8be8c7d7bc89759a55059ea440af5b26e3d9e0c9
[deliverable/linux.git] / arch / x86 / mm / pgtable.c
1 #include <linux/mm.h>
2 #include <linux/gfp.h>
3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
5 #include <asm/tlb.h>
6 #include <asm/fixmap.h>
7
8 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
9
10 #ifdef CONFIG_HIGHPTE
11 #define PGALLOC_USER_GFP __GFP_HIGHMEM
12 #else
13 #define PGALLOC_USER_GFP 0
14 #endif
15
16 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
17
18 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
19 {
20 return (pte_t *)__get_free_page(PGALLOC_GFP);
21 }
22
23 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
24 {
25 struct page *pte;
26
27 pte = alloc_pages(__userpte_alloc_gfp, 0);
28 if (pte)
29 pgtable_page_ctor(pte);
30 return pte;
31 }
32
33 static int __init setup_userpte(char *arg)
34 {
35 if (!arg)
36 return -EINVAL;
37
38 /*
39 * "userpte=nohigh" disables allocation of user pagetables in
40 * high memory.
41 */
42 if (strcmp(arg, "nohigh") == 0)
43 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
44 else
45 return -EINVAL;
46 return 0;
47 }
48 early_param("userpte", setup_userpte);
49
50 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
51 {
52 pgtable_page_dtor(pte);
53 paravirt_release_pte(page_to_pfn(pte));
54 tlb_remove_page(tlb, pte);
55 }
56
57 #if PAGETABLE_LEVELS > 2
58 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
59 {
60 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
61 tlb_remove_page(tlb, virt_to_page(pmd));
62 }
63
64 #if PAGETABLE_LEVELS > 3
65 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
66 {
67 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
68 tlb_remove_page(tlb, virt_to_page(pud));
69 }
70 #endif /* PAGETABLE_LEVELS > 3 */
71 #endif /* PAGETABLE_LEVELS > 2 */
72
73 static inline void pgd_list_add(pgd_t *pgd)
74 {
75 struct page *page = virt_to_page(pgd);
76
77 list_add(&page->lru, &pgd_list);
78 }
79
80 static inline void pgd_list_del(pgd_t *pgd)
81 {
82 struct page *page = virt_to_page(pgd);
83
84 list_del(&page->lru);
85 }
86
87 #define UNSHARED_PTRS_PER_PGD \
88 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
89
90
91 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
92 {
93 BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
94 virt_to_page(pgd)->index = (pgoff_t)mm;
95 }
96
97 struct mm_struct *pgd_page_get_mm(struct page *page)
98 {
99 return (struct mm_struct *)page->index;
100 }
101
102 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
103 {
104 /* If the pgd points to a shared pagetable level (either the
105 ptes in non-PAE, or shared PMD in PAE), then just copy the
106 references from swapper_pg_dir. */
107 if (PAGETABLE_LEVELS == 2 ||
108 (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
109 PAGETABLE_LEVELS == 4) {
110 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
111 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
112 KERNEL_PGD_PTRS);
113 }
114
115 /* list required to sync kernel mapping updates */
116 if (!SHARED_KERNEL_PMD) {
117 pgd_set_mm(pgd, mm);
118 pgd_list_add(pgd);
119 }
120 }
121
122 static void pgd_dtor(pgd_t *pgd)
123 {
124 unsigned long flags; /* can be called from interrupt context */
125
126 if (SHARED_KERNEL_PMD)
127 return;
128
129 spin_lock_irqsave(&pgd_lock, flags);
130 pgd_list_del(pgd);
131 spin_unlock_irqrestore(&pgd_lock, flags);
132 }
133
134 /*
135 * List of all pgd's needed for non-PAE so it can invalidate entries
136 * in both cached and uncached pgd's; not needed for PAE since the
137 * kernel pmd is shared. If PAE were not to share the pmd a similar
138 * tactic would be needed. This is essentially codepath-based locking
139 * against pageattr.c; it is the unique case in which a valid change
140 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
141 * vmalloc faults work because attached pagetables are never freed.
142 * -- wli
143 */
144
145 #ifdef CONFIG_X86_PAE
146 /*
147 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
148 * updating the top-level pagetable entries to guarantee the
149 * processor notices the update. Since this is expensive, and
150 * all 4 top-level entries are used almost immediately in a
151 * new process's life, we just pre-populate them here.
152 *
153 * Also, if we're in a paravirt environment where the kernel pmd is
154 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
155 * and initialize the kernel pmds here.
156 */
157 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
158
159 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
160 {
161 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
162
163 /* Note: almost everything apart from _PAGE_PRESENT is
164 reserved at the pmd (PDPT) level. */
165 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
166
167 /*
168 * According to Intel App note "TLBs, Paging-Structure Caches,
169 * and Their Invalidation", April 2007, document 317080-001,
170 * section 8.1: in PAE mode we explicitly have to flush the
171 * TLB via cr3 if the top-level pgd is changed...
172 */
173 if (mm == current->active_mm)
174 write_cr3(read_cr3());
175 }
176 #else /* !CONFIG_X86_PAE */
177
178 /* No need to prepopulate any pagetable entries in non-PAE modes. */
179 #define PREALLOCATED_PMDS 0
180
181 #endif /* CONFIG_X86_PAE */
182
183 static void free_pmds(pmd_t *pmds[])
184 {
185 int i;
186
187 for(i = 0; i < PREALLOCATED_PMDS; i++)
188 if (pmds[i])
189 free_page((unsigned long)pmds[i]);
190 }
191
192 static int preallocate_pmds(pmd_t *pmds[])
193 {
194 int i;
195 bool failed = false;
196
197 for(i = 0; i < PREALLOCATED_PMDS; i++) {
198 pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
199 if (pmd == NULL)
200 failed = true;
201 pmds[i] = pmd;
202 }
203
204 if (failed) {
205 free_pmds(pmds);
206 return -ENOMEM;
207 }
208
209 return 0;
210 }
211
212 /*
213 * Mop up any pmd pages which may still be attached to the pgd.
214 * Normally they will be freed by munmap/exit_mmap, but any pmd we
215 * preallocate which never got a corresponding vma will need to be
216 * freed manually.
217 */
218 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
219 {
220 int i;
221
222 for(i = 0; i < PREALLOCATED_PMDS; i++) {
223 pgd_t pgd = pgdp[i];
224
225 if (pgd_val(pgd) != 0) {
226 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
227
228 pgdp[i] = native_make_pgd(0);
229
230 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
231 pmd_free(mm, pmd);
232 }
233 }
234 }
235
236 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
237 {
238 pud_t *pud;
239 unsigned long addr;
240 int i;
241
242 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
243 return;
244
245 pud = pud_offset(pgd, 0);
246
247 for (addr = i = 0; i < PREALLOCATED_PMDS;
248 i++, pud++, addr += PUD_SIZE) {
249 pmd_t *pmd = pmds[i];
250
251 if (i >= KERNEL_PGD_BOUNDARY)
252 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
253 sizeof(pmd_t) * PTRS_PER_PMD);
254
255 pud_populate(mm, pud, pmd);
256 }
257 }
258
259 pgd_t *pgd_alloc(struct mm_struct *mm)
260 {
261 pgd_t *pgd;
262 pmd_t *pmds[PREALLOCATED_PMDS];
263 unsigned long flags;
264
265 pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
266
267 if (pgd == NULL)
268 goto out;
269
270 mm->pgd = pgd;
271
272 if (preallocate_pmds(pmds) != 0)
273 goto out_free_pgd;
274
275 if (paravirt_pgd_alloc(mm) != 0)
276 goto out_free_pmds;
277
278 /*
279 * Make sure that pre-populating the pmds is atomic with
280 * respect to anything walking the pgd_list, so that they
281 * never see a partially populated pgd.
282 */
283 spin_lock_irqsave(&pgd_lock, flags);
284
285 pgd_ctor(mm, pgd);
286 pgd_prepopulate_pmd(mm, pgd, pmds);
287
288 spin_unlock_irqrestore(&pgd_lock, flags);
289
290 return pgd;
291
292 out_free_pmds:
293 free_pmds(pmds);
294 out_free_pgd:
295 free_page((unsigned long)pgd);
296 out:
297 return NULL;
298 }
299
300 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
301 {
302 pgd_mop_up_pmds(mm, pgd);
303 pgd_dtor(pgd);
304 paravirt_pgd_free(mm, pgd);
305 free_page((unsigned long)pgd);
306 }
307
308 int ptep_set_access_flags(struct vm_area_struct *vma,
309 unsigned long address, pte_t *ptep,
310 pte_t entry, int dirty)
311 {
312 int changed = !pte_same(*ptep, entry);
313
314 if (changed && dirty) {
315 *ptep = entry;
316 pte_update_defer(vma->vm_mm, address, ptep);
317 flush_tlb_page(vma, address);
318 }
319
320 return changed;
321 }
322
323 int ptep_test_and_clear_young(struct vm_area_struct *vma,
324 unsigned long addr, pte_t *ptep)
325 {
326 int ret = 0;
327
328 if (pte_young(*ptep))
329 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
330 (unsigned long *) &ptep->pte);
331
332 if (ret)
333 pte_update(vma->vm_mm, addr, ptep);
334
335 return ret;
336 }
337
338 int ptep_clear_flush_young(struct vm_area_struct *vma,
339 unsigned long address, pte_t *ptep)
340 {
341 int young;
342
343 young = ptep_test_and_clear_young(vma, address, ptep);
344 if (young)
345 flush_tlb_page(vma, address);
346
347 return young;
348 }
349
350 /**
351 * reserve_top_address - reserves a hole in the top of kernel address space
352 * @reserve - size of hole to reserve
353 *
354 * Can be used to relocate the fixmap area and poke a hole in the top
355 * of kernel address space to make room for a hypervisor.
356 */
357 void __init reserve_top_address(unsigned long reserve)
358 {
359 #ifdef CONFIG_X86_32
360 BUG_ON(fixmaps_set > 0);
361 printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
362 (int)-reserve);
363 __FIXADDR_TOP = -reserve - PAGE_SIZE;
364 #endif
365 }
366
367 int fixmaps_set;
368
369 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
370 {
371 unsigned long address = __fix_to_virt(idx);
372
373 if (idx >= __end_of_fixed_addresses) {
374 BUG();
375 return;
376 }
377 set_pte_vaddr(address, pte);
378 fixmaps_set++;
379 }
380
381 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
382 pgprot_t flags)
383 {
384 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
385 }
This page took 0.039096 seconds and 4 git commands to generate.