x86: {reverve,free}_memtype() take a physical address
[deliverable/linux.git] / arch / x86 / mm / pageattr.c
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
14
15 #include <asm/e820.h>
16 #include <asm/processor.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19 #include <asm/uaccess.h>
20 #include <asm/pgalloc.h>
21 #include <asm/proto.h>
22 #include <asm/pat.h>
23
24 /*
25 * The current flushing context - we pass it instead of 5 arguments:
26 */
27 struct cpa_data {
28 unsigned long *vaddr;
29 pgprot_t mask_set;
30 pgprot_t mask_clr;
31 int numpages;
32 int flags;
33 unsigned long pfn;
34 unsigned force_split : 1;
35 int curpage;
36 };
37
38 #define CPA_FLUSHTLB 1
39 #define CPA_ARRAY 2
40
41 #ifdef CONFIG_PROC_FS
42 static unsigned long direct_pages_count[PG_LEVEL_NUM];
43
44 void update_page_count(int level, unsigned long pages)
45 {
46 unsigned long flags;
47
48 /* Protect against CPA */
49 spin_lock_irqsave(&pgd_lock, flags);
50 direct_pages_count[level] += pages;
51 spin_unlock_irqrestore(&pgd_lock, flags);
52 }
53
54 static void split_page_count(int level)
55 {
56 direct_pages_count[level]--;
57 direct_pages_count[level - 1] += PTRS_PER_PTE;
58 }
59
60 int arch_report_meminfo(char *page)
61 {
62 int n = sprintf(page, "DirectMap4k: %8lu kB\n",
63 direct_pages_count[PG_LEVEL_4K] << 2);
64 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
65 n += sprintf(page + n, "DirectMap2M: %8lu kB\n",
66 direct_pages_count[PG_LEVEL_2M] << 11);
67 #else
68 n += sprintf(page + n, "DirectMap4M: %8lu kB\n",
69 direct_pages_count[PG_LEVEL_2M] << 12);
70 #endif
71 #ifdef CONFIG_X86_64
72 if (direct_gbpages)
73 n += sprintf(page + n, "DirectMap1G: %8lu kB\n",
74 direct_pages_count[PG_LEVEL_1G] << 20);
75 #endif
76 return n;
77 }
78 #else
79 static inline void split_page_count(int level) { }
80 #endif
81
82 #ifdef CONFIG_X86_64
83
84 static inline unsigned long highmap_start_pfn(void)
85 {
86 return __pa(_text) >> PAGE_SHIFT;
87 }
88
89 static inline unsigned long highmap_end_pfn(void)
90 {
91 return __pa(round_up((unsigned long)_end, PMD_SIZE)) >> PAGE_SHIFT;
92 }
93
94 #endif
95
96 #ifdef CONFIG_DEBUG_PAGEALLOC
97 # define debug_pagealloc 1
98 #else
99 # define debug_pagealloc 0
100 #endif
101
102 static inline int
103 within(unsigned long addr, unsigned long start, unsigned long end)
104 {
105 return addr >= start && addr < end;
106 }
107
108 /*
109 * Flushing functions
110 */
111
112 /**
113 * clflush_cache_range - flush a cache range with clflush
114 * @addr: virtual start address
115 * @size: number of bytes to flush
116 *
117 * clflush is an unordered instruction which needs fencing with mfence
118 * to avoid ordering issues.
119 */
120 void clflush_cache_range(void *vaddr, unsigned int size)
121 {
122 void *vend = vaddr + size - 1;
123
124 mb();
125
126 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
127 clflush(vaddr);
128 /*
129 * Flush any possible final partial cacheline:
130 */
131 clflush(vend);
132
133 mb();
134 }
135
136 static void __cpa_flush_all(void *arg)
137 {
138 unsigned long cache = (unsigned long)arg;
139
140 /*
141 * Flush all to work around Errata in early athlons regarding
142 * large page flushing.
143 */
144 __flush_tlb_all();
145
146 if (cache && boot_cpu_data.x86_model >= 4)
147 wbinvd();
148 }
149
150 static void cpa_flush_all(unsigned long cache)
151 {
152 BUG_ON(irqs_disabled());
153
154 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
155 }
156
157 static void __cpa_flush_range(void *arg)
158 {
159 /*
160 * We could optimize that further and do individual per page
161 * tlb invalidates for a low number of pages. Caveat: we must
162 * flush the high aliases on 64bit as well.
163 */
164 __flush_tlb_all();
165 }
166
167 static void cpa_flush_range(unsigned long start, int numpages, int cache)
168 {
169 unsigned int i, level;
170 unsigned long addr;
171
172 BUG_ON(irqs_disabled());
173 WARN_ON(PAGE_ALIGN(start) != start);
174
175 on_each_cpu(__cpa_flush_range, NULL, 1);
176
177 if (!cache)
178 return;
179
180 /*
181 * We only need to flush on one CPU,
182 * clflush is a MESI-coherent instruction that
183 * will cause all other CPUs to flush the same
184 * cachelines:
185 */
186 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
187 pte_t *pte = lookup_address(addr, &level);
188
189 /*
190 * Only flush present addresses:
191 */
192 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
193 clflush_cache_range((void *) addr, PAGE_SIZE);
194 }
195 }
196
197 static void cpa_flush_array(unsigned long *start, int numpages, int cache)
198 {
199 unsigned int i, level;
200 unsigned long *addr;
201
202 BUG_ON(irqs_disabled());
203
204 on_each_cpu(__cpa_flush_range, NULL, 1);
205
206 if (!cache)
207 return;
208
209 /* 4M threshold */
210 if (numpages >= 1024) {
211 if (boot_cpu_data.x86_model >= 4)
212 wbinvd();
213 return;
214 }
215 /*
216 * We only need to flush on one CPU,
217 * clflush is a MESI-coherent instruction that
218 * will cause all other CPUs to flush the same
219 * cachelines:
220 */
221 for (i = 0, addr = start; i < numpages; i++, addr++) {
222 pte_t *pte = lookup_address(*addr, &level);
223
224 /*
225 * Only flush present addresses:
226 */
227 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
228 clflush_cache_range((void *) *addr, PAGE_SIZE);
229 }
230 }
231
232 /*
233 * Certain areas of memory on x86 require very specific protection flags,
234 * for example the BIOS area or kernel text. Callers don't always get this
235 * right (again, ioremap() on BIOS memory is not uncommon) so this function
236 * checks and fixes these known static required protection bits.
237 */
238 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
239 unsigned long pfn)
240 {
241 pgprot_t forbidden = __pgprot(0);
242
243 /*
244 * The BIOS area between 640k and 1Mb needs to be executable for
245 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
246 */
247 if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
248 pgprot_val(forbidden) |= _PAGE_NX;
249
250 /*
251 * The kernel text needs to be executable for obvious reasons
252 * Does not cover __inittext since that is gone later on. On
253 * 64bit we do not enforce !NX on the low mapping
254 */
255 if (within(address, (unsigned long)_text, (unsigned long)_etext))
256 pgprot_val(forbidden) |= _PAGE_NX;
257
258 /*
259 * The .rodata section needs to be read-only. Using the pfn
260 * catches all aliases.
261 */
262 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
263 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
264 pgprot_val(forbidden) |= _PAGE_RW;
265
266 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
267
268 return prot;
269 }
270
271 /*
272 * Lookup the page table entry for a virtual address. Return a pointer
273 * to the entry and the level of the mapping.
274 *
275 * Note: We return pud and pmd either when the entry is marked large
276 * or when the present bit is not set. Otherwise we would return a
277 * pointer to a nonexisting mapping.
278 */
279 pte_t *lookup_address(unsigned long address, unsigned int *level)
280 {
281 pgd_t *pgd = pgd_offset_k(address);
282 pud_t *pud;
283 pmd_t *pmd;
284
285 *level = PG_LEVEL_NONE;
286
287 if (pgd_none(*pgd))
288 return NULL;
289
290 pud = pud_offset(pgd, address);
291 if (pud_none(*pud))
292 return NULL;
293
294 *level = PG_LEVEL_1G;
295 if (pud_large(*pud) || !pud_present(*pud))
296 return (pte_t *)pud;
297
298 pmd = pmd_offset(pud, address);
299 if (pmd_none(*pmd))
300 return NULL;
301
302 *level = PG_LEVEL_2M;
303 if (pmd_large(*pmd) || !pmd_present(*pmd))
304 return (pte_t *)pmd;
305
306 *level = PG_LEVEL_4K;
307
308 return pte_offset_kernel(pmd, address);
309 }
310 EXPORT_SYMBOL_GPL(lookup_address);
311
312 /*
313 * Set the new pmd in all the pgds we know about:
314 */
315 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
316 {
317 /* change init_mm */
318 set_pte_atomic(kpte, pte);
319 #ifdef CONFIG_X86_32
320 if (!SHARED_KERNEL_PMD) {
321 struct page *page;
322
323 list_for_each_entry(page, &pgd_list, lru) {
324 pgd_t *pgd;
325 pud_t *pud;
326 pmd_t *pmd;
327
328 pgd = (pgd_t *)page_address(page) + pgd_index(address);
329 pud = pud_offset(pgd, address);
330 pmd = pmd_offset(pud, address);
331 set_pte_atomic((pte_t *)pmd, pte);
332 }
333 }
334 #endif
335 }
336
337 static int
338 try_preserve_large_page(pte_t *kpte, unsigned long address,
339 struct cpa_data *cpa)
340 {
341 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
342 pte_t new_pte, old_pte, *tmp;
343 pgprot_t old_prot, new_prot;
344 int i, do_split = 1;
345 unsigned int level;
346
347 if (cpa->force_split)
348 return 1;
349
350 spin_lock_irqsave(&pgd_lock, flags);
351 /*
352 * Check for races, another CPU might have split this page
353 * up already:
354 */
355 tmp = lookup_address(address, &level);
356 if (tmp != kpte)
357 goto out_unlock;
358
359 switch (level) {
360 case PG_LEVEL_2M:
361 psize = PMD_PAGE_SIZE;
362 pmask = PMD_PAGE_MASK;
363 break;
364 #ifdef CONFIG_X86_64
365 case PG_LEVEL_1G:
366 psize = PUD_PAGE_SIZE;
367 pmask = PUD_PAGE_MASK;
368 break;
369 #endif
370 default:
371 do_split = -EINVAL;
372 goto out_unlock;
373 }
374
375 /*
376 * Calculate the number of pages, which fit into this large
377 * page starting at address:
378 */
379 nextpage_addr = (address + psize) & pmask;
380 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
381 if (numpages < cpa->numpages)
382 cpa->numpages = numpages;
383
384 /*
385 * We are safe now. Check whether the new pgprot is the same:
386 */
387 old_pte = *kpte;
388 old_prot = new_prot = pte_pgprot(old_pte);
389
390 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
391 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
392
393 /*
394 * old_pte points to the large page base address. So we need
395 * to add the offset of the virtual address:
396 */
397 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
398 cpa->pfn = pfn;
399
400 new_prot = static_protections(new_prot, address, pfn);
401
402 /*
403 * We need to check the full range, whether
404 * static_protection() requires a different pgprot for one of
405 * the pages in the range we try to preserve:
406 */
407 addr = address + PAGE_SIZE;
408 pfn++;
409 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
410 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
411
412 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
413 goto out_unlock;
414 }
415
416 /*
417 * If there are no changes, return. maxpages has been updated
418 * above:
419 */
420 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
421 do_split = 0;
422 goto out_unlock;
423 }
424
425 /*
426 * We need to change the attributes. Check, whether we can
427 * change the large page in one go. We request a split, when
428 * the address is not aligned and the number of pages is
429 * smaller than the number of pages in the large page. Note
430 * that we limited the number of possible pages already to
431 * the number of pages in the large page.
432 */
433 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
434 /*
435 * The address is aligned and the number of pages
436 * covers the full page.
437 */
438 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
439 __set_pmd_pte(kpte, address, new_pte);
440 cpa->flags |= CPA_FLUSHTLB;
441 do_split = 0;
442 }
443
444 out_unlock:
445 spin_unlock_irqrestore(&pgd_lock, flags);
446
447 return do_split;
448 }
449
450 static LIST_HEAD(page_pool);
451 static unsigned long pool_size, pool_pages, pool_low;
452 static unsigned long pool_used, pool_failed;
453
454 static void cpa_fill_pool(struct page **ret)
455 {
456 gfp_t gfp = GFP_KERNEL;
457 unsigned long flags;
458 struct page *p;
459
460 /*
461 * Avoid recursion (on debug-pagealloc) and also signal
462 * our priority to get to these pagetables:
463 */
464 if (current->flags & PF_MEMALLOC)
465 return;
466 current->flags |= PF_MEMALLOC;
467
468 /*
469 * Allocate atomically from atomic contexts:
470 */
471 if (in_atomic() || irqs_disabled() || debug_pagealloc)
472 gfp = GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN;
473
474 while (pool_pages < pool_size || (ret && !*ret)) {
475 p = alloc_pages(gfp, 0);
476 if (!p) {
477 pool_failed++;
478 break;
479 }
480 /*
481 * If the call site needs a page right now, provide it:
482 */
483 if (ret && !*ret) {
484 *ret = p;
485 continue;
486 }
487 spin_lock_irqsave(&pgd_lock, flags);
488 list_add(&p->lru, &page_pool);
489 pool_pages++;
490 spin_unlock_irqrestore(&pgd_lock, flags);
491 }
492
493 current->flags &= ~PF_MEMALLOC;
494 }
495
496 #define SHIFT_MB (20 - PAGE_SHIFT)
497 #define ROUND_MB_GB ((1 << 10) - 1)
498 #define SHIFT_MB_GB 10
499 #define POOL_PAGES_PER_GB 16
500
501 void __init cpa_init(void)
502 {
503 struct sysinfo si;
504 unsigned long gb;
505
506 si_meminfo(&si);
507 /*
508 * Calculate the number of pool pages:
509 *
510 * Convert totalram (nr of pages) to MiB and round to the next
511 * GiB. Shift MiB to Gib and multiply the result by
512 * POOL_PAGES_PER_GB:
513 */
514 if (debug_pagealloc) {
515 gb = ((si.totalram >> SHIFT_MB) + ROUND_MB_GB) >> SHIFT_MB_GB;
516 pool_size = POOL_PAGES_PER_GB * gb;
517 } else {
518 pool_size = 1;
519 }
520 pool_low = pool_size;
521
522 cpa_fill_pool(NULL);
523 printk(KERN_DEBUG
524 "CPA: page pool initialized %lu of %lu pages preallocated\n",
525 pool_pages, pool_size);
526 }
527
528 static int split_large_page(pte_t *kpte, unsigned long address)
529 {
530 unsigned long flags, pfn, pfninc = 1;
531 unsigned int i, level;
532 pte_t *pbase, *tmp;
533 pgprot_t ref_prot;
534 struct page *base;
535
536 /*
537 * Get a page from the pool. The pool list is protected by the
538 * pgd_lock, which we have to take anyway for the split
539 * operation:
540 */
541 spin_lock_irqsave(&pgd_lock, flags);
542 if (list_empty(&page_pool)) {
543 spin_unlock_irqrestore(&pgd_lock, flags);
544 base = NULL;
545 cpa_fill_pool(&base);
546 if (!base)
547 return -ENOMEM;
548 spin_lock_irqsave(&pgd_lock, flags);
549 } else {
550 base = list_first_entry(&page_pool, struct page, lru);
551 list_del(&base->lru);
552 pool_pages--;
553
554 if (pool_pages < pool_low)
555 pool_low = pool_pages;
556 }
557
558 /*
559 * Check for races, another CPU might have split this page
560 * up for us already:
561 */
562 tmp = lookup_address(address, &level);
563 if (tmp != kpte)
564 goto out_unlock;
565
566 pbase = (pte_t *)page_address(base);
567 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
568 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
569
570 #ifdef CONFIG_X86_64
571 if (level == PG_LEVEL_1G) {
572 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
573 pgprot_val(ref_prot) |= _PAGE_PSE;
574 }
575 #endif
576
577 /*
578 * Get the target pfn from the original entry:
579 */
580 pfn = pte_pfn(*kpte);
581 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
582 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
583
584 if (address >= (unsigned long)__va(0) &&
585 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
586 split_page_count(level);
587
588 #ifdef CONFIG_X86_64
589 if (address >= (unsigned long)__va(1UL<<32) &&
590 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
591 split_page_count(level);
592 #endif
593
594 /*
595 * Install the new, split up pagetable. Important details here:
596 *
597 * On Intel the NX bit of all levels must be cleared to make a
598 * page executable. See section 4.13.2 of Intel 64 and IA-32
599 * Architectures Software Developer's Manual).
600 *
601 * Mark the entry present. The current mapping might be
602 * set to not present, which we preserved above.
603 */
604 ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
605 pgprot_val(ref_prot) |= _PAGE_PRESENT;
606 __set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
607 base = NULL;
608
609 out_unlock:
610 /*
611 * If we dropped out via the lookup_address check under
612 * pgd_lock then stick the page back into the pool:
613 */
614 if (base) {
615 list_add(&base->lru, &page_pool);
616 pool_pages++;
617 } else
618 pool_used++;
619 spin_unlock_irqrestore(&pgd_lock, flags);
620
621 return 0;
622 }
623
624 static int __change_page_attr(struct cpa_data *cpa, int primary)
625 {
626 unsigned long address;
627 int do_split, err;
628 unsigned int level;
629 pte_t *kpte, old_pte;
630
631 if (cpa->flags & CPA_ARRAY)
632 address = cpa->vaddr[cpa->curpage];
633 else
634 address = *cpa->vaddr;
635
636 repeat:
637 kpte = lookup_address(address, &level);
638 if (!kpte)
639 return 0;
640
641 old_pte = *kpte;
642 if (!pte_val(old_pte)) {
643 if (!primary)
644 return 0;
645 WARN(1, KERN_WARNING "CPA: called for zero pte. "
646 "vaddr = %lx cpa->vaddr = %lx\n", address,
647 *cpa->vaddr);
648 return -EINVAL;
649 }
650
651 if (level == PG_LEVEL_4K) {
652 pte_t new_pte;
653 pgprot_t new_prot = pte_pgprot(old_pte);
654 unsigned long pfn = pte_pfn(old_pte);
655
656 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
657 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
658
659 new_prot = static_protections(new_prot, address, pfn);
660
661 /*
662 * We need to keep the pfn from the existing PTE,
663 * after all we're only going to change it's attributes
664 * not the memory it points to
665 */
666 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
667 cpa->pfn = pfn;
668 /*
669 * Do we really change anything ?
670 */
671 if (pte_val(old_pte) != pte_val(new_pte)) {
672 set_pte_atomic(kpte, new_pte);
673 cpa->flags |= CPA_FLUSHTLB;
674 }
675 cpa->numpages = 1;
676 return 0;
677 }
678
679 /*
680 * Check, whether we can keep the large page intact
681 * and just change the pte:
682 */
683 do_split = try_preserve_large_page(kpte, address, cpa);
684 /*
685 * When the range fits into the existing large page,
686 * return. cp->numpages and cpa->tlbflush have been updated in
687 * try_large_page:
688 */
689 if (do_split <= 0)
690 return do_split;
691
692 /*
693 * We have to split the large page:
694 */
695 err = split_large_page(kpte, address);
696 if (!err) {
697 cpa->flags |= CPA_FLUSHTLB;
698 goto repeat;
699 }
700
701 return err;
702 }
703
704 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
705
706 static int cpa_process_alias(struct cpa_data *cpa)
707 {
708 struct cpa_data alias_cpa;
709 int ret = 0;
710 unsigned long temp_cpa_vaddr, vaddr;
711
712 if (cpa->pfn >= max_pfn_mapped)
713 return 0;
714
715 #ifdef CONFIG_X86_64
716 if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
717 return 0;
718 #endif
719 /*
720 * No need to redo, when the primary call touched the direct
721 * mapping already:
722 */
723 if (cpa->flags & CPA_ARRAY)
724 vaddr = cpa->vaddr[cpa->curpage];
725 else
726 vaddr = *cpa->vaddr;
727
728 if (!(within(vaddr, PAGE_OFFSET,
729 PAGE_OFFSET + (max_low_pfn_mapped << PAGE_SHIFT))
730 #ifdef CONFIG_X86_64
731 || within(vaddr, PAGE_OFFSET + (1UL<<32),
732 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))
733 #endif
734 )) {
735
736 alias_cpa = *cpa;
737 temp_cpa_vaddr = (unsigned long) __va(cpa->pfn << PAGE_SHIFT);
738 alias_cpa.vaddr = &temp_cpa_vaddr;
739 alias_cpa.flags &= ~CPA_ARRAY;
740
741
742 ret = __change_page_attr_set_clr(&alias_cpa, 0);
743 }
744
745 #ifdef CONFIG_X86_64
746 if (ret)
747 return ret;
748 /*
749 * No need to redo, when the primary call touched the high
750 * mapping already:
751 */
752 if (within(vaddr, (unsigned long) _text, (unsigned long) _end))
753 return 0;
754
755 /*
756 * If the physical address is inside the kernel map, we need
757 * to touch the high mapped kernel as well:
758 */
759 if (!within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn()))
760 return 0;
761
762 alias_cpa = *cpa;
763 temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base;
764 alias_cpa.vaddr = &temp_cpa_vaddr;
765 alias_cpa.flags &= ~CPA_ARRAY;
766
767 /*
768 * The high mapping range is imprecise, so ignore the return value.
769 */
770 __change_page_attr_set_clr(&alias_cpa, 0);
771 #endif
772 return ret;
773 }
774
775 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
776 {
777 int ret, numpages = cpa->numpages;
778
779 while (numpages) {
780 /*
781 * Store the remaining nr of pages for the large page
782 * preservation check.
783 */
784 cpa->numpages = numpages;
785 /* for array changes, we can't use large page */
786 if (cpa->flags & CPA_ARRAY)
787 cpa->numpages = 1;
788
789 ret = __change_page_attr(cpa, checkalias);
790 if (ret)
791 return ret;
792
793 if (checkalias) {
794 ret = cpa_process_alias(cpa);
795 if (ret)
796 return ret;
797 }
798
799 /*
800 * Adjust the number of pages with the result of the
801 * CPA operation. Either a large page has been
802 * preserved or a single page update happened.
803 */
804 BUG_ON(cpa->numpages > numpages);
805 numpages -= cpa->numpages;
806 if (cpa->flags & CPA_ARRAY)
807 cpa->curpage++;
808 else
809 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
810
811 }
812 return 0;
813 }
814
815 static inline int cache_attr(pgprot_t attr)
816 {
817 return pgprot_val(attr) &
818 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
819 }
820
821 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
822 pgprot_t mask_set, pgprot_t mask_clr,
823 int force_split, int array)
824 {
825 struct cpa_data cpa;
826 int ret, cache, checkalias;
827
828 /*
829 * Check, if we are requested to change a not supported
830 * feature:
831 */
832 mask_set = canon_pgprot(mask_set);
833 mask_clr = canon_pgprot(mask_clr);
834 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
835 return 0;
836
837 /* Ensure we are PAGE_SIZE aligned */
838 if (!array) {
839 if (*addr & ~PAGE_MASK) {
840 *addr &= PAGE_MASK;
841 /*
842 * People should not be passing in unaligned addresses:
843 */
844 WARN_ON_ONCE(1);
845 }
846 } else {
847 int i;
848 for (i = 0; i < numpages; i++) {
849 if (addr[i] & ~PAGE_MASK) {
850 addr[i] &= PAGE_MASK;
851 WARN_ON_ONCE(1);
852 }
853 }
854 }
855
856 /* Must avoid aliasing mappings in the highmem code */
857 kmap_flush_unused();
858
859 cpa.vaddr = addr;
860 cpa.numpages = numpages;
861 cpa.mask_set = mask_set;
862 cpa.mask_clr = mask_clr;
863 cpa.flags = 0;
864 cpa.curpage = 0;
865 cpa.force_split = force_split;
866
867 if (array)
868 cpa.flags |= CPA_ARRAY;
869
870 /* No alias checking for _NX bit modifications */
871 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
872
873 ret = __change_page_attr_set_clr(&cpa, checkalias);
874
875 /*
876 * Check whether we really changed something:
877 */
878 if (!(cpa.flags & CPA_FLUSHTLB))
879 goto out;
880
881 /*
882 * No need to flush, when we did not set any of the caching
883 * attributes:
884 */
885 cache = cache_attr(mask_set);
886
887 /*
888 * On success we use clflush, when the CPU supports it to
889 * avoid the wbindv. If the CPU does not support it and in the
890 * error case we fall back to cpa_flush_all (which uses
891 * wbindv):
892 */
893 if (!ret && cpu_has_clflush) {
894 if (cpa.flags & CPA_ARRAY)
895 cpa_flush_array(addr, numpages, cache);
896 else
897 cpa_flush_range(*addr, numpages, cache);
898 } else
899 cpa_flush_all(cache);
900
901 out:
902 cpa_fill_pool(NULL);
903
904 return ret;
905 }
906
907 static inline int change_page_attr_set(unsigned long *addr, int numpages,
908 pgprot_t mask, int array)
909 {
910 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
911 array);
912 }
913
914 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
915 pgprot_t mask, int array)
916 {
917 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
918 array);
919 }
920
921 int _set_memory_uc(unsigned long addr, int numpages)
922 {
923 /*
924 * for now UC MINUS. see comments in ioremap_nocache()
925 */
926 return change_page_attr_set(&addr, numpages,
927 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
928 }
929
930 int set_memory_uc(unsigned long addr, int numpages)
931 {
932 /*
933 * for now UC MINUS. see comments in ioremap_nocache()
934 */
935 if (reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
936 _PAGE_CACHE_UC_MINUS, NULL))
937 return -EINVAL;
938
939 return _set_memory_uc(addr, numpages);
940 }
941 EXPORT_SYMBOL(set_memory_uc);
942
943 int set_memory_array_uc(unsigned long *addr, int addrinarray)
944 {
945 int i;
946 /*
947 * for now UC MINUS. see comments in ioremap_nocache()
948 */
949 for (i = 0; i < addrinarray; i++) {
950 if (reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
951 _PAGE_CACHE_UC_MINUS, NULL))
952 goto out;
953 }
954
955 return change_page_attr_set(addr, addrinarray,
956 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
957 out:
958 while (--i >= 0)
959 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
960 return -EINVAL;
961 }
962 EXPORT_SYMBOL(set_memory_array_uc);
963
964 int _set_memory_wc(unsigned long addr, int numpages)
965 {
966 return change_page_attr_set(&addr, numpages,
967 __pgprot(_PAGE_CACHE_WC), 0);
968 }
969
970 int set_memory_wc(unsigned long addr, int numpages)
971 {
972 if (!pat_enabled)
973 return set_memory_uc(addr, numpages);
974
975 if (reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
976 _PAGE_CACHE_WC, NULL))
977 return -EINVAL;
978
979 return _set_memory_wc(addr, numpages);
980 }
981 EXPORT_SYMBOL(set_memory_wc);
982
983 int _set_memory_wb(unsigned long addr, int numpages)
984 {
985 return change_page_attr_clear(&addr, numpages,
986 __pgprot(_PAGE_CACHE_MASK), 0);
987 }
988
989 int set_memory_wb(unsigned long addr, int numpages)
990 {
991 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
992
993 return _set_memory_wb(addr, numpages);
994 }
995 EXPORT_SYMBOL(set_memory_wb);
996
997 int set_memory_array_wb(unsigned long *addr, int addrinarray)
998 {
999 int i;
1000 for (i = 0; i < addrinarray; i++)
1001 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1002
1003 return change_page_attr_clear(addr, addrinarray,
1004 __pgprot(_PAGE_CACHE_MASK), 1);
1005 }
1006 EXPORT_SYMBOL(set_memory_array_wb);
1007
1008 int set_memory_x(unsigned long addr, int numpages)
1009 {
1010 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1011 }
1012 EXPORT_SYMBOL(set_memory_x);
1013
1014 int set_memory_nx(unsigned long addr, int numpages)
1015 {
1016 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1017 }
1018 EXPORT_SYMBOL(set_memory_nx);
1019
1020 int set_memory_ro(unsigned long addr, int numpages)
1021 {
1022 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1023 }
1024
1025 int set_memory_rw(unsigned long addr, int numpages)
1026 {
1027 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1028 }
1029
1030 int set_memory_np(unsigned long addr, int numpages)
1031 {
1032 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1033 }
1034
1035 int set_memory_4k(unsigned long addr, int numpages)
1036 {
1037 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1038 __pgprot(0), 1, 0);
1039 }
1040
1041 int set_pages_uc(struct page *page, int numpages)
1042 {
1043 unsigned long addr = (unsigned long)page_address(page);
1044
1045 return set_memory_uc(addr, numpages);
1046 }
1047 EXPORT_SYMBOL(set_pages_uc);
1048
1049 int set_pages_wb(struct page *page, int numpages)
1050 {
1051 unsigned long addr = (unsigned long)page_address(page);
1052
1053 return set_memory_wb(addr, numpages);
1054 }
1055 EXPORT_SYMBOL(set_pages_wb);
1056
1057 int set_pages_x(struct page *page, int numpages)
1058 {
1059 unsigned long addr = (unsigned long)page_address(page);
1060
1061 return set_memory_x(addr, numpages);
1062 }
1063 EXPORT_SYMBOL(set_pages_x);
1064
1065 int set_pages_nx(struct page *page, int numpages)
1066 {
1067 unsigned long addr = (unsigned long)page_address(page);
1068
1069 return set_memory_nx(addr, numpages);
1070 }
1071 EXPORT_SYMBOL(set_pages_nx);
1072
1073 int set_pages_ro(struct page *page, int numpages)
1074 {
1075 unsigned long addr = (unsigned long)page_address(page);
1076
1077 return set_memory_ro(addr, numpages);
1078 }
1079
1080 int set_pages_rw(struct page *page, int numpages)
1081 {
1082 unsigned long addr = (unsigned long)page_address(page);
1083
1084 return set_memory_rw(addr, numpages);
1085 }
1086
1087 #ifdef CONFIG_DEBUG_PAGEALLOC
1088
1089 static int __set_pages_p(struct page *page, int numpages)
1090 {
1091 unsigned long tempaddr = (unsigned long) page_address(page);
1092 struct cpa_data cpa = { .vaddr = &tempaddr,
1093 .numpages = numpages,
1094 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1095 .mask_clr = __pgprot(0),
1096 .flags = 0};
1097
1098 return __change_page_attr_set_clr(&cpa, 1);
1099 }
1100
1101 static int __set_pages_np(struct page *page, int numpages)
1102 {
1103 unsigned long tempaddr = (unsigned long) page_address(page);
1104 struct cpa_data cpa = { .vaddr = &tempaddr,
1105 .numpages = numpages,
1106 .mask_set = __pgprot(0),
1107 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1108 .flags = 0};
1109
1110 return __change_page_attr_set_clr(&cpa, 1);
1111 }
1112
1113 void kernel_map_pages(struct page *page, int numpages, int enable)
1114 {
1115 if (PageHighMem(page))
1116 return;
1117 if (!enable) {
1118 debug_check_no_locks_freed(page_address(page),
1119 numpages * PAGE_SIZE);
1120 }
1121
1122 /*
1123 * If page allocator is not up yet then do not call c_p_a():
1124 */
1125 if (!debug_pagealloc_enabled)
1126 return;
1127
1128 /*
1129 * The return value is ignored as the calls cannot fail.
1130 * Large pages are kept enabled at boot time, and are
1131 * split up quickly with DEBUG_PAGEALLOC. If a splitup
1132 * fails here (due to temporary memory shortage) no damage
1133 * is done because we just keep the largepage intact up
1134 * to the next attempt when it will likely be split up:
1135 */
1136 if (enable)
1137 __set_pages_p(page, numpages);
1138 else
1139 __set_pages_np(page, numpages);
1140
1141 /*
1142 * We should perform an IPI and flush all tlbs,
1143 * but that can deadlock->flush only current cpu:
1144 */
1145 __flush_tlb_all();
1146
1147 /*
1148 * Try to refill the page pool here. We can do this only after
1149 * the tlb flush.
1150 */
1151 cpa_fill_pool(NULL);
1152 }
1153
1154 #ifdef CONFIG_DEBUG_FS
1155 static int dpa_show(struct seq_file *m, void *v)
1156 {
1157 seq_puts(m, "DEBUG_PAGEALLOC\n");
1158 seq_printf(m, "pool_size : %lu\n", pool_size);
1159 seq_printf(m, "pool_pages : %lu\n", pool_pages);
1160 seq_printf(m, "pool_low : %lu\n", pool_low);
1161 seq_printf(m, "pool_used : %lu\n", pool_used);
1162 seq_printf(m, "pool_failed : %lu\n", pool_failed);
1163
1164 return 0;
1165 }
1166
1167 static int dpa_open(struct inode *inode, struct file *filp)
1168 {
1169 return single_open(filp, dpa_show, NULL);
1170 }
1171
1172 static const struct file_operations dpa_fops = {
1173 .open = dpa_open,
1174 .read = seq_read,
1175 .llseek = seq_lseek,
1176 .release = single_release,
1177 };
1178
1179 static int __init debug_pagealloc_proc_init(void)
1180 {
1181 struct dentry *de;
1182
1183 de = debugfs_create_file("debug_pagealloc", 0600, NULL, NULL,
1184 &dpa_fops);
1185 if (!de)
1186 return -ENOMEM;
1187
1188 return 0;
1189 }
1190 __initcall(debug_pagealloc_proc_init);
1191 #endif
1192
1193 #ifdef CONFIG_HIBERNATION
1194
1195 bool kernel_page_present(struct page *page)
1196 {
1197 unsigned int level;
1198 pte_t *pte;
1199
1200 if (PageHighMem(page))
1201 return false;
1202
1203 pte = lookup_address((unsigned long)page_address(page), &level);
1204 return (pte_val(*pte) & _PAGE_PRESENT);
1205 }
1206
1207 #endif /* CONFIG_HIBERNATION */
1208
1209 #endif /* CONFIG_DEBUG_PAGEALLOC */
1210
1211 /*
1212 * The testcases use internal knowledge of the implementation that shouldn't
1213 * be exposed to the rest of the kernel. Include these directly here.
1214 */
1215 #ifdef CONFIG_CPA_DEBUG
1216 #include "pageattr-test.c"
1217 #endif
This page took 0.05411 seconds and 5 git commands to generate.