 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX));
762 }
763 EXPORT_SYMBOL(set_memory_nx);
764
765 int set_memory_ro(unsigned long addr, int numpages)
766 {
767 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW));
768 }
769
770 int set_memory_rw(unsigned long addr, int numpages)
771 {
772 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW));
773 }
774
775 int set_memory_np(unsigned long addr, int numpages)
776 {
777 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT));
778 }
779
780 int set_pages_uc(struct page *page, int numpages)
781 {
782 unsigned long addr = (unsigned long)page_address(page);
783
784 return set_memory_uc(addr, numpages);
785 }
786 EXPORT_SYMBOL(set_pages_uc);
787
788 int set_pages_wb(struct page *page, int numpages)
789 {
790 unsigned long addr = (unsigned long)page_address(page);
791
792 return set_memory_wb(addr, numpages);
793 }
794 EXPORT_SYMBOL(set_pages_wb);
795
796 int set_pages_x(struct page *page, int numpages)
797 {
798 unsigned long addr = (unsigned long)page_address(page);
799
800 return set_memory_x(addr, numpages);
801 }
802 EXPORT_SYMBOL(set_pages_x);
803
804 int set_pages_nx(struct page *page, int numpages)
805 {
806 unsigned long addr = (unsigned long)page_address(page);
807
808 return set_memory_nx(addr, numpages);
809 }
810 EXPORT_SYMBOL(set_pages_nx);
811
812 int set_pages_ro(struct page *page, int numpages)
813 {
814 unsigned long addr = (unsigned long)page_address(page);
815
816 return set_memory_ro(addr, numpages);
817 }
818
819 int set_pages_rw(struct page *page, int numpages)
820 {
821 unsigned long addr = (unsigned long)page_address(page);
822
823 return set_memory_rw(addr, numpages);
824 }
825
826 #ifdef CONFIG_DEBUG_PAGEALLOC
827
828 static int __set_pages_p(struct page *page, int numpages)
829 {
830 struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
831 .numpages = numpages,
832 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
833 .mask_clr = __pgprot(0)};
834
835 return __change_page_attr_set_clr(&cpa);
836 }
837
838 static int __set_pages_np(struct page *page, int numpages)
839 {
840 struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
841 .numpages = numpages,
842 .mask_set = __pgprot(0),
843 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW)};
844
845 return __change_page_attr_set_clr(&cpa);
846 }
847
848 void kernel_map_pages(struct page *page, int numpages, int enable)
849 {
850 if (PageHighMem(page))
851 return;
852 if (!enable) {
853 debug_check_no_locks_freed(page_address(page),
854 numpages * PAGE_SIZE);
855 }
856
857 /*
858 * If page allocator is not up yet then do not call c_p_a():
859 */
860 if (!debug_pagealloc_enabled)
861 return;
862
863 /*
864 * The return value is ignored - the calls cannot fail,
865 * large pages are disabled at boot time:
866 */
867 if (enable)
868 __set_pages_p(page, numpages);
869 else
870 __set_pages_np(page, numpages);
871
872 /*
873 * We should perform an IPI and flush all tlbs,
874 * but that can deadlock->flush only current cpu:
875 */
876 __flush_tlb_all();
877
878 /*
879 * Try to refill the page pool here. We can do this only after
880 * the tlb flush.
881 */
882 cpa_fill_pool();
883 }
884 #endif
885
886 /*
887 * The testcases use internal knowledge of the implementation that shouldn't
888 * be exposed to the rest of the kernel. Include these directly here.
889 */
890 #ifdef CONFIG_CPA_DEBUG
891 #include "pageattr-test.c"
892 #endif
This page took 0.065991 seconds and 5 git commands to generate.